计量经济学作业HW4
【VIP专享】计量经济学第四章练习题及参考解答
(2) 3.060 1.657ln() 1.057ln()
(0.337) (0.092) (0.215)0.992 0.991 F 1275.093
GDP CPI R =-+-===进口居民消费价格指数的回归系数的符号不能进行合理的经济意义解释可能数据中有多重共线性。
计算相关系数:
22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)
0.9828 0.9820 1198.698
GDP R R F =-+===ln Y 5.4424 2.6637ln (PI)C =-+
从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,著。
可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5
可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于作为解释变量,很可能会出现严重多重共线性问题。
在本章开始的“引子”提出的“农业的发展反而会减少财政收入吗?
表4.13 1978-2007
财政收入(亿元)CS农业增加值(亿元)NZ工业增加值(亿元)GZ建筑业增加值
1132.31027.51607
1146.41270.21769.7
1159.91371.61996.5
1175.81559.52048.4
(1)根据样本数据得到各解释变量的样本相关系数矩阵如下:样本相关系数矩阵
解释变量之间相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在这显然与第三章对模型的无多重共线性假定不符合。
《计量经济学》习题(第四章)
《计量经济学》习题(第四章)第四章习题⼀、单选题1、如果回归模型违背了同⽅差假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的2、Goldfeld-Quandt ⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性3、DW 检验⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性4、在异⽅差性情况下,常⽤的估计⽅法是____A .⼀阶差分法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法5、在以下选项中,正确表达了序列⾃相关的是____j i u x Cov D j i x x Cov C ji u u Cov B ji u u Cov A j i j i j i j i ≠≠≠≠≠=≠≠,0),(.,0),(.,0),(.,0),(.6、如果回归模型违背了⽆⾃相关假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的7、在⾃相关情况下,常⽤的估计⽅法____A .普通最⼩⼆乘法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法8、White 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性9、Glejser 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性10、简单相关系数矩阵⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var A12、所谓不完全多重共线性是指存在不全为零的数k λλλ,,,21 ,有____1112211221221122.0.0..k k k k k x x x k k k k A x x x v B x x x C x x x v e D x x x v e v λλλλλλλλλλλλ++++=+++=∑?++++=++++=式中是随机误差项13、设21,x x 为解释变量,则完全多重共线性是____0.(021.0.021.22121121=+=++==+x x e x D v v x x C e x B x x A 为随机误差项)14、⼴义差分法是对____⽤最⼩⼆乘法估计其参数 11211211121121)()1(....-------+-+-=-++=++=++=t t t t t t t t t t t t t t t u u x x y y D u x y C u x y B u x y A ρρβρβρρρβρβρββββ15、在DW 检验中要求有假定条件,在下列条件中不正确的是____A .解释变量为⾮随机的 B.随机误差项为⼀阶⾃回归形式C .线性回归模型中不应含有滞后内⽣变量为解释变量D.线性回归模型为⼀元回归形式16、在下例引起序列⾃相关的原因中,不正确的是____A.经济变量具有惯性作⽤B.经济⾏为的滞后性C.设定偏误D.解释变量之间的共线性17、在DW 检验中,当d 统计量为2时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定18、在DW 检验中,当d 统计量为4时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定19、在DW 检验中,当d 统计量为0时,表明____A.存在完全的正⾃相关C.不存在⾃相关D.不能判定20、在DW 检验中,存在不能判定的区域是____A. 0﹤d ﹤l d ,4-l d ﹤d ﹤4B. u d ﹤d ﹤4-u dC. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l dD. 上述都不对21、在修正序列⾃相关的⽅法中,能修正⾼阶⾃相关的⽅法是____A. 利⽤DW 统计量值求出ρB. Cochrane-Orcutt 法C. Durbin 两步法D. 移动平均法22、在下列多重共线性产⽣的原因中,不正确的是____A.经济本变量⼤多存在共同变化趋势B.模型中⼤量采⽤滞后变量C.由于认识上的局限使得选择变量不当D.解释变量与随机误差项相关23、在DW 检验中,存在正⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d24、逐步回归法既检验⼜修正了____A .异⽅差性 B.⾃相关性 C .随机解释变量 D.多重共线性25、设)()(,2221i i i i i ix f u Var u x y σσββ==++=,则对原模型变换的正确形式为____ )()()()(.)()()()(.)()()()(..212222122121i i i i i i i i i i i i i i i i i i i i i i i i x f u x f x x f x f y D x f u x f x x f x f y C x f u x f x x f x f y B u x y A ++=++=++=++=ββββββββ 26、在修正序列⾃相关的⽅法中,不正确的是____A.⼴义差分法B.普通最⼩⼆乘法C.⼀阶差分法D. Durbin 两步法27、在检验异⽅差的⽅法中,不正确的是____A. Goldfeld-Quandt ⽅法B. spearman 检验法C. White 检验法28、在DW 检验中,存在零⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d29.如果模型中的解释变量存在完全的多重共线性,参数的最⼩⼆乘估计量是()A .⽆偏的 B. 有偏的 C. 不确定 D. 确定的30. 已知模型的形式为u x y 21+β+β=,在⽤实际数据对模型的参数进⾏估计的时候,测得DW 统计量为0.6453,则⼴义差分变量是( )A. 1t t ,1t t x 6453.0x y 6453.0y ----B. 1t t 1t t x 6774.0x ,y 6774.0y ----C. 1t t 1t t x x ,y y ----D. 1t t 1t t x 05.0x ,y 05.0y ----31. 在具体运⽤加权最⼩⼆乘法时,如果变换的结果是x u x x x 1xy 21+β+β=,则Var(u)是下列形式中的哪⼀种?( )A. 2σxB. 2σ2x B. 2σx D. 2σLog(x)32. 在线性回归模型中,若解释变量1x 和2x 的观测值成⽐例,即有i 2i 1kx x =,其中k 为⾮零常数,则表明模型中存在( )A. 异⽅差B. 多重共线性C. 序列⾃相关D. 设定误差33. 已知DW 统计量的值接近于2,则样本回归模型残差的⼀阶⾃相关系数ρ近似等于( ) A. 0 B. –1 C. 1 D. 4⼆、多项选择1、能够检验多重共线性的⽅法有____A.简单相关系数法B. DW检验法C. 判定系数检验法D. ⽅差膨胀因⼦检验E.逐步回归法2、能够修正多重共线性的⽅法有____A.增加样本容量B.岭回归法C.剔除多余变量E.差分模型3、如果模型中存在异⽅差现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的4、能够检验异⽅差的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. spearman检验法E. DW检验法F. Goldfeld-Quandt检验法5、如果模型中存在序列⾃相关现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的6、检验序列⾃相关的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. DW检验法E. Goldfeld-Quandt检验法7、能够修正序列⾃相关的⽅法有____A. 加权最⼩⼆乘法B. Durbin两步法C. ⼴义最⼩⼆乘法D. ⼀阶差分法E. ⼴义差分法8、Goldfeld-Quandt检验法的应⽤条件是____A. 将观测值按解释变量的⼤⼩顺序排列B. 样本容量尽可能⼤C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉9、在DW检验中,存在不能判定的区域是____A. 0﹤d﹤l dB. u d﹤d﹤4-u dC. l d﹤d﹤u dD. 4-u d﹤d﹤4-l dE. 4-l d﹤d﹤4。
(完整word版)计量经济学第四章习题详解
第四章习题4.1 没有进行t检验,并且调整的可决系数也没有写出来,也就是没有考虑自由度的影响,会使结果存在误差.4.3200224430.3120332。
7 330.6200334195。
6135822.8 334。
6200446435.8159878.3 l347.7200554273.7183084.8 353.9200663376.9211923。
5 359。
2200773284。
6249529。
9 376.5200879526.5314045.4 398.7200968618。
4340902。
8 395。
9201094699.3401512.8 408。
92011113161.4472881.6 431.0一研究的目的和要求我们知道,商品进口额与很多因素有关,了解其变化对进出口产品有很大帮助。
为了探究和预测商品进口额的变化,需要定量地分析影响商品进口额变化的主要因素。
二、模型的设定及其估计经分析,商品进口额可能与国内生产总值、居民消费价格指数有关。
为此,考虑国内生产总值GDP、居民消费价格指数CPI为主要因素。
各影响变量与商品进口额呈正相关。
为此,设定如下形式的计量经济模型:=+ln+lnCP式中,亿元);lnGDP为国内生产总值(亿元);lnCPI为居民消费价格指数(以1985年为100)。
各解释变量前的回归系数预期都大于零。
为估计模型,根据上表的数据,利用EViews软件,生成Y、lnGDP、lnCPI等数据,采用OLS方法估计模型参数,得到的回归结果如下图所示:模型方程为:lnY=-3。
111486+1。
338533lnGDP-0.421791lnCPI(0。
463010)(0。
088610)(0。
233295)t= (—6。
720126) (15。
10582)(—1。
807975)=0.988051 =0.987055 F=992。
2582该模型=0.988051,=0。
987055,可决系数很高,F检验值为992.2582,明显显著。
计量经济大学作业
计量经济学大作业大作业名称:选课班级:任课教师:成绩:一、摘要经济的发展,必然会带来货币的流通,也会带来消费。
经济将货币流通量、货款额和居民消费价格指数连接起来。
一个国家贷款额的多少和居民的消费价格指数往往可以在某种程度上反映经济的发展,反映货币流通量的大小。
我们可以通过计量经济学的多元线性模型来反映货币流通量、货款额和居民消费价格指数三者之间的关系。
然后对其进行拟合优度检验,F检验,显著性检验,异方差检验,相关性检验和多重共线性检验。
通过检验最终确定模型,使得建立的模型达到最优的结果。
通过分析我们得出,贷款额增加,会导致货币流通量的增加,居民消费价格指数的增加,也会导致货币流通量的增加。
关键字:币流通量货款额居民消费价格指数多元线性模型二、引言经济的发展,必然会带来一系列的改变,而货币流通量的变化则是最直接、深刻的体现了这一点。
接下来我们将根据多元线性回归模型来分析货币流通量、货款额和居民消费价格指数三者之间的关系。
在此次试验中,我们运用了eviews软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,残差平方和越小,表明样本回归线和样本观测值的拟合程度越高。
2、方程总体线性的显著性检验——F检验(1)方程总体线性的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出的判断。
(2)给定显著性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的书之后,可通过比较来判断是拒绝还是接受原假设,以判定原方程总体上的线性关系是否显著成立。
3、变量的显著性检验——t检验4、异方差的检验——怀特检验5、多重共线性的检验——逐步回归法以y为解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、实证分析1、确定变量“货币流通量”为被解释变量,而“货币贷款额”和“居民消费价格指数”为解释变量。
计量经济学(第四版)习题及参考答案详细版知识讲解
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NSS x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
计量经济学作业,DOC
计量经济学作业第二章为了初步分析城镇居民家庭平均每百户计算机用户有量(Y)与城镇居民平均每人全年家庭总收入(X)的关系,可以作以X为横坐所估计的参数,总收入每增加1元,平均说来城镇居民每百户计算机拥有量将增加0.002873台,这与预期的经济意义相符。
拟合优度和统计检验拟合优度的度量:本例中可决系数为0.8320,说明所建模型整体上对样本数据拟合较好,即解释变量“各地区城镇居民家庭人均总收入”对被解释变量“各地区城镇居民每百户计算机拥有量”的绝大部分差异做出了解释。
对回归系数的t检验:针对和,估计的回归系数的标准误差和t值分别为:,;的标准误差和t值分别为:,。
因为,绝;因,所以应拒绝。
城镇居民人均总收入对城镇居民每百取,平均置信度已经得到、、、n=31,可计算出。
当时,将相关数据代入计算得到83.7846 3.1627,即是说当地区城镇居民人均总收入达到25000元时,城镇居民每百户计算机拥有量平均值置信度95%的预测区间为(80.6219,86.9473)台。
个别置信度95%的预测区间为当时,将相关数据代入计算得到83.784616.7190是说,当地区城镇居民人均总收入达到元时,城镇居民每百户计算机拥有量化,选择“教育支出在地方财政支出中的比重”作为其代表。
探索将模型设定为线性回归模型形式:根据图中的数据,模型估计的结果写为(935.8816)(0.0018)(0.0080)(0.0517)(9.0867)(470.3214)t=(-2.5820)(6.3167)(4.9643)(2.8267)(2.5109)(1.8422)=0.9732F=181.7539n=31模型检验1.经济意义检验模型估计结果说明,在嘉定齐天然变量不变的情况下,地区生产12中数据可以得到:=0.9732可决系数为=0.9679:,性水平,在分布表中查出自由度为k-1=5何n-k=25界值.由表3.4得到F=181.7539,由于F=181.7539>,应拒绝原假设:,说明回归方程显著,即“地区生产总值”,“年末人口数”,“居民平均每人教育现金消费”,“居民教育消费价格指数”,“教育支出在地方财政支出中的比重”等变量联合起来确实对“地方财政教育支出”有显著影响。
计量经济学第四章习题
计量经济学第四章习题第四章练习题1. 什么是异⽅差性?试举例说明经济现象中的异⽅差性。
检验异⽅差性的⽅法思路是什么? 2. 判断题。
并简单说明理由。
(1) 存在异⽅差时,普通最⼩⼆乘法(OLS )估计量是有偏的和⽆效的; (2) 存在异⽅差时,常⽤的t 检验和F 检验失效;(3) 存在异⽅差时,常⽤的OLS 估计⼀定是⾼估了估计量的标准差; (4)如果从OLS 回归中估计的残差呈现出系统性,则意味着数据中存在着异⽅差; (5) 存在序列相关时,OLS 估计量是有偏的并且也是⽆效的; (6) 消除序列相关的⼀阶差分变换假定⾃相关系数ρ必须等于1; (7) 回归模型中误差项t u 存在异⽅差时,OLS 估计不再是有效的; (8) 存在多重共线性时,模型参数⽆法估计;(9)存在多重共线性时,⼀定会使参数估计值的⽅差增⼤,从⽽造成估计效率的损失;(10) ⼀旦模型中的解释变量是随机变量,则违背了基本假设,使得模型的OLS 估计量有偏且不⼀致。
3. 回归模型中误差项t u 存在序列相关时,OLS 估计不再是⽆偏的;已知消费模型:01122t t t t y x x u ααα=+++。
其中,t y :消费⽀出;t x 1:个⼈可⽀配收⼊;t x 2:消费者的流动资产。
设0)(=t u E ,为常数)其中2212()(σσt t ar x u V =。
要求: (1)进⾏适当变换消除异⽅差,并证明之。
(2)写出消除异⽅差后,模型的参数估计量的表达式。
4. 简述异⽅差对下列各项有何影响:(1) OLS 估计量及其⽅差; (2) 置信区间;(3)显著性t 检验和F 检验的使⽤。
5. 已知模型:22201122,()t t t t t t t Y X X u Var u Z βββσσ=+++==。
式中,Y 、X 1、X 2和Z 的数据已知。
假设给定权数t w ,加权最⼩⼆乘法就是求下式中的各β,以使的下式最⼩2221102)()(t t t t t t t t t X w X w w Y w u w RSS βββ---==∑∑(1) 求RSS 对β1、β2和β2的偏微分并写出正规⽅程。
计量经济学习题及全部答案
《计量经济学》习题(一)一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。
( ) 2.最小二乘法进行参数估计的基本原理是使残差平方和最小。
( )3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n -1)。
( ) 4.当我们说估计的回归系数在统计上是显著的,意思是说它显著地异于0。
( )5.总离差平方和(TSS )可分解为残差平方和(ESS )与回归平方和(RSS )之和,其中残差平方和(ESS )表示总离差平方和中可由样本回归直线解释的部分。
( ) 6.多元线性回归模型的F 检验和t 检验是一致的。
( )7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。
( ) 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关。
( )9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。
( ) 10...D W 检验只能检验一阶自相关。
( ) 二、单选题1.样本回归函数(方程)的表达式为( )。
A .i Y =01i i X u ββ++ B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是( )。
A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示( )。
A .当X 增加一个单位时,Y 增加1β个单位 B .当X 增加一个单位时,Y 平均增加1β个单位 C .当Y 增加一个单位时,X 增加1β个单位 D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指( )。
A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为( )。
计量经济学(第四版)习习习题及参考答案详细版,DOC
欢迎共阅计量经济学(第四版)习题参考答案潘省初第一章绪论1.1试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说)(2)建立计量经济模型(3)收集数据 (4)估计参数(5)假设检验(6)预测和政策分析 1.2计量经济模型中为何要包括扰动项?这些因2.1略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间N SS x ==45=1.25 用?=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为x S t X 005.0±=174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
2.325个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体? 原假设120:0=μH备择假设120:1≠μH2.4取出16原假设:设,3.1(1)(2(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量。
错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)最小二乘斜率系数的假设检验所依据的是t 分布,要求βˆ的抽样分布是正态分布。
对 (5)R 2=TSS/ESS 。
错R 2=ESS/TSS 。
(6)若回归模型中无截距项,则0≠∑t e 。
对(7)若原假设未被拒绝,则它为真。
错。
我们可以说的是,手头的数据不允许我们拒绝原假设。
(8)在双变量回归中,2σ的值越大,斜率系数的方差越大。
错。
因为∑=22)ˆ(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。
3.2设YXβˆ和XY βˆ分别表示Y 对X 和X 对Y 的OLS 回归中的斜率,证明r 3.3(((1)(2)3.4(((1) (2)3.5考虑下列双变量模型: 模型1:i i i u X Y ++=21ββ模型2:i i i u X X Y +-+=)(21αα(1)?1和?1的OLS 估计量相同吗?它们的方差相等吗? (2)?2和?2的OLS 估计量相同吗?它们的方差相等吗?(1)X Y 21ˆˆββ-=,注意到 由上述结果,可以看到,无论是两个截距的估计量还是它们的方差都不相同。
计量经济学第四章作业参考答案
4.3(1)由题知,对数回归模型为:123ln ln ln t t t i Y G D P C PI u βββ=+++ 用最小二乘法对参数进行估计得:ˆl n 3.6491.796l n 1.208l nt tt Y G D P C P I =-+- (0.322) (0.181) (0.354)t=-11.32129 9.931363 -3.41496120.990R = 20.988R = S.E.=0.112388 F=770.602(2)存在多重共线性。
居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且其简单相关系数为0.985811,说明lnGDP 和lnCPI 存在正相关的关系。
(3)根据题目要求进行如下回归: ○1模型为:121ln ln t t i Y A A G D P v =++ 用最小二乘法对参数进行估计得: l n 3.7451.187l nt t Y G D P =-+ (0.410) (0.039) t= -9.143326 30.65940 20.982R = 20.981R = S.E.=0.143363 F=939.999 ○2模型为:122ln ln t t i Y B B C PI v =++用最小二乘法对参数进行估计得: l n 3.392.254l n t t Y CPI =-+(0.834) (0.154) t= -4.064199 14.62649 20.926R = 20.922R = S.E.=0.291842 F=213.934○3模型为:122ln ln tt i Y B B C PI v =++用最小二乘法对参数进行估计得:l n 0.1441.927l n t t GDP CPI =+ (0.431) (0.080)t= 0.334092 24.2143920.972R = 20.970R = S.E.=0.150715 F=586.337单方程拟合效果都很好,回归系数显著,判定系数较高,GDP 和CPI 对进口的显著的单一影响,在这两个变量同时引入模型引起了多重共线性。
计量经济学各章作业习题[后附答案]
计量经济学各章作业习题[后附答案]《计量经济学》第一章绪论一、单项选择题1变量之间的关系可以分为两大类,它们是【】A 函数关系和相关关系 BC 正相关关系和负相关关系 D2、相关关系是指【】A 变量间的依存关系BC 变量间的函数关系D3、进行相关分析时,假定相关的两个变量【】A 都是随机变量4、计量经济研究中的数据主要有两类:一类是时间序列数据,另一类是【】A 总量数据B 横截面数据C 平均数据D相对数据5、下面属于截面数据的是【】A 1991-2003年各年某地区20个乡镇的平均工业产值B 1991-2003年各年某地区 20个乡镇的各镇工业产值C 某年某地区20个乡镇工业产值的合计数D 某年某地区20个乡镇各镇工业产值6、同一统计指标按时间顺序记录的数据列称为【】 A 横截面数据 B 时间序列数据 C 修匀数据D原始数据7、经济计量分析的基本步骤是【】A 设定理论模型汕攵集样本资料 M 古计模型参数>检验模型B 设定模型、估计参数 '检验模型 '应用模型C 个体设计一;总体设计一■?估计模型一;应用模型D 确定模型导向 '确定变量及方程式 M 古计模型、应用模型8、计量经济模型的基本应用领域有【】A 结构分析、经济预测、政策评价B 弹性分析、乘数分析、政策模拟C 一个是随机变量,一个不是随机变量D 随机或非随机都可以线性相关关系和非线性相关关系简单相关关系和复杂相关关系变量间的因果关系变量间表现出来的随机数学关系都不是随机变量C消费需求分析、生产技术分析、市场均衡分析D季度分析、年度分析、中长期分析9、计量经济模型是指【D 模型预测检验2、经济计量分析工作的四个步骤是【D 检验模型3、对计量经济模型的计量经济学准则检验包括【4、对经济计量模型的参数估计结果进行评价时,采用的准则有【D 模型识别准则三、名词解释1计量经济学2、计量经济学模型3 、时间序列数据A 投入产出模型 B数学规划模型 C 包含随机方程的经济数学模型 D模糊数学模型10、回归分析中定义【】A 解释变量和被解释变量都是随机变量B 解释变量为非随机变量,被解释变量为随机变量C 解释变量和被解释变量都是非随机变量D 解释变量为随机变量,被解释变量为非随机变量 11、下列选项中,哪一项是统计检验基础上的再检验(亦称二级检验)准则【】A.计量经济学准则 B经济理论准则C 统计准则D12、理论设计的工作,不包括下面哪个方面【 A 选择变量 B统计准则和经济理论准则】确定变量之间的数学关系 C 收集数据拟定模型中待估参数的期望值13、计量经济学模型成功的三要素不包括【 A 理论应用 C 数据方法14、在经济学的结构分析中,不包括下面那一项【 A 弹性分析乘数分析 C 比较静力分析方差分析二、多项选择题1、一个模型用于预测前必须经过的检验有【A 经济准则检验统计准则检验计量经济学准则检验实践检验A 理论研究设计模型估计参数应用模型A 误差程度检验异方差检验序列相关检验D 超一致性检验多重共线性检验 A 经济理论准则统计准则经济计量准则模型简单准则4、截面数据 5 、弹性 6 、乘数四、简述1简述经济计量分析工作的程序。
计量经济学习题及参考答案解析详细版
计量经济学(第四版)习题参考答案潘省初第一章 绪论试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础略,参考教材。
请用例中的数据求北京男生平均身高的99%置信区间NS S x ==45= 用=,N-1=15个自由度查表得005.0t =,故99%置信限为x S t X 005.0± =174±×=174±也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。
25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体? 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/2510/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。
计量经济学第四版)习题及参考答案详细版
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NSS x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
(完整版)《计量经济学》作业答案
计量经济学作业答案第一次作业:1-2. 计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究)。
计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学;无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。
计量经济学模型研究的经济关系有两个基本特征:一是随机关系;二是因果关系。
1-4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和一致性;(3)估计模型参数;(4)模型检验,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
1-6.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二次作业:2-1 P27 6条2-3 线性回归模型有哪些基本假设?违背基本假设的计量经济学模型是否就不可估计?答:线性回归模型的基本假设(实际是针对普通最小二乘法的基本假设)是:解释变量是确定性变量,而且解释变量之间互不相关;随机误差项具有0均值和同方差;随机误差项在不同样本点之间是独立的,不存在序列相关;随机误差项与解释变量之间不相关;随机误差项服从0均值、同方差的正态分布。
计量经济学(第四版)习题及参考问题详解详细版
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
计量经济学第四版习题及参考答案
计量经济学第四版习题及参考答案Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】计量经济学(第四版)习题参考答案潘省初第一章 绪论试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
什么是时间序列和横截面数据 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
估计量和估计值有何区别估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础略,参考教材。
请用例中的数据求北京男生平均身高的99%置信区间NSS x ==45= 用?=,N-1=15个自由度查表得005.0t =,故99%置信限为 x S t X 005.0± =174±×=174±也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。
【免费下载】计量经济学4答案
过一美元,这与经济理论和常识不符。
0.69, t3
另外,理论上非工资—非农业收入与农业收入也是消费行为的重要解释变量,但两者的 t 检验都没有通过。
这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消
五、辨析题
1、在高度多重共线性的情形中,要评价一个或多个偏回归系数的单个显著性是不可能的。×
2、尽管有完全的多重共线性,OLS 估计量仍然是 BLUE。√
3、如果其他条件不变,VIF 越高,OLS 估计量的方差越大。√
4、如果在多元回归中,根据通常的 t 检验,全部偏回归系数都是统计上不显著的,你就不会得到一个
高的 R2 值。×
5、如果分析的目的仅仅是预测,则多重共线性是无害的。√
6、如果有某一辅助回归显示出高的 Rj2 值,则高度共线性的存在是肯定无疑的。× 六、计算分析题
1、克莱因与戈德伯格曾用 1921-1950 年(1942-1944 年战争期间略去)美国国内消费 Y 和工资收入 X1、非工资—非农业收入 X2、农业收入 X3 的时间序列资料,利用 OLSE 估计得出了下列回归方程: Yˆ 8.133 1.059X1 0.452X 2 0.121X 3
(A)经济变量之间具有共同变化趋势 (B)模型中包含滞后变量
(C)采用截面数据
(D)样本数据自身的原因
3、多重共线性检验的方法包括( ABCD )
(A)简单相关系数检验法
(B)方差扩大因子法
(C)直观判断法
(D)逐步回归法
(E)DW 检验法
4、修正多重共线性的经验方法包括(ABCDE )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Homework4for Econometrics
(due May8,2013)
Spring2013
Instructor:Jihai Yu
TA:Kunyuan Qiao
1.(i)In the simple regression model
price= 0+ 1assess+u;
the assessment is rational if 1=1and 0=0.The estimated equation is
[
price= 14:47+0:976assess
(16:27)(0.049)
n=88;SSR=165644:51;R2=0:820
First,test the hypothesis that H0: 0=0against the two-sided alternative.Then,test H0: 1=1 against the two-sided alternative.What do you conclude?
(ii)To test the joint hypothesis that 1=1and 0=0,we need the SSR in the restricted model.This amounts to computing P n i=1(price i assess i)2,where n=88,since the residuals in the restricted model are just price i assess i.(No estimation is needed for the restricted model because both parameters are speci…ed under H0.)This turns out to yield SSR=209448:99.Carry out the F test for the joint hypothesis.
(iii)Now,test H0: 2= 3= 4=0in the model
price= 0+ 1assess+ 2lotsize+ 3sqrft+ 4bdrms+u.
The R-squared from estimating this model using the same88houses is0.829.
(iv)If the variance of price changes with assess,lotsize,sqrft,or bdrms,what can you say about the F test from part(iii)?
2.We estimated the equation
[
sleep=3638:25 0:148totwork 11:13educ+2:20age
(112:28)(0.017)(5.88)(1.45)
n=706;R2=0:113
where we now report standard errors along with the estimates.
(i)Is either educ or age individually signi…cant at the5%level against a two-sided alternative?Show your work.
(ii)Dropping educ and age from the equation gives
[
sleep=3586:38 0:151totwork
(38:91)(0.017)
n=706;R2=0:103
Are educ and age jointly signi…cant in the original equation at the5%level?Justify your answer.
(iii)Does including educ and age in the model greatly a¤ect the estimated tradeo¤between sleeping and working?
(iv)Suppose that the sleep equation contains heteroskedasticity.What does this mean about the tests computed in parts(i)and(ii)?
3.For the above regression equation,the sample size is T=100.We expect that the…rst60periods follows
y= 0+ 1x1+ 2x2+ 3x3+u,
while the second40periods follows
y= 0+ 1x1+ 4x2+ 5x3+u.
That is,there is a structural change between this two samples.
Construct an F test for the null hypothesis that" 2= 4and 3= 5".
4.In the simple regression model under MLR.1through MLR.4,we argued that the slope estimator,^ 1,is consistent for ing^ 0= y ^ 1 x1,show that plim^ 0= 0.
[You need to use the consistency of^ 1and the law of large numbers,along with the fact that 0= E(y) 1E(x1).]
e the data in DISCRIM.DTA to answer this question.
(i)Use OLS to estimate the model
log(psoda)= 0+ 1prpblk+ 2log(income)e+ 3prppov+u.
and report the results in the usual form.Is^ 1statistically di¤erent from zero at the5%level against a two-sided alternative?What about at the1%level?
(ii)What is the correlation between log(income)and prppov?Is each variable statistically signi…cant in any case?Report the two-sided p-values.
(iii)To the regression in part(i),add the variable log(hseval).Interpret its coe¢cient and report the two-sided p-value for H0: log(hseval)=0.
(iv)In the regression in part(iii),what happens to the individual statistical signi…cance of log(income) and prppov?Are these variables jointly signi…cant?(Compute a p-value.)What do you make of your answers?
(v)Given the results of the previous regressions,which one would you report as most reliable in deter-mining whether the racial makeup of a zip code in‡uences local fast-food prices?
e the data in WAGE1.DTA for this exercise.
(i)Estimate the equation
wage= 0+ 1educ+ 2exper+ 3tenure+u.
Save the residuals and plot a histogram.
(ii)Repeat part(i),but with log(wage)as the dependent variable.
(iii)Would you say that Assumption MLR.6is closer to being satis…ed for the level-level model or the log-level model?。