(完整word版)坐标方位角计算

合集下载

测量坐标方位角计算

测量坐标方位角计算

测量坐标方位角计算坐标方位角是指一个点相对于原点的方向角度。

测量坐标方位角是非常重要的,特别是在地理测量、导航以及机器人控制等领域。

在这篇文章中,我将解释测量坐标方位角的原理和方法,并提供一些实际应用的示例。

首先,坐标方位角是以正北方向为参考的,顺时针方向测量。

通常用一个角度值表示,范围从0度到360度。

0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。

方位角 = arctan(y / x)其中,y是点相对于原点在y轴上的坐标值,x是点相对于原点在x轴上的坐标值,arctan是反正切函数。

这个公式的推导过程比较简单。

假设原点为O,目标点为A,OA的长度为r,目标点的坐标为(x, y)。

那么,根据三角函数的定义,tan(方位角)等于直角三角形的对边长度y除以临边长度x,即tan(方位角) = y / x。

而反正切函数就是这个比值的反函数,即arctan(y / x)。

在实际应用中,可以使用计算机程序来计算坐标方位角。

许多编程语言和软件包都提供了计算三角函数的函数或方法。

比如,在Python中,可以使用math库中的atan2函数来计算坐标方位角。

这个函数接受两个参数,y和x,然后返回坐标方位角的弧度值。

要转换为角度值,可以再将弧度值乘以180并除以π,即angle = atan2(y, x) * 180 / π。

除了使用三角函数,还可以使用向量运算来计算坐标方位角。

假设有两个向量,一个是原点指向目标点的向量A,一个是x轴的单位向量B。

那么,两个向量的夹角就是坐标方位角。

具体而言,可以使用以下公式来计算坐标方位角:方位角= arccos(A · B / (,A,× ,B,))其中,A · B表示向量A和向量B的内积,A,和,B,分别表示向量A和向量B的长度,arccos是反余弦函数。

当然,以上只是理论上的计算方法,实际上还需考虑一些附加因素。

测量坐标方位角计算

测量坐标方位角计算

测量坐标方位角计算在数学和物理学中,坐标方位角是指从参考方向(通常为正方向)开始逆时针旋转到目标方向所需的角度。

这个术语通常用于描述平面坐标系中的点。

为了测量坐标方位角,可以使用以下步骤:Step 1:确定参考方向在测量坐标方位角之前,需要确定参考方向。

这通常是正方向,可以选择为x轴或y轴的正方向。

例如,可以选择x轴的正方向作为参考方向。

Step 2:计算向量坐标方位角涉及到从参考方向到目标方向的旋转角度。

为了计算旋转角度,需要先计算从参考方向到目标方向的向量。

可以使用下面的公式来计算向量的分量:v_x=x-x_0v_y=y-y_0其中,(x_0,y_0)是参考点的坐标,(x,y)是目标点的坐标。

Step 3:计算方位角一旦计算出向量的分量,可以使用向量的分量来计算方位角。

可以使用反正切函数来计算角度。

反正切函数的定义如下:θ = atan2(v_y, v_x)其中,θ表示方位角,atan2(是一个数学函数,用于计算反正切。

Step 4:转换为度数在计算方位角后,结果通常以弧度表示。

如果需要以度数表示,可以将方位角乘以180并除以π(π是圆周率)。

θ_degrees = θ * 180 / π这样就得到了以度数表示的方位角。

总结:测量坐标方位角的步骤包括确定参考方向,计算向量的分量,使用反正切函数计算方位角,然后将结果转换为度数。

这个过程可以帮助我们找到从参考方向到目标方向的旋转角度。

坐标方位角的概念在很多领域中都有应用,例如导航、无人机操作和图形设计。

测量坐标方位角计算公式

测量坐标方位角计算公式

测量坐标方位角是指测量中使用坐标系进行测量时,测量点与参考点的方位角。

坐标方位角的计算公式如下:
坐标方位角=tan^(-1)(纵坐标差/横坐标差)
其中,纵坐标差指测量点的纵坐标与参考点的纵坐标之差,横坐标差指测量点的横坐标与参考点的横坐标之差。

在计算坐标方位角时,需要注意以下几点:
1.坐标系的方向。

坐标方位角的计算是基于坐标系的方向的,因此在计算时需要确定
坐标系的方向。

2.纵坐标差和横坐标差的正负。

坐标方位角的计算中,纵坐标差和横坐标差的正负会
影响计算结果。

3.弧度和角度的转换。

坐标方位角的计算结果通常是弧度制的,如果需要将计算结果
转化为角度制,可以使用弧度和角度之间的转换公式进行转换。

在使用坐标方位角计算公式时,需要注意以上几点,以便得到准确的计算结果。

坐标,方位角计算公式

坐标,方位角计算公式

坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。

方位角是卫星接收天线,在水平面上转0°-360°。

设定方位角时,抛物面在水平面上左右移动。

方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。

它是从点的北方向顺时针方向和目标方向之间的水平角度。

一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。

αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。

2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。

3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。

当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。

根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式在工程测量中,坐标方位角是指一个点相对于参考方向的角度。

它是测量中常用的一个重要参数,用于确定物体或地点的位置和方向。

坐标方位角的计算公式主要基于三角函数的运算和几何原理,下面将详细介绍它的计算方法。

我们需要明确坐标方位角的定义。

在工程测量中,通常以正北方向为参考方向,以逆时针方向为正方向,来确定一个点的方位角。

方位角的范围是0°到360°,其中0°表示正北方向,90°表示正东方向,180°表示正南方向,270°表示正西方向,360°又回到正北方向。

对于任意一个点,我们可以通过计算该点相对于参考方向的角度来确定它的方位角。

具体的计算公式如下:方位角 = arctan((Y - Y0) / (X - X0))其中,X0和Y0表示参考点的坐标,X和Y表示待测点的坐标。

这个公式基于斜率的概念,通过计算两点之间的斜率来确定方位角。

需要注意的是,由于计算中使用了反正切函数arctan,所以计算结果的范围是-90°到90°,即仅限于第一象限和第四象限。

为了得到完整的方位角范围,我们需要进行一些额外的处理。

在计算公式中,我们可以根据X和X0的大小关系,以及Y和Y0的大小关系来确定方位角的象限。

具体的处理方法如下:如果X > X0且Y > Y0,那么方位角为计算结果;如果X < X0,那么方位角为180°加上计算结果;如果X > X0且Y < Y0,那么方位角为360°加上计算结果;如果X = X0且Y > Y0,那么方位角为90°;如果X = X0且Y < Y0,那么方位角为270°;如果X = X0且Y = Y0,那么方位角没有定义。

通过这些处理,我们可以得到完整的方位角范围。

在实际的工程测量中,坐标方位角的计算非常重要。

角度、坐标测量计算公式细则

角度、坐标测量计算公式细则

计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。

式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。

2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。

2)、方位角:arctan(y2-y1)/(x2-x1)。

加减180(大于180就减去180(还大于360就在减去360)、小于180就加180 如果x轴坐标增量为负数,则结果加180°。

如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。

S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。

2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。

3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。

再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。

拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。

2、在图上标识方位的方法:就是导线边与Y轴的夹角。

3、高程计算:目标高程=测点高程+?h+仪器高—占标高。

4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示) 1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:?Xab=Sab×COSαab 则有Xb=Xa+?Xab?Yab=Sab×SINαab Yb=Ya+?Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。

测量学中坐标方位角怎么算

测量学中坐标方位角怎么算

测量学中坐标方位角怎么算坐标方位角是测量学中一项重要的测量参数。

它用于描述一个点或物体相对于参考点的方位位置。

在测量学中,坐标方位角的计算方法有很多种,下面将介绍其中的一种常用方法。

1. 什么是坐标方位角?坐标方位角是指一个点相对于参考点的方向角度。

通常情况下,参考点被视为坐标系原点,点的方位角是从参考点出发,逆时针旋转一定角度后到达目标点的角度。

2. 坐标方位角的计算方法坐标方位角可以使用三角函数来计算。

下面介绍一种常用的计算方法。

首先,确定参考点和目标点的坐标值。

假设参考点的坐标为 (x1, y1),目标点的坐标为 (x2, y2)。

接下来,计算两点间的水平距离 dx 和垂直距离 dy。

可以使用公式 dx = x2 - x1 和 dy = y2 - y1 来计算。

然后,利用反正切函数 atan2(dy, dx) 计算坐标方位角。

这个函数可以直接得出坐标方位角的值。

最后,将计算得到的坐标方位角进行标准化。

通常情况下,坐标方位角的取值范围是从0°到360°。

如果结果小于0°,则加上360°,如果结果大于360°,则减去360°。

下面是具体的计算过程:dx = x2 - x1dy = y2 - y1angle = atan2(dy, dx)if angle < 0:angle += 360elif angle > 360:angle -= 3603. 坐标方位角的应用坐标方位角广泛应用于测量学中的各个领域,包括地理测量、测量工程和导航定位,以及其他需要描述方位关系的领域。

在地理测量中,坐标方位角用于确定地理位置的方向关系。

比如,通过测量两个地理位置的坐标方位角,可以确定它们之间的方向关系,例如东西方向、南北方向等。

在测量工程中,坐标方位角可以用于描述建筑物或工程物体的方位关系。

通过测量目标点相对于一个参考点的坐标方位角,可以确定目标物体相对于参考点的方向角度。

测量方位角计算公式

测量方位角计算公式

测量方位角计算公式测量方位角是指通过其中一种方法求得一些目标物体相对于指定基准方向的角度。

方位角通常使用度数表示,以正北方向为基准,沿顺时针方向递增,范围为0到360度。

测量方位角在地理导航、测量工程、天文学等领域有着广泛的应用。

计算方位角的公式主要有以下几种:1. 方位角 = atan((E - E0) / (N - N0))其中,E、N为目标物体的东北坐标,E0、N0为基准点的东北坐标。

该公式适用于平面坐标系。

2. 方位角 = atan2(E - E0, N - N0)其中,E、N为目标物体的东北坐标,E0、N0为基准点的东北坐标。

该公式适用于平面坐标系,可以通过atan2函数直接得到方位角,避免了先计算斜率再反求角度的过程。

3. 方位角= atan((sin(ΔL) * cos(L2)) / (cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔL)))其中,ΔL为目标物体经度减去基准点经度的差值,L1、L2分别为目标物体和基准点的纬度。

该公式适用于地理坐标系。

4. 方位角= arc tan((sin(Δλ) * cos(φ2)) / (cos(φ1) *sin(φ2) - sin(φ1) * cos(φ2) * cos(Δλ)))其中,Δλ为目标物体经度减去基准点经度的差值,φ1、φ2分别为目标物体和基准点的纬度。

该公式适用于地理坐标系,常用于计算大地方位角。

这些公式的推导及原理比较复杂,涉及到三角学和二元一次方程等知识。

在实际应用中,可以通过使用现成的工具或软件来计算方位角,如地图软件、GPS定位设备等。

这些工具会自动计算目标物体相对于基准方向的角度,准确性高、方便快捷,可以满足大部分测量需要。

需要注意的是,测量方位角是基于特定坐标系的,不同坐标系的方位角计算公式可能有所不同。

另外,由于地球是一个球体,使用平面坐标系进行测量会引入一定的误差,尤其是在较长的距离范围内。

掌握方位角计算公式

掌握方位角计算公式

掌握方位角计算公式在测绘工作中,方位角是最基本的方位元素,也是导航定位和航空飞行等领域的重要元素。

所谓方位角,是指从北开始的顺时针旋转角度,指示了目标相对于真北的方位。

具体来说,我们可以将方位角分为真方位角和磁方位角两种。

真方位角以地球的真北方向为基准,而磁方位角则是以地球的磁北极方向为基准。

在实际测量中,我们通常使用磁罗盘测量得到的磁方位角。

方位角的计算方法有多种,最常用的是迭代法和正算法。

迭代法通过多次计算得到目标相对于真北的角度,而正算法则是直接计算出目标相对于真北的方向。

下面我们就来介绍一下计算方法。

1. 根据坐标值计算方位角:使用以下公式可以根据两个坐标值计算方位角:其中,AA为起点到终点的方位角,\text{起点}起点和\text{终点}终点为相应坐标的数值。

请注意,AA的值可能会受到所使用的坐标系的影响。

2.迭代法迭代法是一种比较常用的计算方位角的方法,它的基本思想是将目标点的坐标和起点的坐标代入以下公式:tan θ = (y2 - y1) / (x2 - x1)其中,θ表示角度,y2和y1分别表示目标点和起点的纬度,x2和x1则表示目标点和起点的经度。

通过多次迭代计算,即可得到目标点相对于起点的方位角。

3.正算法正算法是一种直接计算目标点相对于真北方向的计算方法,它主要借助了三角函数的知识。

假设目标点和起点的坐标均已知,我们可以使用以下公式进行计算:cos A = sinφ2 - sinφ1 * cos(λ2 - λ1) / cosφ1 * sin(λ2 - λ1)其中,A表示目标点相对于真北的方位角,φ1和φ2分别表示起点和目标点的纬度,λ1和λ2则表示起点和目标点的经度。

需要注意的是,在实际测量中,还需要考虑磁偏角和地球自转等因素的影响,这些影响会对方位角的计算产生一定的影响。

因此,我们在计算方位角时需要特别谨慎。

方位角的计算方法

方位角的计算方法

方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。

要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。

方位角的计算方法

方位角的计算方法

方位角的计算方法方位角是指在平面直角坐标系中,特定点与正方向x轴之间逆时针方向的夹角。

它在数学、地理、航空航天等领域中都有广泛的应用。

计算方位角的方法主要有以下几种:1.基于直角坐标系的计算:假设有两个点A(x1, y1)和B(x2, y2),首先需要计算出两点之间的直线斜率k = (y2 - y1) / (x2 - x1)。

然后利用反正切函数,通过求解arctan(k)得到弧度值θ。

最后利用单位换算,将弧度值θ转化为角度值α=θ * 180 / π,即为所求的方位角。

2.基于极坐标系的计算:在极坐标系中,一个点可以通过距离r和极角θ来表示。

假设有两个点A(r1,θ1)和B(r2,θ2),要计算两点之间的方位角,首先需要将两点的极角θ转化为弧度制,然后通过计算Δθ=θ2-θ1得到两点之间的相对角度。

最后利用单位换算,将相对角度Δθ转化为角度值α=Δθ*180/π,即得到方位角。

3.基于方向向量的计算:假设有两个点A(x1, y1)和B(x2, y2),可以将两点之间的连线看作一个方向向量。

首先需要计算出两点之间的方向向量V(x2 - x1, y2 - y1)。

然后利用反正切函数,通过求解arctan(Vy / Vx)得到弧度值θ。

最后利用单位换算,将弧度值θ转化为角度值α=θ * 180 / π,即为所求的方位角。

需要注意的是,在计算方位角时,可能会遇到特殊情况,例如:-当两点在同一直线上时,方位角为0或180度;-当两点重合时,方位角没有定义。

总结起来,方位角的计算方法有基于直角坐标系、极坐标系和方向向量三种方法,根据具体情况选择适合的方法进行计算。

坐标及方位角计算

坐标及方位角计算

坐标及方位角计算1.坐标计算:坐标通常使用经度和纬度来表示。

经度是指东西方向上的角度,纬度是指南北方向上的角度。

首先,我们需要确定一个参考点作为原点。

通常使用地球上的一些特定位置作为参考点,比如本初子午线(0°经度)和赤道(0°纬度)交汇处。

接下来,我们可以使用测量仪器(如GPS接收器)或地图上的标记点来确定我们要计算的点的经度和纬度。

然后,根据参考点的经纬度和所测点的相对位置,可以计算得到所测点的经纬度。

例如,假设参考点的经度为120°,纬度为30°,我们测量得到特定点与参考点的相对位置为10°以东,20°以南。

那么该点的经度就是120°+10°=130°,纬度就是30°-20°=10°。

需要注意的是,在计算坐标时,经度通常是由0°到180°(东经为正,西经为负),纬度通常是由0°到90°(北纬为正,南纬为负)。

2.方位角计算:方位角是指从一个点沿着大圆线(地球表面上的最短路径)到达另一个点的角度。

方位角通常用度数或方向(如北、东、南、西)来表示。

计算方位角的方法因地理坐标系的选择而异。

最常见的地理坐标系是大圆坐标系。

在大圆坐标系中,方位角可以根据两点的经纬度计算得到。

具体计算方法如下:-首先,将两点的经纬度转换为弧度表示。

经度的转换公式是经度(弧度)=经度(度数)×π/180,纬度的转换公式也是类似的。

-然后,使用以下公式计算方位角:方位角= atan2(sin(Δλ) * cos(φ₂), cos(φ₁) * sin(φ₂) -sin(φ₁) * cos(φ₂) * cos(Δλ))其中,Δλ表示两点经度的差值,φ₁和φ₂分别表示两点的纬度。

例如,假设我们要计算从点A(经度120°,纬度30°)到点B(经度130°,纬度40°)的方位角。

角度坐标测量计算公式细则

角度坐标测量计算公式细则

角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。

式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。

2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。

2)、方位角:arctan(y2-y1)/(x2-x1)。

加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。

如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。

S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。

2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。

3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。

再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。

拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。

2、在图上标识方位的方法:就是导线边与Y轴的夹角。

3、高程计算:目标高程=测点高程+h+仪器高—占标高。

4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。

方位角计算坐标公式

方位角计算坐标公式

方位角计算坐标公式方位角是指从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角。

在数学、地理、工程等领域中,方位角的计算坐标公式可是相当重要的工具。

咱先来说说方位角的基本概念。

想象一下,你站在一个空旷的地方,面前有一个目标点,你要知道从你所在的位置看向那个目标点的方向角度,这就是方位角。

比如说,你正对着北方,然后顺时针转动到目标点的角度就是方位角啦。

那方位角计算坐标公式到底是啥呢?其实就是通过已知点的坐标和目标点的坐标来算出方位角。

具体的公式是:$tan\alpha = \frac{y_2 - y_1}{x_2 - x_1}$然后通过反正切函数就能得到方位角$\alpha$啦。

这里的$(x_1,y_1)$是已知点的坐标,$(x_2, y_2)$是目标点的坐标。

给大家举个例子哈。

比如说有两个点,A 点的坐标是(3, 4),B 点的坐标是(7, 8)。

咱们来算算从 A 点看向 B 点的方位角。

首先,按照公式,$x_1 = 3$,$y_1 = 4$,$x_2 = 7$,$y_2 = 8$。

那么,$tan\alpha = \frac{8 - 4}{7 - 3} = \frac{4}{4} = 1$。

然后通过反正切函数,就知道$\alpha = 45°$。

这就意味着从 A 点看向 B 点的方位角是 45°。

在实际生活中,方位角的计算坐标公式用处可大了。

就拿建筑施工来说吧,工程师们要确定建筑物的朝向、道路的走向,就得靠这个公式来准确计算方位角。

我之前就碰到过这么个事儿,有一次去一个建筑工地,当时工人们正在打地基,但是因为方位角没算对,导致一开始的基础部分就有点偏差。

后来发现问题后,赶紧重新计算方位角,调整施工方案,这才避免了更大的错误。

你瞧,就这么一个小小的方位角计算,如果出错了,那带来的麻烦可不小。

在地理测量中,方位角也很关键。

比如测量山峰的位置、河流的走向等等。

还有导航系统,也是依靠方位角来为我们指引方向的。

方位角及坐标计算

方位角及坐标计算

方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(k0~zh):f=arctgδy/δx备注:直线方位角必须考量象限角就可以厘定恰当线路迈向2、第一缓解曲线段(kzh~khy):δ1=(k0-kzh)2/(2rlh)×180/π3、圆曲线段(khy~kyh):δ2=[2(k0-kzh)-lh]/2r×180/πδ2=(khy-kzh)/2r×180/π+(k0-khy)/r×180/π无缓和曲线时:δ2=(k0-khy)/r×180/π(即圆曲线圆心角)4、第二缓和曲线段(kyh~khz):δ3=(khz-k0)2/(2rlh)×180/π5、第二直线段(khz~kzh):f±α(左偏时f-α,右偏时f+α)备注:k0――排序点的程α――曲线交点偏角lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算xzh=xjd-t?cosfxhz=xjd+t?cos(f±α)yzh=yjd-t?sinfyhz=yjd+t?sin(f±α)1、第一直线段:x=xzh+(k0-kzh)?cosf中桩y=yzh+(k0-kzh)?sinfx边=x中±b?cos(f-δ)边桩y边=y中±b?sin(f-δ)备注:b――中桩至所求点的距离(左幅时为+b,右幅时为-b,当设计轴线与线路不横向时b取斜短,即b/sinδ)设计轴线线路方向。

bδ图s-12、第一缓和曲线段:xx=xzh-y′?sinθ+x′?cosθxx′x′中桩′y=yzh+y′?cosθ+x′?sinθyzhyθhzx边=x中±b?cos(f+μδ1-δ)hyyh边桩y边=y中±b?sin(f+μδ1-δ)jdy′注:(本公式只适用与图s-2线形)图s-2μ――曲线左转为-1,右转为+1θ――线路方位角与y轴所缠的锐角,见到图s-2y′=l-l5/(40r2lh2);x′=l3/(6rlh)-l7/(336r3lh3);(r―圆曲线半径,l―缓解曲线就任一点至曲线起点长度)3、圆曲线段:x=xhy+2r?sinφ?cos(f+μ(ξ+φ))中桩y=yhy+2r?sinφ?s in(f+μ(ξ+φ))x边=x中±b?cos(f+μδ2-δ)边桩y边=y中±b?sin(f+μδ2-δ)备注:φ=(k0-khy)/2r×180/π;ξ=(khy-kzh)/2r×180/π4、第二缓解曲线段:x=xhz-y′?sinθ+x′?cosθ中桩y=yhz-y′?cosθ-x′?sinθx边=x中±b?cos(f+μδ1-δ)边桩y边=y中±b?sin(f+μδ1-δ)注:1、本公式只适用于与图s-2线形,其他线形可以根据本线形公式转换2、式中符号与第一缓解曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:x=xhz+(k0-khz)?cos(f±α)中桩y=yhz+(k0-khz)?sin(f±α)x边=x中±b?cos(f±α-δ)边桩y边=y中±b?sin(f±α-δ)备注:f――第一直线段的方位角(三)用casiofx-4500p计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标x、y)pol(x-xhz,y-yhz):k=v?cos(f-w)+khzb=v?sin(f-w)备注:1、在fx-4500p中计算结果取走变量储存区v和w,必须表明储存区内容时按rclv、w键。

测量坐标方位角计算公式是什么

测量坐标方位角计算公式是什么

测量坐标方位角计算公式是什么引言在测量和导航领域中,确定两个点之间的方位角(也称为方向角或航向角)是一项重要的任务。

方位角定义为从一个参考点到目标点的方向,通常以北方向为参考。

测量坐标方位角是一种基本的导航技术,广泛应用于地理测量、航行、航空、地图制作等领域。

本文将介绍如何计算测量坐标方位角的公式。

问题陈述给定两个点的坐标(经度和纬度),我们的目标是计算从一个点到另一个点的方位角。

方法为了计算两个点之间的方位角,我们可以使用以下公式:Δφ = φ2 - φ1Δλ = λ2 - λ1θ = atan2(sin(Δλ) * cos(φ2), cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * co s(Δλ))其中,φ1和λ1是起始点的纬度和经度,φ2和λ2是目标点的纬度和经度。

Δφ和Δλ是纬度和经度的差值。

以上公式是基于球面三角学的原理。

测量坐标方位角的计算方法是通过计算两个点形成的三角形的角度来确定方位角。

理解公式让我们逐步分解公式来理解其含义。

首先,我们计算纬度差值Δφ和经度差值Δλ。

这是因为方位角的计算涉及到两个点之间的相对位置。

接下来,我们使用以下公式计算方位角θ:•sin(Δλ) * cos(φ2):这部分表示纬度差(即起始点到目标点的维度变化)对方位角的影响。

sin(Δλ)表示纬度差的正弦值,而cos(φ2)表示目标点纬度的余弦值。

•cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * cos(Δλ):这部分表示经度差(即起始点到目标点的经度变化)对方位角的影响。

cos(φ1) *sin(φ2)表示起始点纬度的余弦值乘以目标点纬度的正弦值,而sin(φ1) *cos(φ2) * cos(Δλ)表示起始点纬度的正弦值乘以目标点纬度的余弦值再乘以经度差的余弦值。

最后,使用atan2()函数计算弧度,并将其转换为角度值。

结论本文介绍了计算测量坐标方位角的公式。

坐标方位角怎么计算例题

坐标方位角怎么计算例题

坐标方位角怎么计算例题坐标方位角是测量工程学中描述两个点间方位关系的重要参数。

它是以仪器支撑点为原点,令仪器视线向右方向作为正方向,用仪器所观测视线与参考方向夹角的度数值来描述工程中两个点的关系。

因此,坐标方位角的测量非常重要,它可以用来测量地面物体和天体之间的角度。

根据不同的计算公式,坐标方位角的计算可以分为两类:一类是极坐标方位角,另一类是直角坐标方位角。

极坐标方位角是指从极点出发,从极点到待测地点的方向角,一般采用角度表示,范围为0°~360°。

计算极坐标方位角的公式为: =arctan(Y/X),其中θ为极坐标方位角,X和Y为待测点的二维坐标。

直角坐标方位角,也称为笛卡尔坐标方位角,是指从参考原点出发,从原点到待测点的方向角,一般采用弧度表示,范围为-π~+π。

计算直角坐标方位角的公式为:=atan2(Y,X),其中θ为直角坐标方位角,X和Y为待测点的二维坐标。

对于坐标方位角的测量,首先要把参考点和测量点的二维坐标值给出,然后根据上述计算公式,通过程序或者直接算式求出两点之间的坐标方位角。

此外,坐标方位角的测量还可以通过采用仪器的方式来进行。

常见的测量仪器有建筑学仪器、经纬仪、罗盘等,它们可以帮助我们准确测量两个点之间的坐标方位角。

如果采用仪器的方式进行,我们需要先确定参考点和待测点的位置,然后从参考点出发,仪器顺次测量待测点,最后利用仪器显示出的坐标方位角即可求得测量结果。

总结起来,坐标方位角的测量十分重要,也是测量工程学中的重要技术之一。

坐标方位角的计算可以结合实际情况,采取经典公式计算或者搭配仪器来进行测量。

以上是坐标方位角怎么计算的基本概要,希望能够帮助到你!。

测量学坐标方位角怎么算出来的

测量学坐标方位角怎么算出来的

测量学坐标方位角的计算方法测量学中,坐标方位角是指从某个参考方向(通常为正北方向)顺时针旋转到目标方向的角度。

它在地理测量、建筑测量、地理信息系统等领域都有重要应用。

本文将介绍在测量学中,如何计算坐标方位角。

1. 定义测量学坐标方位角是一个以参考方向为起点,顺时针旋转一定角度后指向目标方向的角度值。

通常以度为单位表示,范围为0°-360°。

2. 计算方法2.1 孤立观测法孤立观测法是一种简单但常用的求取方位角的方法。

假设在平面坐标系中,A 点的坐标为(x1, y1),B点的坐标为(x2, y2)。

为了计算A点到B点的坐标方位角,可以按照以下步骤进行:1.计算两点间的水平距离,即dx = x2 - x1;2.计算两点间的垂直距离,即dy = y2 - y1;3.利用反正切函数求取坐标方位角,即angle = atan(dy / dx)。

需要注意的是,使用反正切函数时需要考虑象限问题。

具体来说,如果dx为正,dy为负,则angle应为360° + angle;如果dx为负,则angle应为180° + angle。

2.2 方位角变换法方位角变换法适用于已知一点的坐标和该点到另一点的坐标距离和方位角,来求取另一点的坐标。

假设A点的坐标为(x1, y1),已知A点到B点的距离为d,方位角为α,则可以按照以下步骤进行:1.将方位角转换为弧度制,即将α转换为α’ = α * π / 180;2.计算B点的x坐标,即xB = x1 + d * sin(α’);3.计算B点的y坐标,即yB = y1 + d * cos(α’)。

2.3 坐标旋转法坐标旋转法适用于已知一点的坐标、方位角和该点到另一点的距离,来求取另一点的坐标。

假设A点的坐标为(x1, y1),已知A点到B点的距离为d,方位角为α,则可以按照以下步骤进行:1.将方位角转换为弧度制,即将α转换为α’ = α * π / 180;2.计算B点的x坐标,即xB = x1 + d * cos(α’);3.计算B点的y坐标,即yB = y1 + d * sin(α’)。

坐标方位角计算公式

坐标方位角计算公式

坐标方位角计算公式
坐标方位角是计算地理位置的重要参数,它指的是从一个点指向另一个点的角度,可以使用坐标方位角来计算两个点之间的距离。

坐标方位角是指一个点到另一个点的角度,以正北方向为0度,顺时针方向增大,范围为0°-360°,也可以用-180°至+180°表示,例如,一个点从正北方向顺时针旋转90°,就是在正东方向,坐标方位角就是90°。

计算坐标方位角的方法有很多,最常用的是三角函数法,又称“正余弦定理”。

它可以通过计算两个点的经纬度来计算坐标方位角,即可以计算出从一个点指向另一个点的角度。

此外,还可以使用坐标方位角来计算两个点之间的距离。

通常,计算距离的方法是使用余弦定理,即可以根据两个点的坐标方位角来计算出两点之间的距离。

以上就是坐标方位角的基本概念及其计算方法。

坐标方位角是地理位置和距离计算中不可或缺的重要参数,可以用来计算两点之间的距离,以及从一个点指向另一个点的角度。

正、反坐标方位角及其推算

正、反坐标方位角及其推算

2
正、反坐标方位角及其推算
•坐标正算
当已知直线起始点坐标和直线的长度,方位角,需求 直线终点坐标时,称为坐标正算。
•坐标反算
当已知直线两端点坐标,要求反算该直线的边长和 方位角时,我们称为坐标反算。
y arctan x y 1800 arctan x y 1800 arctan x 3600 arctan y x x, y均为正,即位于第 I相限 x(-),y( ),即位于第II相限 x(-),y(-) ,即位于第III相限 x( ), y(-) ,即位于第IV相限
3Leabharlann 坐标方位角及其推算用左角推算:
用右角推算: 手工推算步骤:
•沿前进方向,用已知方位角加(减)左(右)角; •所得值与180º 比较,大于或等于180º ,则减180º , 反之,加180º ,再检查是否在0º ~360º ,如小于0, 则加360º ,如大于 360º ,则减 360º ; •依次可推得所有边的方位角。
正、反坐标方位角及其推算
正、反坐标方位角
正方位角:通常以直线前 进方向为正方向确定的方 位角。 反之,称为反方位角。
正方位角=反方位角±180度
1
正、反坐标方位角及其推算
坐标方位角的推算
•坐标增量概念 两点间坐标值之差 称为坐标增量。
由一已知点计算另一未 知点坐标的计算公式为: XB=XA+⊿XAB YB=YA+⊿YAB ⊿XAB=S×cos αAB ⊿YAB=S×sin αAB α AB- 方位角
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 计算坐标与坐标方位角的基本公式
控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。

下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。

一、坐标正算和坐标反算公式
1.坐标正算
根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。

如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为
AB A B AB
A B y y y x x x ∆+=∆+= }
(5—1)
式中 AB x ∆ 、AB y ∆——坐标增量。

由图5—5可知
AB AB AB AB AB AB S y S x ααsin cos =∆=∆ }
(5—2)
式中 AB S ——水平边长;
AB α——坐标方位角。

将式(5-2)代入式(5-1),则有
AB AB A B AB
AB A B S y y S x x ααsin cos +=+= }
(5—3)
当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知
时,就可以用上述公式计算出待定点B 的坐标。

式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。

从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,
AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在
实地由A 量到B 得到的正值。

而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种
情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

图5—5 坐标计算图5—6 坐标增量符号
表5—3 坐标增量符号表
坐标方位角
(°)所在象限坐标增量的正
负号
⊿x ⊿y
0~90
90~180
180~270
270~Ⅰ











例 1 已知A 点坐标A x =100.00m ,A y =300.10m ;边长
AB s =100m ,方位角AB α=330°。

求B 点的坐标B x 、B y 。

解:根据公式(5—3)有
m s y y m
s x x AB AB A B AB AB A B 6.249330sin 1001.300sin 1.186330cos 100100cos =︒⋅+=+==︒⋅+=+=αα
2、坐标反算
由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。

由式(5—1)有
A B AB A B AB y y y x x x -=∆-=∆ }
(5—4)
该式说明坐标增量就是两点的坐标之差。

在图5—5中AB x ∆ 表示由A 点到达B 点的纵坐标之差称纵坐标增量; AB y ∆表示
由A 点到B 点的横坐标之差称横坐标增量。

坐标增量也有正负两种情况,它们决定于起点和终点坐标值的大小。

在图5—5中如果A 点到B 点的坐标已知,需要计算AB 边的坐标方位角AB α和边长时AB S ,
则有
AB AB A B A B AB x y x x y y ∆∆=--=αtan
AB AB AB AB AB y x S ααsin cos ∆=∆= }
(5—5)
或 ()()22AB AB AB y x S ∆+∆=
公式(5—5)称为坐标反算公式。

应当指出,使用公式(5—5)中第一式计算的角是象限角R ,应根据⊿x 、⊿y 的正负号,确定所在象限,再将象限角换算为方位角。

因此公式(5—5)中的第一式还可表示为:
AB AB
A B A B AB x y x x y y R ∆∆=--=arctan arctan
例2.已知A x =300m, A y =500m,B x =500m,B y =300m,求A 、B
二点连线的坐标方位角AB α和边长AB S 。

解:由公式(5-5)有
)1arctan(300
500500300arctan arctan -=--=--=A B A B AB x x y y R 因为AB x ∆为正 、AB y ∆为负,直线AB 位于第四象限。

所以
︒=45NW R AB
根据第四象限的坐标方位角与象限角的关系得:
︒=︒-︒=31545360AB α
AB 边长为:
m y y x x S A B A B AB 8.282)500300()300500()()(2222=-+-=-+-=
坐标正算公式和坐标反算公式都是矿山测量中最基本的
公式,应用十分广泛。

在测量计算时,由于公式中各元素的数字较多,测量规范对数字取位及计算成果作了规定。

例如图根控制点要求边长计算取至毫米;角度计算取至秒;坐标计算取至厘米。

二、坐标方位角的推算公式
由公式(5-2)知,计算坐标增量需要边长和该边的坐标方位角两个要素,其中边长是
在野外直接测量或通过三角学的公式计算得到的,坐标方位角则是根据已知坐标方位角和水平角推算出来的。

下面介绍坐标方位角的推算公式。

如图5-7所示,箭头所指的方向为“前进”方向,位于前进方向左侧的观测角称为左观测角,简称左角;位于前进方向右侧的角称为右观测角,简称右角。

1.观测左角时的坐标方位角计算公式
在图5—7与5—8中,已知AB边的方位角为
α,左β为
AB
左观测角,需要求得BC边的方位角
α。

左β是外业观测得到
BC
的水平角,从图上可以看出已知方位角
α与左观测角左β之
AB
和有两种情况:即大于180°或小于180°。

图5—7中为大于180°的情况,图5—8中为小于180°的情况。

图5—7坐标方位角推算 图5—8坐标方位角推算
从图5—7可知,BC 边的坐标方位角为
ο180-+=左βααAB BC
从图5—8可知,BC 边的坐标方位角为
ο180++=左βααAB BC
综上所述两式则有
ο180±+=左后前βαα
(5—6)
式(5-6)是按照边的前进方向,根据后一条边的已知方位角计算前一条边方位角的基本公式。

公式说明:导线前一条边的坐标方位角等于后一条边的坐标方位角加上左观测角,其和大于180°时应减去180°,小于180°时应加上180°。

2.观测右角时的坐标方位角计算公式
从图5-7 或图5-8可以看出
右左ββ-=ο360
将该式代入式(5- 6),得
οο360)180(+±-=右后前βαα
当方位角大于360°时,应减去360°,方向不变。

所以上式变为
ο180±-=右后前βαα
(5—7)
上式说明:导线中,前一条边的坐标方位角等于后一条边的坐标方位角减去右观测角,
其差大于180°时应减去180°,小于180°时应加上180°。

使用式(5-6)与(5-7)时,还应注意相应两条边的前进方向必须一致,计算结果大于360°时,则应减去360°,方向不变。

例3 图5-9 为一条支导线,已知A 点的坐标方位角BA α =101°28´,导线A 点的左观测角左β =108°32´,M 点的右观
测角 右β =75°。

试推算坐标方位角 AM α、MN α。

图5—9 支导线
解 :由式(5-6)得
ο180±+=左βααBA AM 则有 οοοο30180'32108'28101=-+=AM α
由式(5-7)得
ο180±-=右βααAM MN 则有 οοοο1351807530=+-=MN α。

相关文档
最新文档