2013北京模拟 圆锥曲线(理)
2013年北京市高考数学试卷(理科)答案与解析
题.
5.(5分)(2013•北京)函数f(x)的图象向右平移1个单位长度,所
得图象与曲线y=ex关于y轴对称,则f(x)=( )
A. ex+1
B. ex﹣1
C.e﹣x+1 D.e﹣x﹣1
考 函数解析式的求解及常用方法;函数的图象与图象变化.菁优网版权所有 点:
专 函数的性质及应用. 题:
分 析:
考 点的极坐标和直角坐标的互化;点到直线的距离公式.菁优网版权所有 点: 专 直线与圆. 题: 分 先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程, 析: 然后用点到直线的距离来解. 解 解:在极坐标系中,点 答:
化为直角坐标为(
,1),直线ρsinθ=2化为直角坐标方程为y=2, (
,1),到y=2的距离1,即为点
8.(5分)(2013•北京)设关于x,y的不等式组
表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值
范围是( )
A.
B.
C.
D.
考 简单线性规划.菁优网版权所有 点:
专 不等式的解法及应用. 题:
分 先根据约束条件 析:
画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包 含直线y=
7.(5分)(2013•北京)直线l过抛物线C:x2=4y的焦点且与y轴垂
直,则l与C所围成的图形的面积等于( )
A.
B. 2
C.
D.
10.6 圆锥曲线的综合问题-5年3年模拟北京高考
10.6 圆锥曲线的综合问题五年高考考点1定位与最值问题1.(2013山东.22,13分)椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别是,.21F F 离心率为,23过 1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连结⋅21,PF PF 设21PF F ∠的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线L ,使得L 与椭圆C 有且只有一个公共点.设直线21,PF PF 的斜率分别为,0,21=/⋅k k k 若试证明2111kk kk +为定值,并求出这个定值. 2.(2013课标全国l ,20,12分)已知圆,1)1(:22=++y x M 圆,9)1(:22=+-y x N 动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)L 是与圆P ,圆M 都相切的一条直线,L 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求| AB |.3.(2013安徽.18,12分)设椭圆11:2222=-+a a x E γ的焦点在x 轴上. (1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设21,F F 分别是椭圆E 的左,右焦点,P 为椭圆E 上第一象限内的点,直线P F 2交y 轴于点Q ,并且⋅Q F P F 11|证明:当a 变化时,点P 在某定直线上.4.(2012上海.22,16分)在平面直角坐标系xOy 中,已知双曲线.12:221=-y x C(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线L 交1C 于P 、0两点.若L 与圆=+22y x l 相切,求证:OP ⊥ OQ ;(3)设椭圆.14:222=+y x C 若M 、N 分别是21C C 、上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.5.(2012湖南.21,13分)在直角坐标系xOy 中,曲线1C 上的点均在圆9)5(:222=+-y x C 外,且对 1C 上任意一点M ,M 到直线x= -2的距离等于该点与圆2C 上点的距离的最小值.(1)求曲线1C 的方程;(2)设)3)(,(000±=/y y x P 为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C .D .证明:当P 在直线x = -4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.6.(2012北京.19,14分)已知曲线8)2()5(:22=-+-y m x m C ).(R m ∈(1)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(2)设m=4,曲线C 与y 轴的交点为A ,B(点A 位于点B 的上方),直线y=kx +4与曲线C 交于不同的两点M ,N ,直线y=l 与直线BM 交于点C .求证:A ,G ,N 三点共线,智力背景谷超豪的数学人生(二)2009年10月20日,“谷超豪星”命名仪式在上海复旦大学举行.国际行星命名委员会将紫金山天文台于2007年9月11日发现的、编号为171448的小行星命名为“谷超豪星”,谷超豪在命名仪式上表示,命名是一次极大鼓励,自己在数学研究上只是取得了“一点点建树”,“抚今追昔,我从事数学研究活动已60余年,我一贯认为数学研究要适应国家建设的需要,要不断创新和不断提高,并为此目标而努力奋斗.”。
北京市海淀区2013届高考一模数学理试题(WORD解析版)
2013年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•甘肃三模)集合A={x∈N|x≤6},B={x∈R|x2﹣3x>0},则A∩B()A.{3,4,5} B.{4,5,6} C.{x|3<x≤6 D.{x|3≤x<6}考点:交集及其运算.专题:计算题.分析:根据所给的两个集合,整理两个集合,写出两个集合的最简形式,再求出两个集合的交集.解答:解:∵集合A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈R|x2﹣3x>0}={x∈R|x<0或x>3}∴A∩B={4,5,6}.故选B.点评:本题考查集合的表示方法,两个集合的交集的定义和求法.化简A、B两个集合,是解题的关键.2.(5分)(2013•海淀区一模)在极坐标系中,曲线ρ=4cosθ围成的图形面积为()A.πB.4C.4πD.16考点:点的极坐标和直角坐标的互化.专题:计算题.分析:先将原极坐标方程两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解圆的面积即可.解答:解:将原极坐标方程为ρ=4cosθ,化成:ρ2=4ρcosθ,其直角坐标方程为:∴x2+y2=4x,是一个半径为2的圆,其面积为4π.故选C.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.3.(5分)(2013•海淀区一模)某程序的框图如图所示,执行该程序,若输入的x值为5,则输出的y值()A.﹣2 B.﹣1 C.D.2考点:程序框图.专题:图表型.分析:按照程序框图的流程写出前几次循环的结果,并判断每次得到的结果是否满足判断框中的条件,直到满足,执行输出y,可得答案.解答:解:经过第一次循环得到x=3,不满足判断框中的条件;经过第二次循环得到x=1,不满足判断框中的条件;经过第三次循环得到x=﹣1,满足判断框中的条件;执行“是”,y=2﹣1=,输出y值为.故选C.点评:本题考查解决程序框图中的循环结构时,常采用的方法是:写出前几次循环的结果,找规律.4.(5分)(2013•海淀区一模)不等式组表示面积为1的直角三角形区域,则k的值为()A.﹣2 B.﹣1 C.0D.1考点:简单线性规划.专题:不等式的解法及应用.分析:先作出不等式组表示的平面区域,根据已知条件可表示出平面区域的面积,然后结合已知可求k.解答:解:作出不等式组表示的平面区域,如图所示,由题意可得A(1,3),B(,),C(1,k)∴S△ABC=AC•d(d为B到AC的距离)=×(3﹣k)×(﹣1)=1,∴k=1.故选D.点评:本题主要考查了二元一次不等式组表示平面区域,属于基础试题.5.(5分)(2013•甘肃三模)若向量,满足||=||=|+|=1,则•的值为()A.B.C.﹣1 D.1﹣考点:向量的模.专题:平面向量及应用.分析:利用即可得到.解答:解:∵,∴,∴,∴.∴.故选A.点评:熟练掌握向量的运算法则是解题的关键.6.(5分)(2013•海淀区一模)一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A.12种B.15种C.17种D.19种考点:排列、组合及简单计数问题.专题:计算题.分析:由分步计数原理可得总的取法由27种,列举可得不合题意得有8种,进而可得符合题意得方法种数.解答:解:由题意结合分部计数原理可得,总的取球方式共3×3×3=27种,其中,(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,1,2),(2,2,1),(2,2,2)共8种不符合题意,故取得小球标号最大值是3的取法有27﹣8=19种,故选D点评:本题考查计数原理的应用,采用间接的方式结合列举法是解决问题的关键,属中档题.7.(5分)(2013•海淀区一模)抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(﹣1,0),则的最小值是()A.B.C.D.考点:直线与圆锥曲线的关系;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.。
1北京市东城区2013届高考一模数学理试题(WORD解析版) 2
2013年北京市东城区高考数学一模试卷(理科)参考答案与试题解析一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•东城区一模)已知全集U={1,2,3,4},集合A={1,2},那么集合∁U A为()A.{3} B.{3,4} C.{1,2} D.{2,3}考点:补集及其运算.专题:计算题.分析:直接利用补集的定义,求出A的补集即可.解答:解:因为全集U={1,2,3,4},集合A={1,2},那么集合∁U A={3,4}.故选B.点评:本题考查补集的运算,补集的定义,考查基本知识的应用.2.(5分)(2013•东城区一模)已知ABCD为平行四边形,若向量,,则向量为()A.﹣B.+C.﹣D.﹣﹣考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:如图所示,利用向量的减法法则即可得出.解答:解:如图所示,由向量的减法法则可得:==.故选C.点评:熟练掌握向量的减法法则是解题的关键.3.(5分)(2013•东城区一模)已知圆的方程为(x﹣1)2+(y﹣2)2=4,那么该圆圆心到直线(t为参数)的距离为()A.B.C.D.考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心和半径,把直线的参数方程化为直角坐标方程,利用点到直线的距离公式求得圆心到直线的距离.解答:解:∵圆的方程为(x﹣1)2+(y﹣2)2=4,故圆心坐标为(1,2),把直线(t为参数)消去参数t,化为直角坐标方程为x﹣y﹣2=0,故圆心到直线的距离为=,故选C.点评:本题主要考查圆的标准方程、把直线的参数方程化为直角坐标方程,以及点到直线的距离公式的应用,属于中档题.4.(5分)(2013•东城区一模)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于,则成绩为及格;若飞标到圆心的距离小于,则成绩为优秀;若飞标到圆心的距离大于且小于,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据题意,计算可得圆的面积为π,成绩为良好时,点到圆心的距离大于且小于的面积,由几何概型求概率即可.解答:解:圆的面积为π,点到圆心的距离大于且小于的面积为π﹣π=π,由几何概型得在所有投掷到圆内的飞标中得到成绩为良好的概率为P==故选A.点评:本小题主要考查几何概型等基础知识,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.属于中档题.5.(5分)(2013•东城区一模)已知数列{a n}中,a1=2,a n+1﹣2a n=0,b n=log2a n,那么数列{b n}的前10项和等于()A.130 B.120 C.55 D.50考点:数列递推式;数列的求和.专题:等差数列与等比数列.分析:由题意可得,可得数列{a n}是以2为首项,2为公比的等比数列,利用等比数列的通项公式即可得到a n,利用对数的运算法则即可得到b n,再利用等差数列的前n项公式即可得出.解答:解:在数列{a n}中,a1=2,a n+1﹣2a n=0,即,∴数列{a n}是以2为首项,2为公比的等比数列,∴=2n.∴=n.∴数列{b n}的前10项和=1+2+…+10==55.故选C.点评:熟练掌握等比数列的定义、等比数列的通项公式、对数的运算法则、等差数列的前n项公式即可得出.6.(5分)(2013•东城区一模)已知F1(﹣c,0),F2(c,0)分别是双曲线C1:(a>0,b>0)的两个焦点,双曲线C1和圆C2:x2+y2=c2的一个交点为P,且2∠PF1F2=∠PF2F1,那么双曲线C1的离心率为()A.B.C.2D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:如图所示,利用圆的性质可得,再利用2∠PF1F2=∠PF2F1,得到.利用直角三角形的边角关系即可得到|PF2|=c,.再利用双曲线的定义及离心率的计算公式即可得出.解答:解:如图所示,由题意可得,。
圆锥曲线2013
2013年全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2013年高考江西卷(理))过点引直线l与曲线y=A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++B.C. D.【答案】B2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45 CD【答案】C3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.214x =B .22145x y -= C .22125x y -=D.212x -=【答案】B4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C5 .(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D6 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 D【答案】B7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 【答案】D8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =( )A .1B .32C .2D .3【答案】C9 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( )A .1324⎡⎤⎢⎥⎣⎦, B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,【答案】B10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12BCD .2【答案】D11.(2013年高考北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y= C .12y x =±D.y x =±【答案】B12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )ABCD【答案】D13.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =【答案】C15.(2013年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线【答案】C16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A .4B 1C .6-D【答案】A 二、填空题17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.【答案】x y 43±= 18.(2013年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________【答案】619.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___.【答案】320.(2013年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________【答案】. 21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知直线y a =交抛物线2y x =于,A B 两点.若该抛物线上存在点C ,使得ABC ∠为直角,则a 的取值范围为___ _____.【答案】),1[+∞22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是__________.【答案】⎥⎦⎤⎢⎣⎡-21,223.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.【答案】24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________【答案】1-25.(2013年高考陕西卷(理))双曲线22116x y m -=的离心率为54, 则m 等于___9_____. 【答案】9 26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5727.(2013年上海市春季高考数学试卷(含答案))抛物线28yx =的准线方程是_______________【答案】2x =-28.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为_______.【答案】1-或1029.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________.【答案】1± 三、解答题30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程. [解](1) (2)【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>.根据题意知2221a b a b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=.(2)容易求得椭圆C 的方程为2212x y +=. 当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=. 设1122( ) ( )P x y Q x y ,,,,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++ ,,,,, 因为11F P FQ ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+, 解得217k =,即k =故直线l的方程为10x +-=或10x -=.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:2+=所以,a =又由已知,1c =, 所以椭圆C的离心率c e a ===()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,2⎛ ⎝ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③因为点Q 在直线2y kx =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即x ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ .又0,2⎛-⎝满足()22102318y x --=,故x ⎛∈ ⎝. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤, 又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈ ⎝. 所以点Q 的轨迹方程是()22102318y x --=,其中,x ⎛∈ ⎝,1,22y ⎛∈ ⎝32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =±由题意知221b a =,即22a b = 又ce a == 所以2a =,1b = 所以椭圆方程为2214x y +=204x ≠,将向量坐标代入并化简得:m(23000416)312x x x -=-,因为204x ≠,12118kk kk +=-=-为定值.33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【答案】:(1)C 1的左焦点为(F ,过F 的直线x =与C 1交于(,与C 2交于(1))±+,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =;(2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”. (3)显然过圆2212x y +=内一点的直线l 若与曲线C 1有交点,则斜率必存在; 根据对称性,不妨设直线l 斜率存在且与曲线C 2交于点(,1)(0)t t t +≥,则:(1)()(1)0l y t k x t kx y t kt =+=-⇒-++-=直线l 与圆2212x y +=内部有交点,<化简得,221(1)(1)2t tk k +-<+............① 若直线l 与曲线C 1有交点,则2222211()2(1)(1)10212y kx kt t k x k t kt x t kt x y =-++⎧⎪⇒-++-++-+=⎨-=⎪⎩ 22222214(1)4()[(1)1]0(1)2(1)2k t kt k t kt t kt k ∆=+---+-+≥⇒+-≥-化简得,22(1)2(1)t kt k +-≥-.....②由①②得,222212(1)(1)(1)12k t tk k k -≤+-<+⇒< 但此时,因为2210,[1(1)]1,(1)12t t k k ≥+-≥+<,即①式不成立;当212k =时,①式也不成立综上,直线l 若与圆2212x y +=内有交点,则不可能同时与曲线C 1和C 2有交点,即圆2212x y +=内的点都不是“C 1-C 2型点” .34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形OABC中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)iP i N i ∈≤≤. (1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【答案】解:(Ⅰ)依题意,过*(,19)∈≤≤i A i Ni 且与x 轴垂直的直线方程为=x i (10,) i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x 分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 35.(2013年高考湖南卷(理))过抛物线2:2(0)E xpy p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .(I)若120,0k k >>,证明;22FM FN P < ;(II)若点M 到直线l,求抛物线E 的方程. 【答案】解: (Ⅰ),设),(),,(),,(),,(),,(),,().2,0(3434121244332211y x N y x M y x D y x C y x B y x A pF 02,221211=++-+=p x pk x E px k y l :方程联立,化简整理得与抛物线方程:直线),(2,20,2211211212112221121p k p k FM p p k y p k x x x p x x p k x x -=⇒+==+=⇒=-=⋅=+⇒),(2,2,222223422134p k p k FN p p k y p k x x x -=⇒+==+=⇒同理. )1(2121222221221+=+=⋅⇒k k k k p p k k p k k FN FM222121221212121212)11(1)1(,122,,0,0p p k k k k p FN FM k k k k k k k k k k =+⋅⋅<+=⋅∴≤⇒≥+=≠>> 所以,22p FN FM <⋅成立. (证毕) (Ⅱ),)]2(2[21)]2()2[(21,212121121p p k p p k p y p y p r r r N M +=++=+++=⇒的半径分别为、设圆,2同理,221211p p k r p p k r +=+=⇒.,21r r N M 的半径分别为、设圆则21212212)()(r y y x x N M =-+-的方程分别为、, 的方程为:,直线l r y y x x 22234234)()(=-+-0-)(2)(2222123421223421212341234=+-+-+-+-r r y y x x y y y x x x .))(-())(())(()(2)(212123412341234123412212212=++--+--+-+-⇒r r r r y y y y x x x x y k k p x k k p2))((1))(()(2)(2)(2222121222222122212212212212++-+++-+-+-+-⇒k k k k p k k k k p k k p y k k p x k k p 0202)(1)(222212221=+⇒=+++++--+⇒y x k k p k k p p y x55758751)41()41(2|512||52|),(212112121212==+-+-⋅≥++⋅=+=p p k k p y x d l y x M 的距离到直线点y x p 1682=⇒=⇒抛物线的方程为.36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k=--⇒++=,所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||4D P k x x DP k +=-∴==+所以(第21题图)11||||22ABDS AB DP ∆==⨯====≤=当252k k =⇒=⇒=时等号成立,此时直线1:1l y x =- 37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【答案】38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a+=-的焦点在x 轴上 (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上. 【答案】解:(Ⅰ)13858851,12,122222222=+=⇒+-==->x x a c a a c a a ,椭圆方程为: .(Ⅱ) ),(),,),,0(),,(),0,(),0,(2221m c QF y c x P F m Q y x P c F c F -=-=-(则设. 由)1,0(),1,0()1,0(012∈∈⇒∈⇒>-y x a a .⎩⎨⎧=++=-⊥=+=0)()(,//).,(),,(112211my c x c ycx c m Q F P F QF P F m c Q F y c x P F 得:由 解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c xy x y x y x yx y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 所以动点P 过定直线01=-+y x .39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-.(Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =±当k时,将y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12||x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|= 40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.【答案】41.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1) 求椭圆C 的方程;(2) AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ?若存在求λ的值;若不存在,说明理由.【答案】解:(1)由3(1,)2P 在椭圆上得,221914a b+= ① 依题设知2a c =,则223b c = ② ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=, 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④ 在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y yk x x ==--. 所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 1212122322()1x x k x x x x +-=-⋅-++ ⑤④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++, 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意.方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--, 令4x =,求得003(4,)1y M x -, 从而直线PM 的斜率为0030212(1)y x k x -+=-,联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,故存在常数2λ=符合题意.42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【答案】(Ⅰ) 依题意,设抛物线C 的方程为24xcy =,0c >,解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '=设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++ 联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】44.(2013年高考湖北卷(理))如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(I)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(II)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.【答案】解:(I)12S S λ=()m n m n λ⇒+=-,1111m n m n λλλ++∴==--解得:1λ=+(舍去小于1的根)(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n+=,直线l :ky x =22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=A y ⇒= 同理可得,B y =又 BDM ∆和ABN ∆的的高相等12B D B A A B A BS BD y y y y S AB y y y y -+∴===-- 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ-=+,第21题图即:()()222222222211a n k a n k λλλλ-+=++,解得()()2222232114a k n λλλλ--+=∴当1λ>+时,20k >,存在这样的直线l ;当11λ<≤+时,20k ≤,不存在这样的直线l .45.(2013年高考北京卷(理))已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.【答案】解:(I)椭圆W :2214x y +=的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A(1,m ),代入椭圆方程得2114m +=,即m =. 所以菱形OABC 的面积是11||||22||22OB AC m ⋅=⨯⨯=. (II)假设四边形OABC 为菱形. 因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为(0,0)y kx m k m =+≠≠.由2244x y y kx m⎧+=⎨=+⎩消去y 并整理得222(14)8440k x kmx m +++-=. 设A 1,1()x y ,C 2,2()x y ,则1224214x x km k +=-+,121222214y y x x mk m k ++=⋅+=+. 所以AC 的中点为M(2414km k -+,214mk+). 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为1()14k k⋅-≠-,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 46.(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.【答案】解:(Ⅰ) A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ)点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-. (I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为【答案】48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的. (I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF ,证明:22AF AB BF 、、成等比数列.【答案】49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =: 的焦点为F .(1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,, 因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,.即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax x y y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.(2)设点Q 的坐标为( 0)t ,.点Q 关于直线2y x =的对称点为( )Q x y ',,则122yx t y x t ⎧=-⎪⎪-⎨⎪=+⎪⎩ 解得3545x t y t⎧=-⎪⎪⎨⎪=⎪⎩若Q '在C 上,将Q '的坐标代入24y x =,得24150t t +=,即0t =或154t =-. 所以存在满足题意的点Q ,其坐标为(0 0),和15( 0)4-,.。
北京市昌平区2013届高三仿真模拟数学理科试卷5 Word版含答案
北京市昌平区2013届高三仿真模拟数学理科试卷5一.选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合{}01|2<-=x x M ,{}0lg |<=x x N ,则N M ⋃等于A {}11|<<-x xB {}10|<<x xC {}01|<<-x xD {}0|<x x2.已知21,e e 是不共线向量,212e e +=,21e e -=λ,当∥时,实数λ等于A 1-B 0C 21-D 2- 3.设n m ,是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是A 若α⊂⊥n n m ,,则α⊥mB 若m n m //,α⊥,则α⊥nC 若αα//,//n m ,则n m //D 若γβγα⊥⊥,,则βα// 4.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则9876a a a a ++等于 A 21+ B 21- C 223+ D 223-5.设抛物线x y 82-=的焦点为F,准线为l ,P 为抛物线上一点,l PA ⊥,A 为垂足,如果直线AF 的斜率为3,那么=PFA 34B 38C 8D 16 6.极坐标方程θρsin 2=和参数方程⎩⎨⎧--=+=t y tx 132(t 为参数)所表示的图形分别为A 圆,圆B 圆,直线C 直线,直线D 直线,圆7.已知点),(y x P 的坐标满足条件⎪⎩⎪⎨⎧≥+-≥≥0321y x x y x ,那么点P 到直线0943=--y x 的距离的最小值为 A514 B 56C 2D 1 8.已知定义在区间⎥⎦⎤⎢⎣⎡23,0π上的函数)(x f y =的图像关于直线43π=x 对称,当43π≥x 时,Cx x f cos )(=,如果关于x 的方程a x f =)(有解,记所有解的和为S, 则S 不可能...为 Aπ45 B π23 C π49D π3 二.填空题(本大题共6小题,每小题5分,共30分) 9.在复平面内,复数ii++121对应的点的坐标为________________________. 10.在二项式521⎪⎭⎫ ⎝⎛+x x 的展开式中,含4x 项的系数为______________________. (用数字作答)11.如图,AB,CD 是半径a 的圆O 的两条弦,它们相交于AB 的中点P ,a CP 89=,︒=∠60AOP ,则=PD ________________.是一个正三棱柱的三视图,若三棱柱的体积是38,则12.如图=a ____________________.13.某棉纺厂为了解一批棉花的质量,从中随机抽测100根棉花纤维的长度(棉花纤维的长度是棉花质量mm)的重要指标)。
10.4 直线与圆锥曲线的位置关系-5年3年模拟北京高考
10.4 直线与圆锥曲线的位置关系五年高考考点1直线与圆锥曲线的位置关系1.(2013课标全国I .10,5分)已知椭圆)(01:22>>=+b a by a x E 的右焦点为F(3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 ( )13645.22=+y x A 12736.22=+y x B 11827.22=+y x C 1918.22=+y x D 2.(2013课标全国II ,11,5分)设抛物线)0(2:2>=p px y C 的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为 ( )x xRy y A 8422==⋅ x xRy y B 8222==⋅ x xRy y C 16422==⋅ x y x y D 16222==⋅或3.(2012福建.8,5分)已知双曲线14222=-by x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )5.A 24.B 3.C 5.D4.(2013浙江.15,4分)设F 为抛物线x y C 4:2=的焦点,过点 P( -1,0)的直线L 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线L 的斜率等于 5.(2012浙江.16.4分)定义:曲线C 上的点到直线L 的距离的最小值称为曲线C 到直线L 的距离.已知曲线a x y C +=21:到直线l:y=x 的距离等于曲线2)4(:222=++y x C 到直线y l :x =的距离,则实数=a6.(2012北京,12.5分)在直角坐标系xOy 中,直线L 过抛物线x y 42=的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线L 的倾斜角为,60则△OAF 的面积为7.(2010全国,15,5分)已知抛物线)0(2:2>=p px y C 的准线为L ,过M(l ,0)且斜率为3的直线与L 相交于点A ,与C 的一个交点为B .若,MB AM =则p=8.(2013陕西,20,13分)已知动圆过定点A(4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程; (2)已知点B( -1,0),设不垂直于x 轴的直线L 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线L 过定点. 9.(2013辽宁,20,12分)如图,抛物线py x C y x C 2:,4:2221-==),().0(00y x M p 点>在抛物线2C 上,过M 作1C 的切线,切点为A ,B(M 为原点D 时,A ,B 重合于0).当210-=x 时,切线MA 的斜率为⋅-2(1)求p 的值;(2)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于0时,中点为O ).10.(2013课标全国II .20,12分)平面直角坐标系xOy 中,过椭圆)0(1:2222>>=+b a by a x M 右焦点的直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为⋅21(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.11.(2013天津,侣,13分)设椭圆)0.(122>>=+b a by a x 的左焦点为F ,离心率为,33过点F 且与x 轴垂直的直线被椭圆截得的线段长为⋅334 (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若,8.C =⋅+⋅C A A 求k 的值.智力背景数学家韦恩 韦恩(1834—1923.英国)。
2013年高考圆锥曲线文
1.(2013辽宁,理15)已知椭圆C :2222=1x y a b +(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =__________.2.(2013北京,文7)双曲线x 2-2y m=1的离心率大于2的充分必要条件是( ).A .m >12 B .m≥1 C .m >1 D .m >23.(2013福建,文4)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ).A .12B .22 C .1 D .24.(2013福建,文15)椭圆Γ:22221x y a b+=(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于__________.5.(2013湖北,文2)已知0<θ<π4,则双曲线C 1:2222=1sin cos x y θθ-与C 2:22221cos sin y x θθ-=的( ).A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等6.(2013湖南,文14)设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的两个焦点.若在C上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为__________.7.(2013江西,文9)已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( ).A .2∶5B .1∶2C .1∶5D .1∶38.(2013大纲全国,文12)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ·MB =0,则k =( ).A .12B .22 C .2 D .29.(2013四川,文9)从椭圆22221x y a b+=(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ).A .24B .12C .22D .3210.(2013湖南,文14)设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为__________.1.(2013湖南,文20)(本小题满分13分)已知F 1,F 2分别是椭圆E :25x +y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点. (1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b ,当ab 最大时,求直线l 的方程. 2.(2013辽宁,理20)(本小题满分12分)如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x0=1-2时,切线MA 的斜率为12. (1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).3.(2013北京,文19)(本小题共14分)直线y=kx+m(m≠0)与椭圆W:24x+y2=1相交于A,C两点,O是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.4.(2013福建,文20)(本小题满分12分)如图,抛物线E:y2=4x的焦点为F,准线l与x 轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.5.(2013四川,文20)(本小题满分13分)已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点. (1)求k 的取值范围;(2)设Q (m ,n )是线段MN 上的点,且222211||||||OQ OM ON =+,请将n 表示为m 的函数.6.(2013浙江,文22)(本题满分14分)已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.7.(2013江西,文20)(本小题满分13分)椭圆C:2222=1x ya b+(a>b>0)的离心率32e=,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.8.(2013湖北,文22)(本小题满分14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记mnλ=,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.9.(2013安徽,文21)(本小题满分13分)已知椭圆C:22221x ya b+=(a>b>0)的焦距为4,且过点P(2,3).(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,22),连接AE.过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG.问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.。
2013年高考试题及解析:理科数学(北京卷)
2013北京高考理科数学试题第一部分(选择题共40分)一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解.2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限【答案】D【解析】【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的”( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】.【难度】容易【点评】本题考察简易逻辑关系,.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,例题中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合、简易逻辑相关知识的总结讲解.4.执行如图所示的程序框图,输出的S值为( )A.1B.23C.1321D.610987【答案】C【解析】【难度】中等【点评】本题算法初步。
在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。
在高考精品班数学(理)强化提高班中有对程序框图题目相关的总结讲解。
5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= ( )A.1e x +B. 1e x -C. 1e x -+D. 1e x --【答案】D【解析】【难度】中等【点评】本题考查分段函数值域求解。
北京市各地市2013年高考数学-最新联考试题分类汇编(10)圆锥曲线
所 以 直 线 l 的 方 程 为 x 2y20 或
x 2y 2 0……………………………13 分 19.(北京市丰台区 2013 年高三第二学期统一练习
一理)(本题 13 分)已知以原点为对称中心、F(2,0)
17
为 右 焦 点 的 椭 圆 C 过 点 P(2 , 2 ) , 直 线 l : y=kx+m(k≠0)交椭圆 C 于不同的两点 A、B。 (Ⅰ)求椭圆 C 的方程; (Ⅱ)是否存在 k 的值,使线段 AB 的垂直平分线经 过点 Q(0,3),若存在求出k 的取值范围,若不存在, 请说明理由。
14
19.(本小题满分 14 分) 解:(I)设椭圆的焦距为 2c , 因为 a 2 , c 2 ,所以 c 1,所以 b 1.
a2
15
综上, 2 r 3 ………………14 分 19.(北京市丰台区 2013 年高三第二学期统一练习 一文)(本题 13 分)已知椭圆 C: x2 y2 1( a b 0 )的
a2 b2
右焦点为 F(2,0),且过点(2, 2 ).直线l 过点 F 且交 椭圆 C 于 A、B 两点。 (Ⅰ)求椭圆 C 的方程; (Ⅱ)若线段 AB 的垂直平分线与 x 轴的交点为 M ( 1 ,0 ),求直线l 的方程.
2
16
解
得
,
k 2 , ……………………………………………… 2
13
19. (北京市海淀区 2013 年 4 月高三第二学期期中 练习理)(本小题满分 14 分)
已知圆 : ( ).若椭圆 : M
(x 2)2 y2 r2
r0
C
x2 a2
y2 b2
1
( a b 0)的右顶点为圆 M 的圆心,离心率为 2 . 2
十、圆锥曲线与方程
十、圆锥曲线与方程高考模块检测一 圆锥曲线与方程1.(2014北京,理11)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________. 【答案】221312x y -=; 2y x =±【解析】解:双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±;设C :224y x m -=,因为C 过()2,2,所以代入并解得3m =-,故C 的方程为221312x y -=,渐近线方程为2y x =±【考点】双曲线的简单性质【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,再利用待定系数法解题是关键,比较基础.2.(2013北京,理6)若双曲线22221x y a-=( ).A .y =±2x B.y =C .12y x =± D.yx = 【答案】:B【解析】:c ,∴b . ∴渐近线方程为by x a=±=,故选B. 【考点】双曲线的简单性质【点评】本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力。
3.(2012北京,理12)在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60º.则△OAF 的面积为【答案】3【解析】根据y 2=4x 得焦点坐标F (1,0),因为直线l 的倾斜角为60º,所以直线的斜率为K=tan600=3,利用点斜式,直线方程为y=3x-3,将直线和曲线联立⇒⎪⎩⎪⎨⎧=-=xy x y 4)1(32A (3,23)B (332,31-),因此33212121=⨯⨯=⨯⨯=∆A OAF y OF S【考点】直线与圆锥曲线的综合问题;直线的倾斜角;抛物线的简单性质 【点评】直线与抛物线的关系可以转化为求交点坐标问题.4.(2012北京,理12)在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60º.则△OAF 的面积为【答案】3【解析】根据y 2=4x 得焦点坐标F (1,0),因为直线l 的倾斜角为60º,所以直线的斜率为K=tan600=3,利用点斜式,直线方程为y=3x-3,将直线和曲线联立⇒⎪⎩⎪⎨⎧=-=xy x y 4)1(32A (3,23)B (332,31-),因此33212121=⨯⨯=⨯⨯=∆A OAF y OF S【考点】直线与圆锥曲线的综合问题;直线的倾斜角;抛物线的简单性质. 【点评】直线与抛物线的关系可以转化为求交点坐标问题.7(2011北京,理14)曲线C 是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数)1(2>a a 的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点;② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积大于21a 2。
北京市西城区2013年高三一模理科数学word版内含答案
北京市西城区2013年高三一模试卷高三数学(理科) 2013.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B =ð(A ){|01}x x << (B ){|01}x x <≤(C ){|12}x x <<(D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =角=θ (A )π6 (B )π6- (C )π3 (D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有 (A )60种 (B )72种(C )84种(D )96种5.某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形, 该正三棱柱的表面积是(A)6+ (B)12+ (C)12+ (D)24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4(B )1[,)4+∞(C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A B C D -中,P 为底面ABCD 上的动点,1PE A C ⊥于E ,且PA PE =,则点P 的轨迹是(A )线段 (B )圆弧(C )椭圆的一部分 (D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC 切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =,则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP的斜率之积等于2,则0x =______. 14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b ca tbc a b =⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间. 16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测. (Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望. 17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3axg x x =+,其中a ∈R . (Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围. 19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S 的取值范围.20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a =,12(,,,)n n B b b b S =∈,定义1122(,,,)n n AB b a b a b a =---;1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使AB BC λ=,则(,)(,)(,)d A B d B C d A C +=;(ⅱ)设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=.是否一定0∃>λ,使AB BC λ=?说明理由;(Ⅲ)记(1,1,,1)n I S =∈.若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, ………………1分即 ππsincos 04422a -=-=, ………………3分 解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =---+ ………………7分22(cos sin )2x x x =-+ ………………8分cos 22x x =+ ………………9分π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==, 故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=,所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FCAC ⊥.因为FCCD ⊥,所以⊥FC 平面ABCD . ………………5分所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,1)2222C A BDE --. 所以 )1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB .设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n所以10,220.x y z -+== 取1z =,得=n (0,2,1). ………………8分 设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. ………………9分 (Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m所以 0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m ,………………13分 即 002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分)(Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且 11()ax f x a x x-'=-=. ………………2分 ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=.()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a+∞. 从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分 (Ⅱ)解:()g x 的定义域为R ,且 ()e 3axg x a '=+. ………………6分 ③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分 ④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意. 综上,a 的取值范围是(,3)(0,)-∞-+∞. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -,则tan 60bc︒== ………………2分将 b = 代入 222a b c =+,解得 2a c =. ………………3分 所以椭圆的离心率为 12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. ………………5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. ………………7分则 2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. ………………8分 因为 GD AB ⊥,所以 2223431443Dck k k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ ………………11分222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分 20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7iii d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分(Ⅱ)(ⅰ)证明:设12(,,,)n A a a a =,12(,,,)n B b b b =,12(,,,)n C c c c =.因为 0∃>λ,使 AB BC λ=, 所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=---λ,,,即 0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n =.所以 i i b a -与(1,2,,)i i c b i n -=同为非负数或同为负数. ………………5分所以 11(,)(,)||||nniiiii i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A =,(1,2,1,1,,1)B =,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=. 因为(0,1,0,0,,0)AB =,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分 (Ⅲ)解法一:因为 1(,)||niii d A B b a ==-∑,设(1,2,,)i i b a i n -=中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m =时0i i b a -≥;1,2,,i m m n =++时,0i i b a -<.所以 1(,)||niii d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==, 所以11(1)(1)n n iii i a b ==-=-∑∑, 整理得 11n niii i a b ===∑∑.所以 12121(,)||2[()]niim m i d A B b a b bb a a a ==-=+++-+++∑.……………10分 因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+; 又 121m a a a m m +++≥⨯=,所以 1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤,北京市西城区2013年高三一模理科数学word 版内含答案11 / 11 所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+.所以 11(,)|||(1)(1)|n ni i i ii i d A B b a b a ===-=-+-∑∑ 1(|1||1|)n i i i b a =≤-+-∑11|1||1|2nni i i i a b p ===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==, (,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。
北京市朝阳区2013届高考一模数学理试题(WORD解析版)
2013年北京市朝阳区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•朝阳区一模)i为虚数单位,复数的虚部是()A.B.C.D.考点:复数的基本概念;复数代数形式的乘除运算.专题:计算题.分析:利用复数的除法法则,把分子、分母分别乘以分母的共轭复数即可得出.解答:解:复数==的虚部是.故选A.点评:熟练掌握复数的运算法则和共轭复数是解题的关键.2.(5分)(2013•朝阳区一模)已知集合M={x|﹣2<x<3},N={x|lg(x+2)≥0},则M∩N=()A.(﹣2,+∞)B.(﹣2,3)C.(﹣2,﹣1]D.[﹣1,3)考点:交集及其运算.专题:函数的性质及应用.分析:解对数不等式可以求出集合N,进而根据集合交集及其运算,求出M∩N.解答:解:∵N={x|lg(x+2)≥0}=[﹣1,+∞),集合M={x|﹣2<x<3},则M∩N=[﹣1,3)故选D.点评:本题考查的知识点是对数不等式的解法,集合的交集及其运算,其中解不等式求出集合N是解答本题的关键.3.(5分)(2013•朝阳区一模)已知向量,.若,则实数m的值为()A.﹣3 B.C.D.考点:平行向量与共线向量;平面向量的坐标运算.专题:平面向量及应用.分析:先求得得==(3,1),再由,则这两个向量的坐标对应成比例,解方程求得实数m的值.解答:解:由题意可得==(3,1),若,则这两个向量的坐标对应成比例,即,解得m=﹣3,故选A.点评:本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于中档题.4.(5分)(2013•朝阳区一模)在极坐标系中,直线与曲线ρ=2cosθ相交于A,B两点,O为极点,则∠AOB的大小为()A.B.C.D.考点:点的极坐标和直角坐标的互化.专题:直线与圆.分析:把极坐标方程化为直角坐标方程,求出AC,DC的值,可得∠AOC的值,从而得到∠AOB=2∠AOC 的值.解答:解:直线ρcosθ=即x=,曲线ρ=2cosθ即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心,以1为半径的圆.如图.Rt△ADC中,∵cos∠ACO==,∴∠ACO=,在△AOC中,AC=OC,∴∠AOC=,∴∠AOB=2∠AOC=,故选C.点评:本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出∠ACO是解题的关键.5.(5分)(2013•朝阳区一模)在下列命题中,①“”是“sinα=1”的充要条件;②的展开式中的常数项为2;③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则.其中所有正确命题的序号是()A.②B.③C.②③D.①③考点:命题的真假判断与应用.专题:计算题.分析:①利用特殊值α=,判断出为假命题.②利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.③根据随机变量ξ~N(0,1),正态曲线关于x=0对称,得到对称区间对应的概率相等,根据大于1的概率得到小于﹣1的概率,根据对称轴一侧的区间的概率是,得到结果.解答:解:①是假命题.α=,是能推得sinα=1,反之,sinα=1,α可以为或其他数值.②:的通项为T r+1=C()r=2r﹣4C4r x12﹣4r令12﹣4r=0得r=3∴展开式的常数项为T4=C43=2;正确;③:∵随机变量ξ~N(0,1),∴正态曲线关于x=0对称,∵P(ξ≥1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p,正确.故选C.点评:本题考查命题真假的判断,考查了充要条件、二项式定理、正态分布等知识.6.(5分)(2013•朝阳区一模)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.C.D.8考点:由三视图求面积、体积.专题:空间位置关系与距离.。
2013北京高考数学圆锥曲线及解题技巧
2013北京高考数学圆锥曲线及解题技巧椭圆与双曲线的性质椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y ab+=.6. 若000(,)P x y 在椭圆22221x y ab+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab+=.7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F P F S b γ∆=.8. 椭圆22221xya b+=(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF .11. AB 是椭圆22221x y ab+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y ab a b+=+.13. 若000(,)P x y 在椭圆22221x y ab+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y abab+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y ab-=.6. 若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab-=.7. 双曲线22221x y ab-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F P F S b co γ∆=.8. 双曲线22221x yab-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-.当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22221x y ab-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K ABOM =⋅,即0202y a x b K AB =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京2013高三各区模拟 圆锥曲线(理)
一、选择题
1 .(2013北京东城高三二模数学理科)过抛物线2
4y x =焦点的直线交抛物线于A ,B 两
点,若10AB =,则AB 的中点到y 轴的距离等于 ( D )
A .1
B .2
C .3
D .4
2 .(2013北京朝阳二模数学理科试题)若双曲线22221(0,0)x y a b a b
-=>>的渐近线与抛物
线2
2y x =+有公共点,则此双曲线的离心率的取值范围是 ( A )
A .[3,)+∞
B .(3,)+∞
C .(1,3]
D .(1,3)
3 .(2013届门头沟区一模理科)已知P (,)x y 是中心在原点,焦距为10的双曲线上一点,
且y x
的取值范围为33
(,)44
-
,则该双曲线方程是C
A .
221916x y -
=
B .221916y x -=
C .22116
9
x y -= D .22116
9
y x -=
4 .(2013届北京大兴区一模理科)双曲线221x my -=的实轴长是虚轴长的2倍,则m 等于
( D )
A .1
4
B .
12
C .2
D .4
5 .(2013届北京市延庆县一模数学理)已知双曲线的离心率为,
一个焦点与抛物线的焦点相同,则双曲线的渐近线方程为 ( D )
A .
B .
C .
D .
6 .(北京市石景山区2013届高三一模数学理试题)对于直线l :y=k (x+1)与抛物线C:y 2
=
4x,k =±1是直线l 与抛物线C 有唯一交点的( )条件 ( A )
A .充分不必要
B .必要不充分
C .充要条件
D .既不充分也不必要
7 .(2013届北京海滨一模理科)抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动
点,又点(1,0)A -,则||
||
PF PA 的最 小值是
( B )
A .12
B C D
8 .(2013北京海淀二模数学理科试题及答案)双曲线C 的左右焦点分别为12,F F ,且2F 恰
为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 ( B )
A B .1+C .1+
D .2
9 .(2013北京西城高三二模数学理科)已知正六边形ABCDEF 的边长是2,一条抛物线
恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是 ( B )
A B C D .
10.(2013届东城区一模理科)已知1(,0)F c -,2(,0)F c 分别是双曲线1C :22
221
x y a b
-=(0,0)a b >>的两个焦点,双曲线1C 和圆2C :222x y c +=的一个交点为P ,且
12212PF F PF F ∠=∠,那么双曲线1C 的离心率为
( D )
A B C .2 D 1+
11.(北京市朝阳区2013届高三第一次综合练习理科数学)抛物线
(>)的焦
点为,已知点
,
为抛物线上的两个动点,且满足
.过弦
的中
点
作抛物线准线的垂线
,垂足为
,则
的最大值为
( A )
A .
B .1
C .
D .2
二、填空题
12.(2013北京昌平二模数学理科试题及答案)曲线C 是平面内到直线1:1l x =-和直线
2:1l y =的距离之积等于常数()20k k >的点的轨迹.给出下列四个结论:
①曲线C 过点(1,1)-; ②曲线C 关于点(1,1)-对称;
③若点P 在曲线C 上,点,A B 分别在直线12,l l 上,则PA PB +不小于2.k
④设0P 为曲线C 上任意一点,则点0P 关于直线1x =-、点(1,1)-及直线1y =对称的点
分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值2
4k .
其中,所有正确结论的序号是__________________. ②③④
13.(2013北京房山二模数学理科试题及答案)抛物线2:2C y px =的焦点坐标为1
(,0)2
F ,
则抛物线C 的方程为___,若点P 在抛物线
C 上运动,点Q 在直线50x y ++=上运动,则PQ 的最小值等于____.
22,
y x =14.(2013北京昌平二模数学理科试题及答案)双曲线2
2
21(0)y x b b
-=>的一条渐近线方程
为y =,则b =_________.
;
15.(2013届房山区一模理科数学)已知双曲线22
22:1(0,0)x y C a b a b
-=>>的焦距为4,且
过点(2,3),则它的渐近线方程为 .
y =
16.(2013北京顺义二模数学理科试题及答案)已知双曲线()0,0122
22>>=-b a b
y a x 的离
心率为3
6
2,顶点与椭圆15822=+y x
的焦点相同,那么该双曲线的焦点坐标为__________,渐近线方程为_______________. ()
x y 3
15,0,22±
=± 17.(2013北京丰台二模数学理科试题及答案)若双曲线C:22
21(0)3
x y a a -
=> 的离心率为
,则抛物线28y x =的焦点到C 的渐近线距离是______.
18.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在平面直角坐标系xOy
中,设抛物线x y 42
=的焦点为F ,准线为P l ,为抛物线上一点,l PA ⊥,A 为垂足.如果直线AF 的倾斜角为 120,那么=PF ___4____.
19.(2013届北京西城区一模理科)在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对
称.点00(,)P x y 在抛物线2
4y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.
1
三、解答题
(2013届北京丰台区一模理科)已知以原点为对称中心、F(2,0)为右焦点的椭圆C过P(2,20.
),直线l:y=kx+m(k≠0)交椭圆C于不同的两点A,B。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在实数k,使线段AB的垂直平分线经过点Q(0,3)?若存在求出 k的取值范围;若不存在,请说明理由。
21.(2013北京东城高三二模数学理科)已知椭圆C :22
221x y a b
+=(0)a b >>的离心率
e =
原点到过点(,0)A a ,(0,)B b -. (Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆C 上一动点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,求
2211x y +的取值范围.
(Ⅲ)如果直线
1(0)y kx k =+≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为
圆心的圆上,求k 的值.
22.(2013北京房山二模数学理科试题及答案)已知椭圆C :22
221(0)x y a b a b
+=>>的离心
率为
2
2
,且过点A .直线
y m +交椭圆C 于B ,D (不与点A 重合)两点. (Ⅰ)求椭圆C 的方程;
(Ⅱ)△ABD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
23.(2013北京丰台二模数学理科试题及答案)已知椭圆C:
2
21
4
x
y
+=的短轴的端点分别
为A,B,直线AM,BM分别与椭圆C交于E,F两点,其中点M (m,1
2
) 满足0
m≠,且
m≠.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)用m表示点E,F的坐标;
(Ⅲ)若∆BME面积是∆AMF面积的5倍,求m的值.
24.(北京市朝阳区2013届高三第一次综合练习理科数学)已知中心在原点,焦点在轴上的椭圆过点,离心率为,点为其右顶点.过点作直线与椭圆
相交于两点,直线,与直线分别交于点,.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围.
25.(2013届北京大兴区一模理科)已知动点P到点A(-2,0)与点B(2,0)的斜率之积为1
,点P的轨迹为曲线C。
4
(Ⅰ)求曲线C的方程;
(Ⅱ)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M、N两点,直线BM
与椭圆的交点为D。
求证,A、D、N三点共线。
26.(2013届北京海滨一模理科)已知圆M :222(x y r +=(0r >).若椭圆C :
22
22
1x y a b +=(0a b >>)的右顶点为圆M (I )求椭圆C 的方程;
(II )若存在直线l :y kx =,使得直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点,点G 在线段AB 上,且AG BH =,求圆M 半径r 的取值范围.。