2019届高考理科数学一轮复习精品学案:第68讲 参数方程(含解析)
2019年高考数学(理)一轮复习精品资料专题67参数方程(教学案)含解析
2019年高考数学(理)一轮复习精品资料1.了解参数方程,了解参数的意义。
2.能选择适当的参数写出直线、圆和圆锥曲线的参数方程。
3.了解圆的平摆线、渐开线的形成过程,并能推导出它们的参数方程。
一、参数方程和普通方程的互化 1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.将参数方程化为普通方程需消去参数. (2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =ft ,y =g t就是曲线的参数方程.【特别提醒】在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.几种常见的参数方程 (1)圆的参数方程若圆心在点M 0(x 0,y 0),半径为r ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(3)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b tan θ(θ为参数).(4)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).二、直线的参数方程利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.三、极坐标与参数方程的综合应用规律1.化归思想的应用,即对于含有极坐标方程和参数的题目,全部转化为直角坐标方程后再求解. 2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.高频考点一 参数方程与普通方程的互化【例1】 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θy =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【方法规律】 (1)将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,一定要保持同解变形.【变式探究】 在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.高频考点二 参数方程及应用【例2】已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解 (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.【方法规律】(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【变式探究】 平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为π6.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值. 解 (1)由曲线C :(x -1)2+y 2=1.得参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).直线l 的参数方程为⎩⎪⎨⎪⎧x =m +32t ,y =12t (t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2, 将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(3m -3)t +m 2-2m =0,所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,得m =1,m =1+2或m =1- 2. 高频考点三 参数方程与极坐标方程的综合应用【例3】 (2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.【方法规律】(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【变式探究】 在直角坐标系xOy 中,圆C 的参数方程⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l的交点为Q,求线段PQ的长.解(1)圆C的普通方程是(x-1)2+y2=1,又x=ρcos θ,y=ρsin θ,所以圆C的极坐标方程是ρ=2cos θ.1. (2018年全国I卷理数) [选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)的方程为.【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.2. (2018年全国Ⅱ卷理数)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)3. (2018年全国Ⅲ卷理数) [选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.4. (2018年江苏卷) [选修4—4:坐标系与参数方程]在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】因为曲线C的极坐标方程为,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为,则直线l 过A (4,0),倾斜角为, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =.连结OB ,因为OA 为直径,从而∠OBA =, 所以.因此,直线l 被曲线C 截得的弦长为.1.【2017江苏,21】在平面坐标系中xOy 中,已知直线l 的参考方程为x 82tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】52. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
高三一轮复习精细化数学课件:参数方程(28页)
d
17
17
当 a 4 0,即 a 4 时 当sin 1 时,d 取最大值
dmax
a9 17
17
a 8
综上所述:a 8 或 a 16
极坐标
知识储备
极坐标系:在平面上取一个定点O,由O 点出发的一条射线Ox ,一个长度单位
及计算角度的正方向通常取逆时针方向 ,合称为一个极坐标系.
6
y 2sin 5 1
6
点
2, 11
6
的直角坐标为:
3,1
点在直角坐标中的象限,与极坐标的极角所在象限相同.
例2、将下列各点的直角坐标化为极坐标:
1 3,3
; 2 1, 1
;33, 0
;
2
解:1 2 3 32 12 2 3
y
P0 x0 , y0
P x0 t cos, y0 t sin
t2 cos2 t2 sin2
0
x
t
t 表示直线上动点P 到定点P0 的距离.
若P1 、P2 是 l 上的两点,它们所对应的参数分别为 t1 , t2 ,则
1 P1,P2 的坐标分别为 x0 t1 cos, y0 t1 sin , x0 t2 cos, y0 t2 sin
椭圆 x2 a2
y2 b2
1a b 0的参数方程是:
x
y
a cos b sin
为参数
椭圆 y2 a2
x2 b2
1a b 0的参数方程是:
(全国通用版)2019版高考数学一轮复习选考部分坐标系与参数方程学案理
坐标系与参数方程第1课坐标系[过双基]1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换 φ:⎩⎪⎨⎪⎧x ′=λ·x λ>,y ′=μ·yμ>的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x4.常见曲线的极坐标方程1.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎪⎫2,-π3.答案:⎝⎛⎭⎪⎫2,-π32.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________. 解析:把圆ρ=2cos θ的方程化为(x -1)2+y 2=1知,圆的垂直于极轴的两条切线方程分别为x =0和x =2,从而得这两条切线的极坐标方程为θ=π2(ρ∈R)和ρcos θ=2.答案:θ=π2(ρ∈R)和ρcos θ=23.(2017·北京高考)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.解析:将圆的极坐标方程化为直角坐标方程为x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心为(1,2),半径r =1.因为点P (1,0)到圆心的距离d =-2+-2=2>1,所以点P 在圆外,所以|AP |的最小值为d -r =2-1=1.答案:14.(2017·天津高考)在极坐标系中,直线4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0与圆ρ=2sin θ 的公共点的个数为________.解析:依题意,得4ρ⎝⎛⎭⎪⎫32cos θ+12sin θ+1=0,即23ρcos θ+2ρsin θ+1=0, 所以直线的直角坐标方程为23x +2y +1=0. 由ρ=2sin θ,得ρ2=2ρsin θ, 所以圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1,其圆心(0,1)到直线23x +2y +1=0的距离d =|2×1+1|32+22=34<1,则直线与圆相交,故直线与圆的公共点的个数是2. 答案:25.在极坐标系中,过点A ⎝ ⎛⎭⎪⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________.解析:点A ⎝ ⎛⎭⎪⎫1,-π2的极坐标化为直角坐标为A (0,-1),圆ρ=8sin θ的直角坐标方程为x 2+y 2-8y =0, 圆的标准方程为x 2+(y -4)2=16, 点A 与圆心C (0,4)的距离为|AC |=5, 所以切线长为|AC |2-r 2=3. 答案:3[清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标.1.若圆C 的极坐标方程为ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0,若以极点为原点,以极轴为x轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.解析:因为ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0,所以ρ2-2ρcos θ-23ρsin θ-1=0,即x 2+y 2-2x -23y -1=0,因此圆心坐标为(1,3).答案:(1,3)2.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ得: ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心的坐标为⎝ ⎛⎭⎪⎫52,-532,化成极坐标为⎝⎛⎭⎪⎫5,5π3.答案:⎝⎛⎭⎪⎫5,5π3(答案不唯一)平面直角坐标系下图形的伸缩变换[典例] (1)在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得的点A ′的坐标.(2)求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得到的直线l ′的方程.[解] (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)为所求.(2)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝ ⎛⎭⎪⎫13x ′,∴y ′=x ′,即y =x 为所求. [方法技巧]伸缩变换的解题方法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ,y ′=μy μ的作用下得到的方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[即时演练]1.求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 2.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎪⎫x ′+π6,求函数y =f (x )的最小正周期.解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎪⎫x ′+π6得3y =3sin ⎝⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 所以y =f (x )的最小正周期为2π2=π.极坐标与直角坐标的互化[典例] 系.直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,直线与曲线C :ρsin 2θ=8cos θ相交于不同的两点A ,B ,求|AB |的值.[解] l :ρsin ⎝⎛⎭⎪⎫π4-θ=22⇒22ρcos θ-22ρsin θ=22⇒x -y -1=0,C 的直角坐标方程是y 2=8x .由⎩⎪⎨⎪⎧y 2=8x ,x -y -1=0,可得x 2-10x +1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=10,x 1x 2=1, 所以AB 的长为1+1·102-4=8 3. [方法技巧]1.极坐标与直角坐标互化公式的3个前提条件(1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为⎝ ⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6(ρ∈R).极坐标方程的应用[典例] 已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.[解] (1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)∵M (3,0),N (0,1), ∴P ⎝⎛⎭⎪⎫32,12, ∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1. [方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练]在直角坐标系xOy 中,圆C 的普通方程为(x -1)2+y 2=1.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ, 所以圆C 的极坐标方程是ρ=2cos θ. (2)设(ρ1,θ1)为点P 的极坐标, 则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3,解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3.设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ρ2θ2+3cos θ2=33,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=3,θ2=π3.由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2,即线段PQ 的长为2.1.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.2.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.解:∵x =ρcos θ,y =ρsin θ, ∴直线的直角坐标方程为x -3y -1=0. ∵ρ=2cos θ,∴ρ2(sin 2θ+cos 2θ)=2ρcos θ, ∴x 2+y 2=2x .∴圆的直角坐标方程为(x -1)2+y 2=1. ∵圆心(1,0)在直线x -3y -1=0上, ∴AB 为圆的直径,∴|AB |=2.4.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.解:圆ρ=8sin θ即ρ2=8ρsin θ, 化为直角坐标方程为x 2+(y -4)2=16, 直线 θ=π3即tan θ=3,化为直角坐标方程为3x -y =0, 圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.5.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离.解:点⎝⎛⎭⎪⎫2,π3的直角坐标为()1,3,直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0. 所以点(1,3)到直线的距离d =|1+3×3-6|12+32=22=1.1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |2= r 2-⎝⎛⎭⎪⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝ ⎛⎭⎪⎫θ+π6=1化为直角坐标方程为3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22. 4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB 的面积.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,同理:|OB |=2+ 3. 又∵∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534,即△AOB 的面积为8+534.5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=32,C 与l 有且只有一个公共点.(1)求a 的值;(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π3,求|OA |+|OB |的最大值.解:(1)由已知在直角坐标系中,C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0); l :x +3y -3=0.因为C 与l 只有一个公共点,所以l 与C 相切, 即|a -3|2=a ,则a =1. (2)设A (ρ1,θ),则B ⎝⎛⎭⎪⎫ρ2,θ+π3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝ ⎛⎭⎪⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6.所以,当θ=-π6时,(|OA |+|OB |)max =2 3.6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎪⎫ρ>0,0<α<π2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB ||OA |的最大值. 解:(1)∵x =ρcos θ,y =ρsin θ,∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2, 设A (ρ1,α),B (ρ2,α),ρ1=43cos α+sin α,ρ2=2sin α,则|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α) =142sin2α-π6+1, ∴当α=π3时,⎝ ⎛⎭⎪⎫|OB | |OA |max =34. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2=1,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝ ⎛⎭⎪⎫θ+π3,射线OM 的极坐标方程为θ=α0(ρ≥0).(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π2,求|AB |.解:(1)曲线C 1的极坐标方程为ρ2=31+2sin 2θ, 曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆, ∴射线OM 的极坐标方程为θ=π6(ρ≥0),代入ρ2=31+2sin 2θ,可得ρ2A =2. 又∠AOB =π2,∴ρ2B =65,∴|AB |=|OA |2+|OB |2=ρ2A +ρ2B =455.8.已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)作出图形如图所示,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1.第2课参数方程[过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t ,y =g t ,并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =ft ,y =g t所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =ft ,y =g t叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通] 1.参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t(t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________.解析:将参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t 消去参数t ,得2x -y -5=0,对应图形为直线.由ρ=sin θ,得ρ2=ρsin θ,即x 2+y 2=y ,即x 2+⎝ ⎛⎭⎪⎫y -122=14,对应图形为圆.答案:直线、圆2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________.解析:曲线的直角坐标方程为y =x 2.将其与直线方程联立得⎩⎪⎨⎪⎧y =x 2,y =x +2,∴x 2-x -2=0,∴x =-1或x =2.由x =sin θ知,x =2不合题意.∴x =-1,y =1,∴交点坐标为(-1,1).答案:(-1,1)3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为________.解析:∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),∴(x -2)2+(y +1)2=9, ∴圆心(2,-1)到直线l 的距离d =|2+3+2|1+9=710=71010.又∵71010<3,141010>3,∴有2个点.答案:24.参数方程⎩⎪⎨⎪⎧x =2t 21+t2,y =4-2t21+t2(t 为参数)化为普通方程为________.解析:∵x =2t21+t 2,y =4-2t 21+t 2=+t 2-6t 21+t 2=4-3×2t21+t 2=4-3x .又x =2t21+t 2=+t 2-21+t 2=2-21+t2∈[0,2),∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.解析:由⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ得⎩⎪⎨⎪⎧cos θ=x +2,sin θ=y -1,∴(x +2)2+(y -1)2=1,∴圆心坐标为(-2,1), 故圆心到直线x -y -1=0的距离d =42=22,∴直线上的点到圆上的点的最近距离是d -r =22-1. 答案:22-12.直线⎩⎪⎨⎪⎧x =4+at ,y =bt(t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为________.解析:直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有 3=|2b -a ·0-4b |a 2+b2,即3a 2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=ba,所以tan α=±3,因此切线的倾斜角π3或2π3.答案:π3或2π3参数方程与普通方程的互化[典例] 已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t ,(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.[解] (1)椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l :x -3y +9=0.(2)设P (2cos θ,3sin θ),则|AP |= θ-2+3sin θ2=2-cos θ,点P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ=35,cos θ=-45.故P ⎝ ⎛⎭⎪⎫-85,335.[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. [即时演练]将下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =3k 1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数).解:(1)两式相除,得k =y2x ,将其代入x =3k1+k 2,得x =3·y2x1+⎝ ⎛⎭⎪⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6).(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 故所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程[典例] 种坐标系取相同的单位长度.已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+2t ,y =-4+2t(t 为参数),直线l 与曲线C 分别交于M ,N ,若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] 曲线C 的直角坐标方程为y 2=2ax (a >0), 将直线l 的参数方程化为⎩⎪⎨⎪⎧x =-2+22t ′,y =-4+22t ′(t ′为参数),代入曲线C 的方程得:12t ′2-(42+2a )t ′+16+4a =0, 则Δ>0,即a >0或a <-4.设交点M ,N 对应的参数分别为t 1′,t 2′,则t 1′+t 2′=2(42+2a ),t 1′t 2′=2(16+4a ), 若|PM |,|MN |,|PN |成等比数列, 则|t 1′-t 2′|2=|t 1′t 2′|, 解得a =1或a =-4(舍去), 所以满足条件的a =1. [方法技巧](1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎪⎨⎪⎧x =-1+t cos 3π4,y =2+t sin 3π4(t 为参数),即⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.[典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k x -,y =1kx +消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ22θ-sin 2θ=4,ρθ+sin θ-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.[方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρ=4cos θ1-cos 2θ,直线的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α.(α为参数,0≤α<π).(1)求曲线C 的直角坐标方程;(2)设直线与曲线C 交于两点A ,B ,且线段AB 的中点为M (2,2),求α.解:(1)曲线C :ρ=4cos θ1-cos 2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ,化为直角坐标方程为y 2=4x .(2)法一: 把x =2+t cos α,y =2+t sin α代入y 2=4x , 得(2+t sin α)2=4(2+t cos α), 即t 2sin 2α+(4sin α-4cos α)t -4=0.由AB 的中点为M (2,2)得t 1+t 2=0,有4sin α-4cos α=0,所以k =tan α=1. 由0≤α<π,得α=π4.法二:设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2⇒(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵y 1+y 2=4,∴k 1=tan α=y 1-y 2x 1-x 2=1, 由0≤α<π,得α=π4.1.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17. 当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.2.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为 ρ2+12ρcos θ+11=0.(2)法一:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2, 将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 法二:由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k , 则直线l 的方程为kx -y =0. 由圆C 的方程(x +6)2+y 2=25知, 圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k2=25-⎝ ⎛⎭⎪⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即直线l 的斜率为±153. 3.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆. 因为G 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.1.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+-2=s -22+45.当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M -2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.3.在平面直角坐标系xOy 中,C 1的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,C 2的极坐标方程ρ2-2ρcos θ-3=0.(1)说明C 2是哪种曲线,并将C 2的方程化为普通方程;(2)C 1与C 2有两个公共点A ,B ,点P 的极坐标⎝⎛⎭⎪⎫2,π4,求线段AB 的长及定点P 到A ,B 两点的距离之积.解:(1)C 2是圆,C 2的极坐标方程ρ2-2ρcos θ-3=0, 化为普通方程为x 2+y 2-2x -3=0,即(x -1)2+y 2=4. (2)点P 的直角坐标为(1,1),且在直线C 1上, 将C 1的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数)代入x 2+y 2-2x -3=0,得⎝ ⎛⎭⎪⎫1-22t 2+⎝ ⎛⎭⎪⎫1+22t 2-2⎝⎛⎭⎪⎫1-22t -3=0,化简得t 2+2t -3=0. 设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1·t 2=-3, 所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=2+12=14,定点P 到A ,B 两点的距离之积|PA |·|PB |=|t 1t 2|=3.4.在平面直角坐标系xOy 中,已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =5-2t ,y =3-t (t 为参数),定点P (1,1).(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于A ,B 两点,求||PA |-|PB ||的值. 解:(1)依题意得圆C 的一般方程为(x -1)2+y 2=4,将x =ρcos θ,y =ρsin θ代入上式得ρ2-2ρcos θ-3=0, 所以圆C 的极坐标方程为ρ2-2ρcos θ-3=0.(2)因为定点P (1,1)在直线l 上,所以直线l 的参数方程可表示为⎩⎪⎨⎪⎧x =1-255t ,y =1-55t (t 为参数).代入(x -1)2+y 2=4,得t 2-255t -3=0. 设点A ,B 分别对应的参数为t 1,t 2, 则t 1+t 2=255,t 1t 2=-3.所以t 1,t 2异号,不妨设t 1>0,t 2<0, 所以|PA |=t 1,|PB |=-t 2, 所以||PA |-|PB ||=|t 1+t 2|=255.5.已知直线l :⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)由已知得l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1, 联立方程⎩⎨⎧y =3x -,x 2+y 2=1解得l 与C 1的交点为A (1,0),B ⎝ ⎛⎭⎪⎫12,-32,则|AB |=1.(2)由题意,得C 2的参数方程为⎩⎪⎨⎪⎧x =12cos θ,y =32sin θ(θ为参数),故点P 的坐标为⎝ ⎛⎭⎪⎫12cos θ,32sin θ,从而点P 到直线l 的距离是 d =⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=342sin ⎝⎛⎭⎪⎫θ-π4+2,当sin ⎝ ⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为23-64.6.在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t 为参数).在以原点O为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围. 解:(1)直线l 的普通方程为x -y +3=0,曲线C 的直角坐标方程为3x 2+y 2=3. (2)∵曲线C 的直角坐标方程为3x 2+y 2=3, 即x 2+y 23=1,∴曲线C 上的点的坐标可表示为(cos α,3sin α), ∴d =|cos α-3sin α+3|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π6-α+32=2sin ⎝ ⎛⎭⎪⎫π6-α+32.∴d 的最小值为12=22,d 的最大值为52=522.∴22≤d ≤522,即d 的取值范围为⎣⎢⎡⎦⎥⎤22,522. 7.平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解:(1)曲线C 的直角坐标方程为:(x -1)2+y 2=1,即x 2+y 2=2x ,即ρ2=2ρcos θ, 所以曲线C 的极坐标方程为ρ=2cos θ. 直线l 的参数方程为⎩⎪⎨⎪⎧x =m +32t ,y =12t (t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中, 得t 2+(3m -3)t +m 2-2m =0, 所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2. 8.已知直线的参数方程是⎩⎪⎨⎪⎧x =22t ,y =22t +42(t 是参数),圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ+π4.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解:(1)∵ρ=4cos ⎝ ⎛⎭⎪⎫θ+π4=22cos θ-22sin θ, ∴ρ2=22ρcos θ-22ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-22x +22y =0, 即(x -2)2+(y +2)2=4, ∴圆心的直角坐标为(2,-2). (2)直线l 上的点向圆C 引切线,则切线长为⎝ ⎛⎭⎪⎫22t -22+⎝ ⎛⎭⎪⎫22t +42+22-4 =t 2+8t +48=t +2+32≥42,∴直线l 上的点向圆C 引的切线长的最小值为4 2.。
2019届一轮复习人教A版(理科) 第68讲 参数方程 学案
第68讲参数方程考试说明 1.了解参数方程,了解参数的意义.2.能选择适当参数写出直线、圆和椭圆的参数方程.【课前双基巩固】知识聚焦1.参数方程参数【课堂考点探究】例1[思路点拨 (1)依据直线的参数方程和圆的参数方程的概念可直接写出它们的参数方程;(2)将圆C的参数方程化为普通方程,再将直线l的参数方程代入,利用Δ≥0即可求出a的取值范围.解:(1)依题意,直线l的参数方程为(t为参数),即(t为参数).圆C的参数方程为(θ为参数).(2)将圆C的参数方程化为普通方程得(x-2a)2+(y-2a)2=2,将直线l的参数方程代入,得+=2,整理得t2-at+a2-2=0,因为直线l和圆C有公共点,所以Δ=(-a)2-4(a2-2)≥0,解得-2≤a≤2.变式题解:直线l的普通方程为x+y=2,曲线C的普通方程为y=(x-2)2(y≥0),联立两方程得x2-3x+2=0,求得两交点的坐标分别为(1,1),(2,0),所以|AB|=.例2[思路点拨 (1)由题意知y=3-2sin αcos α-2cos2α=3sin2α-2sin αcosα+cos2α=(sin α-cos α)2,将x整体代入即可得y=x2,根据x=sin α-cosα=2sin,可知-2≤x≤2.将ρsin=m展开可得ρsin θ-ρcos θ=m,把x=ρcos θ,y=ρsin θ代入,可得y-x=m.(2)联立C1,C2的直角坐标方程,可得m=x2-x,-2≤x≤2,求x2-x的范围可得实数m的取值范围.解:(1)由曲线C1的参数方程为(α为参数),可得其直角坐标方程为y=x2(-2≤x≤2),由曲线C2的极坐标方程为ρsin=m,可得其直角坐标方程为x-y+m=0.(2)联立曲线C1与曲线C2的方程,可得x2-x-m=0,∴m=x2-x=-,∵-2≤x≤2,曲线C1与曲线C2有公共点,∴-≤m≤6.变式题解:(1)l的普通方程为y=(x-1),C1的普通方程为x2+y2=1,由得l与C1的交点为A(1,0),B,则|AB|=.(2)C2的参数方程为(θ为参数),设点P的坐标是,从而点P到直线l的距离d==,故当sin(θ-φ)=1时,d取得最大值,最大值为+.例3[思路点拨 (1)由消去参数α,求得曲线C的普通方程.由ρsin=,得ρsin θ-ρcos θ=2,把x=ρcos θ,y=ρsin θ代入,得y=x+2,从而求得直线l的倾斜角.(2)由(1)知,点P(0,2)在直线l上,可得直线l的参数方程为(t为参数),代入+y2=1并化简,得5t2+18t+27=0,利用韦达定理结合参数的几何意义求得|PA|+|PB|的值.解:(1)由消去参数α,得+y2=1,即曲线C的普通方程为+y2=1.由ρsin=,得ρsin θ-ρcos θ=2,()将代入(),化简得y=x+2,所以直线l的倾斜角为.(2)由(1)知,点P(0,2)在直线l上,可得直线l的参数方程为(t为参数),即(t为参数),代入+y2=1并化简,得5t2+18t+27=0,Δ=(18)2-4×5×27=108>0,设A,B两点对应的参数分别为t1,t2,则t1+t2=-<0,t1·t2=>0,所以t1<0,t2<0,所以|PA|+|PB|=|t1|+|t2|=-(t1+t2)=.变式题解:(1)∵直线l过点P且倾斜角为α,∴直线l的参数方程为(t为参数).(2)把代入x2+y2=1,得t2+(cos α+3sin α)t+2=0,∵直线l与曲线C:x2+y2=1相交于不同的两点M,N,∴Δ=(cos α+3sin α)2-8>0,即sin2>,又α∈[0,π),∴<sin≤1,又t1+t2=-(cos α+3sin α),t1t2=2,∴+=-=-==sin,∵<sin≤1,∴<sin≤,∴+的取值范围是(,.例4[思路点拨 (1)曲线C的极坐标方程为ρ=6sin θ,两边同乘ρ,利用ρ2=x2+y2,ρcos θ=x,ρsin θ=y,可得结果;(2)将直线的参数方程代入曲线C的直角坐标方程并化简,得t2+2(cos α-sin α)t-7=0,利用韦达定理、直线参数的几何意义及三角函数的有界性,求+的最小值.解:(1)由ρ=6sin θ,得ρ2=6ρsin θ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.(2)将直线l的参数方程代入圆的直角坐标方程并化简,得t2+2(cos α-sin α)t-7=0, 则Δ=4(cos α-sin α)2+4×7>0,设A,B两点对应的参数分别为t1,t2,则又直线l过点P(1,2),结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1-t2|==≥=2.故+==≥,所以所求的最小值为.变式题解:(1)∵曲线C1的参数方程为(t为参数),∴其普通方程为(x+4)2+(y-3)2=1,∴C1为圆心是(-4,3),半径是1的圆.∵曲线C2的参数方程为(θ为参数),∴其普通方程为+=1,∴C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(2)由t=,得P(-4,4),设Q(8cos θ,3sin θ),故M-2+4cos θ,2+sin θ,ρ(cos θ-2sin θ)=7可化为x-2y=7,故M到C3的距离d=|4cos θ-3sin θ-13|=|5cos(θ+φ)-13|其中tan φ=,从而当cos(θ+φ)=1时,d取得最小值,为.【备选理由】例1考查了圆的参数方程与普通方程的转化,直线与圆相交求弦长;例2考查了直线的参数方程与普通方程,圆的极坐标方程与直角坐标方程的转化,直线参数方程的应用;例3考查了曲线的极坐标方程与参数方程的转化,以及曲线参数方程的应用;例4考查了曲线参数方程与极坐标方程之间的转化,以及曲线极坐标方程的应用.以上几题覆盖了曲线参数方程与极坐标方程的几种常见组合,是对例题的补充.1 [配例2使用 [2017·珠海调研已知在直角坐标系xOy中,曲线C的参数方程为(φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin=2.(1)求曲线C的极坐标方程;(2)求直线l被曲线C截得的弦长.解:(1)曲线C的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,将代入,化简得ρ=4cos θ,∴曲线C的极坐标方程是ρ=4cos θ.(2)∵直线l的直角坐标方程为x+y-4=0,联立得直线l与曲线C的交点坐标为(2,2),(4,0),∴所求弦长为=2.2 [配例3使用已知直线l的参数方程为(t为参数),以直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4sin.(1)求直线l的普通方程与圆C的直角坐标方程;(2)设圆C与直线l交于A,B两点,若P点的直角坐标为(2,1),求||PA|-|PB||的值.解:(1)易得直线l的普通方程为y=x-1.因为曲线C的极坐标方程为ρ=4sin=4sin θ+4cos θ,即ρ2=4ρsin θ+4ρcos θ,所以圆C的直角坐标方程为x2+y2-4x-4y=0(或写成(x-2)2+(y-2)2=8).(2)点P(2,1)在直线l上,且在圆C内,把代入x2+y2-4x-4y=0,得t2-t-7=0, 设A,B两点对应的参数分别为t1,t2,则t1+t2=,t1t2=-7<0,即t1,t2异号,所以||PA|-|PB||=||t1|-|t2||=|t1+t2|=.3[配例4使用在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ2=,直线l:2ρsin=.(1)判断曲线C与直线l的位置关系,写出直线l的参数方程;(2)设直线l与曲线C的两个交点分别为A,B,求|AB|的值.解:(1)曲线C的直角坐标方程为+=1,直线l的直角坐标方程为x+y=,与y轴的交点为P(0,),将P(0,)代入椭圆方程左边得0+<1,故点P(0,)在椭圆的内部,所以直线l与曲线C相交.直线l的参数方程为(t为参数).(2)由(1)知直线l的参数方程为(t为参数),曲线C的直角坐标方程为+=1,将直线l的参数方程代入曲线C的直角坐标方程,得3+=15,即t2+2t-8=0,设点A,B对应的参数分别为t1,t2,则t2+t1=-2,t2t1=-8,所以|AB|===6.4[配例4使用 [2018·岳阳一中月考直角坐标系xOy中,直线l:(t为参数),曲线C1:(φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-2cos θ+2sin θ.(1)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)设直线l交曲线C1于O,A两点,交曲线C2于O,B两点,求|AB|.解:(1)曲线C1:(φ为参数),化为普通方程是x2+(y-1)2=1,展开可得x2+y2-2y=0,可得其极坐标方程为ρ2-2ρsin θ=0,即ρ=2sin θ.曲线C2的极坐标方程为ρ=-2cos θ+2sin θ,即ρ2=ρ(-2cos θ+2sin θ),化为直角坐标方程是x2+y2=-2x+2y.(2)直线l:(t为参数),化为普通方程是y=-x,可得其极坐标方程是θ=(ρ∈R),∴|OA|=2sin=,|OB|=-2cos+2sin=-2×+2×=4,∴|AB|=|OB|-|OA|=4-.。
2019年高考数学(理)一轮复习坐标系与参数方程 第2节 参数方程学案
第二节 参数方程[考纲传真] (教师用书独具)1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.(对应学生用书第201页)[基础知识填充]1.曲线的参数方程(1)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 取的每一个允许值,由方程组所确定的点P (x ,y )都在这条曲线上,那么方程组就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称参数.相对于参数方程,我们直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.(2)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数,从参数方程得到普通方程.2.常见曲线的参数方程和普通方程[意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( ) (3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t=π3,点O 为原点,则直线OM 的斜率为 3.( ) [答案] (1)√ (2)√ (3)√ (4)×2.(教材改编)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A .在直线y =2x 上 B .在直线y =-2x 上 C .在直线y =x -1上D .在直线y =x +1上B [由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2,所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆, 所以对称中心为(-1,2),在直线y =-2x 上.] 3.(教材改编)在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.x -y -1=0 [由x =2+22t ,且y =1+22t , 消去t ,得x -y =1,即x -y -1=0.] 4.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B ,则|AB |min =________.185 [由⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),消去参数φ得x 225+y 29=1,当AB ⊥x 轴时,|AB |有最小值. 所以|AB |min =2×95=185.]5.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.[解] 直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45. 当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.(对应学生用书第202页)(1)求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t(t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.(2)在平面直角坐标系xOy中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.【导学号:79140389】[解] (1)将⎩⎪⎨⎪⎧x =2+t ,y =-1-t消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9.又圆心(0,0)到直线x +y -1=0的距离d =22<3.因此直线与圆相交,故直线与曲线有2个交点. (2)直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0), 则3-a =0,∴a =3.法、加减消去法、恒等式三角的或代数的消去法普通方程化为参数方程时,先分清普通方程所表示的曲线类型,图2[解] 圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP , 则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2017·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.[解] (1)由⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16. 又直线l 过点P (1,2)且倾斜角α=π6,所以l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t (t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+32t ,y =2+12t代入x 2+y 2=16,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0,所以t 1t 2=-11,由参数方程的几何意义,|PA |·|PB |=|t 1t 2|=11. 解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、根据直线的参数方程的标准式中过定点M ①弦长l⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . [解] (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.(2018·石家庄质检(二))在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a +a cos β,y =a sin β(a >0,β为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程ρcos ⎝⎛⎭⎪⎫θ-π3=32.(1)若曲线C 与l 只有一个公共点,求a 的值;(2)A ,B 为曲线C 上的两点,且∠AOB =π3,求△OAB 的面积最大值.[解] (1)曲线C 是以(a,0)为圆心,以a 为半径的圆, 直线l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 只有一个公共点,则可得|a -3|2=a ,解得a =-3(舍),a =1. 所以a =1.(2)法一:曲线C 的极坐标方程为ρ=2a cos θ(a >0), 设A 的极角为θ,B 的极角为θ+π3,则S △OAB =12|OA |·|OB |sin π3=34|2a cos θ|·⎪⎪⎪⎪⎪⎪2a cos ⎝⎛⎭⎪⎫θ+π3=3a 2⎪⎪⎪⎪⎪⎪cos θcos ⎝⎛⎭⎪⎫θ+π3,∵cos θcos ⎝ ⎛⎭⎪⎫θ+π3=12cos 2θ-32sin θcos θ =12·cos 2θ+12-34sin 2θ =12⎝ ⎛⎭⎪⎫12cos 2θ-32sin 2θ+14 =12cos ⎝⎛⎭⎪⎫2θ+π3+14,所以当θ=-π6时,12cos ⎝ ⎛⎭⎪⎫2θ+π3+14取得最大值34.△OAB 的面积最大值为33a24.法二:因为曲线C 是以(a,0)为圆心,以a 为半径的圆,且∠AOB =π3,由正弦定理得|AB |sinπ3=2a ,所以|AB |=3a .由余弦定理得|AB |2=3a 2=|OA |2+|OB |2-|OA |·|OB | ≥|OA |·|OB |,所以S △OAB =12|OA |·|OB |sin π3≤12×3a 2×32=33a 24, 所以△OAB 的面积最大值为33a 24.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用意义,直接求解,能达到化繁为简的解题目的[跟踪训练1⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(其中φ为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ(tan α·cos θ-sin θ)=1(α是常数,0<α<π,且α≠π2),点A ,B (A 在x 轴的下方)是曲线C 1与C 2的两个不同交点.(1)求曲线C 1的普通方程和C 2的直角坐标方程; (2)求|AB |的最大值及此时点B 的坐标.【导学号:79140390】[解] (1)∵⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴x 24+y 2=1,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得曲线C 2的直角坐标方程为y =tan α·x -1.(2)由(1)得曲线C 2的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =-1+t sin α(t 是参数),设A (t 1cos α,-1+t 1sin α),B (t 2cos α,-1+t 2sin α),将C 2:⎩⎪⎨⎪⎧x =t cos α,y =-1+t sin α,代入x 24+y 2=1,整理得t 2(1+3sin 2α)-8t sin α=0, ∴t 1=0,t 2=8sin α1+3sin α, ∴|AB |=|t 1-t 2|=8|sin α|1+3sin 2α =83|sin α|+1|sin α|≤823=433(当且仅当sin α=33取等号), 当sin α=33时,∴0<α<π,且α≠π2, ∴cos α=±63, ∴B ⎝ ⎛⎭⎪⎫±423,13, ∴|AB |的最大值为433,此时点B 的坐标为⎝ ⎛⎭⎪⎫±423,13.。
2019届高考数学一轮必备考情分析学案:16.2《参数方程》(含解析)
Unit 4 Body languageⅠ.单项填空1.(2018·潍坊第一中学高三联考)At the class meeting, some top students introduced several ________ to the study of English.A.approaches B.meansC.methods D.ways解析:approach(es) to……的方法。
means 和 method 表达此意时常和 of 连用;way 可和 of 连用也可接 to do。
答案:A2.—She ________ her back to her friends when they turned to her for help.—That's the reason why she is lonely now.A.won B.turnedC.spy D.consult解析:句意:“当她的朋友们向她求助时,她背信弃义。
”“这就是她现在那么孤独的原因。
”turn one's back to 背对,背弃。
win...back 赢回……,重新获得……;spy 窥视,秘密监视;consult 咨询,请教,商量。
答案: B3.(2018·湖北孝感市统考)Don't blame them any more—this is ________ because they are still young and lack experience.A.exactly B.simplyC.eventually D.generally解析:simply 仅仅。
句意:不要再责备他们了——这只是因为他们年轻,缺乏经验。
exactly 的确;eventually 最终;generally 一般说来。
答案:B4.—Look, John's fallen asleep at work!—Oh, he must have ________ late last night.A.waken up B.put upC.taken up D.stayed up解析:考查动词短语辨析。
2019高考数学(理)一轮复习全套学案
2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图111)表示的集合是( )图111A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图121(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图211所示,所给图像是函数图像的有( )图211A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。
2019年高考数学一轮复习坐标系与参数方程课时达标68坐标系理
2019年高考数学一轮复习坐标系与参数方程课时达标68坐标系理[解密考纲]高考中,主要涉及曲线的极坐标方程、曲线的参数方程、极坐标方程与直角坐标方程的互化、参数方程与普通方程的互化,两种不同方式的方程的互化是考查的热点,常以解答题的形式出现.1.求椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解析:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 2.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解析:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线l 上,得2cos ⎝ ⎛⎭⎪⎫π4-π4=a ,则a =2,故直线l 的方程可化为ρsin θ+ρcos θ=2,得直线l 的直角坐标方程为x +y -2=0.(2)消去参数α,得圆C 的普通方程为(x -1)2+y 2=1,圆心C 到直线l 的距离d =|1+0-2|12+12=12<1,所以直线l 与圆C 相交. 3.(2017·海南模拟)已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=π4(ρ∈R ),曲线C 1,C 2相交于A ,B 两点.(1)把曲线C 1,C 2的极坐标方程转化为直角坐标方程; (2)求弦AB 的长度.解析:(1)曲线C 2:θ=π4(ρ∈R )表示直线y =x ,曲线C 1:ρ=6cos θ 即ρ2=6ρcosθ,所以x 2+y 2=6x ,即(x -3)2+y 2=9.(2)∵圆心(3,0)到直线的距离d =322,r =3,∴弦长AB =2r 2-d 2=3 2. ∴弦AB 的长度为3 2.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为ρ2=21+sin 2θ,直线l 的极坐标方程为ρ=42sin θ+cos θ. (1)写出曲线C 1与直线l 的直角坐标方程;(2)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值.解析:(1)根据 ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,可得C 1的直角坐标方程为x 2+2y 2=2,直线l 的直角坐标方程为x +2y =4.(2)设Q (2cos θ,sin θ),则点Q 到直线l 的距离为d =|2sin θ+2cos θ-4|3=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫θ+π4-43≥23,当且仅当θ+π4=2k π+π2,即θ=2k π+π4(k ∈Z )时取等号.∴Q 点到直线l 距离的最小值为23.5.(2017·泰州模拟)已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,若直线的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ-π4=3 2.(1)把直线的极坐标方程化为直角坐标方程;(2)已知P 为椭圆C :x 216+y 29=1上一点,求P 到直线的距离的最大值.解析:(1)把直线的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=32展开得ρ⎝⎛⎭⎪⎫22sin θ-22cos θ=32,化为ρsin θ-ρcos θ=6,得到直角坐标方程x -y +6=0.(2)∵P 为椭圆C :x 216+y 29=1上一点,∴可设P (4cos α,3sin α),利用点到直线的距离公式得d =|4cos α-3sin α+6|2=α-φ-6|2≤|-5-6|2=1122.当且仅当sin(α-φ)=-1时取等号. ∴P 到直线的距离的最大值是1122.6.在极坐标系中,已知两点A ,B 的极坐标分别为⎝⎛⎭⎪⎫3,π3,⎝ ⎛⎭⎪⎫4,π6,求△AOB (其中O为极点)的面积.解析:由题意知A ,B 的极坐标分别为⎝⎛⎭⎪⎫3,π3,⎝ ⎛⎭⎪⎫4,π6,则△AOB 的面积S △AOB =12OA ·OB ·sin∠AOB =12×3×4×sin π6=3.7.在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且|OP |·|OM |=4,记点P 的轨迹为C 2,求曲线C 2的极坐标方程.解析:设 P (ρ1,θ),M (ρ2,θ),由|OP |·|OM |=4,得ρ1ρ2=4,即ρ2=4ρ1.∵M 是C 1上任意一点,∴ρ2sin θ=2, 即4ρ1sin θ=2,ρ1=2sin θ. ∴曲线C 2的极坐标方程为ρ=2sin θ.8.(2017·吉林模拟)在极坐标系中,设圆C 1:ρ=4cos θ与直线l :θ=π4(ρ∈R )交于A ,B 两点.(1)求以AB 为直径的圆C 2的极坐标方程;(2)在圆C 1上任取一点M ,在圆C 2上任取一点N ,求|MN |的最大值.解析:(1)以极点为坐标原点,极轴为x 轴的正半轴,建立直角坐标系,则由题意得圆C 1:ρ=4cos θ化为ρ2=4ρcos θ,∴圆C 1的直角坐标方程x 2+y 2-4x =0. 直线l 的直角坐标方程y =x .由⎩⎪⎨⎪⎧x 2+y 2-4x =0,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,∴A (0,0),B (2,2),从而圆C 2的直角坐标方程为(x -1)2+(y -1)2=2, 即x 2+y 2=2x +2y .将其化为极坐标方程为:ρ2=2ρcos θ+2ρsin θ,即ρ=2cos θ+2sin θ.(2)∵C1(2,0),r1=2,C2(1,1),r2=2,∴|MN|max=|C1C2|+r1+r2=2+2+2=22+2.。
【2019年高考一轮课程】理科数学 全国通用版极坐标与参数方程-教案
一.自我诊断 知己知彼1. 若圆M 的方程为422=+y x ,则圆M 的参数方程为 .【答案】)(sin 2cos 2为参数ααα⎩⎨⎧==y x 【解析】由圆M 的方程224x y +=,可知圆心()0,0,半径为 2.所以圆M 的参数方程为:)(sin 2cos 2为参数ααα⎩⎨⎧==y x . .2.已知圆M :x 2+y 2-2x -4y +1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 .【答案】2【解析】由于圆M 的标准方程为:22(1)(2)4x y -+-=,所以圆心(1,2)M ,又因为直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)消去参数t 得普通方程为3450x y --=,由点到直线的距离公式得所求距离2d ==;故答案为:2.3在极坐标系中,点(2,6π)到直线θρsin =2的距离等于________. 【答案】1【解析】在极坐标系中,点(2,6π1),直线θρsin =2对应直角坐标系中的方程为y =2,所以点到直线的距离为1.4设曲线C 的参数方程为4cos 14sin x a y θθ=+⎧⎨=+⎩(θ是参数,0>a ),直线l 的极坐标方程为3cos 4sin 5ρθρθ+=,若曲线C 与直线l 只有一个公共点,则实数a 的值是 .【答案】7【解析】曲线C 的普通方程为()()22116x a y -+-=,直线l 的普通方程3450x y +-=,直线l 与圆C 相切,则圆心(),1a 到l 的距离345475a d d +-==⇒= 5.直角坐标系xOy 中,圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数),以原点为极点,x轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是 . 【答案】)6,2(π【解析】由圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数)得⎩⎨⎧-=-=1sin 3cos y x θθ可得圆的标准方程为1)1()3(22=-+-y x ,圆心坐标为)1,3(,离圆心的距离33tan ,21)3(22==+=θρ,由题意6πθ=,则圆心C 的极坐标是)6,2(π.二.温故知新 夯实基础1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎪⎩⎪⎨⎧==0>,0>,''λμλλy y x x 的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧==θρθρsin cos y x 或⎪⎩⎪⎨⎧≠=+=0,tan 222x x yy x θρ,这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程4.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧==)()(t g y t f x 就是曲线的参数方程.5.常见曲线的参数方程和普通方程三.典例剖析 思维拓展考点一 坐标系例1在平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),又以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos24sin 30ρθρθ+-=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 方程相交于A ,B 两点,求||AB .【答案】(1)曲线C 的直角坐标方程为22(2)1y x --=;(2)||AB = 【解析】(1)曲线C 的极坐标方程2cos24sin 30ρθρθ+-=, 化为2222cossin 4sin 30ρθρθρθ-+-=,即22430x y y -+-=.∴曲线C 的直角坐标方程为22(2)1y x --=.(2)将直线l的参数方程12,22x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C 方程得24100t t +-=,设A ,B 对应的参数分别为1t ,2t ,则124t t +=-,1210t t =-,所以12||||AB t t =-= 【方法点拨】(1)由极坐标与直角坐标相互转化公式cos sin x y ρθρθ=⎧⎨=⎩,可求出曲线C 的直角坐标方程;(2)将直线l 的参数方程代入曲线C 的方程并整理可得关于t 的一元二次方程,利用韦达定理可得12t t +,12t t ,运用直线的参数方程的几何意义可知,12||||AB t t =-,代入即可得出所求的结果.考点二 参数方程例1已知曲线C 的极坐标方程式2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线L的参数方程是212x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数). (1)求曲线C 的直角坐标方程和直线L 的普通方程;(2)设点(,0)P m ,若直线L 与曲线C 交于两点,A B ,且||||1P A P B ⋅=,求实数m 的值. 【答案】(1)曲线C 的直角坐标方程为222x y x +=,直线L的普通方程为x m =+;(2)1m =【解析】(1)曲线C 的极坐标方程是2cos ρθ=,化为22cos ρρθ=,可得直角坐标方程:222x y x +=.直线L的参数方程是12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),消去参数t可得x m =+. (2)把12x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入方程:222x y x +=,化为:2220t t m m ++-=,由0∆>,解得13m -<<.∴2122t t m m =-.∵12||||1PA PB t t ⋅==,∴221m m -=,解得1m =0∆>.∴实数1m =【方法点拨】(1)利用y x y x ==+=θρθρρsin ,cos ,222,即可将极坐标方程化为平面直角坐标系方程;消去参数t 即可将直线的参数方程化为普通方程;(2)将直线的参数方程代入曲线C 的普通方程得到一个含t 且关于x 的一元二次方程2220t t m m ++-=,然后利用参数t 的几何意义知,12||||1PA PB t t ⋅==22m m =-,并由t 的范围(利用判别式大于零求范围)求出值域即可. 例2. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系.曲线C 的极坐标方程是4cos (0)2πρθθ=≤≤,直线l 的参数方程是3cos 6()sin6x t t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩为参数. (1)求直线l 的直角坐标方程和曲线C 的参数方程; (2)求曲线C 上的动点M 到直线l 的距离的范围. 【答案】(1)30x +=,22cos 2sin x y αα=+⎧⎨=⎩(α为参数,0απ≤≤);(2)17,22⎡⎤⎢⎥⎣⎦.【解析】(1)直线:3l x +=,即:30x += 由24cos ρρθ=得:224x y x +=,即:22(2)4x y -+=0,sin 02y πθρθ≤≤∴=≥ .故C 的参数方程为:22cos (0)2sin x y ααπα=+⎧≤≤⎨=⎩ (2)设点(22cos ,2sin )M αα+到直线30x +=的距离为dd ==54sin()1654sin()(0)226παπααπ--⎛⎫==--≤≤ ⎪⎝⎭51sin()166626ππππαα-≤-≤-≤-≤ 时,min max 117sin()1,,sin(),62622d d ππαα∴-==-=-=时时点M 到直线l 的距离的范围是17,22⎡⎤⎢⎥⎣⎦【方法点拨】(1)消去t 可得直线l 的直角坐标方程,利用cos x ρθ=,sin y ρθ=代入曲线C 的极坐标方程可得曲线C 的直角坐标方程,进而引入参数α可得曲线C 的参数方程;(2)先计算点M 到直线l 的距离,再利用三角函数的性质可得点M 到直线l 的距离的范围.考点三 综合问题例1在直角坐标系xOy 中,直线l 的参数方程为{(2x tcos t y tsin αα==+为参数, 0απ≤<),曲线C 的参数方程为2{(22x cos y cos βββ==+为参数),以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设C 与l 交于,M N 两点(异于原点),求OM ON +的最大值.【答案】(1)曲线C 的极坐标方程为24sin ρρθ=;(2)【解析】(1)曲线C 的普通方程为()2224x y +-=,化简得224x y y +=,则24sin ρρθ=,所以曲线C 的极坐标方程为24sin ρρθ=. (2)由直线l 的参数方程可知,直线l 必过点()0,2,也就是圆C 的圆心,则2MON π∠=,不妨设()12,,,2M N πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则()1244424OM ON sin sin sin cos ππρρθθθθθ⎛⎫⎛⎫+=+=++=+=+ ⎪ ⎪⎝⎭⎝⎭ ,所以当4πθ=, OM ON +取得最大值为【方法点拨】(1)由题意可得曲线C 的普通方程为()2224x y +-=,将其转化为极坐标方程即24sin ρρθ=.(2)由参数方程可知直线l 过圆C 的圆心,则2MON π∠=,设()12,,,2M N πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则4OM ON πθ⎛⎫+=+ ⎪⎝⎭,由三角函数的性质可得OM ON +取得最大值为例2. 在平面直角坐标系xOy 中,以O 为极点, x 轴的正半轴为极轴,建立极坐标系.曲线1C 的极坐标方程为()223sin 12ρθ+=,曲线2C 的参数方程为1{x tcos y tsin αα=+=(t 为参数),0,2πα⎛⎫∈ ⎪⎝⎭. (Ⅰ)求曲线1C 的直角坐标方程,并判断该曲线是什么曲线?(Ⅱ)设曲线2C 与曲线1C 的交点为A , B , ()1,0P ,当72PA PB +=时,求cos α的值.【答案】(1) 见解析;(2)cos α=. 【解析】 (1) 由()223sin 12ρθ+=得22143x y +=,该曲线为椭圆. (2)将1{x tcos y tsin αα=+=代入22143x y +=得()224cos 6cos 90t t αα-+-=,由直线参数方程的几何意义,设12,PA t PB t ==, 1226cos ,4cos t t αα-+=-12294cos t t α-=-,所以1221274c o s 2P A P B t t t α+=-==-,从而24c o s 7α=,由于0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 7α=. 【方法点拨】(1)根据极坐标与直角坐标间的转化公式,可得1C 的直角坐标方程. (2) 由直线参数方程的几何意义得1272PA PB t t +=-=,可得解.例3. 在直角坐标系xoy 中,曲线1C 的参数方程为{x y sin αα==,( α为参数),以原点O为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值.【答案】(1)2213x y +=, 80x y +-=(2)【解析】(1)由曲线1C :{ x y sin αα==得 cos y sin αα==即:曲线1C 的普通方程为: 2213x y += 由曲线2C :sin 4πρθ⎛⎫+= ⎪⎝⎭得:()sin cos 2ρθθ+=即:曲线2C 的直角坐标方程为: 80x y +-=(2)由(1)知椭圆1C 与直线2C 无公共点,椭圆上的点),sin Pαα到直线80x y +-=的距离为d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时, d的最小值为【方法点拨】(1)对于1C ,利用22cos sin 1αα+=,化简得2213x y +=,对于2C ,展开后利用极坐标与直角坐标转化公式,化简的80x y +-=.(2)直接利用点到直线距离公式,求出距离,并用辅助角公式化简,利用三角函数最值求得距离的最小值.四.举一反三 成果巩固考点一 坐标系1. 已知圆C 的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为 .【答案】)1,1(±【解析】圆C 的普通方程为()2211x y +-=,直线l 的普通方程为1y =,所以交点为)1,1(±2. 将曲线22132x y +=按ϕ:1',3{ 1'2x x y y==变换后的曲线的参数方程为( ) A. 3,{ 2x cos y sin θθ==B. ,{x y θθ== C. 1,3{ 12x cos y sin θθ==D. ,3{ x cos y sin θθ==【答案】D【解析】由变换ϕ: 1',3{ 1'2x x y y==可得: 3',{ 2'x x y y ==,代入曲线22132x y +=可得: ()()2232132x y ''+=,即为: 22321,x y +=令,{2x y sin θθ==(θ为参数)即可得出参数方程.故选:D.考点二 参数方程1. 若P ),(n m 为椭圆上的点,则n m +的取值范围是 .【答案】[]2,2- 【解析】依题意可得sin m n θθ⎧=⎪⎨=⎪⎩,1sin 2sin 2sin 23m n πθθθθθ⎫⎛⎫∴+=+=+=+⎪ ⎪⎪⎝⎭⎝⎭, R θ∈ , []sin 1,13πθ⎛⎫∴+∈- ⎪⎝⎭, []2sin 2,23πθ⎛⎫∴+∈- ⎪⎝⎭.即[]2,2m n +∈-2. 在直角坐标系xOy 中,曲线1C 的方程是5222=+y x ,2C 的参数方程是⎪⎩⎪⎨⎧-==ty tx 3(t为参数),则1C 与2C 交点的直角坐标是 . 【答案】)1 , 3(-【解析】由⎪⎩⎪⎨⎧-==ty t x 3消去参数t ,得2C的普通方程为(0)3y x x =-≥,代入1C 方程5222=+y x 整理得:23x =,解得x =1y =-,因此交点为1)-.3. 参数方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为 .【答案】212y x =-,[1,1]x ∈-【解析】由2cos 212sin θθ=-得212y x =-,又sin [1,1]θ∈-,所以[1,1]x ∈-,因此普通方程为212y x =-,[1,1]x ∈-考点三 综合问题例1. 已知在平面直角坐标系xOy 中,直线l 的参数方程是{ 26x t y t ==+(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 【答案】(1)260x y -+=,(222x y +=(2)2⎡-⎣【解析】(1)由{26x t y t ==+,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y +=,故曲线C的普通方程为(222x y +=;(2)据题意设点)2os 2s i nMθθ,则2o 2s i n 22s i n4x y πθθθ⎛⎫+=+⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.例2. 在直角坐标系xOy 中,曲线C的参数方程为2{ 12x cos y sin αα==+ (α为参数),以平面直角坐标系的原点为极点, x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)过原点O 的直线12,l l 分别与曲线C 交于除原点外的,A B 两点,若3AOB π= ,求AO B 的面积的最大值.【答案】(1) 4sin 3πρθ⎛⎫=+⎪⎝⎭;(2) . 【解析】 (1)曲线C的普通方程为(()2214x y +-=,即2220x y y +--=,所以,曲线C的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)不妨设()1,A ρθ, 2,3B πρθ⎛⎫+⎪⎝⎭, ,33ππθ⎛⎫∈-⎪⎝⎭. 则14sin 3πρθ⎛⎫=+⎪⎝⎭, 224sin 3πρθ⎛⎫=+⎪⎝⎭, AOB 的面积12112sin sin sin 232333S OA OB ππππρρθθθ⎛⎫⎛⎫=⋅==++= ⎪ ⎪⎝⎭⎝⎭所以,当0θ=时, AOB的面积取最大值为.例3. 在直角坐标系xOy 中,曲线C的参数方程是1,{ x y αα=+=(α为参数),以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin cos 0m θρθ-+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)设点(),0P m ,直线l 与曲线C 相交于,A B 两点,且1PA PB =,求实数m 的值.【答案】(1)曲线C 的普通方程为()2212x y -+=,直线l 的直角坐标方程为)y x m =-;(2)1m =0m =或2m =.【解析】(1)()221,{12x x y y αα=+⇒-+==,故曲线C 的普通方程为()2212x y -+=.直线l)3x m y x m -+⇒=-. (2)直线l的参数方程可以写为,{12x m y t =+=(t 为参数).设,A B 两点对应的参数分别为12,t t ,将直线l 的参数方程代入曲线C 的普通方程()2212x y -+=可以得到2221122m t t ⎛⎫⎛⎫+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭)()21120m t m -+--=,所以()212121PA PB t t m ==--= 2211m m ⇒--= 2220m m ⇒-==或220m m -=,解得1m =±0m =或2m =.五.分层训练 能力进阶【基础达标】1. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 .【答案】6【解析】消参后化为:14522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛y x ,整理为1162522=+y x ,所以焦距6162522=-=c .2. 已知直线l 的方程为2)4sin(=+πθρ,曲线C 的方程为()为参数θθθ⎩⎨⎧==sin cos y x . (1)把直线l 和曲线C 的方程分别化为直角坐标方程和普通方程;(2)求曲线C 上的点到直线l 距离的最大值.【答案】(1)2=+y x ,122=+y x ;(2)12+=l .【解析】(1)222cos 22sin =⎪⎪⎭⎫⎝⎛⋅+⋅θθρ,根据⎩⎨⎧==θρθρsin cos y x ,代入得:2=+y x 根据1cos sin 22=+θθ,消参后的方程是:122=+y x .(2)直线与圆相离,所以圆上的点到直线的最大距离是圆心到直线的距离加半径,即222==d ,那么最大距离就是12+=l3. 已知曲线C 的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎪⎩⎪⎨⎧+==t m x ty 2222(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程; (Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,试求实数m 的值. 【答案】(Ⅰ)2240x y x +-=,y x m =-;(Ⅱ)1或3.【解析】(Ⅰ)曲线C 的极坐标方程是ρ=4cos θ化为直角坐标方程为:0422=-+x y x 直线l 的直角坐标方程为:m x y -=(5分)(Ⅱ)解法一:由(Ⅰ)知:圆心的坐标为(2,0),圆的半径R =2, 圆心到直线l 的距离22)214(222=-=d ,∴ 1222202=-⇒=--m m ∴ 31==m m 或解法二:把22x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数)代人方程2x 042=-+x y得222)40t m t m m -+-=∵ m m t t m t t 42(222121-=--=+),∴ 21221214)(t t t t t t AB -+=-=∴ []14)442(222=---=m m m ()∴ 31==m m 或【能力提升】1. 把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴⎩⎨⎧==ϕϕsin 4cos 5y x (ϕ为参数); ⑵⎩⎨⎧=-=ty tx 431(t 为参数)【答案】⑴1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆.⑵0434=-+y x ,它表示过(0,43)和(1, 0)的一条直线. 【解析】本题主要是考查参数方程化为普通方程,(1)对两个式子中右边的系数挪到左边,利用三角函数的平方关系式消去ϕ整理即得到;(2)可以代入消元或加减消元消去t 得普通方程.解:⑴.∵⎩⎨⎧==ϕϕsin 4cos 5y x ∴⎪⎩⎪⎨⎧==ϕϕsin 4cos 5y x两边平方相加,得ϕϕ2222sin cos 1625+=+y x 即 1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆.⑵.∵⎩⎨⎧=-=ty t x 431∴由4y t =代入t x 31-=,得 431y x ⋅-=∴0434=-+y x∴它表示过(0,43)和(1, 0)的一条直线. 2. 在平面直角坐标系xoy 中,直线l 的参数方程为(t 为参数),若以该直角坐标系的原点O 为极点x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.(1)求直线l 的普通方程与曲线C 的直角坐标方程 (2)已知直线l 与曲线C 交于A 、B 两点,设F(1,0),求的值【答案】(1)..(2)1.【解析】 (1)直线的参数方程为,消去参数,得普通方程.曲线C 的极坐标方程为,直角坐标方程为.参考解法1:直线l 的参数方程为,代入,整理可得设对应的参数分别为,则3. 在平面直角坐标系xOy 中,已知点()2+cos ,sin P αα(α为参数).以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭. (1)求点P 的轨迹C 的方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.【答案】(1)P 点的轨迹C 的方程为()2221x y -+=,直线l 的直角坐标方程为40x y +-=;(2)曲线C 上的点到直线l 1. 【解析】(1)设点(),P x y ,所以2{x cos y sin αα=+=,( α为参数), 消去参数,得()2221x y -+=,即P 点的轨迹C 的方程为()2221x y -+=直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭cos sin 4ρθρθ⇒+= 4x y ⇒+=, 所以直线l 的直角坐标方程为40x y +-=.(2)由(1),可知P 点的轨迹C 是圆心为()2,0,半径为1的圆,则圆心C 到直线l 的距离为1d r ==>=.所以曲线C 上的点到直线l 1.4. 在平面直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆 已知曲线1C 上的点)23,1(M 对应的参数3πϕ=,射线3πθ=与曲线2C 交于点)3,1(πD(1)求曲线1C ,2C 的方程; (2)若点),(1θρA ,)2,(2πθρ+B 在曲线1C 上,求222111ρρ+的值【答案】(1)曲线1C 的方程为⎩⎨⎧==ϕϕsin cos 2y x (ϕ为参数),1422=+y x ; 曲线2C 的方程为θρcos 2=,或1)1(22=+-y x ;(2)54【解析】(I )将)23,1(M 及对应的参数3πϕ=,代入⎩⎨⎧==ϕϕsin cos b y a x ,得⎪⎪⎩⎪⎪⎨⎧==3sin 233cos 1ππb a , 即⎩⎨⎧==12b a , 2分所以曲线1C 的方程为⎩⎨⎧==ϕϕsin cos 2y x (ϕ为参数),或1422=+y x 3分 设圆2C 的半径为R ,由题意,圆2C 的方程为θρcos 2R =,(或222)(R y R x =+-) 将点)3,1(πD 代入θρcos 2R =, 得3cos21πR =,即1=R(或由)3,1(πD ,得)23,21(D ,代入222)(R y R x =+-,得1=R ), 所以曲线2C 的方程为θρcos 2=,或1)1(22=+-y x 5分 (II )因为点),(1θρA ,)2,(2πθρ+B 在在曲线1C 上,所以1sin 4cos 221221=+θρθρ,1cos 4sin 222222=+θρθρ,所以45)cos 4sin ()sin 4cos (1122222221=+++=+θθθθρρ。
2019届高三数学一轮复习:第68讲 参数方程
那么方程(*)就叫作这条曲线的 参数方程 ,联系变数 x,y 的变数 t 叫作参变数,简
称 参数 .
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金榜 题名!
3
课前双基巩固
2.直线、圆、椭圆的参数方程
曲线
参数方程
过点 M(x0,y0),倾斜角为 α 的直线 l
x y
= =
x0 y0
为参数).
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健康,学业有成,金榜 题名!
7
课堂考点探究
例 1 在平面直角坐标系 xOy 中,过点 A(a,2a)的直 线 l 的倾斜角为6π,点 P(x,y)为直线 l 上的动点,且 |AP|=t.圆 C 以 C(2a,2a)为圆心, 2为半径,Q(x,y) 为圆 C 上的动点,且 CQ 与 x 轴正方向所成的角 为 θ. (1)分别以 t,θ 为参数,求出直线 l 和圆 C 的参数方 程; (2)当直线 l 和圆 C 有公共点时,求 a 的取值范围.
为参数).
(2)圆的参数方程.
若圆心为点
M0(x0,y0),半径为
r,则圆的参数方程为
������ ������
= =
������0 ������0
+ +
������������csoins������������,(θ
为参数).
(3)椭圆������������
22 +������������
2 2
曲线 C1 的参数方程为
������ ������
= =
3sin������-cos������,
3-2
3sin������cos������-2cos2
2019年高考数学一轮复习参数方程学案文
第二节参数方程[考纲传真]1. 了解参数方程,了解参数的意义2能选择适当的参数写出直线、圆和椭圆曲线的参数方程.般地,在平面直角坐标系中,如果曲线上任意一点的坐标,都是某个变数的函数|x= f t ,并且对于t的每一个允许值,由这个方程组所确定的点Mx, y)都在这y=g t条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数.2•参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式. 一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x, y中的一个与参数t的关系,例如x = f(t),把它代入普通方程,|x = f t ,求出另一个变数与参数的关系y = g(t),那么就是曲线的参数方程.l y=g t3•常见曲线的参数方程和普通方程温馨提示:在直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直线上任一点M x,y)到M(x o,y o)的距离.[基本能力自测]1. (思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“x”)x= f t ,(1)参数方程F 中的x,y都是参数t的函数.()i y= g t(2)过M 0(x o,y o ),倾斜角为a 的直线I 的参数方程为y = y o + t sin a 数t 的几何意义表示:直线 I 上以定点M 0为起点,任一点 Mx , y )为终点的有向线段 MM的数量.()x = 2cos 0 ,⑶方程表示以点(0,1)为圆心,以2为半径的圆.()|y = 1 + 2sin 0消去 t ,得 x — y = 1,即 x — y — 1 = 0.] 4.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线rx 2一 x = t,C 的极坐标方程为 P (cos 0 + sin 0 ) =— 2,曲线G 的参数方程为* 厂 (t 为J= A/2t参数),则C 与C 2交点的直角坐标为 __________ .X = X o + t COS a ,(t 为参数)•参⑷ 已知椭圆的参数方程x = 2cos t , y = 4sin t(t 为参数),点M 在椭圆上,对应参数 点O 为原点,则直线 OM 勺斜率为•. 3.( )[答案] ⑴ V (2) V (3) V ⑷Xx =— 1 + cos 0 ,2.(教材改编)曲线*y = 2 + sin 0A .在直线y = 2x 上C.在直线y = x — 1上(0为参数)的对称中心(B.在直线y = — 2x 上D.在直线y = x + 1上—1 + cosy = 2+ sin 0cos 0 = X + 1 , 得sin 0 = y — 2,所以(x + 1)2+ (y — 2)2= 1.曲线是以(一1,2)为圆心,1为半径的圆, 所以对称中心为(一1,2),在直线y =— 2x 上.]x = 2 + 于,3.(教材改编)在平面直角坐标系中,曲线C <l y = 1 +#(t 为参数)的普通方程x — y — 1 = 0 [由 x = 2+ t ,(2, —4)[由p (cos 0 + sin 0 )= —2,得x+ y = — 2.①「X = t 2, 由, 厂 消去t 得y. 8x .② y= 2曲,|x = 2,联立①②得即交点坐标为(2 , - 4).]5 . (2016 •江苏高考)在平面直角坐标系xOy 中,已知直线I 的参数方程为X = cos 0 ,(t为参数),椭圆C 的参数方程为I = 2sin 0直线I 与椭圆C 相交于A, B 两点,求线段 AB 的长.2[解]椭圆C 的普通方程为x 2+七=1.2分+ 16t = 0,(对应学生用书第162页)参数方程与普通方程的互化卜例H 已知直线l 的参数方程为F = a-2t , (t 为参数),圆C 的参数方程为 l y =- 4tx = 4cos 0 ,(0为参数).y = 4s in 0(1) 求直线I 和圆C 的普通方程;(2) 若直线l 与圆C 有公共点,求实数 a 的取值范围. [解](1)直线l 的普通方程为2x - y - 2a = 0,2 2圆C 的普通方程为x + y = 16. (2)因为直线l 与圆C 有公共点,(0为参数).设【导学号:00090372】2代入x 2+y 4=1,得解得t 1= 0,t 2=- 176,所以 AB= |t 1-1216|=〒题型分类突破I将直线l 的参数方程1+$2+10分解得—2 5W a W2 5.故圆C 的圆心到直线 10分l 的距离d =直线与圆的位置关系来解决问题. 2.对于形如,x = + at , (t 为参数),当a 2 + b 2工1时,应先化为标准形式后才能利用y = y o + bt[规律方法]1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.2 •把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通 方程中x 及y 的取值范围的影响,要保持同解变形. [变式训练1]在平面直角坐标系 xOy 中,若直线I : <x =t , (t 为参数)过椭圆C:y = t — a x = 3cos $ ,($为参数)的右顶点,求常数y = 2s in $a 的值.[解] 直线I 的普通方程为x — y — a = 0,2 2椭圆C 的普通方程为牛+ y =1, 所以椭圆C 的右顶点坐标为(3,0), 若直线I 过椭圆的右顶点(3,0), 则 3— 0— a = 0,所以 a = 3.10分"■'I(2018 •合肥模拟)已知曲线x = 2 + t , y = 2 — 2t(t 为参数).(1)写出曲线C 的参数方程,直线I 的普通方程; ⑵过曲线C 上任意一点P 作与I夹角为 30°的直线,交I 于点A 求|PA 的最大值与最小值.x = 2cos[解](1)曲线C 的参数方程为彳|y = 3si n (0为参数)•直线I 的普通方程为2x + y — 6 = 0.⑵曲线C 上任意一点F (2cos 0 , 3sin的距离为d = #4cos0 + 3sin0 —6| ,则|PA扁—=¥佝n ( 0+a ) —6|,其中a为锐角,且tan当 sin(a )=— 1时,|PA 取得最大值,最大值为 辛当 sin( a ) = 1时,| PA 取得最小值,最小值为 电2510分 [规律1.解决直线与圆的参数方程的应用问题时,般是先化为普通方程,再根据t 的几何意义解题.[变式训练 2] (2017 •石家庄质检)在平面直角坐标系 xOy 中,圆 C 的参数方程为x = 4cos 0 , n<(0为参数),直线I 经过点P (1,2),倾斜角a =—.y = 4sin 06(1) 写出圆C 的普通方程和直线I 的参数方程;(2) 设直线I 与圆C 相交于A , B 两点,求| PA •I PB 的值•【导学号:00090373】x = 4cos 0 ,[解]⑴由*消去0 ,|y = 4sin 0 ,得圆C 的普通方程为x 2+ y 2= 16.2分(nx = 1 + t COS 才, 6所以I 的参数方程为<;[y = 2 + t sin 青,( y[3 x =1 +即1 y = 2+2t代入 x 2+ y 2= 16,所以 t 1t 2 =— 11 ,由参数方程的几何意义,|PA • PB = |t 1t 2| = 11.10分1■耐— ......................... J参数方程与极坐标方程的综合应用x = 2+ t ,卜(2017 •全国卷川)在直角坐标系xOy 中,直线11的参数方程为1(t 为l y =ktx =— 2+m又直线l 过点R1,2)且倾斜角 (t 为参数).得 1 + 爭 2+ 2 + 9 2= 16, t 2+ ( 3 + 2)t — 11 = 0,参数),直线I 2的参数方程为(m 为参数).设11与12的交点为P,当k71(2)把直线l 的参数方程变化时,P的轨迹为曲线C.(1)写出c的普通方程;⑵以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设I 3:p (cos 0 + sin 0 ) —2=0, M为丨3与C的交点,求M的极径.[解]⑴消去参数t得l i的普通方程11: y= k(x —2);1消去参数m得12的普通方程丨2:y= k(x+ 2).y=k x-2 , 设Rx, y),由题设得 1 “y=k x+「消去k 得x2—y2= 4( y z 0).所以C的普通方程为x2—y2= 4(y丰0). 4分⑵C 的极坐标方程为p 2(cos 20 —sin 20 ) = 4(0< 0 <2 n , 0 z n ). 5 分f p 2血20 —sin 20 = 4,联立' “厂得(:QS 0 + sin 0 —72= 0L Pcos 0 —sin 0 = 2(cos 0 + sin 0 ). 6 分故tan0 =—1,从而cos20 = 190, sin20 =^代p (cos 0 —sin 0 ) = 4 得p = 5,所以交点M的极径为,5. 10分[规律方法]1.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2 .数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用p和0的几何意义,直接求解,可化繁为简.[变式训练3](2016 •全国卷川)在直角坐标系xOy中,曲线C的参数方程为x = V3cos a ,1 ( a为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极y = sin a坐标系,曲线C2的极坐标方程为p sin 0 + nn = 2 , 2.(1)写出C的普通方程和C2的直角坐标方程;⑵设点P在C上,点Q在C2上,求| PQ的最小值及此时P的直角坐标.2[解](1) C的普通方程为号+ y2= 1, 2分由于曲线G的方程为p sin所以p sin 0 + p cos 0 = 4,因此曲线C2的直角坐标方程为x+ y— 4 = 0.⑵由题意,可设点P的直角坐标为(J3C OS a , sin a ). 因为C2是直线,所以I PQ的最小值即为P到C2的距离d( a )的最小值,又d(\ H/3COSa )= ' ---a + sin2^=£sin [当且仅当a = 2k n+青(k € Z)时,d( a )取得最小值,最小值为 .㊁, 2.8分此时P的直角坐标10分。
2019届高考理科数学一轮复习学案:第68讲 参数方程
第68讲参数方程课前双击巩固1.参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数(*),并且对于t 的每一个允许值,由方程组(*)所确定的点M (x ,y )都在这条曲线上,那么方程(*)就叫作这条曲线的,联系变数x ,y 的变数t 叫作参变数,简称.2.直线、圆、椭圆的参数方程曲线参数方程过点M (x 0,y 0),倾斜角为α的直线l (t 为参数)圆心在点M 0(x 0,y 0),半径为R 的圆(θ为参数)圆心在原点,半径为R 的圆(θ为参数)椭圆+=1(a>b>0)(φ为参数)3.直线的参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是(t 是参数).若M 1,M 2是l 上的两点,其对应的参数分别为t 1,t 2,则:(1)M 1,M 2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α);(2)|M 1M 2|=|t 1-t 2|,|M 0M 1|·|M 0M 2|=|t 1t 2|;(3)若线段M 1M 2的中点M 所对应的参数为t ,则t=,中点M 到定点M 0的距离|MM 0|=|t|=;(4)若M 0为线段M 1M 2的中点,则t 1+t 2=0.课堂考点探究探究点一曲线的参数方程1在平面直角坐标系xOy 中,过点A (a ,2a )的直线l 的倾斜角为,点P (x ,y )为直线l 上的动点,且|AP|=t.圆C 以C (2a ,2a )为圆心,为半径,Q (x ,y )为圆C 上的动点,且CQ 与x 轴正方向所成的角为θ.(1)分别以t ,θ为参数,求出直线l 和圆C 的参数方程;(2)当直线l 和圆C 有公共点时,求a 的取值范围.[总结反思]几种常见曲线的参数方程:(1)直线的参数方程.过点P (x 0,y 0)且倾斜角为α的直线l 的参数方程为(t 为参数).(2)圆的参数方程.若圆心为点M 0(x 0,y 0),半径为r ,则圆的参数方程为(θ为参数).(3)椭圆+=1(a>b>0)的参数方程为(θ为参数).(4)双曲线-=1(a>0,b>0)的参数方程为(θ为参数).(5)抛物线y2=2px(p>0)的参数方程为(t为参数).式题[2017·长沙二模]在平面直角坐标系中,已知直线l的参数方程为(s为参数),曲线C的参数方程为(t为参数),若直线l与曲线C相交于A,B两点,求|AB|.探究点二参数方程与普通方程的互化2[2017·临汾三模]在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin=m.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C1与曲线C2有公共点,求实数m的取值范围.[总结反思](1)消去参数的方法一般有三种:①利用解方程的技巧求出参数的表达式,然后代入消去参数;②利用三角恒等式消去参数;③根据参数方程本身的结构特征,灵活选用一些方法,从整体上消去参数.(2)在参数方程与普通方程的互化中,必须使两种方程中的x,y的取值范围保持一致.式题[2017·湖北六校二联]已知直线l :(t 为参数),曲线C 1:(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB|;(2)若把曲线C 1上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最大值.探究点三直线的参数方程3[2017·雅安三诊]平面直角坐标系xOy 中,曲线C 的参数方程为(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin =.(1)求曲线C 的普通方程和直线l 的倾斜角;(2)设点P (0,2),直线l 和曲线C 交于A ,B 两点,求|PA|+|PB|.[总结反思](1)直线的参数方程有多种形式,只有标准形式中的参数才具有几何意义,即参数t 的绝对值表示对应的点到定点的距离.(2)根据直线的参数方程的标准形式中t 的几何意义,有如下常用结论:①若直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l=|t 1-t 2|;②若定点M 0(标准形式中的定点)是线段M 1M 2(点M 1,M 2对应的参数分别为t 1,t 2,下同)的中点,则t 1+t 2=0;③设线段M 1M 2的中点为M ,则点M 对应的参数为t M =.式题[2017·鹰潭一模]在直角坐标系xOy 中,过点P 作倾斜角为α的直线l 与曲线C :x 2+y 2=1相交于不同的两点M ,N.(1)写出直线l 的参数方程;(2)求+的取值范围.探究点四圆、圆锥曲线的参数方程及应用4在平面直角坐标系xOy 中,直线l 的参数方程为(t 为参数,0≤α<π),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=6sin θ.(1)求曲线C 的直角坐标方程;(2)若点P (1,2),设曲线C 与直线l 交于点A ,B ,求+的最小值.[总结反思]解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化,主要是通过互化解决与圆、圆锥曲线上动点有关的最值、范围等问题.式题在直角坐标系xOy 中,已知曲线C 1:(t 为参数),C 2:(θ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(1)将C 1,C 2的方程化为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数t=,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:ρ(cos θ-2sinθ)=7距离的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第68讲参数方程考试说明 1.了解参数方程,了解参数的意义.2.能选择适当参数写出直线、圆和椭圆的参数方程.【课前双基巩固】知识聚焦1.参数方程参数【课堂考点探究】例1[思路点拨] (1)依据直线的参数方程和圆的参数方程的概念可直接写出它们的参数方程;(2)将圆C 的参数方程化为普通方程,再将直线l的参数方程代入,利用Δ≥0即可求出a的取值范围.解:(1)依题意,直线l的参数方程为(t为参数),即(t为参数).圆C的参数方程为(θ为参数).(2)将圆C的参数方程化为普通方程得(x-2a)2+(y-2a)2=2,将直线l的参数方程代入,得+=2,整理得t2-at+a2-2=0,因为直线l和圆C有公共点,所以Δ=(-a)2-4(a2-2)≥0,解得-2≤a≤2.变式题解:直线l的普通方程为x+y=2,曲线C的普通方程为y=(x-2)2(y≥0),联立两方程得x2-3x+2=0,求得两交点的坐标分别为(1,1),(2,0),所以|AB|=.例2[思路点拨] (1)由题意知y=3-2sin αcos α-2cos2α=3sin2α-2sin αcos α+cos2α=(sin α-cos α)2,将x整体代入即可得y=x2,根据x=sin α-cos α=2sin,可知-2≤x≤2.将ρsin=m展开可得ρsin θ-ρcos θ=m,把x=ρcos θ,y=ρsin θ代入,可得y-x=m.(2)联立C1,C2的直角坐标方程,可得m=x2-x,-2≤x≤2,求x2-x的范围可得实数m的取值范围.解:(1)由曲线C1的参数方程为(α为参数),可得其直角坐标方程为y=x2(-2≤x≤2),由曲线C2的极坐标方程为ρsin=m,可得其直角坐标方程为x-y+m=0.(2)联立曲线C1与曲线C2的方程,可得x2-x-m=0,∴m=x2-x=-,∵-2≤x≤2,曲线C1与曲线C2有公共点,∴-≤m≤6.变式题解:(1)l的普通方程为y=(x-1),C1的普通方程为x2+y2=1,由得l与C1的交点为A(1,0),B,则|AB|=.(2)C2的参数方程为(θ为参数),设点P的坐标是,从而点P到直线l的距离d==,故当sin(θ-φ)=1时,d取得最大值,最大值为+.例3[思路点拨] (1)由消去参数α,求得曲线C的普通方程.由ρsin=,得ρsinθ-ρcos θ=2,把x=ρcos θ,y=ρsin θ代入,得y=x+2,从而求得直线l的倾斜角.(2)由(1)知,点P(0,2)在直线l上,可得直线l的参数方程为(t为参数),代入+y2=1并化简,得5t2+18t+27=0,利用韦达定理结合参数的几何意义求得|PA|+|PB|的值.解:(1)由消去参数α,得+y2=1,即曲线C的普通方程为+y2=1.由ρsin=,得ρsin θ-ρcos θ=2,(*)将代入(*),化简得y=x+2,所以直线l的倾斜角为.(2)由(1)知,点P(0,2)在直线l上,可得直线l的参数方程为(t为参数),即(t 为参数),代入+y2=1并化简,得5t2+18t+27=0,Δ=(18)2-4×5×27=108>0,设A,B两点对应的参数分别为t1,t2,则t1+t2=-<0,t1·t2=>0,所以t1<0,t2<0,所以|PA|+|PB|=|t1|+|t2|=-(t1+t2)=.变式题解:(1)∵直线l过点P且倾斜角为α,∴直线l的参数方程为(t为参数).(2)把代入x2+y2=1,得t2+(cos α+3sin α)t+2=0,∵直线l与曲线C:x2+y2=1相交于不同的两点M,N,∴Δ=(cos α+3sin α)2-8>0,即sin2>,又α∈[0,π),∴<sin≤1,又t1+t2=-(cos α+3sin α),t1t2=2,∴+=-=-==sin,∵<sin≤1,∴<sin≤,∴+的取值范围是(,].例4[思路点拨] (1)曲线C的极坐标方程为ρ=6sin θ,两边同乘ρ,利用ρ2=x2+y2,ρcos θ=x,ρsin θ=y,可得结果;(2)将直线的参数方程代入曲线C的直角坐标方程并化简,得t2+2(cos α-sin α)t-7=0,利用韦达定理、直线参数的几何意义及三角函数的有界性,求+的最小值.解:(1)由ρ=6sin θ,得ρ2=6ρsin θ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.(2)将直线l的参数方程代入圆的直角坐标方程并化简,得t2+2(cos α-sin α)t-7=0,则Δ=4(cos α-sin α)2+4×7>0,设A,B两点对应的参数分别为t1,t2,则又直线l过点P(1,2),结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1-t2|==≥=2.故+==≥,所以所求的最小值为.变式题解:(1)∵曲线C1的参数方程为(t为参数),∴其普通方程为(x+4)2+(y-3)2=1,∴C1为圆心是(-4,3),半径是1的圆.∵曲线C2的参数方程为(θ为参数),∴其普通方程为+=1,∴C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(2)由t=,得P(-4,4),设Q(8cos θ,3sin θ),故M-2+4cos θ,2+sin θ,ρ(cos θ-2sin θ)=7可化为x-2y=7,故M到C3的距离d=|4cos θ-3sin θ-13|=|5cos(θ+φ)-13|其中tan φ=,从而当cos(θ+φ)=1时,d取得最小值,为.【备选理由】例1考查了圆的参数方程与普通方程的转化,直线与圆相交求弦长;例2考查了直线的参数方程与普通方程,圆的极坐标方程与直角坐标方程的转化,直线参数方程的应用;例3考查了曲线的极坐标方程与参数方程的转化,以及曲线参数方程的应用;例4考查了曲线参数方程与极坐标方程之间的转化,以及曲线极坐标方程的应用.以上几题覆盖了曲线参数方程与极坐标方程的几种常见组合,是对例题的补充.1 [配例2使用] [2017·珠海调研]已知在直角坐标系xOy中,曲线C的参数方程为(φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin=2.(1)求曲线C的极坐标方程;(2)求直线l被曲线C截得的弦长.解:(1)曲线C的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,将代入,化简得ρ=4cos θ,∴曲线C的极坐标方程是ρ=4cos θ.(2)∵直线l的直角坐标方程为x+y-4=0,联立得直线l与曲线C的交点坐标为(2,2),(4,0),∴所求弦长为=2.2 [配例3使用]已知直线l的参数方程为(t为参数),以直角坐标系xOy的原点为极点,x 轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4sin.(1)求直线l的普通方程与圆C的直角坐标方程;(2)设圆C与直线l交于A,B两点,若P点的直角坐标为(2,1),求||PA|-|PB||的值.解:(1)易得直线l的普通方程为y=x-1.因为曲线C的极坐标方程为ρ=4sin=4sin θ+4cos θ,即ρ2=4ρsin θ+4ρcos θ,所以圆C的直角坐标方程为x2+y2-4x-4y=0(或写成(x-2)2+(y-2)2=8).(2)点P(2,1)在直线l上,且在圆C内,把代入x2+y2-4x-4y=0,得t2-t-7=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=,t1t2=-7<0,即t1,t2异号,所以||PA|-|PB||=||t1|-|t2||=|t1+t2|=.3 [配例4使用]在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ2=,直线l:2ρsin=.(1)判断曲线C与直线l的位置关系,写出直线l的参数方程;(2)设直线l与曲线C的两个交点分别为A,B,求|AB|的值.解:(1)曲线C的直角坐标方程为+=1,直线l的直角坐标方程为x+y=,与y轴的交点为P(0,),将P(0,)代入椭圆方程左边得0+<1,故点P(0,)在椭圆的内部,所以直线l与曲线C相交.直线l的参数方程为(t为参数).(2)由(1)知直线l的参数方程为(t为参数),曲线C的直角坐标方程为+=1,将直线l的参数方程代入曲线C的直角坐标方程,得3+=15,即t2+2t-8=0,设点A,B对应的参数分别为t1,t2,则t2+t1=-2,t2t1=-8,所以|AB|===6.4 [配例4使用] [2018·岳阳一中月考]直角坐标系xOy中,直线l:(t为参数),曲线C1:(φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-2cos θ+2sin θ.(1)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)设直线l交曲线C1于O,A两点,交曲线C2于O,B两点,求|AB|.解:(1)曲线C1:(φ为参数),化为普通方程是x2+(y-1)2=1,展开可得x2+y2-2y=0,可得其极坐标方程为ρ2-2ρsin θ=0,即ρ=2sin θ.曲线C2的极坐标方程为ρ=-2cos θ+2sin θ,即ρ2=ρ(-2cos θ+2sin θ),化为直角坐标方程是x2+y2=-2x+2y.(2)直线l:(t为参数),化为普通方程是y=-x,可得其极坐标方程是θ=(ρ∈R), ∴|OA|=2sin=,|OB|=-2cos+2sin=-2×+2×=4,∴|AB|=|OB|-|OA|=4-.。