2017-2018学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案(含解析)_5

合集下载

高中数学第二讲讲明不等式的基本方法2.3反证法与放缩法2.3.2放缩法课后导练新人教A版选修4_5

高中数学第二讲讲明不等式的基本方法2.3反证法与放缩法2.3.2放缩法课后导练新人教A版选修4_5
=2n(sin2nθ+cos2nθ).
考虑指数函数y=ax,
当a∈(0,1)时,在x∈(0,+∞)上单调递减,
∴sin2nθ≤sin2θ,
cos2nθ≤cos2θ.
∴2n(sin2nθ+cos2nθ)≤2n(sin2θ+cos2θ)=2n.
∴(1-x)n+(1+x)n≤2n.
证明:
∵ ,
∴1+


∴原不等式成立.
8已知an= (n∈N*),求证: <an< .
证明:∵ >n,
∴an= .
又 < [(n+1)+n]= (2n+1),
∴an=
∴ .
9求证: + (n∈N*).
证明:
,
∴左式< [(1- )+( - )+…+( )]= (1- )< .
拓展探究
10在△ABC中,求证: ≤ (a,b,c为三边,A,B,C为弧度).
2.3.2放缩法
课后导练
基础达标
1设x>0,y>0,A= ,B= ,则A,B的大小关系是_______B.
答案:A<B
2记A= ,则A与1的关系是_______.
解析:A=
答案:A<1
3用不等号将下列各式连接起来:
(1) _______________log8 ;
答案:(1)< (2)< (3)<
4已知a>b>c,则比较大小: _______ .
解析:∵a>b>c,∴a-b>0,b-c>0,
.
∴ ≤ .

高中数学 第二讲 讲明不等式的基本方法复习课学案 新人教A版选修4-5-新人教A版高二选修4-5数学

高中数学 第二讲 讲明不等式的基本方法复习课学案 新人教A版选修4-5-新人教A版高二选修4-5数学

第二讲讲明不等式的基本方法复习课学习目标 1.系统梳理证明不等式的基本方法.2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法.3.进一步熟练掌握不同方法的解题步骤及规范.1.比较法作差比较法是证明不等式的基本方法,其依据是:不等式的意义及实数大小比较的充要条件.证明的步骤大致是:作差——恒等变形——判断结果的符号.2.综合法综合法证明不等式的依据是:已知的不等式以及逻辑推理的基本理论.证明时要注意的是作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.3.分析法分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.4.反证法反证法是一种“正难则反”的方法,反证法适用的范围:①直接证明困难;②需要分成很多类进行讨论;③“唯一性”“存在性”的命题;④结论中含有“至少”“至多”否定性词语的命题.5.放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③用基本不等式放缩.类型一 比较法证明不等式例1 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx ). 证明 ∵b +c a x 2+c +a b y 2+a +b cz 2-2(xy +yz +zx ) =⎝ ⎛⎭⎪⎫bax 2+a by 2-2xy +⎝ ⎛⎭⎪⎫c by 2+b cz 2-2yz +⎝ ⎛⎭⎪⎫a c z 2+c a x 2-2zx =⎝⎛⎭⎪⎫b ax -a b y 2+⎝⎛⎭⎪⎫c by -b c z 2+⎝⎛⎭⎪⎫a cz -c a x 2≥0, ∴b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx )成立. 反思与感悟 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.跟踪训练1 设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n ≥(a +b )2.证明 a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn ≥0,∴a 2m +b 2n≥(a +b )2. 类型二 综合法与分析法证明不等式例2 已知a ,b ,c ∈R +,且ab +bc +ca =1,求证: (1)a +b +c ≥3; (2)a bc +b ac +cab≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c ∈R +, 因此只需证(a +b +c )2≥3,即证a 2+b 2+c 2+2(ab +bc +ca )≥3,根据条件,只需证a 2+b 2+c 2≥1=ab +bc +ca , 由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c =33时取等号)可知,原不等式成立. (2)a bc +b ac+c ab =a +b +c abc, 在(1)中已证a +b +c ≥3, ∵ab +bc +ca =1, ∴要证原不等式成立,只需证1abc≥a +b +c ,即证a bc +b ac +c ab ≤1=ab +bc +ca . ∵a ,b ,c ∈R +,a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤ac +bc2,∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时取等号)成立, ∴原不等式成立.反思与感悟 证明比较复杂的不等式时,考虑分析法与综合法的结合使用,这样使解题过程更加简洁.跟踪训练2 已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明 方法一 要证1a -b +1b -c +1c -a>0, 只需证1a -b +1b -c >1a -c. ∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c>0,∴1a -b +1b -c >1a -c成立, ∴1a -b +1b -c +1c -a>0成立. 方法二 ∵a >b >c , ∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c >0, ∴1a -b +1b -c >1a -c , ∴1a -b +1b -c +1c -a>0. 类型三 反证法证明不等式例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2或1+yx<2中至少有一个成立.证明 假设1+x y <2和1+y x<2都不成立,则1+x y ≥2和1+yx≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2或1+y x<2中至少有一个成立.反思与感悟 反证法的“三步曲”:(1)否定结论.(2)推出矛盾.(3)肯定结论.其核心是在否定结论的前提下推出矛盾.跟踪训练3 已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b .证明 假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ), 于是f (a )+f (-b )=f (b )+f (-a )与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性,可得f (a )>f (b ),f (-b )>f (-a ), 于是有f (a )+f (-b )>f (b )+f (-a )与已知矛盾.故假设不成立. ∴a <b .类型四 放缩法证明不等式例4 已知n ∈N +,求证:2(n +1-1)<1+12+13+…+1n<2n .证明 ∵对k ∈N +,1≤k ≤n ,有 1k =22k>2k +k +1=2(k +1-k ),∴1k>2(k +1-k ). ∴1+12+13+…+1n>2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1).又∵对于k ∈N +,2≤k ≤n ,有 1k =22k<2k +k -1=2(k -k -1),∴1+12+13+…+1n<1+2(2-1)+2(3-2)+…+2(n -n -1)=2n -1<2n . ∴原不等式成立.反思与感悟 放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当放缩,否则达不到目的.跟踪训练4 设f (x )=x 2-x +13,a ,b ∈[0,1], 求证:|f (a )-f (b )|≤|a -b |. 证明 |f (a )-f (b )|=|a 2-a -b 2+b | =|(a -b )(a +b -1)|=|a -b ||a +b -1|, ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2, -1≤a +b -1≤1,|a +b -1|≤1. ∴|f (a )-f (b )|≤|a -b |.1.已知p: ab >0,q :b a +a b≥2,则p 与q 的关系是( ) A .p 是q 的充分不必要条件 B .p 是q 的必要不充分条件C .p 是q 的充要条件D .以上答案都不对 答案 C解析 由ab >0,得b a >0,a b>0,∴b a +a b ≥2b a ·ab =2, 又b a +a b≥2,则b a ,a b必为正数, ∴ab >0.2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12答案 D解析 假设a ,b ,c 都小于12,则a +2b +c <2与a +2b +c =2矛盾. 3.若a =lg22,b =lg33,c =lg55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 C解析 a =3lg 26=lg 86,b =2lg 36=lg 96,∵9>8,∴b >a .b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315,∵35>53,∴b >c .a 与c 比较:a =lg 2510=lg 3210,c =lg 2510,∵32>25,∴a >c .∴b >a >c ,故选C.4.已知a,b∈R+,n∈N+,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).证明∵(a+b)(a n+b n)-2(a n+1+b n+1)=a n+1+ab n+ba n+b n+1-2a n+1-2b n+1=a(b n-a n)+b(a n-b n)=(a-b)(b n-a n).(1)若a>b>0,则b n-a n<0,a-b>0,∴(a-b)(b n-a n)<0.(2)若b>a>0,则b n-a n>0,a-b<0,∴(a-b)(b n-a n)<0.(3)若a=b>0,(b n-a n)(a-b)=0.综上(1)(2)(3)可知,对于a,b∈R+,n∈N+,都有(a+b)(a n+b n)≤2(a n+1+b n+1).1.比较法证明不等式一般有两种方法:作差法和作商法,作商法应用的前提条件是已知不等式两端的代数式同号.2.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,两者是对立统一的两种方法.3.证明不等式的基本方法及一题多证:证明不等式的基本方法主要有比较法、综合法、分析法、反证法、放缩法等.证明不等式时既可探索新的证明方法,培养创新意识,也可一题多证,开阔思路,活跃思维,目的是通过证明不等式发展逻辑思维能力,提高数学素养.一、选择题1.a,b∈R+,那么下列不等式中不正确的是( )A.ab+ba≥2 B.b2a+a2b≥a+bC.ba2+ab2≤a+babD.1a2+1b2≥2ab答案 C解析A满足基本不等式;B可等价变形为(a-b)2(a+b)≥0正确;B选项中不等式的两端同除以ab,不等式方向不变,所以C选项不正确;D选项是A选项中不等式的两端同除以ab 得到的,D正确.2.设0<x<1,则a=2x,b=x+1,c=11-x中最大的是( )A.c B.bC.a D.随x取值不同而不同答案 A解析∵0<x<1,∴b=x+1>2x>2x=a,∵11-x-(x+1)=1-(1-x2)1-x=x21-x>0,∴c>b>a.3.若P=a+a+7,Q=a+3+a+4 (a≥0),则P与Q的大小关系为( ) A.P>Q B.P=QC.P<Q D.由a的取值确定答案 C解析 ∵P 2=2a +7+2a 2+7a ,Q 2=2a +7+2a 2+7a +12,∴P 2<Q 2,即P <Q .4.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( ) A .a >b B .a <b C .a ≤b D .a ≥b答案 D解析 ∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n )2≥0, ∴a ≥b .5.已知a ,b ,c ,d 为实数,ab >0,-c a <-d b,则下列不等式中成立的是( ) A .bc <ad B .bc >ad C.a c >b d D.a c <b d答案 B解析 将-c a <-d b两边同乘以正数ab ,得-bc <-ad ,所以bc >ad . 6.若A ,B 为△ABC 的内角,则A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由正弦定理知a sin A =bsin B =2R ,又A ,B 为三角形的内角, ∴sin A >0,sin B >0,∴sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 二、填空题7.lg9·lg11与1的大小关系是________.答案 lg9·lg11<1 解析 ∵lg9>0,lg11>0,∴lg9·lg11<lg9+lg112<lg992<lg1002=1.∴lg9·lg11<1.8.当x >1时,x 3与x 2-x +1的大小关系是________. 答案 x 3>x 2-x +1解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1)=(x -1)(x 2+1),且x >1, ∴(x -1)(x 2+1)>0. ∴x 3-(x 2-x +1)>0, 即x 3>x 2-x +1.9.用反证法证明“在△ABC 中,若∠A 是直角,则∠B 是锐角”时,应假设________. 答案 ∠B 不是锐角解析 “∠B 是锐角”的否定是“∠B 不是锐角”.10.建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元. 答案 1760解析 设水池底长为x (x >0)m , 则宽为82x =4x(m).水池造价y =82×120+⎝ ⎛⎭⎪⎫2x ×2+8x ×2×80=480+320⎝ ⎛⎭⎪⎫x +4x ≥480+1 280=1 760(元), 当且仅当x =2时取等号. 三、解答题11.求证:112+122+132+…+1n 2<2.证明 因为1n2<1n (n -1)=1n -1-1n(n ∈N +,n ≥2),所以112+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)·n=1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n<2. 所以原不等式得证.12.已知a n =1×2+2×3+3×4+…+n (n +1)(n ∈N +),求证:n (n +1)2<a n <(n +1)22. 证明 ∵n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+…+n =n (n +1)2. 又n (n +1)<(n +1)+n 2=2n +12, ∴a n =1×2+2×3+…+n (n +1)<32+52+…+2n +12=n 2+2n 2<(n +1)22. ∴n (n +1)2<a n <(n +1)22. 四、探究与拓展13.已知a ,b 是正数,a ≠b ,x ,y ∈(0,+∞),若a 2x +b 2y ≥(a +b )2x +y,则等号成立的条件为________. 答案 ay =bx解析 a 2x +b 2y -(a +b )2x +y=a 2y (x +y )+b 2x (x +y )-xy (a +b )2xy (x +y )=(ay -bx )2xy (x +y )≥0, 当且仅当ay =bx 时等号成立.14.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13. (1)解 令n =1,得S 21-(-1)S 1-3×2=0,即S 21+S 1-6=0,所以(S 1+3)(S 1-2)=0,因为S 1>0,所以S 1=2,即a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,得(S n +3)[S n -(n 2+n )]=0,因为a n >0(n ∈N +),S n >0,从而S n +3>0,所以S n =n 2+n ,所以当n ≥2时, a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n ,又a 1=2=2×1,所以a n =2n (n ∈N +).(3)证明 设k ≥2,则1a k (a k +1)=12k (2k +1)<1(2k -1)(2k +1)=12⎝ ⎛⎭⎪⎫12k -1-12k +1, 所以1a 1(a 1+1)+1a 2(a 2+1)+1a 3(a 3+1)+…+1a n (a n +1)<12×3+12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n -1-12n +1=16+16-12(2n +1)<13. 所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。

反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。

放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。

首先介绍反证法。

对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。

具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

2.根据已知条件和假设,对变量进行推理,得出结论。

3.利用这个结论推出与已知条件矛盾的结论。

4.由此可以得出假设是错误的,从而证明原不等式的成立。

举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。

然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。

然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。

因此,假设错误,原不等式成立。

接下来介绍放缩法。

放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

放缩法的关键在于找到合适的放缩因子和放缩方法。

具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。

2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

3.对新形式的不等式进行证明。

4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。

举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。

我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。

化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。

《三 反证法与放缩法》教案

《三 反证法与放缩法》教案

《三 反证法与放缩法》教案教学目标1、理解掌握反证法放缩法的基本原理和思路2、会用上述方法证明一些简单的不等式教学重、难点重点:掌握反证法放缩法的基本原理和思路难点:用反证法放缩法证明一些简单的不等式教学过程一、思考导入前面我们曾经研究过不等式的基本性质.那么怎样证明性质⑥“如果a >b >0,那么,2)n N n >∈≥”?老师引导学生完成证明过程:>=<=a =b <a <b .这些都与a >b >0矛盾.>.像这样先假设要证明的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到矛盾,说明假设不正确,从而间接说明原命题成立的方法,叫做反证法.二、典例分析:例1、已知,0,x y >且2,x y +>试证:11,x y y x++中至少有一个小于2. 例2、已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.在证明不等式过程中,有时为了证明的需要,可对有关式子适当进行放大或缩小实现证明,这种方法称为放缩法.例3、已知a ,b ,c ,d ∈R +,求证12a b c d a b d b c a c d b d a c<+++<++++++++ 用放缩放证明不等式,关键是放、缩适当.例如上述过程中,如果把和式的4项分母依次缩为a ,b ,c ,d ,,那么和放大为4,显然太大了.例4、已知R b a ∈,,求证||1||||1||||1||b b a a b a b a +++≤+++上面介绍了不等式证明的几种常用方法,除以上方法外,还有其他一些方法,如在第四讲中要介绍的数学归纳法等.应该注意,不等式证明与数学上所有其他证明问题一样,没有一种适用于所有问题的统一方法,应该对具体问题的特点作具体分析,选择合适的方法.三、课堂小结1、反证法证题的步骤: 若A 成立,求证B 成立.共分三步:(1)提出与结论相反的假设;如负数的反面是非负数,正数的反面是非正数即0和负数(2)从假设出发,经过推理,得出矛盾;(必须由假设出发进行推理否则不是反证法或证错)(3)由矛盾判定假设不正确,从而肯定命题的结论正确.矛盾:与定义、公理、定理、公式、性质等一切已有的结论矛盾甚至自相矛盾. 2、放缩法的意义:放缩法发理论依据是不等式的传递性:若,a b b c <<,则a c < 放缩法的操作:若求证P Q <,先证12,n P P P P <<<< 再证恰有,n P Q <需注意:(1)只有同方向才可以放缩,反方向不可(2)不能放(缩)得太大(小),否则不会有最后的,n P Q <四、当堂达标 用放缩法证明:n n 21211<+++ .。

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与

三反证法与放缩法知识梳理1.反证法先____________,以此为出发点,结合已知条件,应用公理,定义,定理,性质等,进行正确的推理,得到和命题的条件(或已知证明的定理,性质,明显成立的事实等) _________的结论,以说明_________不正确,从而证明原命题成立,我们称这种证明问题的方法为反证法.2.放缩法证明不等式时,通常把不等式中的某些部分的值_________或_________,简化不等式,从而达到证明的目的.我们把这种方法称为放缩法.知识导学1.用反证法证明不等式必须把握以下几点:(1)必须否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种情况,缺少任何一种可能,反证法都是不完全的.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证.否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相违背等等.推导出的矛盾必须是明显的.(4)在使用反证法时,“否定结论”在推理论证中往往作为已知使用,可视为已知条件.2.放缩法多借助于一个或多个中间量进行放大或缩小,如欲证A≥B,需通过B≤B1,B1≤B2≤…≤B i≤A(或A≥A1,A1≥A2≥…≥A i≥B),再利用传递性,达到证明的目的.疑难突破1.反证法中的数学语言反证法适宜证明“存在性问题,唯一性问题”,带有“至少有一个”或“至多有一个”等字样的问题,或者说“正难则反”,直接证明有困难时,常采用反证法,下面我们列举一下常见的涉及反证法的文字语言及其相对应的否定假设.对某些数学语言的否定假设要准确,以免造成原则性的错误,有时在使用反证法时,对假设的否定也可以举一定的特例来说明矛盾,尤其在一些选择题中,更是如此.2.放缩法的尺度把握等问题(1)放缩法的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较;④基本不等式与绝对值不等式的基本性质;⑤三角函数的有界性等.(2)放缩法使用的主要方法:放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项,减项,利用分式的性质,利用不等式的性质,利用已知不等式,利用函数的性质进行放缩等.比如:舍去或加上一些项:(a+21)2+43>(a+21)2; 将分子或分母放大(缩小):,121,)1(11,)1(1122-+<+>-<k k kk k k k k k121++>k k k(k∈R ,k>1)等.典题精讲【例1】 (经典回放)若a 3+b 3=2,求证:a+b≤2.思路分析:本题结论的反面比原结论更具体,更简洁,宜用反证法. 证法一:假设a+b>2,a 2-ab+b 2=(a 21-b)2+43b 2≥0.而取等号的条件为a=b=0,显然不可能,∴a 2-ab+b 2>0.则a 3+b 3=(a+b)(a 2-ab+b 2)>2(a 2-ab+b 2),而a 3+b 3=2,故a 2-ab+b 2<1.∴1+ab>a 2+b 2≥2ab.从而ab<1. ∴a 2+b 2<1+ab<2.∴(a+b)2=a 2+b 2+2ab<2+2ab<4. ∴a+b<2.这与假设矛盾,故a+b≤2.证法二:假设a+b>2,则a>2-b,故2=a 3+b 3>(2-b)3+b 3,即2>8-12b+6b 2,即(b-1)2<0,这不可能,从而a+b≤2.证法三:假设a+b>2,则(a+b)3=a 3+b 3+3ab(a+b)>8.由a 3+b 3=2,得3ab(a+b)>6.故ab(a+b)>2.又a 3+b 3=(a+b)(a 2-ab+b 2)=2,∴ab(a+b)>(a+b)(a 2-ab+b 2). ∴a 2-ab+b 2<ab,即(a-b)2<0. 这不可能,故a+b≤2. 绿色通道:本题三种方法均采用反证法,有的推至与假设矛盾,有的推至与已知事实矛盾.一般说来,结论的语气过于肯定或肯定“过头”时,都可以考虑用反证法.再是本题的已知条件非常少,为了增加可利用的条件,从反证法的角度来说,“假设”也是已知条件,因而,可考虑反证法. 【变式训练】 若|a|<1,|b|<1,求证:|1|abba ++<1. 思路分析:本题由已知条件不易入手证明,而结论也不易变形,即直接证有困难,因而可联想反证法. 证明:假设|1|abba ++≥1,则|a+b|≥|1+ab|, ∴a 2+b 2+2ab≥1+2ab+a 2b 2. ∴a 2+b 2-a 2b 2-1≥0. ∴a 2-1-b 2(a 2-1)≥0.∴(a 2-1)(1-b 2)≥0.∴⎪⎩⎪⎨⎧≤-≤-⎪⎩⎪⎨⎧≥-≥-.01,0101,012222b a b a 或 即⎪⎩⎪⎨⎧≥≤⎪⎩⎪⎨⎧≤≥.1,11,12222b a b a 或与已知矛盾. ∴|1|abba ++<1. 【例2】 (经典回放)已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于41. 思路分析:“不能同时”包含情况较多,而其否定“同时大于”仅有一种情况,因此用反证法.证法一:假设三式同时大于41, 即有(1-a)b>41,(1-b)c>41,(1-c)a>41, 三式同向相乘,得(1-a)a(1-b)b(1-c)c>641.又(1-a)a≤(21a a +-)2=41.同理,(1-b)b≤41,(1-c)c≤41.∴(1-a)a(1-b)b(1-c)c≤641,与假设矛盾,结论正确.证法二:假设三式同时大于41,∵0<a<1,∴1-a>0,2141)1(2)1(=>-≥+-b a ba . 同理2)1(,2)1(a c c b +-+-都大于21. 三式相加,得2323>,矛盾.∴原命题成立.绿色通道:结论若是“都是……”“都不是……”“至少……”“至多……”或“……≠……”形式的不等式命题,往往可应用反证法,因此,可从这些语言上来判断是否可用此方法证明.【变式训练】 已知x>0,y>0,且x+y>2,求证:xy +1与y x+1中至少有一个小于2.思路分析:由于题目的结论是:两个数中“至少有一个小于2”情况比较复杂,会出现异向不等式组成的不等式组,一一证明十分繁杂,而对结论的否定是两个“都大于或等于2”构成的同向不等式,结构简单,为推出矛盾提供了方便,故采用反证法.证明:假设xy+1≥2,y x +1≥2.∵x>0,y>0,则1+y≥2x,1+x≥2y.两式相加,得2+x+y≥2(x+y),∴x+y≤2. 这与已知x+y>2矛盾. ∴y x +1与xy+1中至少有一个小于2成立. 【例3】 设n 是正整数,求证:21≤2111+++n n +…+21n<1. 思路分析:要求一个n 项分式2111+++n n +…+n21的范围,它的和又求不出,可以采用“化整为零”的方法,观察每一项的范围,再求整体的范围. 证明:由2n≥n+k>n(k=1,2, …,n),得n 21≤nk n 11<+. 当k=1时,n 21≤n n 111<+; 当k=2时,n 21≤nn 121<+;;……当k=n 时,n 21≤nn 111<+, ∴21=n n 2≤2111+++n n +…+n 21<nn =1. 绿色通道:放缩法证明不等式,放缩要适度,否则会陷入困境,例如证明4712111222<+++n Λ,由k k k 11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2,当放缩方式不同时,结果也在变化.放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分.每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求.即不能放缩不够或放缩过头,同时要使放缩后便于求和. 【变式训练】 若n∈N +,n≥2,求证:21-n nn 111312111222-<+++<+Λ.思路分析:利用)1(11)1(12-<<+k k k k k 进行放缩.证明:∵)1(143132113121222+++⨯+⨯>+++n n n ΛΛ=(21-31)+(31-41)+…+(111+-n n ) =21-11+n .又223121++…+21n <)1(1231121-++⨯+⨯n n Λ =(121-)+(21-31)+…+(n n 111--)=1-n 1,∴21-11+n <223121++ (21)<1-n 1.【例4】 (经曲回放)求证:||1||||||1||||b a b a b a b a +++≥+++.思路分析:利用|a+b|≤|a|+|b|进行放缩,但需对a,b 的几种情况进行讨论,如a=b=0时等. 证明:若a+b=0或a=b=0时显然成立. 若a+b≠0且a,b 不同时为0时,||||11||||||||11b a b a b a ++=+++=左边. ∵|a+b|≤|a|+|b|, ∴上式≤1+||||1||1b a b a b a +++=+.∴原不等式成立.绿色通道:对含绝对值的不等式的证明,要辨别是否属绝对值不等式的放缩问题,如利用|a|-|b|≤|a±b|≤|a|+|b|进行放缩,此问题我们可以算作放缩问题中的一类. 【变式训练】 已知|x|<3ε,|y|<6ε,|z|<9ε,求证:|x+2y-3z|<ε. 思路分析:利用|a+b+c|≤|a|+|b|+|c|进行放缩. 证明:∵|x|<3ε,|y|<6ε,|z|<9ε, ∴|x+2y -3z|=|1+2y+(-3z)|≤|x|+|2y|+|-3z|=|x|+2|y|+3|z| <3ε+2×6ε+3×9ε=ε. ∴原不等式成立. 问题探究问题:说明“语言的声音和它所表示的事物之间没有必然联系”.导思:直接去说明某件事情是正确的,有时很难说明原因或根据,因此,用反证法及其逻辑思维会显得较为简单. 探究:反证题:声音和事物的结合假如有什么必然联系,世界上所有的语言中表示同一事物的词的声音就应是相同的,后者显然不能成立,既然世界上表示同一事物的词的声音各不相同,可见语言的声音和所表示的事物之间是没有必然联系的.。

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与放缩法 2.3.1 反证法课堂导学案 新人教A版选修45

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与放缩法 2.3.1 反证法课堂导学案 新人教A版选修45

2.3.1 反证法课堂导学三点剖析一,熟悉反证法证明不等式的步骤【例1】 设f(x)、g(x)是定义在[0,1]上的函数,求证:存在x 0、y 0∈[0,1],使|x 0y 0-f(x 0)-g(y 0)|≥41. 证明:用反证法.假设对[0,1]内的任意实数x,y 均有|xy-f(x)-g(y)|<41,考虑对x,y 在[0,1]内取特殊值:(1)取x=0,y=0时,有|0×0-f(0)-g(0)|<41,∴|f(0)+g(0)|<41; (2)取x=1,y=0时,有|1×0-f(1)-g(0)|<41,∴|f(1)+g (0)|<41; (3)取x=0,y=1时,有|0×1-f(0)-g(1)|<41,∴|f(0)+g(1)|<41; (4)取x=1,y=1时,有|1×1-f(1)-g(1)|<41,∴|1-f(1)-g(1)|<41. ∵1=1-f(1)-g(1)+f(0)+g(1)+f(1)+g(0)-f(0)-g(0),∴1≤|1-f(1)-g(1)|+|f(0)+g(1)|+|f(1)+g(0)|+|f(0)+g(0)|<41+41+41+41=1. ∴1<1,矛盾,说明假设不能成立.故要证结论成立.各个击破类题演练1求证:如果a>b>0,那么n n b a >(n∈N 且n>1).证明:假设n a 不大于n b 有两种情况:n n b a <或者n n b a =.由推论2和定理1,当n n b a <时,有a<b;当n n b a =时,有a=b ,这些都与已知a>b>0矛盾,所以n n b a >. 变式提升1求证:如果a>b>0,那么21a <21b . 证明:假设21a ≥21b , 则21a -21b =2222b a a b -≥0. ∵a>b>0,∴a 2b 2>0.∴b 2-a 2=(b+a)(b-a)≥0.∵a>b>0,∴b+a>0.∴b -a≥0,即b≥a.这与已知a>b 矛盾.∴假设不成立,原结论21a <21b 成立. 二、什么时候用反证法证明不等式 【例2】 设0<a 、b 、c<1,求证:(1-a)b,(1-b)c,(1-c)a 三个数不可能同时大于41. 思路分析:此命题为否定式,直接证明比较困难,可以考虑反证法.假设命题不成立,则三个数都大于41,然后从这个结论出发,推出与题设矛盾的结果来.证明:假设(1-a)b,(1-b)c,(1-c)a 三个数都大于41,即(1-a)b>41,(1-b)c>41,(1-c)a>41.以上三式相乘得(1-a)b5(1-b)c5(1-c)a>641,亦即(1-a)a5(1-b)b5(1-c)c>641.①又∵0<a<1,∴0<(1-a)a≤[2)1(aa +-]2=41.同理,0<(1-b)b≤41,0<(1-c)c≤41.以上三式相乘得(1-a)a·(1-b)b·(1-c)c≤641,与①矛盾.∴假设不成立,故命题获证.类题演练2已知x>0,y>0,且x+y>2,求证:x y +1与y x+1中至少有一个小于2.证明:假设x y +1、y x +1都不小于2,则x y+1≥2,y x+1≥2.∵x>0,y>0,∴1+y≥2x,1+x≥2y,2+x+y≥2(x+y).∴x+y≤2,这与已知x+y>2矛盾.故假设不成立,原题得证.变式提升2设a,b,c 均为正数且a+b+c=1,求证:a 2+b 2+c 2≥31.证明:∵ab≤222b a +,bc≤222c b +,ca≤222a c +,三式相加得ab+bc+ca≤a 2+b 2+c 2.假设a 2+b 2+c 2<31,由1=a+b+c,∴1=(a+b+c)2=a 2+b 2+c 2+2(ab+bc+ca)≤a 2+b 2+c 2+2(a 2+b 2+c 2)=3(a 2+b 2+c 2)<3×31=1, 即1<1,显然不成立.三、体会反证法证明不等式的优越性【例3】 若△ABC 三边a,b,c 的倒数成等差数列,则∠B<2π. 证明:假设∠B≥2π,则b 边最大,有b>a,b>c. ∴a 1>b 1,c 1>b1. 两式相加得a 1+c 1>b2, 这与题设a 1+c 1=b2相矛盾. 因此,假设是错误的, ∴∠B<2π. 温馨提示证明过程就那么简单,推出矛盾也这般容易!用反证法证明不等式思路清清爽爽,有化难为易的功效.类题演练3若|a|<1,|b|<1,求证:|ab b a ++1|<1. 证明:假设|ab b a ++1|≥1,则|a+b|≥|1+ab|. ∴a 2+b 2+2ab≥1+2ab+a 2b 2.∴a 2+b 2-a 2b 2-1≥0.∴a 2-1-b 2(a 2-1)≥0.∴(a 2-1)(1-b 2)≥0.∴⎪⎩⎪⎨⎧≥≤⎪⎩⎪⎨⎧≤≥⎪⎩⎪⎨⎧≤-≤-⎪⎩⎪⎨⎧≥-≥-1,11,1.01,01010122222222b a b a b a b a 或即或 即a 2≥1,b 2≤1或a 2≤1,b 2≥1,与已知矛盾. ∴|abb a ++1|<1. 变式提升3 已知f(x)=x 2+px+q,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 证明:用反证法.假设|f(1)|,|f(2)|,|f(3)|都小于21,则 |f(1)|+2|f(2)|+|f(3)|<2,而|f(1)|+2|f(2)|+|f(3)|≥|f(1)+f(3)-2f(2)|=|(1+p+q)+(9+3p+q)-(8+4p+2q)|=2,相互矛盾.∴|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21.。

高中数学第2讲证明不等式的基本方法3反证法与放缩法学案新人教A版

高中数学第2讲证明不等式的基本方法3反证法与放缩法学案新人教A版

三反证法与放缩法1.掌握用反证法证明不等式的方法.(重点)2.了解放缩法证明不等式的原理,并会用其证明不等式.(难点、易错易混点)[基础·初探]教材整理1 反证法阅读教材P26~P27“例2”及以上部分,完成下列问题.先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把这种证明问题的方法称为反证法.如果两个正整数之积为偶数,则这两个数( )A.两个都是偶数B.一个是奇数,一个是偶数C.至少一个是偶数D.恰有一个是偶数【解析】假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少有一个为偶数.【答案】 C教材整理2 放缩法阅读教材P28~P29“习题”以上部分,完成下列问题.证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.若|a-c|<h,|b-c|<h,则下列不等式一定成立的是( )【导学号:32750039】A.|a-b|<2h B.|a-b|>2hC .|a -b |<h D.|a -b |>h【解析】 |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.【精彩点拨】 (1)把f (1),f (2),f (3)代入函数f (x )求值推算可得结论. (2)假设结论不成立,推出矛盾,得结论. 【自主解答】 (1)由于f (x )=x 2+px +q , ∴f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2.(2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则有|f (1)|+2|f (2)|+|f (3)|<2.(*)又|f (1)|+2|f (2)|+|f (3)| ≥f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-(8+4p +2q )=2,∴|f (1)|+2|f (2)|+|f (3)|≥2与(*)矛盾,∴假设不成立. 故|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.1.在证明中含有“至多”“至少”等字眼时,常使用反证法证明.在证明中出现自相矛盾,说明假设不成立.2.在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,因此在证明过程中必须使用这个增加的条件,否则将无法推出矛盾.[再练一题]1.已知实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1.求证:a ,b ,c ,d 中至多有三个是非负数.【证明】 a ,b ,c ,d 中至多有三个是非负数,即至少有一个是负数,故有假设a ,b ,c ,d 都是非负数.即a ≥0,b ≥0,c ≥0,d ≥0,则1=(a +b )(c +d )=(ac +bd )+(ad +bc )≥ac +bd . 这与已知中ac +bd >1矛盾, ∴原假设错误,故a ,b ,c ,d 中至少有一个是负数. 即a ,b ,c ,d 中至多有三个是非负数.已知a n =2n 2,n ∈N *,求证:对一切正整数n ,有a 1+a 2+…+1a n <32.【精彩点拨】 针对不等式的特点,对其通项进行放缩、列项. 【自主解答】 ∵当n ≥2时,a n =2n 2>2n (n -1), ∴1a n =12n 2<12nn -=12·1nn -=12⎝ ⎛⎭⎪⎫1n -1-1n , ∴1a 1+1a 2+…+1a n <1+1211×2+12×3+…+1n n -=1+12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =1+12⎝ ⎛⎭⎪⎫1-1n =32-12n <32,即1a 1+1a 2+…+1a n <32.1.放缩法在不等式的证明中无处不在,主要是根据不等式的传递性进行变换.2.放缩法技巧性较强,放大或缩小时注意要适当,必须目标明确,合情合理,恰到好处,且不可放缩过大或过小,否则,会出现错误结论,达不到预期目的,谨慎地添或减是放缩法的基本策略.[再练一题]2.求证:1+122+132+…+1n 2<2-1n (n ≥2,n ∈N +).【证明】 ∵k 2>k (k -1), ∴1k 2<1kk -=1k -1-1k(k ∈N +,且k ≥2). 分别令k =2,3,…,n 得122<11·2=1-12,132<12·3=12-13,…, 1n2<1nn -=1n -1-1n. 因此1+122+132+…+1n2<1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n=1+1-1n =2-1n.故不等式1+122+132+…+1n 2<2-1n(n ≥2,n ∈N +).[探究共研型]探究1 【提示】 证明的步骤是:(1)作出否定结论的假设;(2)从否定结论进行推理,导出矛盾;(3)否定假设,肯定结论.探究2 反证法证题时常见数学语言的否定形式是怎样的?【提示】 常见的涉及反证法的文字语言及其相对应的否定假设有:【精彩点拨】 本题中的条件是三边间的关系2b =1a +1c,而要证明的是∠B 与90°的大小关系.结论与条件之间的关系不明显,考虑用反证法证明.【自主解答】 ∵a ,b ,c 的倒数成等差数列,∴2b =1a +1c.假设∠B <90°不成立,即∠B ≥90°,则∠B 是三角形的最大内角,在三角形中,有大角对大边,∴b >a >0,b >c >0, ∴1b <1a ,1b <1c ,∴2b <1a +1c,这与2b =1a +1c相矛盾.∴假设不成立,故∠B <90°成立.1.本题中从否定结论进行推理,即把结论的反面“∠B ≥90°”作为条件进行推证是关键.要注意否定方法,“>”否定为“≤”,“<”否定为“≥”等.2.利用反证法证题的关键是利用假设和条件通过正确推理,推出和已知条件或定理事实或假设相矛盾的结论.[再练一题]3.若a 3+b 3=2,求证:a +b ≤2.【导学号:32750040】【证明】 法一 假设a +b >2,a 2-ab +b 2=⎝⎛⎭⎪⎫a -12b 2+34b 2≥0,故取等号的条件为a =b =0,显然不成立, ∴a 2-ab +b 2>0.则a 3+b 3=(a +b )(a 2-ab +b 2)>2(a 2-ab +b 2), 而a 3+b 3=2,故a 2-ab +b 2<1, ∴1+ab >a 2+b 2≥2ab ,从而ab <1, ∴a 2+b 2<1+ab <2,∴(a +b )2=a 2+b 2+2ab <2+2ab <4, ∴a +b <2.这与假设矛盾,故a +b ≤2. 法二 假设a +b >2,则a >2-b , 故2=a 3+b 3>(2-b )3+b 3,即2>8-12b +6b 2,即(b -1)2<0, 这显然不成立,从而a +b ≤2.法三 假设a +b >2,则(a +b )3=a 3+b 3+3ab (a +b )>8. 由a 3+b 3=2,得3ab (a +b )>6,故ab (a +b )>2. 又a 3+b 3=(a +b )(a 2-ab +b 2)=2, ∴ab (a +b )>(a +b )(a 2-ab +b 2), ∴a 2-ab +b 2<ab ,即(a -b )2<0. 这显然不成立,故a +b ≤2.[构建·体系]反证法与放缩法—⎪⎪⎪⎪—反证法与放缩法的定义—反证法的一般步骤—证明不等式—放缩的技巧1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0【解析】 实数a ,b ,c 不全为0的含义即a ,b ,c 中至少有一个不为0,其否定则是a ,b ,c 全为0,故选D.【答案】 D2.已知a +b +c >0,ab +bc +ac >0,abc >0,用反证法求证a >0,b >0,c >0时的假设为( )A .a <0,b <0,c <0B .a ≤0,b >0,c >0C .a ,b ,c 不全是正数D.abc <0【解析】 a >0,b >0,c >0的反面是a ,b ,c 不全是正数,故选C. 【答案】 C3.要证明3+7<25,下列证明方法中,最为合理的是( ) A .综合法 B .放缩法 C .分析法D.反证法【解析】 由分析法的证明过程可知选C. 【答案】 C 4.A =1+12+13+…+1n与n (n ∈N +)的大小关系是________.【导学号:32750041】【解析】 A =11+12+13+…+1n ≥=nn =n .【答案】 A ≥n5.若x ,y 都是正实数,且x +y >2.求证:1+x y <2和1+yx<2中至少有一个成立.【证明】 假设1+x y <2和1+y x<2都不成立,则有1+x y ≥2和1+y x≥2同时成立,因为x >0且y >0,所以1+x ≥2y ,且1+y ≥2x ,两式相加,得2+x +y ≥2x +2y , 所以x +y ≤2,这与已知条件x +y >2矛盾,因此1+x y <2和1+y x<2中至少有一个成立.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(八) (建议用时:45分钟)[学业达标]一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用( ) ①结论相反的判断,即假设;②原命题的条件;③公理、定理、定义等;④原结论.A.①②B.①②④C.①②③D.②③【解析】由反证法的推理原理可知,反证法必须把结论的相反判断作为条件应用于推理,同时还可应用原条件以及公理、定理、定义等.【答案】 C2.用反证法证明命题“如果a>b,那么3a>3b”时,假设的内容是( )A.3a=3bB.3a<3bC.3a=3b且3a<3bD.3a=3b或3a<3b【解析】应假设3a≤3b,即3a=3b或3a<3b.【答案】 D3.对“a,b,c是不全相等的正数”,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a≠c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数为( )A.0个B.1个 C.2个D.3个【解析】对于①,若(a-b)2+(b-c)2+(c-a)2=0,则a=b=c,与已知矛盾,故①对;对于②,当a>b与a<b及a≠c都不成立时,有a=b=c,不符合题意,故②对;对于③,显然不正确.【答案】 C4.若a,b,c∈R+,且a+b+c=1,设M=827-27a,N=(a+c)·(a+b),则( ) A.M≥N B.M≤NC.M>N D.M<N【解析】 依题意易知1-a,1-b,1-c ∈R +,由均值不等式知31-a 1-b1-c≤13[(1-a )+(1-b )+(1-c )]=23,∴(1-a )(1-b )(1-c )≤827,从而有8-a ≥(1-b )(1-c ),即M ≥N ,当且仅当a =b =c =13时,取等号.故选 A.【答案】 A5.设x ,y ,z 都是正实数,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2【解析】 ∵a +b +c =x +1x +y +1y +z +1z≥2+2+2=6,当且仅当x =y =z =1时等号成立,∴a ,b ,c 三者中至少有一个不小于2. 【答案】 C 二、填空题6.若要证明“a ,b 至少有一个为正数”,用反证法的反设应为________.【导学号:32750042】【答案】 a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 7.lg 9·lg 11与1的大小关系是________. 【解析】 ∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 【答案】 lg 9·lg 11<18.设M =1210+1210+1+1210+2+…+1211-1,则M 与1的大小关系为________.【解析】 ∵210+1>210,210+2>210,…,211-1>210, ∴M =1210+1210+1+1210+2+…+1211-1<=1.【答案】 M <1 三、解答题9.若实数a ,b ,c 满足2a+2b=2a +b,2a+2b +2c =2a +b +c,求c 的最大值.【解】 2a +b=2a +2b ≥22a +b,当且仅当a =b 时,即2a +b≥4时取“=”,由2a+2b+2c=2a +b +c,得2a +b+2c =2a +b·2c,∴2c=2a +b2a +b -1=1+12a +b -1≤1+14-1=43,故c ≤log 243=2-log 23.10.已知n ∈N +,求证:n n +2<1×2+2×3+…+n n +<n +22.【证明】 k <kk +<k +k +2=12(2k +1)(k =1,2,…,n ). 若记S n =1×2+2×3+…+n n +,则S n >1+2+…+n =n n +2,S n <12(3+5+…+2n +1)=12(n 2+2n )<n +22.[能力提升]1.否定“自然数a ,b ,c 中恰有一个为偶数”时正确的反设为( ) A .a ,b ,c 都是奇数 B .a ,b ,c 都是偶数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中至少有两个偶数或都是奇数【解析】 三个自然数的奇偶情况有“三偶、三奇、两偶一奇、两奇一偶”4种,而自然数a ,b ,c 中恰有一个为偶数包含“两奇一偶”的情况,故反面的情况有3种,只有D 项符合.【答案】 D2.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D.xy ≥2(2+1)【解析】 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22, ∴(x +y )2-4(x +y )-4≥0.∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).【答案】 A3.已知a >2,则log a (a -1)log a (a +1)________1(填“>”“<”或“=”).【解析】 ∵a >2,∴log a (a -1)>0,log a (a +1)>0. 又log a (a -1)≠log a (a +1), ∴log a a -a a +<log a a -+log a a +2, 而log a a -+log a a +2=12log a (a 2-1) <12log a a 2=1, ∴log a (a -1)log a (a +1)<1.【答案】 <4.已知数列{a n }满足a 1=2,a n +1=2⎝ ⎛⎭⎪⎫1+1n 2·a n (n ∈N +), 【导学号:32750043】(1)求a 2,a 3,并求数列{a n }的通项公式;(2)设c n =n a n ,求证:c 1+c 2+c 3+…+c n <710. 【解】 (1)∵a 1=2,a n +1=2⎝ ⎛⎭⎪⎫1+1n 2·a n (n ∈N +), ∴a 2=2⎝ ⎛⎭⎪⎫1+112·a 1=16,a 3=2⎝ ⎛⎭⎪⎫1+122·a 2=72. 又∵a n +1n +=2·a n n ,n ∈N +, ∴⎩⎨⎧⎭⎬⎫a n n 2为等比数列.∴a n n 2=a 112·2n -1=2n,∴a n=n2·2n.(2)证明:c n=na n =1 n·2,∴c1+c2+c3+…+c n=11·2+12·22+13·23+…+1n·2n<12+18+124+14·⎝⎛⎭⎪⎫124+125+…+12n=23+14·124⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫12n-31-12<23+14·1241-12=23+132=6796=670960<96×796×10=710,所以结论成立.。

2018_2019高中数学第二讲证明不等式的基本方法2.3反证法与放缩法预习学案新人教A版

2018_2019高中数学第二讲证明不等式的基本方法2.3反证法与放缩法预习学案新人教A版

2.3 反证法与放缩法预习目标1.掌握用反证法证明不等式的方法.2.了解放缩法证明不等式的原理,并会用其证明不等式.一、预习要点1.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定理、性质等,进行正确的推理,得到和命题条件(或已证明过的定理、性质、明显成立的事实等)__________,以说明____________________,从而证明原命题成立,我们把它称为________.2.放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到________,我们把这种方法称为________.二、预习检测1.实数a ,b ,c 不全为0的等价条件为( )A .a ,b ,c 均不为0B .a ,b ,c 中至多有一个为0C .a ,b ,c 中至少有一个为0D .a ,b ,c 中至少有一个不为02.已知a +b +c >0,ab +bc +ac >0,abc >0,用反证法求证a >0,b >0,c >0时的假设为( )A .a <0,b <0,c <0B .a ≤0,b >0,c >0C .a ,b ,c 不全是正数 D.abc <03.要证明3+7<25,下列证明方法中,最为合理的是( )A .综合法B .放缩法C .分析法 D.反证法4.若x ,y 都是正实数,且x +y >2.求证:1+x y <2和1+y x<2中至少有一个成立.三、思学质疑把你在本次课程学习中的困惑与建议填写在下面,与同学交流后,由组长整理后并拍照上传平台讨论区。

参考答案一、预习要点 1.相矛盾的结论 假设不正确 反证法 2.证明的目的 放缩法二、预习检测1.【解析】 实数a ,b ,c 不全为0的含义即a ,b ,c 中至少有一个不为0,其否定则是a ,b ,c 全为0,故选D.【答案】 D2.【解析】 a >0,b >0,c >0的反面是a ,b ,c 不全是正数,故选C.【答案】 C3.【解析】 由分析法的证明过程可知选C.【答案】 C4.【证明】 假设1+x y <2和1+y x<2都不成立, 则有1+x y ≥2和1+y x≥2同时成立,因为x >0且y >0,所以1+x ≥2y ,且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2,这与已知条件x +y >2矛盾,因此1+x y <2和1+y x<2中至少有一个成立.。

高中数学教案 选修4-5教案 第二讲 证明不等式的基本方法 三 反证法与放缩法

高中数学教案 选修4-5教案 第二讲 证明不等式的基本方法 三 反证法与放缩法

三 反证法与放缩法☆学习目标: 1. 理解并掌握反证法、换元法与放缩法;2. 会利用反证法、换元法与放缩法证明不等式 ☻知识情景:1. 不等式证明的基本方法:10. 比差法与比商法(两正数时).20. 综合法和分析法.30. 反证法、换元法、放缩法2. 综合法:从①已知条件、②不等式的性质、③基本不等式等出发,通过逻辑推理, 推导出所要证明的结论. 这种证明方法叫做综合法. 又叫由 导 法.用综合法证明不等式的逻辑关系:12n A B B B B ⇒⇒⇒⇒⇒ 3. 分析法:从要证的结论出发, 逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.这是一种执 索 的思考和证明方法.用分析法证明不等式的逻辑关系: ☻新知建构:1.反证法:利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立.分析:反设x y +1≥2,y x +1≥2 ∵x , y > 0,可得x + y ≤2 与x + y >2矛盾。

例2 已知a + b + c > 0,a b + bc + c a > 0,a bc > 0,求证:a , b , c > 0 .12 ( ) n B B B B A ⇐⇐⇐⇐⇐结步步寻求不等式已论成立的充分条件知.21,1,2,0, 1中至少有一个小于试证且已知例xy y x y x y x ++>+>.,0,0,0.0.0,0)(,0,0,00,0)2(.0,0,0,0)1(.00,0,,,,:所以原命题成立同理可证综上所述也不可能相矛盾这和已知于是又可得那么由如果不可能矛盾与则如果两种情况讨论和下面分不妨先设正数即其中至少有一个不是不全是正数假设证明>>><∴>++<++=++>-=+∴>++<><=∴>==<=≤c b a a ca bc ab bc c b a ca bc ab a c b c b a bc abc a a abc abc a a a a c b a2. 放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小 由题目分析、多次尝试得出,要注意放缩的适度.常用的方法是:①添加或舍去一些项,如:a a >+12,n n n >+)1(,②将分子或分母放大(或缩小)如:2111(1)(1)n n n n n <<+- ③应用“糖水不等式”:“若0a b <<,0m >,则a a m b b m +<+”④利用基本不等式,如:2lg 3lg 5()lg 4⋅<=<=;⑤利用函数的单调性 ⑥利用函数的有界性:如:sin x ≤1()x R ∈; ⑦绝对值不等式:a b -≤a b ±≤a b +;⑧利用常用结论:如:2=()*,1k N k ∈>,2=<=()*,1k N k ∈>⑨应用贝努利不等式:2(1)(1)11.12n n n n x nx x x nx -+=++++>+⨯ 例3 若a , b , c , d ∈R +,求证:21<+++++++++++<c ad d b d c c a c b b d b a a 证明:记m =ca d db dc c a c b bd b a a +++++++++++ ∵a , b , c , d ∈R +∴1=+++++++++++++++>c b ad d b a d c c a c b a b d c b a a m 2=+++++++<cd d d c c b a b b a a m ∴1 < m < 2 即原式成立。

高中数学第二讲讲明不等式的基本方法三反证法与放缩法学案新人教A选修4_5010744

高中数学第二讲讲明不等式的基本方法三反证法与放缩法学案新人教A选修4_5010744

三反证法与放缩法学习目标 1.理解反证法的理论依据,掌握反证法的基本步骤,会用反证法证明不等式.2.理解用放缩法证明不等式的原理,会用放缩法证明一些不等式.知识点一反证法思考什么是反证法?用反证法证明时,导出矛盾有哪几种可能?答案(1)反证法就是在否定结论的前提下推出矛盾,从而说明结论是正确的.(2)矛盾可以是与已知条件矛盾,也可以是与已知的定义、定理矛盾.梳理反证法(1)反证法的定义:先假设要证明的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.知识点二放缩法思考放缩法是证明不等式的一种特有的方法,那么放缩法的原理是什么?答案①不等式的传递性;②等量加(减)不等量为不等量.梳理放缩法(1)放缩法证明的定义证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.这种方法称为放缩法.(2)放缩法的理论依据①不等式的传递性.②等量加(减)不等量为不等量.③同分子(分母)异分母(分子)的两个分式大小的比较.类型一 反证法证明不等式 命题角度1 证明“否定性”结论例1 设a >0,b >0,且a +b =1a +1b,证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1可知,a +b ≥2ab =2, 即a +b ≥2,当且仅当a =b =1时等号成立.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.反思与感悟 当待证不等式的结论为否定性命题时,常用反证法来证明,对结论的否定要全面不能遗漏,最后的结论可以与已知的定义、定理、已知条件、假设矛盾. 跟踪训练1 设0<a <2,0<b <2,0<c <2,求证:(2-a )·c ,(2-b )·a ,(2-c )·b 不可能都大于1. 证明 假设(2-a )·c ,(2-b )·a ,(2-c )·b 都大于1, 即(2-a )·c >1,(2-b )·a >1,(2-c )·b >1, 则(2-a )·c ·(2-b )·a ·(2-c )·b >1, ∴(2-a )(2-b )(2-c )·abc >1. ①∵0<a <2,0<b <2,0<c <2, ∴(2-a )·a ≤⎝ ⎛⎭⎪⎫2-a +a 22=1,同理(2-b )·b ≤1,(2-c )·c ≤1, ∴(2-a )·a ·(2-b )·b ·(2-c )·c ≤1, ∴(2-a )(2-b )(2-c )·abc ≤1,这与①式矛盾. ∴(2-a )·c ,(2-b )·a ,(2-c )·b 不可能都大于1. 命题角度2 证明“至少”“至多”型问题 例2 已知f (x )=x 2+px +q , 求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明 (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2,而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2,矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.反思与感悟 (1)当欲证明的结论中含有“至多”“至少”“最多”等字眼时,若正面难以找到解题的突破口,可转换视角,用反证法证明.(2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,因此在证明过程中必须使用这个增加的条件,否则将无法推出矛盾. 跟踪训练2 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于零.证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z-1)2+π-3,∵π-3>0,且(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0,这与a +b +c ≤0矛盾,因此假设不成立. ∴a ,b ,c 中至少有一个大于0. 类型二 放缩法证明不等式例3 已知实数x ,y ,z 不全为零,求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).证明x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2.同理可得y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2.由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ). 反思与感悟 (1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),谨慎地采取措施,进行恰当地放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换成较大或较小的数,从而达到证明不等式的目的.跟踪训练3 求证:32-1n +1<1+122+…+1n 2<2-1n (n ∈N +且n ≥2).证明 ∵k (k +1)>k 2>k (k -1)(k ∈N +且k ≥2), ∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k (k ∈N +且k ≥2). 分别令k =2,3,…,n ,得12-13<122<1-12,13-14<132<12-13,…, 1n -1n +1<1n 2<1n -1-1n ,将这些不等式相加,得12-13+13-14+…+1n -1n +1<12+13+…+1n <1-12+12-13+…+1n -1-1n , 即12-1n +1<122+132+…1n 2<1-1n, ∴1+12-1n +1<1+122+132+…+1n 2<1+1-1n,即32-1n +1<1+122+132+…+1n 2<2-1n(n ∈N +且n ≥2)成立.1.用放缩法证明不等式时,下列各式正确的是( ) A.1a +x >1aB.b a <b +ma +mC .x 2+x +3>x 2+3 D .|a +1|≥|a |-1 答案 D解析 对于A ,x 的正、负不定;对于B ,m 的正、负不定;对于C ,x 的正、负不定;对于D ,由绝对值三角不等式知,D 正确.2.用反证法证明命题“a ,b ,c 全为0”时,其假设为( ) A .a ,b ,c 全不为0 B .a ,b ,c 至少有一个为0 C .a ,b ,c 至少有一个不为0 D .a ,b ,c 至多有一个不为0 答案 C3.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 答案 a ≥0,b ≥0,a ≠b 解析 由a 及b 知a ≥0,b ≥0, 又a a +b b >a b +b a , 即(a -b )2(a +b )>0. ∴a ≠b ,∴a ≥0,b ≥0,a ≠b .4.已知0<a <3,0<b <3,0<c <3.求证:a (3-b ),b (3-c ),c (3-a )不可能都大于92.证明 假设a (3-b )>92,b (3-c )>92,c (3-a )>92.因为a ,b ,c 均为小于3的正数, 所以a (3-b )>92,b (3-c )>92, c (3-a )>92, 从而有a (3-b )+b (3-c )+c (3-a )>92 2.①但是a (3-b )+b (3-c )+c (3-a )≤a +(3-b )2+b +(3-c )2+c +(3-a )2 =9+(a +b +c )-(a +b +c )2=92.② 当且仅当a =b =c =32时,②中取等号.显然②与①相矛盾,假设不成立,故命题得证.1.常见的涉及反证法的文字语言及其相对应的否定假设2.放缩法证明不等式常用的技巧 (1)增项或减项.(2)在分式中增大或减小分子或分母.(3)应用重要不等式放缩,如a 2+b 2≥2ab ,ab ≤a +b2,ab ≤⎝⎛⎭⎪⎫a +b 22,a +b +c 3≥3abc (a ,b ,c >0).(4)利用函数的单调性等.一、选择题 1.P =a a +1+b b +1+cc +1(a ,b ,c 均为正数)与3的大小关系为( )A .P ≥3B .P =3C .P <3D .P >3答案 C 解析 P =a a +1+b b +1+c c +1<a a +b b +cc=3. 2.设x ,y ,z 都是正实数,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2答案 C解析 假设a ,b ,c 都小于2,则a +b +c <6, 又a +b +c =x +1y +y +1z +z +1x=⎝⎛⎭⎪⎫x +1x +⎝⎛⎭⎪⎫y +1y +⎝⎛⎭⎪⎫z +1z ≥6,与a +b +c <6矛盾. 所以a ,b ,c 至少有一个不小于2.A 、B 、D 可用特殊值法排除.故选C.3.已知a >0,b >0,c >0,且a 2+b 2=c 2,则a n +b n 与c n(n ≥3,n ∈N +)的大小关系为( ) A .a n+b n>c nB .a n +b n <c nC .a n +b n ≥c nD .a n +b n =c n答案 B解析 ∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c<1,∴y =⎝ ⎛⎭⎪⎫a c x ,y =⎝ ⎛⎭⎪⎫b c x 均为减函数.∴当n ≥3时,有⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2, ∴⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴a n+b n<c n.4.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A 与B 的大小关系为( )A .A ≥B B .A =BC .A >BD .A <B 答案 D解析 ∵x >0,y >0,∴A =x 1+x +y +y 1+x +y <x 1+x +y1+y=B .5.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0B .1C .2D .3 答案 C解析 对于①,假设(a -b )2+(b -c )2+(c -a )2=0,这时a =b =c ,与已知矛盾,故(a -b )2+(b -c )2+(c -a )2≠0,故①正确;对于②,假设a >b 与a <b 及a ≠c 都不成立,这时a =b =c ,与已知矛盾,故a >b 与a <b 及a ≠c 中至少有一个成立,故②正确; 对于③,显然不正确.6.设a ,b ,c 是正数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“P ·Q ·R >0”是“P ,Q ,R 同时大于零”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 必要性显然成立.充分性:若P ·Q ·R >0, 则P ,Q ,R 同时大于零或其中有两个负的, 假设其中有两个负的成立,不妨设P <0,Q <0,R >0,因为P <0,Q <0, 即a +b <c ,b +c <a .所以a +b +b +c <c +a .所以b <0,与b >0矛盾,故假设不成立,故充分性成立. 二、填空题7.若A =1210+1210+1+…+1211-1,则A 与1的大小关系为________.答案 A <1解析 A =1210+1210+1+…+1211-1<1210+1210+…+1210=210210=1.共210个8.用反证法证明“一个三角形不能有两个直角”有三个步骤:①则∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形的内角和为180°矛盾,故结论错误. ②所以一个三角形不可能有两个直角.③假设△ABC 有两个直角,不妨设∠A =∠B =90°. 上述步骤的正确顺序是________. 答案 ③①②解析 由反证法的证明题步骤可知,正确顺序应该是③①②.9.已知a ∈R +,则12a ,12a +1,1a +a +1从大到小的顺序为________.答案12a>1a +a +1>12a +1解析 因为a +a +1>a +a =2a ,a +a +1<a +1+a +1=2a +1,所以2a <a +a +1<2a +1, 所以12a >1a +a +1>12a +1.10.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],满足|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12,那么它的反设应该是________.答案 存在x 1,x 2∈[0,1]且x 1≠x 2满足|f (x 1)-f (x 2)|<|x 1-x 2|,使|f (x 1)-f (x 2)|≥12成立 三、解答题11.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数,证明 假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知,a ,b ,c ,d ∈[0,1]. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾,∴a ,b ,c ,d 中至少有一个是负数.12.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n ,当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…,当k =n 时,12n ≤1n +n <1n,∴12=n 2n ≤1n +1+1n +2+…+12n <n n =1. ∴原不等式成立.13.设a ,b ∈R,0≤x ≤1,0≤y ≤1,求证:对于任意实数a ,b 必存在满足条件的x ,y ,使|xy -ax -by |≥13成立.证明 假设对一切0≤x ≤1,0≤y ≤1,结论不成立, 则有|xy -ax -by |<13.令x =0,y =1,得|b |<13;令x =1,y =0,得|a |<13;令x =y =1,得|1-a -b |<13.又|1-a -b |≥1-|a |-|b |>1-13-13=13,这与上式矛盾.故假设不成立,原命题结论正确. 四、探究与拓展14.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…·(a 7-7)为偶数.证明:假设p 为奇数,则________均为奇数. ①因为7个奇数之和为奇数,故有(a 1-1)+(a 2-2)+…+(a 7-7)为________. ②而(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=________. ③②与③矛盾,故p 为偶数.答案 ①a 1-1,a 2-2,…,a 7-7 ②奇数 ③0解析 由假设p 为奇数可知,(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾. 15.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n 2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知,1a n =23n -1,因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32. 精美句子1、善思则能“从无字句处读书”。

2018_2019学年高中数学第二讲证明不等式的基本方法三反证法与放缩法习题课件

2018_2019学年高中数学第二讲证明不等式的基本方法三反证法与放缩法习题课件
第二讲
证明不等式的基本方法

反证法与放缩法
[A 件使用( )
基础达标]
1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条 ①与结论相反的判断,即假设; ②原命题的条件; ③公理、定理、定义等; ④原结论. A.①② C.①②③ B.①②④ D.②③
解析: 选 C.由反证法的推理原理可知, 反证法必须把结论的相 反判断作为条件应用于推理,同时还可应用原条件以及公理、 定理、定义等.
即 c= a2+b2. a+b a+b 又有 a+b>c,所以 1< c = 2 2≤ a +b a+b 2= 2. (a+b) 2
)
B.(0, 2] D.[1, 2]
解析:选 C.因为∠C=90°,所以 c2=a2+b2,
1 1 5.设 a>b>0,则 a+ + 的最小值为( b a-b 11 A. 2 9 C. 2 B.3 D.4
)
解析:选 D.因为 a>b>0,所以 a-b>0, 1 1 1 1 所以 a+ + =(a-b)+ + +b≥ b a-b b a-b 4
4
1 1 (a-b)· · b=4, b· a-b
1 1 当且仅当 a-b=b= =b,即 a=2 且 b=1 时取等号, a- b 1 1 所以 a+b+ 的最小值为 4.故选 D. a-b
6.用反证法证明命题:“一个三角形中不能有两个直角”的 过程归纳为以下三个步骤: ①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内 角和为 180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C 中有两个角是直角, 不妨设∠A=∠B=90°. 正确顺序的序号排列为________.

2020学年高中数学第2讲证明不等式的基本方法3反证法与放缩法学案新人教A版选修4-5(最新整理)

2020学年高中数学第2讲证明不等式的基本方法3反证法与放缩法学案新人教A版选修4-5(最新整理)

2019-2020学年高中数学第2讲证明不等式的基本方法3 反证法与放缩法学案新人教A版选修4-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年高中数学第2讲证明不等式的基本方法3 反证法与放缩法学案新人教A版选修4-5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年高中数学第2讲证明不等式的基本方法3 反证法与放缩法学案新人教A 版选修4-5的全部内容。

三反证法与放缩法学习目标:1.掌握用反证法证明不等式的方法.(重点)2.了解放缩法证明不等式的原理,并会用其证明不等式.(难点、易错易混点)教材整理1 反证法阅读教材P26~P27“例2”及以上部分,完成下列问题.先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把这种证明问题的方法称为反证法.如果两个正整数之积为偶数,则这两个数()A.两个都是偶数B.一个是奇数,一个是偶数C.至少一个是偶数D.恰有一个是偶数C[假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少有一个为偶数.]教材整理2 放缩法阅读教材P28~P29“习题”以上部分,完成下列问题.证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.若|a-c|<h,|b-c|<h,则下列不等式一定成立的是( )A.|a-b|<2h B.|a-b|>2hC.|a-b|<h D.|a-b|>hA[|a-b|=|(a-c)-(b-c)|≤|a-c|+|b-c|<2h。

高中数学第二讲讲明不等式的基本方法三反证法与放缩法优化练习新人教A版选修4-5(2021年整理)

高中数学第二讲讲明不等式的基本方法三反证法与放缩法优化练习新人教A版选修4-5(2021年整理)

2017-2018学年高中数学第二讲讲明不等式的基本方法三反证法与放缩法优化练习新人教A版选修4-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二讲讲明不等式的基本方法三反证法与放缩法优化练习新人教A版选修4-5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二讲讲明不等式的基本方法三反证法与放缩法优化练习新人教A版选修4-5的全部内容。

三反证法与放缩法[课时作业][A组基础巩固]1.如果两个正整数之积为偶数,则这两个数()A.两个都是偶数B.一个是奇数,一个是偶数C.至少一个是偶数D.恰有一个是偶数解析:假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少一个为偶数.答案:C2.设x〉0,y>0,A=错误!,B=错误!+错误!,则A与B的大小关系为( )A.A≥B B.A≤BC.A〉B D.A<B解析:A=错误!+错误!〈错误!+错误!=B。

答案:D3.设x,y,z都是正实数,a=x+错误!,b=y+错误!,c=z+错误!,则a、b、c三个数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2解析:假设a,b,c都小于2,则a+b+c<6,这与a+b+c=x+错误!+y+错误!+z+错误!≥6矛盾.故选C。

答案:C4.设M=错误!+错误!+错误!+…+错误!,则( )A.M=1 B.M<1C.M〉1 D.M与1大小关系不定解析:M是210项求和,M=1210+1210+1+错误!+…+错误!〈错误!+错误!+错误!+…+错误!=1,故选B.答案:B5.若f(x)=错误!x,a,b都为正数,A=f错误!,G=f(错误!), H=f错误!,则()A.A≤G≤H B.A≤H≤GC.G≤H≤A D.H≤G≤A解析:∵a,b为正数,∴错误!≥错误!=错误!≥错误!=错误!,又∵f(x)=错误!x为单调减函数,∴f错误!≤f(错误!)≤f错误!,∴A≤G≤H。

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法a45a高二45数学

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法a45a高二45数学

证明:因为当 n≥2 时,an=2n2>2n(n-1),


1 an

1 2n2

1 2n(n-1)

1 2
·
1 n(n-1)

1 2
n-1 1-n1,
第二十页,共二十九页。
所以a11+a12+…+a1n <1+121×1 2+2×1 3+…+n(n1-1) =1+121-12+12-13+ …+n-1 1-n1 =1+121-n1
同理, y2+yz+z2>z+2y.②
第二十四页,共二十九页。
因为由①+②得 x2+xy+y2+ y2+yz+z2>x+y +z,
所以原不等式成立.
第二十五页,共二十九页。
(2)证明:因为 n>1,n∈N+, 所以n+1 1+n+1 2+…+21n<n1+n1+…+n1=1, n+1 1+n+1 2+…+21n>21n+21n+…+21n=12, 所以原不等式成立.
第二十三页,共二十九页。
[变式训练] (1)已知 x>0,y>0,z>0,求证:
x2+xy+y2+ y2+yz+z2>x+y+z; (2)求证:12<n+1 1+n+1 2+…+21n<1(n>1,n∈N*).
证明:(1)因为 x>0,y>0,z>0,
所以 x2+xy+y2=
x+2y2+34y2>x+2y,①
第二十一页,共二十九页。
=32-21n <32, 故a11+a12+…+a1n<32.
第二十二页,共二十九页。
归纳升华 放缩法就是将不等式的一边放大或缩小,寻找一个 中间量,如将A放大成C,即A<C,后证C<B. 常用的放缩技巧有: (1)舍掉(加进)一些项. (2)在分式中放大(缩小)分子(分母). (3)应用基本不等式进行放缩.

高中数学第二讲三反证法与放缩法同步配套教学案新人教A版选修4

高中数学第二讲三反证法与放缩法同步配套教学案新人教A版选修4

三 反证法与放缩法对应学生用书P24 1.反证法(1)反证法证明的定义:先假设要证明的命题不成立,从此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.放缩法(1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.对应学生用书P24[例1] 已知求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.[思路点拨] “不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”.[证明] (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”,“至少”,“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:“不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 答案:D2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列∴a =b -d ,c =b +d (其中d 公差). ∴ac =b 2=(b -d )(b +d ).∴b 2=b 2-d 2.∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b 则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a )与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ), 于是有f (a )+f (-b )>f (b )+f (-a )与已知矛盾.故假设不成立. ∴a <b .[例2] 已知实数x ,y ,z 不全为零.求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).[思路点拨] 解答本题可对根号内的式子进行配方后再用放缩法证明. [证明] x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2 ≥⎝ ⎛⎭⎪⎫x +y 22 =|x +y2|≥x +y2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加得:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝⎛⎭⎪⎫x +y 2+⎝⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当地放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ), 得12n ≤1n +k <1n. 当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n ,∴将以上n 个不等式相加得: 12=n 2n ≤1n +1+1n +2+…+12n <n n=1. 5.设f (x )=x 2-x +13,a ,b ∈[0,1],求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b | =|(a -b )(a +b -1)|=|a -b ||a +b -1| ∵0≤a ≤1,0≤b ≤1 ∴0≤a +b ≤2, -1≤a +b -1≤1,|a +b -1|≤1. ∴|f (a )-f (b )|≤|a -b |.对应学生用书P251.如果两个正整数之积为偶数,则这两个数( ) A .两个都是偶数B .一个是奇数,一个是偶数C .至少一个是偶数D .恰有一个是偶数解析:假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少一个为偶数.答案:C2.设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y2+y,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:N =x 2+x +y 2+y >x 2+x +y +y 2+x +y =x +y2+x +y=M .答案:B3.设a ,b ,c 是正数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“P ·Q ·R >0”是“P ,Q ,R 同时大于零”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:必要性显然成立.充分性:若P ·Q ·R >0,则P ,Q ,R 同时大于零或其中有两个负的,不妨设P <0,Q <0,R >0.因为P <0,Q <0.即a +b <c ,b +c <a .所以a +b +b +c <c +a . 所以b <0,与b >0矛盾,故充分性成立. 答案:C4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0个 B .1个 C .2个D .3个解析:对①,若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾;故①对; 对②,当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;对③,显然不正确.答案:C5.若要证明“a ,b 至少有一个为正数”,用反证法的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________. 解析:∵lg 9>0,lg 11>0.∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1.∴lg 9·lg 11<1. 答案:lg 9·lg 11<1 7.完成反证法整体的全过程.题目:设a 1,a 2,…,a 7是1,2,3,……,7的一个排列, 求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数. 证明:反设p 为奇数,则________________均为奇数. ①因奇数个奇数的和还是奇数,所以有 奇数=________________________ ② =________________________③ =0.但奇数≠偶数,这一矛盾说明p 为偶数.解析:反设p 为奇数,则(a 1-1),(a 2-2),…,(a 7-7)均为奇数. 因为奇数个奇数的和还是奇数,所以有 奇数=(a 1-1)+(a 2-2)+…+(a 7-7) =(a 1+a 2+…+a 7)-(1+2+3+…+7) =0.但奇数≠偶数,这一矛盾说明p 为偶数. 答案:(a 1-1),(a 2-2),...,(a 7-7) (a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+3+ (7)8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知:a ,b ,c ,d ∈[0,1].从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2.∴ac +bd ≤a +c +b +d2=1.即ac +bd ≤1.与已知ac +bd >1矛盾,∴a ,b ,c ,d 中至少有一个是负数.9.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1nn -=1n -1-1n, 所以112+122+132+…+1n 2<1+11×2+12×3+…+1n -n=1+(1-12)+(12-13)+…+(1n -1-1n )=2-1n<2.10.证明抛物线x =y 2上,不存在关于直线x +y +1=0对称的两点.证明:假设抛物线x =y 2上存在两点A (a 2,a )B (b 2,b )(a ≠b )关于直线x +y +1=0对称.由k AB =1,且A 、B 的中点⎝ ⎛⎭⎪⎫a 2+b 22,a +b 2在直线x +y +1=0上. 即⎩⎪⎨⎪⎧a -b a 2-b 2=1, ①a 2+b 22+a +b 2+1=0. ②由①得a +b =1,代入②得a 2+b 22+32=0.此方程无解,说明假设不成立.∴抛物线x =y 2上不存在关于直线x +y +1=0对称的两点.。

高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教A版选修45

高中数学 第二讲 讲明不等式的基本方法 2.3 反证法与放缩法 2.3.2 放缩法课后导练 新人教A版选修45

2.3.2 放缩法课后导练基础达标 1设x>0,y>0,A=y x y x +++1,B=yyx x +++11,则A,B 的大小关系是_________________.解析:A=y x y y x x +++++11<yy x x +++11=B.答案:A<B2记A=111021121+++Λ,则A 与1的关系是_______. 解析:A=121212121221121102101010111010=+++<+++++444344421ΛΛ个答案:A<13用不等号将下列各式连接起来:(1)41_______________log 83; (2)31________________log 72;(3)log 54234⨯⨯__________log 452345⨯⨯⨯.解析:(1)41=log 8841<log 8941=log 83.(2)31=log 7731<log 7831=log 72.(3)log 54234⨯⨯=log 5424<log 5425=21, 而log 452345⨯⨯⨯=log 45120>log 4564=53,∴log 54234⨯⨯<log 452345⨯⨯⨯. 答案:(1)< (2)< (3)<4已知a>b>c,则比较大小:))((c b b a --_______2ca -. 解析:∵a>b>c,∴a -b>0,b-c>0,22)()())((ca cb b ac b b a -=-+-≤--.∴))((c b b a --≤2ca -.答案:≤5求证:2<2log 3log 32+<2+1.证明:2log 3log 32+2log 3log 232•>=2, 又2log 3log 32+<23log 4log 32=++1,∴2<22log 3log 32<++1. 综合应用6已知a>b≥0,c>0,求证:b c b a c a -+<-+.证明:b c b cb c b c bc b c ac a c a c a -+=-+=++<++=-+)(.7求证:2(1+n -1)<1+n n213121<+++Λ(n∈N *).证明: ∵)1(2121k k k k k-+=++>, ∴1+)23(2)12(213121-+->+++nΛ)11(2)1(2-+=-+++n n n Λ又),1(2121--=-+<k k k k k∴n n n n2)1(2)12(2)01(213121=--++-+-<+++ΛΛ∴原不等式成立. 8已知a n =)1(433221+⨯++⨯+⨯+⨯n n Λ(n∈N *),求证:2)1(+n n <a n <2)1(2+n .证明:∵)1(+⨯n n >n, ∴a n =2)1(21)1(3221+=+++>+⨯++⨯+⨯n n n n n ΛΛ.又)1(+⨯n n <21[(n+1)+n ]=21(2n+1), ∴a n =2)1(2122523)1(32212+<++++<+++⨯+⨯n n n n ΛΛ∴2)1(2)1(2+<<+n a n n n . 9求证:91+41)12(14912512<++++n Λ(n∈N *). 证明:)111(41)22121(21)12(12+-=+-<+n n n n n , ∴左式<41[(1-21)+(21-31)+…+(111+-n n )]=41(1-11+n )<41. 拓展探究10在△ABC 中,求证:3π≤2π<++++c b a cC bB aA (a,b,c 为三边,A,B,C 为弧度).证明:∵b+c>a,有a+b+c>2a,∴,21<++c b a a 可知2Ac b a aA <++.同理,2,2Cc b a cC B b b a bB <++<++.∴22π=++<++++C B A c b a cC bB aA .又∵(a -b)(A-B)≥0,便是aA+bB ≥aB+bA, ∴aA+bB+cC≥aB+bA+cC. 同理,aA+bB+cC≥cA+aC+bB, aA+bB+cC≥cB+bC+aA.三式相加,得3(aA+bB+cC)≥π(a+b+c), 即c b a cC bB aA ++++≥3π.∴原不等式成立. 备选习题11设n∈N ,且n>1,f(n)=1+21+31+…+n 1,求证:f(2n)>22+n . 证明:f(2n)=1+21+31+…+n 1+…+n 21=1+21+(31+41)+(>++++++++++--)21221121(8171615111n n n ΛΛ 22)212121()81818181()4141(211+=++++++++++++n n n n ΛΛ12设三角形三边a,b,c 满足关系a n +b n =c n(n≥3,n∈N ),求证:△ABC 为锐角三角形.证明:∵a n +b n =c n, 故(c a )n +(cb )n=1. ∴c>a,c>b,△ABC 中c 边最长. 又由于n≥3,1=(c a )n +(c b )n <(c a )2+(cb )2, ∴a 2+b 2>c 2,由余弦定理cosC=abc b a 2222-+>0,△ABC 为锐角三角形.13设a 1,a 2,a 3, …,a n 是一组正数,求证:12212321322121)()()(a a a a a a a a a a a a n n <+++++++++ΛΛ证明:,11)()(21121122212a a a a a a a a a a +-=+•<+,321213212132321311))(()(a a a a a a a a a a a a a a a ++-+=+++<++, ))(()(21121221nn nn n a a a a a a a a a a a ++++++<++-ΛΛΛ n n a a a a a a +++-+++=-ΛΛ2112111∴+++++++Λ232132212)()(a a a a a a a .111)(1211221a a a a a a a a a n n n <+++-<+++ΛΛ14α≠2πn (n∈Z ),求证:(1+αn 2sin 1)(1+αn 2cos 1)≥(1+2n )2. 证明:左式=1+αn 2sin 1+αn 2cos 1+≥•ααnn 22cos sin 12|cos sin |1|cos sin |21ααααn n n n •+•+≥(1+2n )2(∵|sinα·cosα|≤21). ∴原不等式成立.15设0<α<2π,0<β<2π,0<k≤21,且sin 2α=k·cosβ,求证:α+β<2π.证明:∵sin 2α=k·cosβ=k·sin(2π-β)=2k·sin(4π-2β)·cos(4π-2β)<2k·sin(4π-2β)≤sin(4π-2β),又2α∈(0,4π),4π-2β∈(0,4π), 正弦函数在(0,2π)内单调递增,∴2α<4π-2β, 即α+β<2π.16已知-1≤x≤1,n≥2,求证:(1-x)n+(1+x)n≤2n. 证明:∵-1≤x≤1,设x=cos2θ,则1-x=1-cos2θ=1-(1-2sin 2θ)=2sin 2θ,1+x=2cos 2θ.∴(1-x)n +(1+x)n =(2sin 2θ)n +(2cos 2θ)n=2n (sin 2n θ+cos 2nθ).考虑指数函数y=a x,当a∈(0,1)时,在x∈(0,+∞)上单调递减,∴sin 2n θ≤sin 2θ, cos 2n θ≤cos 2θ. ∴2n (sin 2n θ+cos 2n θ)≤2n (sin 2θ+cos 2θ)=2n .∴(1-x)n +(1+x)n ≤2n.。

高中数学《反证法与放缩法》导学案

高中数学《反证法与放缩法》导学案

2-3 反证法与放缩法一、学习目标1.理解反证法在证明不等式中的作用,掌握用反证法证明不等式的方法.2.掌握放缩法证明不等式的原理,并会用其证明不等式.【重点、难点】教学重点:利用反证法、放缩法证明不等式或常规问题教学难点:会用反证法、放缩法证明简单的命题。

二、学习过程【情景创设】1.什么是反证法?反证法证明不等式的理论依据是什么?反证法证明不等式的步骤有哪些?通常什么样的问题的证明用反证法?2.放缩法证明不等式的理论依据是什么?放缩法证明不等式的步骤有哪些?放缩法证明不等式时,放缩技巧有哪些?【导入新课】阅读课本第26-29页,完成下面知识点的梳理)1.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理,性质等进行正确的推理,得到和命题的条件(或已证明的定理、性质,明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法.想一想:哪些命题或不等式适合用反证法证明?提示 存在性命题、否定性命题、唯一性命题或结论中出现“至少”、“至多”、“全都”等字词的命题或不等式.2.放缩法将所需证明的不等式的值适当放大(或缩小)使它由繁化简,达到证明目的.如果所要证明的不等式中含有分式,把分母放大,则相应分式的值缩小,反之,把分母缩小,则分式的值放大.三 、典例分析例1、设233=+b a ,求证.2≤+b a例2、设0 < a , b , c < 1,求证:(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41例3、 求证:32-1n +1<1+122+ (1)2<2-1n (n ∈N *,且n ≥2).例4.求证:2(n +1-1)<1+12+13+…+1n <2n ,其中n ∈N +.四、总结反思1.用反证法证明不等式要把握三点:(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完整的.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证.否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相违背,等等,推导出的矛盾必须是明显的.2.放缩法的关键在于放大(或缩小)要适度.3.当要证明的不等式中含有分式时,我们把分母放大,则相应的分式的值缩小;反之,如果把分母缩小,则分式的值放大.这是一种常用的放缩方法.4.放缩法放大缩小的限度不是唯一的,如果用某种放大的办法可以得到欲证结论,那么比此放大更“精细”的放大就应该更能得到所需结论.但是一般来讲,这种“风险”和“难度”是成正比的,放得越宽,能否证出命题的“风险”越大,但相对放大的“难度”就越低;反之,放大越精细,则能证出最终结论的可能性越大,但是“难度”也相对增大.这其中的平衡就需要从练习中去把握.五、随堂检测1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用 ( )①结论的否定;②已知条件;③公理、定理、定义等;④原结论.A.①②B.②③C.①②③D.①②④2.用反证法证明命题“三角形的三个内角中至少有一个大于等于60°”时,反设正确的是 ( )A.三个内角都小于60°B.三个内角都大于60°C.三个内角中至多有一个大于60°D.三个内角中至多有两个大于60°3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为______.4.设a,b,c∈R,且a+b+c=0,求证:ab+bc+ca≤0.5.求证:2(n+1-1)<1+12+13+…+1n<2n,其中n∈N+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +(n ∈N *).求证:n n +2<a n <n n +2.证明:∵n n +=n 2+n ,∴nn +>n ,∴a n =1×2+2×3+…+n n +>1+2+3+…+n =n n +2.∵nn +<n +n +2,∴an <1+22+2+32+3+42+…+n +n +2=n 2+(1+2+3+…+n )=n n +2.综上得n n +2<a n <n n +2.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f =a +b +c =2,f -=a -b +c =-52或⎩⎪⎨⎪⎧f =a +b +c =-52,f -=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b+m 1b +m 2=am 2+bm 1-am 1-bm 2b+m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2.逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达11 不到目的.求证:32-1n +1<1+12+…+1n <2-1n (n ∈N *且n ≥2).∵k (k +1)>k 2>k (k -1)(k ∈N *且k ≥2),∴1k k +<1k 2<1k k -.即1k -1k +1<1k 2<1k -1-1k .分别令k =2,3,…,n ,得12-13<122<1-12,13-14<132<12-13,…1n -1n +1<1n 2<1n -1-1n ,将这些不等式相加,得12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n ,即12-1n +1<122+132+…+1n 2<1-1n .∴1+12-1n +1<1+122+132+…+1n 2<1+1-1n .即32-1n +1<1+122+…+1n 2<2-1n (n ∈N *且n ≥2)成立.。

相关文档
最新文档