2.1.1(2)指数与指数幂的运算(教学设计)
指数与指数幂的运算优秀教案
2.1.1 指数与指数幂的运算(2课时)第一课时 根式教案目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教案重点:根式的概念、分数指数幂的概念和运算性质教案难点:根式概念和分数指数幂概念的理解教案方法:学导式教案过程:(I )复习回顾引例:填空 *)n a a a n N ⋅∈个(; m n a += (m,n ∈Z); _____=; (II )讲授新课1.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n ba )(可看作m na a -⋅,所以n nn b a b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。
为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。
(2)填空(3),(4)复习了平方根、立方根这两个概念。
如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。
由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。
结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为n a x =。
从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。
国家课程校本化:§2.1.1 指数与指数幂的运算(教师用书)
第二章 基本初等函数(Ⅰ)2.1 指数函数§2.1.1 指数与指数幂的运算【课标解读】 1.理解n 次方根和根式的概念;2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算; 3.学习重点:理解有理指数幂的含义,掌握幂的运算;4.学习难点:理解根式根式的概念,掌握根式与分数指数幂之间的转化.【自学导引】1.若n n 33-=- ,则n 的取值集合是 . 【答案】{|21,}n n k k *=+∈N 2.下列说法正确的是( ) (A )64的6次方根是2 (B )664的运算结果是2±(C )1>n 且*N ∈n 时,a a n n =)(对于任意实数a 都成立(D )1>n 且*N ∈n 时,式子n n a 对于任意实数a 都有意义【答案】D3.设a n n m ,1,,>N ∈*是正实数,则下列各式中正确的有( )①n m nm a a=; ②10=a ; ③m na-=(A )3个 (B )2个 (C )1个 (D )0个【答案】A41104325(0.008)()0.253----⨯⨯【答案】π5.无理指数幂的含义:如32,它是一个确定的实数,可以看成由以3的一串不足近似值和相应的一串过剩近似值为指数的有理数幂的值 的结果.【答案】逼近【典例精析】【例1】求使等式3)3()9)(3(2+-=--a a a a 成立的实数a 的范围.【答案】{|33}a a -≤≤ 【例2】已知13x x -+=,求下列各式的值:(1)1122x x-+; 【答案】5(2)22x x -+; 【答案】7(3)22x x --; 【答案】± (4)33x x -+. 【答案】5【例3】化简:223410623+--.【自主反馈】 1.(原创题)下列各式正确的是( )(A )42=- (B 2=-(C )322[(2)]8-=- (D )x=2.计算:111232217(0.027)()(2)279---+= .3.已知31=+-a a ,下列各式中正确的个数是( )①722=+-aa ;②1833=+-aa ;③52121±=+-aa ;④521=+aa a a .(A )1 (B )2 (C )3 (D )4 4.【课时作业】1. 根式aa 11(式中0>a )的分数指数幂形式为( ) (A )34-a (B )34a (C )43-a(D )43a2.若0≠xy ,则xy y x 2422-=成立的条件可以是( )(A )0,0>>y x (B )0,0<>y x (C )0,0≥<y x (D )0,0<<y x3. 552)()(b a b a -+-的值是( )(A )0 (B ))(2b a - (C )0或)(2b a - (D )b a -4. 计算122121(2)()2()48n n n n ++*-∈N ⋅的结果为( ) (A )461 (B )522+n (C )6222+-n n (D )72)21(-n5. 与aa 1-的值相等是( ) (A )a(B )a -(C )a - (D )a --6. 若11225x x-+=,则21x x+的值是 .7.160.25361.587-⎛⎫⨯-+ ⎪⎝⎭.8. 使式子34(12)x --有意义的x 的取值范围是 _.9. 若103m=,102n=,则3210m n -的值为 .10.已知22)()()(a b b a b a --=--成立,则b a ,需满足条件 .11. 计算:5.00312603.1232366141+--+-⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛--.12.已知21na =,求33n nnna a a a--++的值.13.2()a n *=∈N 成立的条件.14.(1)x ≥。
2.1.1指数与指数幂的运算教案
2.1.1指数与指数幂的运算教案篇一:2.1.1指数与指数幂的运算教案指数与指数幂的运算申请资格种类:高级中学教师资格学科:数学测试人姓名:课题名称:第二章第一节指数函数第一课时指数与指数幂的运算一、教学内容分析指数函数是基本初等函数之一,应用非常广泛。
它是在上一章节学习了函数的概念和基本性质后第一个较为系统研究的基本初等函数。
教科书通过实际问题引入分数指数幂,说明了扩张指数范围的必要性,为此先将平方根和立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,然后进一步介绍了分数指数幂及其运算性质,最后结合一个实例,通过有理数指数幂逼近无理数指数幂的方法介绍了无理数指数幂的意义,从而将指数的取值范围扩充到实数。
本节是下一节学习指数函数的基础。
二、教学对象分析授课对象为高一学生。
首先,这个年龄段的学生学习兴趣浓厚、思维活跃和求知欲强。
其次,学生在初中学习阶段已经接触到平方根与立方根、整数指数幂及其运算性质等知识点,为本节学习奠定了知识的基础。
最后,本节的学习过程中对学生观察力、逻辑能力、抽象能力有一定要求,这对该阶段的学生可能会造出一定的困难。
三、教学目标四、教学重点和难点本节的教学重点是理解有理数指数幂的意义、掌握幂的运算。
本节的教学难点是理解根式的概念、掌握根式与分数指数幂之间的转化、理解无理数指数幂的意义。
五、教学方法根据本节课的特点,采用问题探究、引导发现和归纳概括相结合的教学方法。
六、教学过程设计(一)导入新课1、引导学生回忆函数的概念,说明学习函数的必要性,引出实例。
2、以实例引入,让学生体会其中的函数模型的同时,激发学生探究分数指数幂的兴趣与欲望。
问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。
根据此规律,人们想获得了生物体内碳14含量P与死亡年数t的关系。
引导学生得出关系式:t?1?5730P???2??总结关系式能解决实际问题,让学生体会数学的应用价值,同时指出为了更好地解决实际问题必须进一步深入学习函数。
学案6:2.1.1 指数与指数幂的运算
当x≥y时,原式=x-y+y-x=0;
当x<y时,原式=y-x+y-x=2(y-x).
所以原式=
例2(1) (2)a (3)①a3· =a3·a =a =a .
【解析】(1)a = =
(2)(a2· )÷( · )=(a2·a )÷(a ·a )=a ÷a =a =a
(4)2 ÷4 ·3 .
方法归纳
利用指数幂的运算性质化简求值的方法
(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.
(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.
(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示.
当堂检测
[基础巩固]
一、选择题
1.B
【解析】 =(-2 ) =(-2×2 ) =(-2 ) =-2 .
2.D
【解析】要使原式有意义,只需 ,
∴a≥0且a≠2.
3.A
【解析】依题意知x<0,所以 =- =- .
4.D
【解析】原式= =a =a .
5.C
【解析】( )4·( )4
=( ) ·( )
=(a ) ·(a ) =a ·a =a4.
3.化简 的结果是()
A.- B.
C.- D.
4. (a>0)的值是()
A.1B.a
C.a D.a
5.化简( )4·( )4的结果是()
A.a16B.a8
C.a4D.a2
二、填空题(每小题5分,共15分)
6. -2+(1- )0- -160.75=________.
高中数学2_1指数与指数幂的运算教案版
黑龙江省鸡西市高中数学 2.1.1 指数与指数幂的运算教案新人教版必修1课题:§2.1.1指数及指数幂的运算模式与方法启发式教学目的使学生理根式的概念,掌握n次方根的性质。
重点指数的运算难点指数的运算教学内容师生活动及时间分配一,引入课题为了讲解指数函数,需要把指数的概念扩充到实数指数幂,本小节主要学习分数指数幂的概念和运算性质,并给出了无理数指数幂的概念和性质。
2.为了学习分数指数的概念,首先要介绍根式的概念,学生在初中已学习了数的开平方、开立方和二次根式,根式的内容是这些已学内容的推广。
因此要结合这些已学内容引入根式的概念和n次方根的性质。
二、探索新知(一)引出根式的概念。
需要注意的是,当n 是奇数时,表示a的n次方根;当n是偶数时,a≥0,表示正的n次方根或0。
在两种情况下,根据n次方根的概念,都有。
也就是.教师引导学生复习初中所学的公式及相关知识引导讨论x的范围加深对于公式的理解及应用说,先开方,再乘方(同次),结果为被开方数,如果先乘方,再开方(同次),结果是什么呢?可让学生分别求出的结果,然后指出,一般地,当n 为奇数时,,当n为偶数时,。
可向学生说明,当n 是偶数时。
的结果为|a|,是因为≥0时,而则是根据绝对值的意义得出的。
课堂练习:1、填空: (1)25的平方根是 (2)27的立方根是(3)-32的五次方根为 (4)16的四次方根是2、若244(),a a a -=-则a 的取值范围是3、求下列各式的值(1)2(5) (2)33(2)- (3)44(2)- (4)2(3)π-.四,小结:教师引导学生总结并补充五、课后作业教科书P 59 4选做:练习册。
指数与指数幂的运算教案(1_2课时)
【学习探究】
【预习提纲】
(根据以下提纲,预习教材第50页~第53页)
1.1.分数指数幂
(1)正数的正分数指数幂的意义
=, =, =; = .
(2)正数的负分数指数幂的意义
=, =, =; = .
(3) 的分数指数幂
的正分数指数幂等于, 的负分数指数幂.
2.1.1指数与指数幂的运算(第1课时)
【教学目标】
1.掌握根式的概念以及根式的运算性质
2.让学生学会用联系的观点看待问题
【重点】有理指数幂的概念及运算.
【难点】根式的概念.
【学习探究】
【预习提纲】
(根据以下提纲,预习教材第48页~第50页)
1.整数指数幂及其运算
(1)通过问题1,结合初中所学知识,说明整数指数幂 的含义是__, )的含义是____.
(1) (2) (3)
2.填空
(1)
(1) + ;
(2)
【典型例题】
例1计算下列各式的值:
(1) (2) (3)
【方法总结】
【变式训练】求等式 成立的实数 的范围.
例2计算:(1) ;(2)
【方法总结】
【自我检测】
1.化简 的值是().
(A)3(B)-3(C) 3(D)-9
(2) 次方根
如果 ,那么___________,其中 ,且 .
若 是奇数,任意实数 的 次方根有1个,正数的 次方根是正数,负数的 次方根是负数.
若 是偶数,负数没有偶次方根,而正数的 次方根有2个,它们互为相反数.
无论 是奇数还是偶数,0的 次方根为0.
【感悟】结合初中所学知识,理解记忆,效果较好.
2.1.1指数与指数幂的运算(2)教案
龙文教育个性化辅导教案提纲学生: 日期: 年 月 日 第 次 时段: 教学课题 2.1.1指数与指数幂的运算(2)--导学案教学目标 考点分析 1. 理解分数指数幂的概念; 2. 掌握根式与分数指数幂的互化; 3. 掌握有理数指数幂的运算.教学重点 1. 理解分数指数幂的概念; 2. 掌握根式与分数指数幂的互化教学难点 1. 掌握根式与分数指数幂的互化; 2. 掌握有理数指数幂的运算.教学方法观察法、探究法、启发式教学、讲练结合 教学过程:一、课前准备(预习教材P 50~ P 53,找出疑惑之处)复习1:一般地,若n x a =,则x 叫做a 的 ,其中1n >,n *∈N . 简记为: .像n a 的式子就叫做 ,具有如下运算性质:()n n a = ;n n a = ;np mp a = .复习2:整数指数幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学※ 学习探究探究任务:分数指数幂引例:a >0时,1051025255()a a a a ===, 则类似可得312a = ; 22332333()a a a == ,类似可得a = .新知:规定分数指数幂如下*(0,,,1)mn m na a a m n N n =>∈>; *11(0,,,1)mn mn m n a a m n N n a a -==>∈>.试试:(1)将下列根式写成分数指数幂形式:253= ; 345= ;m a = (0,)a m N *>∈.(2)求值:238; 255; 436-; 52a -.反思:① 0的正分数指数幂为 ;0的负分数指数幂为 .② 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质: (0,0,,a b r s Q >>∈)r a ·r r s a a +=; ()r s rs a a =; ()r r s ab a a =.※ 典型例题例1 求值:2327;4316-; 33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b >:(1)2b b ; (2)533b b ; (3)34b b .例3 计算(式中字母均正):(1)211511336622(3)(8)(6)a b a b a b -÷-; (2)311684()m n .小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1)334a a a(0)a >; (2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)344(1632)64-÷.小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:① 23的结果?结论:无理指数幂.(结合教材P 53利用逼近的思想理解无理指数幂意义)② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何?※ 动手试试练1. 把851323x x --⎛⎫ ⎪ ⎪⎝⎭ 化成分数指数幂.练2. 计算:(1)3443327 ; (2)34638()125a b .三、总结提升※ 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.※ 知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m m n n a a a ÷=B. m n mn a a a ⋅=C. ()nm m n a a += D. 01n n a a -÷= 2. 化简3225的结果是( ).A. 5B. 15C. 25D. 1253. 计算()1222--⎡⎤-⎢⎥⎣⎦的结果是( ). A .2 B .2- C.22 D .22- 4. 化简2327-= . 5. 若102,104m n ==,则3210m n -= .总结与反思:课后作业:1. 化简下列各式:(1)3236()49; (2)233a b a b a b .2. 计算:34333324381224a abb a a ab a ⎛⎫-÷- ⎪ ⎪++⎝⎭.学生对于本次课评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定:1、上次作业评价: ○非常好 ○好 ○ 一般 ○ 需要优化2、上课情况评价: ○非常好 ○好 ○ 一般 ○ 需要优化教师签字:教务主任签字: ___________龙文教育教务处。
教学设计4:2.1.1 指数与指数幂的运算 第二课时
2.1.1 指数与指数幂的运算 第2课时导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题(1)整数指数幂的运算性质是什么? (2)观察以下式子,并总结出规律:a >0, ①510a=352)(a =a 2=a510;②8a =24)(a =a 4=a 28; ③412a =443)(a =a 3=a 412; ④210a=225)(a =a 5=a210.(3)利用(2)的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n ∈N *,且n>1).(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n =n a1(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n . (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①510a =a510,②8a =a 28,③412a=a412,④210a=a210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式). (3)利用(2)的规律,435=543,357=735,57a =a 57,n mx=x nm .(4)53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m 的n 次方根是x nm . 结果表明方根的结果和分数指数幂是相通的.(5)如果a>0,那么a m 的n 次方根可表示为na m =a n m ,即a nm =n a m (a>0,m,n ∈N *,n>1). 综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1). 提出问题①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗? ③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =n a1(a≠0),n ∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1).③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是: 正数的正分数指数幂的意义是a mn =n ma(a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma1(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.⑤若没有a >0这个条件会怎样呢?如(-1)31=3-1=-1,(-1)62=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2=|a|32,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ), (3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例思路1例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4;②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a>0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a 213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8. 活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.解:(1)原式=[2×(-6)÷(-3)]a 612132-+b653121-+=4ab 0=4a;(2)(m 41n83-)8=(m 41)8(n 83-)8=m841⨯n883⨯-=m 2n -3=32n m . 点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(nm =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4计算下列各式: (1)(125253-)÷425; (2)322aa a •(a >0).活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答. 解:(1)原式=(2531-12521)÷2541=(532-523)÷521 =52132--52123-=561-5=65-5;(2)322a a a •=32212aa a •=a32212--=a 65=65a .思路2例1比较5,311,6123的大小.活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了.解:因为5=635=6125,311=6121,而125>123>121,所以6125>6123>6121.所以5>6123>311.点评:把根指数统一是比较几个根式大小的常用方法. 例2求下列各式的值:(1)432981⨯;(2)23×35.1×612.活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,然后分析解答,对(1)应由里往外432981⨯=421344)3(3⨯,对(2)化为同底的分数指数幂,及时对学生活动进行评价.解:(1)432981⨯=[34×(334)21]41=(3324+)41=(3314)41=367=633;(2)63125.132⨯⨯=2×321×(23)31×(3×22)61=231311++·3613121++=2×3=6.例3计算下列各式的值: (1)[(a 23-b 2)-1·(ab -3)21(b21)7]31;(2)1112121-+-++--a a a aa;(3)14323)(---÷a b b a.活动:先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出,利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1)先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2)把分数指数化为根式,然后通分化简,对(3)把根式化为分数指数,进行积的乘方,再进行同底数幂的运算.解:(1)原式=(a23-b 2)31-(ab -3)61·(b 21)37=a 21b32-a 61b21-b 67=a6121+b672132+--=a 32b 0=a 32;另解:原式=(a 23b -2a 21b 23-·b 27)31 =(a2123+b27232+--)31=(a 2b 0)31=a 32;(2)原式=11111-+-++a aa aa =)1(1-+a a a =)1(11-+-a a a a=)111(1-+-a a a= )1(2--a a =)1(2a a a-;(3)原式=(a 21b32)-3÷(b -4a -1)21=a23-b -2÷b -2a21-=a2123+-b -2+2=a -1=a1. 例4已知a >0,对于0≤r≤8,r ∈N *,式子(a )8-r ·)1(4ar能化为关于a 的整数指数幂的情形有几种?活动:学生审题,考虑与本节知识的联系,教师引导解题思路,把根式转化为分数指数幂后再由运算法则计算,即先把根式转化为分数指数幂,再进行幂的乘方,化为关于a 的指数幂的情形,再讨论,及时评价学生的作法.解:(a )8-r ·)1(4ar=a 28r -·a4r -=a448rr --=a4316r -.16-3r 能被4整除才行,因此r=0,4,8时上式为关于a 的整数指数幂.点评:本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍.利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式. 例5已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值; (2)设f (x )f (y )=4,g (x )g (y )=8,求)()(y x g y x g -+的值.活动:学生观察题目的特点,说出解题的办法,整体代入或利用公式,建立方程,求解未知,如果学生有难度,教师可以提示引导,对(1)为平方差,利用公式因式分解可将代数式化简,对(2)难以发现已知和未知的关系,可写出具体算式,予以探求.解:(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )]=(e x -e -x +e x +e -x )(e x -e -x -e x -e -x )=2e x (-2e -x )=-4e 0=-4; 另解:(1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2 =e 2x -2e x e -x +e -2x -e 2x -2e x e -x -e -2x =-4e x -x=-4e 0=-4;(2)f (x )·f (y )=(e x -e -x )(e y -e -y )=e x +y+e -(x+y)-e x -y -e -(x -y)=g (x+y )-g (x -y )=4, 同理可得g (x )g (y )=g (x+y )+g (x -y )=8, 得方程组⎩⎨⎧=++=+8,y)-g(x y)g(x 4,y)-g(x -y)g(x 解得g (x+y )=6,g (x -y )=2.所以)()(y x g y x g -+=26=3.点评:将已知条件变形为关于所求量g (x+y )与g (x -y )的方程组,从而使问题得以解决,这种处理问题的方法在数学上称之为方程法,方程法所体现的数学思想即方程思想,是数学中重要的数学思想. 知能训练课本P 54练习 1、2、3. [补充练习]教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.1.(1)下列运算中,正确的是( ) A.a 2·a 3=a 6 B.(-a 2)3=(-a 3)2 C.(a -1)0=0 D.(-a 2)3=-a 6(2)下列各式①42)4(n -,②412)4(+-n ③54a ,④45a (各式的n ∈N ,a ∈R )中,有意义的是( )A.①②B.①③C.①②③④D.①③④ (3)24362346)()(a a •等于( )A.aB.a 2C.a 3D.a 4(4)把根式-232)(--b a 改写成分数指数幂的形式为( ) A.-2(a -b)52- B.-2(a -b)25-C.-2(a52--b 52-) D.-2(a25--b 25-)(5)化简(a 32b 21)(-3a 21b 31)÷(31a 61b 65)的结果是( )A.6aB.-aC.-9aD.9a2.计算:(1)0.02731--(-71)-2+25643-3-1+(2-1)0=________.(2)设5x =4,5y =2,则52x -y =________.3.已知x+y=12,xy=9且x <y,求21212121yx y x +-的值.答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)83.解:21212121yx y x +-=))(())((2121212121212121y x y x y x y x -+--=yx yy x x -+-21212.因为x+y=12,xy=9,所以(x -y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x <y,所以x -y=-2×33=-63.所以原式36612--=33-. 拓展提升1.化简111113131313132---+++++-x xx x x x x x .活动:学生观察式子特点,考虑x 的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x -1=(x31)3-13=(x 31-1)·(x 32+x 31+1); x+1=(x31)3+13=(x 31+1)·(x 32-x 31+1);x -x 31=x 31[(x31)2-1]=x 31(x 31-1)(x 31+1).构建解题思路教师适时启发提示.解:111113131313132---+++++-x xx x x x x x =111)(11)(3131323131333131323331---+++++-x x x x x x x x x=)1()1)(1(1)1)(1(1)1)(1(31313131313132312132313231-+--++-++++++-x x x x x x x x x x x x x=x 31-1+x 32-x 31+1-x 32-x 31=-x 31. 点拨:解这类题目,要注意运用以下公式, (a 21-b 21)(a 21+b 21)=a -b, (a 21±b21)2=a±2a 21b 21+b,(a 31±b 31)(a32 a 31b 31+b 32)=a±b.2.已知a 21+a 21-=3,探究下列各式的值的求法.(1)a+a -1;(2)a 2+a -2;(3)21212323----aa a a .解:(1)将a 21+a21-=3,两边平方,得a+a -1+2=9,即a+a -1=7;(2)将a+a -1=7两边平方,得a 2+a -2+2=49,即a 2+a -2=47; (3)由于a 23-a23-=(a21)3-(a 21-)3, 所以有21212323----aa a a =2121212112121))((-----++-aa a a a a a a =a+a -1+1=8.点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值. 课堂小结活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是a mn=n a m (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是a m n-=m na 1=n m a 1(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.(3)有理数指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质:①a r ·a s =a r+s (a>0,r,s ∈Q ),②(a r )s =a rs (a>0,r,s ∈Q ),③(a·b)r =a r b r (a>0,b>0,r ∈Q ).(4)说明两点:①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用(a n )n m =n mn a ⨯=a m 来计算.作业课本P 59习题2.1A 组 2、4.设计感想本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.。
指数与指数幂的运算教学设计
指数与指数幂的运算教学设计教学设计:指数与指数幂的运算一、教学目标1.知识与技能:-理解指数的概念;-掌握指数幂与指数的运算规则;-能够用运算规则计算简单的指数幂与指数运算;-能够解决一些实际问题。
2.过程与方法:-采用启发引导和演绎法讲解指数与指数幂的概念和运算规则;-结合实际问题进行训练和应用;-培养学生的逻辑思维和抽象推理能力;-通过合作学习和小组活动提高学生的学习兴趣和合作意识。
3.情感态度价值观:-培养学生的数学兴趣和创新精神;-培养学生的逻辑思维和抽象推理能力;-加强学生的团队协作和沟通能力。
二、教学重点和难点1.教学重点:-指数的概念和运算规则;-指数幂的概念和运算规则。
2.教学难点:-运用运算规则解决一些实际问题。
三、教学准备1.教学材料:教科书、习题集、挂图等;2.教学工具:黑板、彩色粉笔、计算器等;3.教学环境:课堂、实验室等;4.学生准备:认真预习教材内容。
四、教学过程本教学设计采用扩展和巩固知识点相结合的教学方法,具体分为以下几个步骤:步骤一:导入(5分钟)利用个案讨论的方式引入指数的概念和应用。
例如,陈述一个实际问题:“假设你投资1000元,年利率为3%,每年复利计算,5年后你的本金和利息总共是多少?”让学生思考并讨论。
步骤二:探究指数的概念与性质(15分钟)1.通过观察和分析,引导学生总结指数的概念和性质。
例如,通过做一些实际问题,引导学生找到指数的共同规律和特点,如指数是正整数、底数相同则指数相加等。
2.教师给出正确的定义和公式,并对概念进行解释和说明。
步骤三:研究指数幂的意义(20分钟)1.通过具体例子,引导学生理解指数幂的概念和意义。
例如,计算2的3次方,是指底数2乘以自己三次的结果。
2.结合实际问题,让学生分组进行小组活动,解决有关指数幂的实际问题,并向全班汇报和分享。
步骤四:掌握指数幂的运算规则(20分钟)1.通过实际例子和计算,引导学生总结指数幂的运算规则。
2.1.1.指数与指数幂的运算学案一
2.1.1 指数与指数幂的运算(一)【学习目标】1.能说出n 次方根及根式的定义、能用其定义进行化简求值;2.能将根式与初中所学二次根式类比,通过运算使同学们养成严谨思维的学习习惯.【学习重点】能用n 次方根的定义进行化简求值.【难点提示】n 次根式的准确运算与灵活运用.【学法提示】1.请同学们课前将学案与教材4850P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“九字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备1.我们在初中以及学习了乘方的意义,即n a = ;n a -= ()*n N ∈.2.在初中学习的整数指数幂的运算性质是 、 、 .3.计算填空:22= ;2(2)-= ;若24,x x ==则 ;由此我们知道,2x a =,x 叫做a 的平方根,记为:x =29x =,则x = ±3是9的平方根;若5n x =,则x 等于什么?这就是现在要学习的内容.你想知道怎样求得x 吗?二、学习探究 1.根式的概念●阅读理解 请同学们阅读教材第49页后,完成以下填空:(1)如果n x a =,那么x 叫做a 的 ,其中1n >,且n N ∈.(2叫做 ,这里n 叫做 ,a 叫做 .快乐体验1.填空:16的四次方根是 ;3是 的三次方根;3的平方根是 ;2.计算下列各式,然后思考方根有哪些性质?= ;= = ;= ; 23= ;2(3)-= ;42= ; 4(2)-= ; = ; = ; = .3.计算下列各式然后想想它们有哪些共同点?2= ;3= ; 3= .= ; = ; = ; = .2.根式的性质 (1)n 次方根的性质●归纳归纳概括:(结合“快乐体验”,独立填写下列各空,然后与教材49页进行核对)○1当n 是奇数时,正数的n 次方根是一个 ,负数的n 次方根是一个 .这时,a 的n 次方根用符号 表示.○2当n 是偶数时,正数的n 次方根有两个,这两个数互为 .这时,正数a 的正的n 次方根用符号 表示,负的n 次方根用符号 表示.正的n 次方根与负的n 次方根可以合并写成 .③0的任何次方根都是00=;④负数 偶次方根.(2)根式的性质根据上述观察思考所得结果完成下列填空 (结合“快乐体验”,独立填写下列各空,然后与教材50页进行核对) n = ,= .三、典例赏析例1(教材50p 例1) 解:●解后反思 例1中的第4小题如果去掉条件a b >又该如何处理呢?易错点在哪里?●变式练习 求下列各式和值:(1;(2 ;(3 解:例2. (1= ;(2)设33x -<<思路启迪:题目要求化简代数式,入手点在什么地方?(去掉根号)你能从被开方式的结构特征中找到所要的关系吗,请你试一试.解:●解后反思 被开方式有什么结构特征,解答此题时你运用了什么知识? 在(2)小题中,若该题不给条件33x -<<,又如何化简呢?●变式练习 计算:(1)2 (2)625625++-解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?如:n 次方根与根式的定义是什么?n 次方根与平方根有何关系?n 次方根与根式各有=a 一定成立吗? 2.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?五、学习评价1.27的平方根与立方根分别是( )A .B .±C .3±D .3±±2.2(0)a a ≠的算术平方根为( )A .aB .a -C .aD .a ±3.()30a a -≠的立方根为 ( ).A .a ;B .a -;C .a ;D .a ±;4,n a ∈∈N R )各式中,有意义的是( )A .①②;B .①③;C .①②③④;D .①③④.4= ;= ;=()0,0a b <<5.若35x y < .6.解下列方程(1)3216x =-;(2)422240x x --=.◆承前启后 我们学习了n。
211指数与指数幂的运算公开课(教学设计)
2.1.1指数与指数幂的运算(2)(教学设计)内容:分数指数幂吕桂梅 2017年4月12日一、教学目标:知识与技能:理解分数指数幂的含义,了解分数指数幂的运算性质,掌握根式与分数指数幂的互化。
通过具体实例了解实数指数幂的意义。
过程与方法:回顾整数指数幂的定义过程,学生通过观察,模仿,并进行合作交流,对整数指数幂进行推广,寻求分数指数幂最合理自然的规定方式。
情感、态度与价值观:通过对指数的推广,感受从特殊到一般的思想方法,提高数学的基本运算能力,体会数学的理性精神以及数学的美学意义。
二、教学重点:分数指数幂的意义和运算性质。
三、教学难点:分数指数幂的概念。
四、 教学过程:(一) 复习回顾整数指数幂,运算性质:;;,(为什么?);n m n m a a a +=•; mn n m a a =)(; n n n b a ab =)(;(二)新课讲解1、分数指数幂的意义:当根式的被开方数能被根指数整除时,根式可以表示为分数指数幂的形式。
2、思考下面的算式能否这样表示?3232a a =21b b =4545c c = 当根式的被开方数不能被根指数整除时,根式也可以表示为分数指数幂的形式。
那么我们将这个结论推广到正数的正分数指数幂的形式上去? 3、定义: (1)正数的正分数指数幂的意义: (2)正数的负分数指数幂的意义: 注意:0的正分数指数幂等于0,0的负分数指数幂没有意义(3)由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:①(0,,)r s r s a a a a r s Q +•=>∈②)(0,,)(r s rs a a r s Q a =>∈③()(0,0,)r r r a b a b a b r Q •=>>∈【利用类比的思想方法,将整数指数幂的运算性质类比为有理数指数幂的运算性质,体现了合情推理,便于学生对知识的整体建构。
指数与指数幂的运算教学设计
指数与指数幂的运算教学设计教学设计2.1.1指数与指数幂的运算整体设计教学分析我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂的性质进行化简、求值.教学难点(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时作者:路致芳导入新课思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.推进新课新知探究提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a 的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.(4)用一个式子表达是,若xn=a,则x叫a的n次方根.教师板书n次方根的意义:一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n 次方根用na表示,如果是负数,负的n次方根用-na表示,正的n 次方根与负的n次方根合并写成±na(a>0).②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n 次方根不存在.零的n次方根为零,记为n0=0.可以看出数的平方根、立方根的性质是n次方根的性质的特例.思考根据n次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.解:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.根式的概念:式子na叫做根式,其中a叫做被开方数,n叫做根指数.如3-27中,3叫根指数,-27叫被开方数.思考nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.解答:根据n次方根的意义,可得:(na)n=a.通过探究得到:n为奇数,nan=a.n为偶数,nan=|a|=a,-a,a≥0,a因此我们得到n次方根的运算性质:①(na)n=a.先开方,再乘方(同次),结果为被开方数.②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.n为偶数,nan=|a|=a,-a,a≥0,a应用示例思路1例求下列各式的值:(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)3(-8)3=-8;(2)(-10)2=10;(3)4(3-π)4=π-3;(4)(a-b)2=a-b(a>b).点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出下列各式的值:(1)7(-2)7;(2)3(3a-3)3(a≤1);(3)4(3a-3)4.解:(1)7(-2)7=-2,(2)3(3a-3)3(a≤1)=3a-3,(3)4(3a-3)4=点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解. 思路2例1下列各式中正确的是()A.4a4=aB.6(-2)2=3-2C.a0=1D.10(2-1)5=2-1活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错.(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.(3)a0=1是有条件的,即a≠0,故C项也错.(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.答案:D点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.例23+22+3-22=__________.活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.解析:因为3+22=1+22+(2)2=(1+2)2=2+1,3-22=(2)2-22+1=(2-1)2=2-1,所以3+22+3-22=22.答案:22点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B 形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=3+22+3-22,两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练若a2-2a+1=a-1,求a的取值范围.解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的是()A.正数的n次方根是一个正数B.负数的n次方根是一个负数C.0的n次方根是零D.a的n次方根用na表示(以上n>1且n∈N*)答案:C2.化简下列各式:(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.3.计算7+40+7-40=__________.解析:7+40+7-40=(5)2+25•2+(2)2+(5)2-25•2+(2)2=(5+2)2+(5-2)2=5+2+5-2=25.答案:25拓展提升问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.解:(1)(na)n=a(n>1,n∈N).如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.例如:(43)4=3,(3-5)3=-5.(2)nan=a,|a|,当n为奇数,当n为偶数.当n为奇数时,a∈R,nan=a恒成立.例如:525=2,5(-2)5=-2.当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈N*.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a作业课本习题2.1A组1.补充作业:1.化简下列各式:(1)681;(2)15-32;(3)6a2b4.解:(1)681=634=332=39;(2)15-32=-1525=-32;(3)6a2b4=6(|a|•b2)2=3|a|•b2.2.若5<a<8,则式子(a-5)2-(a-8)2的值为__________.解析:因为5<a<8,所以(a-5)2-(a-8)2=a-5-8+a=2a-13. 答案:2a-133.5+26+5-26=__________.解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,不难看出5+26=(3+2)2=3+2.同理5-26=(3-2)2=3-2.所以5+26+5-26=23.答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.第2课时作者:郝云静导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.推进新课新知探究提出问题(1)整数指数幂的运算性质是什么?(2)观察以下式子,并总结出规律:a>0,①;②a8=(a4)2=a4=,;③4a12=4(a3)4=a3=;④2a10=2(a5)2=a5=.(3)利用(2)的规律,你能表示下列式子吗?,,,(x>0,m,n∈N*,且n>1).(4)你能用方根的意义来解释(3)的式子吗?(5)你能推广到一般的情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:an=a•a•a•…•a,a0=1(a≠0);00无意义;a-n=1an(a≠0);am•an=am+n;(am)n=amn;(an)m=amn;(ab)n =anbn.(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,453=,375=,5a7=,nxm=.(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是.结果表明方根的结果和分数指数幂是相通的.(5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈N*,n>1).综上所述,我们得到正数的正分数指数幂的意义,教师板书:规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈N*,n>1).提出问题(1)负整数指数幂的意义是怎样规定的?(2)你能得出负分数指数幂的意义吗?(3)你认为应怎样规定零的分数指数幂的意义?(4)综合上述,如何规定分数指数幂的意义?(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N*. (2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是==1nam(a>0,m,n∈N*,n>1).(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.(4)教师板书分数指数幂的意义.分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈N*,n>1),正数的负分数指数幂的意义是==1nam(a>0,m,n∈N*,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(5)若没有a>0这个条件会怎样呢?如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:①ar•as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a•b)r=arbr(a>0,b>0,r∈Q).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.应用示例例1求值:(1);(2);(3)12-5;(4).活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.解:(1)=22=4;(2)=5-1=15;(3)12-5=(2-1)-5=2-1×(-5)=32;(4)=23-3=278.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.例2用分数指数幂的形式表示下列各式.a3•a;a2•3a2;a3a(a>0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.解:a3•a=a3•=;a2•3a2=a2•=;a3a=.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数).(1);(2).活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.解:(1)原式=2×(-6)÷(-3)]=4ab0=4a;(2)=m2n-3=m2n3.点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.本例主要是指数幂的运算法则的综合考查和应用.变式训练求值:(1)33•33•63;(2)627m3125n64.解:(1)33•33•63==32=9;(2)627m3125n64==9m225n4=925m2n-4.例4计算下列各式:(1)(325-125)÷425;(2)a2a•3a2(a>0).活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.解:(1)原式===65-5;(2)a2a•3a2==6a5.知能训练课本本节练习1,2,3【补充练习】教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.1.(1)下列运算中,正确的是()A.a2•a3=a6B.(-a2)3=(-a3)2C.(a-1)0=0D.(-a2)3=-a6(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()A.①②B.①③C.①②③④D.①③④(3)(34a6)2•(43a6)2等于()A.aB.a2C.a3D.a4(4)把根式-25(a-b)-2改写成分数指数幂的形式为()A.B.C.D.(5)化简的结果是()A.6aB.-aC.-9aD.9a2.计算:(1)--17-2+-3-1+(2-1)0=__________.(2)设5x=4,5y=2,则52x-y=__________.3.已知x+y=12,xy=9且x<y,求的值.答案:1.(1)D(2)B(3)B(4)A(5)C2.(1)19(2)83.解:.因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.又因为x<y,所以x-y=-2×33=-63.所以原式==12-6-63=-33.拓展提升1.化简:.活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:x-1=-13=;x+1=+13=;.构建解题思路教师适时启发提示.解:====.点拨:解这类题目,要注意运用以下公式,=a-b,=a±+b,=a±b.2.已知,探究下列各式的值的求法.(1)a+a-1;(2)a2+a-2;(3).解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+a-2=47;(3)由于,所以有=a+a-1+1=8.点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.课堂小结活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:(1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈N*,n>1),正数的负分数指数幂的意义是==1nam(a>0,m,n∈N*,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:①ar•as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a•b)r=arbr(a>0,b>0,r∈Q).(4)说明两点:①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用=am来计算.作业。
指数与指数幂的运算教案
指数与指数幂的运算教案2020-08-27指数与指数幂的运算教案[课题]授课地点:佛冈中学高一(21)班授课教师:授课时间:听课教师:高一级数学备课组[目标]1.知识与技能:理解根式的概念,掌握n次方根的性质2.过程与方法:(1).通过师生之间、学生与学生之间互相交流,使学生逐步学会共同学习.(2)引导学生认真体会数学知识发展的逻辑合理性、严谨性,做一个具备严谨科学态度的人.(3)通过探究、思考,培养学生思维迁移能力和主动参与的能力3.情感态度与价值观:(1).新知识的发现是因为面临的问题以原有的知识得不到解决所引发出来的思考,通过学习根式的概念,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在过程中,通过学生的自主探索,来加深理解n次方根的性质,具有探索能力是学习数学、理解数学、解决数学问题的重要方面。
[教学重点与难点]:1. 重点:1.根式的概念.。
2.n次方根的性质。
2.难点:1.根式概念的理解。
2.n次方根性质的理解。
[教学方法与手段]1.教学方法:启发式、探究式教学2.教学手段:运用多媒体教学[教学过程]一、创设情景,引入新课师:你们知道考古学家是怎样来判断生物的发展与进化的吗?生:对生物体化石的研究.师:那么他们是怎样来判断该生物体所处的年代的?你们知道吗?(众生摇头)师:考古学家是按照这样一个规律来推测的.问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P分别为原来的多少?生:,()2,()3,….师:当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P分别为原来的多少?生:(),(),() .师:由以上的实例来推断关系式应该是什么?生:P=() .师:考古学家根据上式可以知道,生物死亡t年后,体内碳14含量P的值.那么这些数(),(),()的意义究竟是什么呢?它和我们初中所学的指数有什么区别?生:这里的指数是分数的形式.师:指数可以取分数吗?除了分数还可以取其他的数吗?我们对于数的认识规律是怎样的?生:自然数??整数??分数(有理数)??实数.师:指数能否取分数(有理数)、无理数呢?如果能,那么在脱离开上面这个具体问题以后,关系式P=()就会成为我们后面将要相继研究的一类基本初等函数??“指数函数”的一个具体模型.为了能水到渠成地研究指数函数,我们有必要认识一下指数概念的扩充和完善过程,这就是我们下面三节课将要研究的内容:分数指数幂(有理数指数幂)、无理数指数幂.(引入课题,书写课题??指数与指数幂的运算)二、讲解新课(一)探求n次方根的概念师:32=9,那么,在这个等式中3对于9来说,扮演着什么角色?9对于3来说又扮演着什么角色呢?生:9叫做3的平方数,3叫做9的平方根.师:若53=125,那么125对于5来说,扮演着什么角色?5对于125来说又扮演着什么角色呢?生:125是5的立方数,5是125的立方根.师:如果x2=a,那么x对于a来说扮演着什么角色?生:x是a的平方根.师:能否用一句话描述你的结论?生:如果一个数的平方等于a,那么这个数叫做a的平方根.师:如果x3=a,那么x对于a来说又扮演着什么角色?生:x是a的立方根.师:能换一种说法表述你的`结论吗?生:如果一个数的立方等于a,那么这个数叫做a的立方根.师:如果x4=a,x5=a,又有什么样的结论呢?生:如果一个数的四次方等于a,那么这个数叫做a的四次方根;如果一个数的五次方等于a,那么这个数叫做a的五次方根.师:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?生:一般地,如果xn=a,那么x叫做a的n次方根.师:上述结论中的n的取值有没有什么限制呢?(生探索,完善n次方根的定义,并强调n的取值范围,师板书如下定义)一般地,如果xn=a,那么x叫做a的n次方根(n?throot),其中n>1,且n∈N*.(二)概念理解课堂训练:试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,生完成)(1)25的平方根是________;(2)27的三次方根是________;(3)-32的五次方根是________;(4)16的四次方根是________;(5)a6的三次方根是________;(6)0的七次方根是________.(师组织学生紧扣n次方根的定义,完成以上各题)方法引导:在n次方根的概念中,关键的是数a的n次方根x满足xn=a,因此求一个数a的n次方根,就是求出哪个数的n次方等于a.(三)n次方根的性质合作探究:观察并分析以上各数的方根,你能发现什么?(学生交流,师及时捕捉与如下结论有关的信息,并简单板书)1.以上各数的对应方根都是有理数;2.第(1)、第(4)的答案有两个,第(2)、第(3)、第(5)、第(6)的答案只有一个;3.第(1)题的答案中的两个值互为相反数.师:请仔细分析以上各题,你能否得到一个一般性的结论?(提供一个比较发散的问题,给学生提供广阔的思维空间,培养学生理性思维能力和数学的分析问题、解决问题的能力)生甲:一个数的奇次方根只有一个.生乙:一个数的偶次方根有两个,且互为相反数.师:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?生:因为任何一个数的偶次方都是非负数,所以负数没有偶次方根,0的n次实数方根等于0.师:你能否把你所得到的结论再叙述的具体一些呢?(组织学生交流,得出以下结论)n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次方根用符号表示.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次方根用符号表示,负的n次方根用符号-表示.正的n次方根与负的n次方根可以合并写成± (a>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作 =0;③当a≥0时,≥0,所以类似=±2的写法是错误的.(四)根式的概念式子叫做根式,其中n叫做根指数,a叫做被开方数.例如叫做根式,其中5叫做根指数,6叫做被开方数.(五)n次方根的运算性质求下列各式的值:(1)()2;(2);(3);(4)(a>3).(生板演,师组织学生评析)解:(1)()2=5;(2) =-2;(3) =-2=2;(4) =3-a=a-3.师:上面的例题中涉及了哪几类问题?生:主要涉及了()n与的问题.合作探究:(1)()n的含义是什么?其化简结果是什么呢?(2)的含义是什么?其化简结果是什么呢?(组织学生结合例题及其解答,进行分析讨论、归纳出以下结论)(1)()n=a.例如,()3=27,()5=- 32.(2)当n是奇数时, =a;当n是偶数时, =a= 例如, =-2,=2; =3, =-3=3.(六)例题讲解(生板演,师组织学生进行课堂评价)【例1】求下列各式的值:(1)()3;(2);(3);(4)(a>b).解:(1)()3=-8;(2) =10;(3)=π-3;(4) =a-b=a-b.【例2】化简下列各式:(1);(2);(3);(4);(5) .解:(1) = = = ;(2) = = ;(3) =- =-;(4) = =x2;(5) = = .三、课堂练习1.若x∈ R,y∈R,下列各式中正确的是A. =x+yB. - =x-yC. + =2xD. + =02. = 成立的条件是A. ≥0B.x≠1C.x<1D.x≥23.在① ;② ;③ ;④ (各式中n∈N,a∈R)中,有意义的是A.①②B.①③C.①②③④D.①③④4.当8<x<10时,- =________.参考答案:1.D2.D3.B4.2x-18四、课堂小结师:请同学们互相交流一下你在本课学习中的收获.(生互相交流,而后由师多媒体显示如下内容)1.若xn=a(n>1,n∈N*),则x叫做a的n次方根.当n是奇数时,实数a的n次方根用符号表示;当n是偶数时,正数a的n次方根用符号± 表示,负数的偶次方根无意义.式子叫做根式,其中n叫做根指数,a叫做被开方数.2.在实数范围内,正数的奇次方根是一个正数;负数的奇次方根是一个负数.正数的偶次方根是两个绝对值相等符号相反的数;负数的偶次方根没有意义;0的任何次方根都是0.3.(1)()n=a.(2)当n为奇数时, =a;当n为偶数时, =a=五、布置作业(一)复习课本第5本P69习题2.1A组第1题.板书设计2.1.1指数与指数幂的运算(1)一、基本概念和性质1.n次方根的定义2.n次方根的性质3.根式的定义4.n次方根的运算性质二、例题解析即学生训练板演例1.求下列各式的值。
教学设计:2.1.1 指数与指数幂的运算
§2.1.1 指数与指数幂的运算第1课时 根式对于指数与指数幂的运算这节课,分两个课时讲解. 一.教学目标:1.知识与技能:理解n 次方根和根式的概念; 2.过程与方法:(1)通过与初中所学的知识进行类比,掌握n 次方根及根式的概念. (2)正确运用根式运算性质进行运算,体验分类讨论思想的应用. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)根式概念的理解; (2)掌握根式的运算性质; 2.教学难点:根式概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体 教学过程 一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n 次方根中,表示,如果是负数,用叫做根式.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?,,:,,n a n a n a n ⎧⎪⎨±⎪⎩为奇数 的次方根有一个为正数为偶数 的次方根有两个为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在. 小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况. 例1 求下列各式的值:(1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a >b ).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a -b (a >b ).点评:不注意n 的奇偶性对式子nna 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用. 变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a ≤1); (3)44)33(-a . 解:(1)77)2(-=-2, (2)33)33(-a (a ≤1)=3a -3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解. 例2223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.解:223+=2)2(221++=2)21(+=2+1.223-=122)2(2+-=2)12(-=2-1.所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式. 思考:上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x =223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x =22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解. 变式训练a -1,求a 的取值范围.解:a -12)1(-a =|a -1|=a -1, 即a -1≥0, 所以a ≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键. 知能训练(教师用多媒体显示在屏幕上) 1.以下说法正确的是( ) A.正数的n 次方根是一个正数 B.负数的n 次方根是一个负数 C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *). 答案:C 2.化简下列各式:(1)664;(2)42)3(-;(3)48x ;(4)636y x答案:(1)2;(2)9;(3)x 2;(4)|x |y ;(5)|x -y |.3.计算407407-++=__________.解:407407-++=2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25. 答案:25 拓展提升问题:n na =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论. 解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x =n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5.②n na =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a ∈R ,nna =a 恒成立.例如:552=2,55)2(-=-2.当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a ≥0,那么n na =a .例如443=3,40=0;如果a <0,那么n n a =|a |=-a ,如2(-3)=23=3.即(n a )n =a (n >1,n ∈N )是恒等式,nn a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时四.作业:P 69习题2.1 A 组 第1题第2课时 有理指数幂的运算一.教学目标:1.知识与技能:(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)分数指数幂概念的理解;(2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学过程: 提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0 ①1025a a === ②842a a ===③1234a a ===1025a a ===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a ==>12(0)b b ==>54(0)c c ==>*(0,,1)m na a n N n =>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)m na a m n N =>∈正数的定负分数指数幂的意义与负整数幂的意义相同. 即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n mm m maa a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)rsr sa a aa r s Q +⋅=>∈(2)()(0,,)r S rsa a a r s Q =>∈ (3)()(0,0,)rr ra b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则(0,)pa a p >是一个无理数该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.的不足近似值,的.所以,的方向逼近时,的过剩似值从大于时,(如课本图所示)所以,.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4.例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a >0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a=a 3·a 21=a213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a ·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8.活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤. 解:(1)原式=[2×(-6)÷(-3)]a 612132-+b653121-+=4ab 0=4a ;(2)(m 41n83-)8=(m 41)8(n 83-)8=m841⨯n 883⨯-=m 2n -3=32n m . 点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(nm =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4求值或化简. (1)3224ab ba -(a >0,b >0);(2)(41)21-213321)()1.0()4(---b a ab (a >0,b >0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律. 解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254. 点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数. (3)246347625---+-=222)22()32()23(---+- =3-2+2-3-2+2 =0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例5化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a -a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流.解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a -a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a +a -1. 点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m ·a 21a 21-=m ,需认真对待,要在做题中不断地提高灵活运用这些公式的能力. 知能训练课本P 59习题2.1A 组 3. 利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1 B.(1-2321-)-1 C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a ≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a ≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a >0,x =21(a n 1-a n 1-),则(x +2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x =21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x +2x 1+)n =[21(a n 1-a n 1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n1-)+21(a n 1+a n 1-)]n=a .答案:a 课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r ,s ,均有下面的运算性质: ①a r ·a s =a r +s (a >0,r ,s ∈R ). ②(a r )s =a rs (a >0,r ,s ∈R ). ③(a ·b )r =a r b r (a >0,b >0,r ∈R ). (3)逼近的思想,体会无限接近的含义. 作业课本P60习题2.1 B组 2.。
指数与指数幂的运算教案
指数与指数幂的运算(一)课题:指数与指数幂的运算课型:新授课教学方法:讲授法与探究法教学媒体选择:多媒体教学教学目标:1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.教学流程图:教学过程设计:一.新课引入:(一)本章知识结构介绍(二)问题引入1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系:(1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为(3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为2.回顾整数指数幂的运算性质 整数指数幂的运算性质:3.思考:这些运算性质对分数指数幂是否适用呢?12212⎛⎫ ⎪⎝⎭6000573012⎛⎫⎪⎝⎭10000573012⎛⎫ ⎪⎝⎭【师】这就是我们今天所要学习的内容《指数与指数幂的运算》【板书】2.1.1 指数与指数幂的运算二.根式的概念:【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.【师】现在我们请同学来总结n次方根的概念..1.根式的概念【板书】概念即如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a 的n次方根.【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.【板书】表格n n是奇数n是偶数a的符号a<0 a>0 a<0 a>0 a的n次方无意义根【师】通过这个表格,我们知道负数没有偶次方根.那么0的n 次方根是什么?【学生】0的n 次方根是0.【师】现在我们来对 这个符号作一说明.例1.求下列各式的值【注】本题较为简单,由学生口答即可,此处过程省略. 三.n 次方根的性质【注】对于1提问学生a 的取值范围,让学生思考便能得出结论. 【注】对于2,少举几个例子让学生观察,并起来说他们的结论.44(3)(3);π-2(2)(10);-2(4)()().a b a b ->33(8);-(1)根指数被开方数根式1.n次方根的性质四.分数指数幂例:【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗?【师】如果成立那么它的意义是什么,我们有这样的规定.(一)分数指数幂的意义:1.我们规定正数的正分数指数幂的意义是:2.我们规定正数的负分数指数幂的意义是:3.0的正分数指数幂等于0,0的负分数指数幂没有意义.(二)指数幂运算性质的推广:五.例题例2.求值例3.用分数指数幂的形式表示下列各式(其中a>0)例4.计算下列各式(式中字母都是正数)【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.六.课堂小结1.根式的定义;2.n次方根的性质;3.分数指数幂.七.课后作业P59习题2.1 A组1.2.4. 八.课后反思。
指数与指数幂的运算教学设计
课题指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)能够正确运用根式性质进行化简、求值;(3)了解分类讨论思想在解题中的应用。
2.过程与方法通过对恐龙化石视频的观看,对它的历史有了些了解。
自然而然地引入C14的衰变问题,进而得到分数指数幂的原型。
然后通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质。
3.情感、态度与价值观通过观看恐龙视频,感知恐龙的历史,激发学生探索数学知识的兴趣;通过与初中所学的知识(平方根、立方根)的比较,以及完成两个表格,自我探究或是讨论,归纳出所学知识的规律。
并体会初中知识与高中知识其实是一个从浅至深的联系,又有一个质的飞跃区别。
并逐步培养学生严谨的学习态度。
(二)教学重点、难点1.教学重点:(1)n次方根与根式概念的理解;(2)理解两个公式,并运用这两个公式进行根式的运算。
2.教学难点:根式概念的理解与两个公式的推导过程。
(三)教学资源资源:计算机辅助系统。
(四)教学设计思路本节是一堂概念课。
为了增加课堂的趣味性,观看恐龙化石视频,引入根式的原型。
为突破根式概念的理解这一难点,采用类比的方法,从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念。
在讲解过程中,强调说明根式是n次方根的一种表示形式。
并通过两个表格由学生自我建构根式性质的知识。
接着通过例题讲解,基础训练,能力提升,来巩固知识。
最后解答开篇之问。
1.本教学的开篇由视频引入。
通过观看恐龙化石的视频,让学生对其有所了解以后,以问题:恐龙生活在哪个时间,自然地引入了根式的存在意义。
2.对于方根概念(知识探究一)的教学,采用的是从学生的最近发展区入题,即学生已经学过了平方根、立方根,然后由学生通过类比得到,4次方根,5次方根,6次方根的意义所在,最后由学生定义出n 次方根的概念。
3.对于根式的性质(知识探究二)的教学,完全是由学生自主完成表格1,然后通过观察各行各列之间的关系得到根式的表示与性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1(2)指数与指数幂的运算(教学设计)
内容:分数指数幂
一、教学目标
(一)知识目标
(1)理解根式的概念及其性质,能根据性质进行简单的根式计算。
(2)理解掌握分数指数幂的意义并能进行基本的运算。
(二)能力目标
(1)学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
(2)让学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.
(3)训练学生思维的灵活性
(三)德育目标
(1)激发学生自主学习的兴趣
(2)养成良好的学习习惯
教学重点: 次方根的概念及其取值规律。
教学难点:分数指数幂的意义及其运算根据的研究。
教学过程:
一、复习回顾,新课引入:
指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展。
引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定
义。
.然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出
及 ,同时追问这里 的由来。
二、师生互动,新课讲解:
1.分数指数幂
看下面的例子:
当0>a 时,
(1)2552510)(a a a ==,又5102=,所以510
510a a =; (2)3443412)(a a a ==,又4123=,所以412
412a a =. 从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式. 那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢?
根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m n m
a a =(0>a ,1*,,>∈n N n m ).
0的正分数指数幂等于0, 0的负分数指数幂无意义.
由于分数有既约分数和非既约分数之分,因此当0<a 时,应当遵循原来的运算顺序,通常不写成分数指数幂形式. 例如:3273-=-,而3)27(62=-.
规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.
整数指数幂的运算性质对于分数指数幂即有理数指数幂同样适用.
联系并指出整数指数幂的运算性质对有理指数幂仍然适用
(1)a r a s =a r+s (a>0,r,s ∈Q)
(2)(a r )s =a rs (a>0,r,s ∈Q)
(3)(ab)r =a r b r (a>0,b>0, r,∈Q)
3.分数指数幂与根式的表示方法之间关系。
(1) 规定正数的正分数指数幂的意义是:
n m n m
a a = (a>0,m,n ∈N +,且n>1)
(2) 规定正数的负分数指数幂的意义是: =-m m a n m
a 1
(a>0,m,n ∈N +,且n>1)
(3) 特别指出分数指数幂的底数a 、m 、n 的取值只需式子有意义即可。
例1(课本P51例2):求值:
238;12
25-;51()2-;3
416()81-
变式训练1: 求下列各式的值:
(1)1225; (2)3227
-; (3)361-⎪⎭⎫ ⎝⎛; (4)431000081-⎪⎭⎫ ⎝⎛. 解 (1) 55
)5(2521221221
===⨯; (2)9133)3(272)3
2(332
332
====--⨯--; (3)2166)6(613313===⎪⎭⎫ ⎝⎛---;
(4)27100031010310310000813
343443
=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯-.
例2(课本P51例3)用分数指数幂的形式表示下各式(其中a>0) 3a a ;322a a ;3a a
例3(课本P52例4):计算下列各式(式中字母都是正数)
(1)211511336622(2)(6)(3)a b a b a b -÷- (2)31884()m n -
(先由学生观察以上两个式子的特征,然后分析、提问、解答)
分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的. 整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.
我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?
其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.
第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.
解:(1)原式=211115326236[2(6)(3)]a
b +-+-⨯-÷- =04ab =4a (2)原式=3
1
8884()()m n - =23m n -
例4:(课本P52例5)计算下列各式
(1)34(25125)25-÷ (2)2
32(.a a a a >0)
分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.
解:(1)原式= 111324(25125)25-÷
= 231322(55)5-÷
= 213132
2255--- = 1
655-
=
655- (2)原式=1252265236
2
1
32a a a a a a --===⋅ 小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.
课堂练习:(课本P54练习NO :1;2;3)
三、课堂小结,巩固反思:
1.这堂课的主要内容是什么?
2.做指数运算时有什么需要注意的地方?
这节课我们学习了指数幂的定义,性质以及一些运算。
在学习中,我们应当逐步深入,领悟从整数到根式再到分数的导出过程,理解由特殊到一般的研究方法,在有关活动中发展学生的探索意识和合作交流的习惯。
四、布置作业
A 组:
1、(课本P59习题2.1 A 组:NO :2(1)(2)(3))
2、(课本P59习题2.1 A 组:NO :4(1)~(8))
3、(tb0112901)下列等式中正确的是(D )
(A) -
x =(-x)21 (x ≠0) (B) x 31-= -3x (C) 31
62y y = (y<0) (D) 4343
)()(x
y y x =- (xy ≠0) 4、(tb0112902)下列各式成立的是(A )。
(A) 31324= (B) 32
322)(n m n m +=+ (C) (5
5)ab a
b = (D) 3162)2()2(-=- 5、(tb0112911)化简4
33
)278(b a --(a>0,b>0)的结果是(C )。
(A) b a 23 (B) -b a
23
(C) 448116
b a (D) -44811
b a
6、(tb0113012)34329
-b a (a>0,b>0)化简得(C )。
(A) 4323-b a (B)31
31-b a (C) 41
23-b a (D) 49
31-b a
B 组:
1、(课本P59习题 2.1 B 组:NO :2)。