(06)第四章-无约束优化方法(坐标轮换法)
《无约束优化方法》PPT课件
gk1 gk 与 d k 的共轭方向 d j 正交。
精选ppt
18
图4-9 共轭梯度法的几何说明
精选ppt
精选ppt
20
精选ppt
21
精选ppt
22
精选ppt
23
精选ppt
24
第六节变尺度法
变尺度法的基本思想:
前面讨论的梯度法和牛顿法,它们的迭代公式可以看作下列 公式的特例。
3
第二节 最速下降法
优化设计追求目标函数值最小,若搜索方向取该点的负梯度 方向,使函数值在该点附近的范围内下降最快。
按此规律不断走步,形成以下迭代算法:
xk1xkak f xk
以负梯度方向为搜索方向,所以称最速下降法或梯度法。
搜索方向确定为负梯度方向,还需确定步长因子a k
即求一维搜索的最佳步长,既有
xk 1xkkH f xk
变尺度法是对牛顿法的修正,它不是计算二阶导数的矩阵和 它的逆矩阵,而是设法构造一个对称正定矩阵H来代替Hesse 矩阵的逆矩阵。并在迭代过程中,使其逐渐逼近H-1 。
由于对称矩阵H在迭代过程中是不断修正改变的,它对于一 般尺度的梯度起到改变尺度的作用,因此H又称变尺度矩阵。
数值法
可以处理复杂函数及没有数学表达式 的优化设计问题
xk1xk akdk
搜索方向问题是无约束优化方法的关键。
各种无约束优化方法的区别:确定搜索方向的方法不同。
利用目标函数的一阶或二阶导数
无约束优化方法分类 (最速下降法、共轭梯度法、牛顿法)
利用目标函数值
(精坐选标ppt轮换法、鲍威尔等)
2
精选ppt
第四章常用的无约束优化方法
教学重点
1.鲍威尔法 2.梯度法 3.牛顿法
2
机械优化设计
概述
一、无约束优化方法的数学模型 有约束优化问题模型
L min F ( X * ) = F ( x1,x2, ,xn ), X ∈ R n D : g j ( X ) ≥ 0 j = 1,2,L, m hk ( X ) = 0 k = 1, 2,L, l
12
机械优化设计
一、Powell基本算法 Powell基本算法 1)开始采用坐标轴方向; 开始采用坐标轴方向; 2)每轮迭代产生一个新方向取代原来的第一 方向, 轮迭代后可产生n个彼此共轭的方向; 方向,n轮迭代后可产生n个彼此共轭的方向; 若目标函数为正定二次函数, 3)若目标函数为正定二次函数,n轮结束后 即可到达最优点。 即可到达最优点。
r (k ) r (k ) r (k ) r (k ) r (k ) r (k ) S 1 , S 2 , . . . , S m -1 , S m + 1 , . . . , S n , S n + 1 ,
22
第k+1环的方向组为:
机械优化设计
给定X 给定 0,Si=ei i=1,2,…n, ε
Powell 修正算法
K=0 i=1 方向搜索得一维最优点X 自Xi-1始,沿Si方向搜索得一维最优点 i
N
若powell法中不 需要换向,则 是否仍为共轭 方向法? 检查两次前后 sn+1是否对函数 的海塞矩阵共 轭即可。
Y
i< n Xn-X0 ≤ε
i=i+1
Y
输出X*=Xn 输出 F*=F(X*) ( )
x2
x2
o
x1
(2)等值线为如图脊线时--无效 (2)等值线为如图脊线时--无效 -o
无约束常用优化方法
步长 ,作前进(或后退)试探.如试探成功(目
标函数值有所减小),则按步长序列
,加
大步长(注意每次加大步长都是由初始点算起),直
至试探失败(目标函数值比前一次的有所增加)时,
则取其前一次的步长作为沿这个坐标轴方向搜索的最
优步长,并计算出该方向上的终止点,而后以这个终
止点为始点再进行下一坐标轴方向的搜索,并重复上
处
显然 是二次函数,并且还是正定二次函数,所以 是凸函数且存在唯一全局极小点.为求此极小点,令
即可解得
即
(5.9)
对照基本迭代公式,易知,式(5.9)中的搜索方向
步长因子
方向
是直指点 处近似二次函数
的极小点的方向.此时称此方向为从点 出发的
Newton方向.从初始点开始,每一轮从当前迭代点出发,
沿Newton方向并取步长 的算法称为Newton法.
另外,共轭梯度法不要求精确的直线搜 索.但是,不精确的直线搜索可能导致迭代 出来的向量不再共轭,从而降低方法的效 能.克服的办法是,重设初始点,即把经过 n次迭代得到的Xn作为初始点重新迭代.
五、坐标轮换法
在坐标轮换法中,沿各个坐标轴方向进行一维搜索
时,常选用最优步长法或加速步长法.加速步长法从
初始点出发,沿搜索(坐标轴)方向先取一个较小的
三、共轭方向法
1、概念
通常,我们把从任意点
出发,依次沿某组共轭
方向进行一维搜索的求解最优化问题的方法,叫做共
轭方向法.
2、特点
• 一般地,在n维空间中可以找出n个互相共轭的方向,对于n元正 定二次函数,从任意初始点出发,顺次沿这n个共轭方向最多作n 次直线搜索就可以求得目标函数的极小点.这就是共轭方向法的 算法形成的基本思想.
(06)第四章-无约束优化方法(坐标轮换法)
第四章 无约束优化方法 §4-7 坐标轮换法
§4-3 坐标轮换法
间接法:梯度法;牛顿法;变尺度法 共同点:求导数 直接法:直接用函数值 搜索方向如何定?
坐标轮换法的基本思想:
把n维无约束优化问题转化为一系列一维优化问题来求 解,即沿着n个坐标轴方向e1,e2……en顺次进行一维搜索, 每n次搜索记为一轮,轮换迭代,求解极值点。 基本迭代格式:
(1) T x = [0 0] ε = 0.1 初始点 0 的最优解。迭代精度 ,
z
课后练习题: 用坐标轮换法求目标函数(迭代两轮)
f ( x ) = x12 + 16 x 22 + 10 x1 x 2
(1) T x = [4 3] ε = 0.1 初始点 0 的最优解。迭代精度 ,
算法特点:
1)不需对目标函数求导,方法简单; 2)收敛速度通常较低(其有效性取决于目标 函数的性态),仅适于低维的情况。
x
(k ) i
=x
(k ) i −1
+α e
(k ) i i
(k = 1,2,3"; i = 1,2," n)
收敛准则:
(k ) x0( k ) − xn ≤ε
图4-12 坐标轮换法的基本原理示意图
计算步骤:
1)对于n个变量的函数,若在第k轮沿着第i个坐标 方向进行搜索,其迭代公式为: k k k i i −1 i i k 2)求最优搜索步长 α
x = x +α e
i
3)本轮所有方向搜索完毕,判断迭代终止条件:
x −x
k n
k 0
≤ε
k n
4)满足上式:
x =x
∗
第4章无约束优化方法
它表示沿着方向dk做一维搜索, 它的终点xk+1与始点xk的梯度之差
与dk的共轭方向dj正交。
4.5 共轭梯度法
共轭梯度法递推公式:
2 || g || d k 1 g k 1 k 1 2 d k || g k ||
,
(k 0,1, 2,
, n 1)
4.5 共轭梯度法
共轭梯度法步骤:
4.5 共轭方向及共轭方向法
2 1 0 例:求G= 1 2 1的一组共轭向量系d 0、d 1、d 2。 0 1 2
,
d
i 1
vi 1 i 1,r d
r 0
i
r
i 1, j
(d j )T Gvi 1 j T (d ) Gd j
d
0 T
Gd 1 0
4.5 共轭方向及共轭方向法
•共轭方向
设G是n n对称正定矩阵,若n维空间中有m个非零向量d 0、d1、 、d m 1 满足 (d i )T Gd j 0
,
(i, j 0,1,
, m 1) (i j )
则称d 0、d1、 、d m 1对G共轭,或称它们是G的共轭方向。
第四章
4.1 4.2 4.3 4.4 4.5 4.6 4.7
无约束优化方法
概述 最速下降法 牛顿型方法 变尺度法 共轭方向及共轭方向法
共轭梯度法
鲍威尔方法
4.1 概述
数值解法:是利用已有的信息,通过计算点一步
一步地直接移动,逐步逼近最后达到最优点。
xk 1 xk k d k (k 0,1, )
4)收敛速度与目标函数值的性质有关,对等值 线是同心圆的目标函数来说,经过一次迭代就可 以达到极值点。
第4章 无约束优化方法
求
令
4 S 0 f X 0 2
0 则有 X 1 X 0 0 S 0 1 0 4 1 2 1 2
1 4
0
f X 1 1 4 0 2 1 2 0 2 1 4 0 1 2 0 4 1 4 0 f 0
因
5
还需继续迭代
(2)第二次迭代 同理有
1 1 1 f X , S 2 2 2 1 2 1 2 1 1 X X 1 S 1 0.5 2 0.5 2 1
4.2.3 变尺度法
基本思想: (1) 用简单矩阵代替二阶导数矩阵的逆矩阵 (2) 用坐标变换简化目标函数 引入矩阵变换U,令 X X k UY 代入式泰勒展开式得
T 1 T T 2 k k Y Y U f X UY f X UY f X k 2
2 f X k
S 2 f X k f X k
1
由此构成的算法称基本牛顿法,Sk 称牛顿方向。
分析可知: ⑴ 对于正定二次函数,Xk+1是精确极小点,方向 Sk 是直指函数的极小点。 ⑵ 用基本牛顿法求解正定二次函数时,无论从哪个初始 点出发,计算所得牛顿方向直指极小点,而且步长等于1。 ⑶ 对于一般非线性函数,点Xk+1只是原函数的一个近似极 小点。故将此点作为下一个迭代Xk+1。 ⑷ 但是对于非正定函数,由上式得到 的点Xk+1,不能始终保持函数的下降性,
1 0 0
第四章 无约束方法详解
[tt,ff]=opt_step_quad(xk1',dirk, th,epsx,epsf,maxiter); xk1=xk1+tt*dirk'; end xk0=xk1; xn=xk1; fn=ffx(xn); aa=norm(dir); if(aa<1e-30) aa=1e-30; end end
xn ]T
使目标函数 f ( x) min
min f ( x) x Rn
目前已研究出很多种无约束优化方法,它们的 主要不同点在于构造搜索方向上的差别。
(1)间接法(导数法)——确定搜索方向时用到一 阶或(和)二阶导数的方法。如梯度法、(阻尼) 牛顿法、变尺度法、共轭梯度法等。
(2)直接法——其搜索方向直接取定或由计算目标 函数值所得的信息来确定;即不使用导数信息,如 坐标轮换法、鲍威尔法等。
2020/9/23
5
无约束优化直接解法
坐标轮换法 鲍维尔(Powell)法 鲍维尔(Powell)修正算法
2020/9/23
6
§4-2 坐标轮换法(无约束优化直接解法)
一)搜索方向
依次沿n个正交坐标轴的方向搜索:
ee12
[1 [0
0 1
... ...
0]T 0]T
...
en [0 0 ... 1]T
坐标轮换法的Matlab程序由三部分组成。第一部分为坐标 轮换法计算函数coordinat(xk0,th,epsx, epsf,maxiter),函数引用 变量说明见程序注释。最优步长采用二次插值法计算,函数名 为opt_step_quad(xk0,dir0, th,TolX, TolFun,maxiter),该函数调 用区间搜索函数opt_range_serach(xk0,dir0,th)得出二次差值需 要的三个坐标点,区间搜索函数采用进退法。 第二部分为用户应用程序; 第三部分为定义目标函数,调用方式为fn=ffx(x)。 下面是坐标轮换法的Matlab计算程序:
四常用无约束最优化方法(精品PPT)
解 X k 1 ,f ( X k1 ) ,结束;否则,置 k k 1,转
(2).
,
最速下降法算法流程如图4.2所示.
Company Logo
最速下降法算 法流程如图所 示.
图4.2
开始 选定X0
f0 f (X0) g0 g(X0)
X ls(X 0 ,g0 )
Company Logo
§4.1 最速下降法
对于问题(4.1)为了求其最优解,按最优化算法的基
本思想是从一个给定的初始点
X
出发,通过基本迭代公
0
式 X k1 X k tk Pk,按照特定的算法产生一串
点列{X k } ,如果点列收敛,则该点列的极限点为问题
(4.1)的最优解.
一、最速下降法基本原理
1个迭代点
X
k
,即
1
X k1 X k tk f ( X k ) ,
其中步长因子 tk 按下式确定
也可记为
fin
t
f
(Xk
tf
(Xk
))
,
X k1 ls( X k , f ( X k )) . (4.3)
显然,令k 0, 1, 2, 就可以得到一个点列 X0, X1, X2 ,
g( X ) AX b ,(4.5)
因此,
gk g( X k ) AX k b.(4.6)
现在从X k 出发沿 g k 作直线搜索以确定 X k1 ,于是
X k1 X k tk gk , (4.7) 其中tk 是最优步长因子.
Company Logo
又因式(4.2),有 g( X k1 )T gk 0 ,再利用式
《机械优化设计方法》第4章 无约束优化方法 (上课课件)
4.1.4 梯度法讨论
梯度法的收敛速度与设计变量的尺度关系很 大。对一般函数,梯度法的收敛速度较慢。 但对等值线为同心圆的目标函数,一次搜索 即可达到极小点。 若能通过点的坐标变换,改善目标函数的性 态,就可提高梯度法的收敛速度。
4.2 牛顿性方法
4.2 牛顿型方法
4.2.1 牛顿法的基本思想
1 * T * * f (X) f (X ) X X H ( X ) X X 2
*
结论:任意形式的目标函数在极值点附近的特 性,都近似于一个二次函数。 故以正定二元二次函数为例说明共轭方向对于 构造一种有效的最优化算法的重要性。
1 T T T f ( X ) X HX B X C , X x1 , x2 2
4.3.2共轭方向的产生
2 0 S f ( X ) e S 1 e0 0 S 0 e0 T S0 0 2 0 S f (X)S 0 T
S
k 1
e i s
k i 0
k
k
i
2 i S f (X) e k i T 2 i S f ( X ) e S 0 i i i T 2 i i o S f (X)S 2 i S f (X) e S k 1 ek T Si i 2 i i 0 S f (X)S k i T
若f(X)是二次函数,则X*就是f(X)的极小点;
否则只是一个近似点,需进一步迭代。
4.2.2牛顿法的迭代公式及迭代过程
故牛顿法的迭代公式为:
X k 1 X k [ H ( X K )]1 f ( X K ) k 1 k k X X S k k 1 k S [ H ( X )] f ( X )
最新第4章无约束优化方法PPT课件
第机四械章优化设无计约束优化方法
第七节 坐标轮换法
基本思想:
每次仅对多元函数的一个变量沿其坐标轴进行 一维探索,其余各变量均固定不动,并依次轮换进行一
,
维探索的坐标轴,完成第一轮探索后再重新进行第二轮 探索,直到找到目标函数在全域上的最小点为止。
目的:将一个多维的无约束最优化问题,转化为一系
列的一维问题来求解。
第机四械章优化设无计约束优化方法
第六节 变尺度法(拟牛顿法)
DFP算法:
例 : 用 D F P 算 法 求 fx 1 ,x 2 x 1 2 2 x 2 2 4 x 1 2 x 1 x 2
,
的 极 值 解 。
H k 1 H k E k H k s s k T k s y k T k H y k k T y H ky k k T y H kk (k 0 ,1 ,2 , )
设法构造出一个对称正定矩阵 来H 代k 替 ,并 在迭G代( x过k )程1 中使 逐渐逼近 H,那k 么就简化G了(牛xk )顿1 法的计算,并且保持了牛顿法收敛快的优点。
变尺度法的
迭代公式:
x k 1 x k k H k fx k ( k 0 ,1 ,2)
第机四械优章化设无计约束优化方法
3)沿方向d k作,一维搜索得xk 1 xk k d k ; 4)判断收敛:若满足 f ( x(k 1) ) , 则令x* xk 1,f ( x* ) f ( xk 1),
第四章 无约束优化方法
各1矢=0量,必则在新该生平方面向内与,e使2 、搜e索3共局面限,于随二后维的空各间环,方不向能组得中到,
最优解。
x3S1x1 1=0Fra bibliotek2e2
x2
3e3
鲍威尔基本算法的退化
二、鲍威尔修正算法
在某环已经取得的n+1各方向中,选取n个线性无关 的并且共轭程度尽可能高的方向作为下一环的基本方向组
组矢量式,中,1(Sk) 1、(k)、2S(k2)(k、) 、• ••••、• 、nS(k)n为(k)为个第方k向环的基最本优方步向长。 表次示搜为索若将S在2在(第k) 降、k环维S的3的(k优)空、化间•搜进• 索•行、过,程S无n中(k法)的出得线现到性n1组维(k)合空=0,间,以的则后函方的数向各极Sk
故得最优解
梯度法
优化设计是追求目标函数值最小,因此,自然可以设想 从某点出发,其搜索方向取该点的负梯度方向,使函数值在 该点附近下降最快。这种方法也称为最速下降法。
一、基本原理
梯度法的迭代公式为:
x(k+1)=x(k)-(k)g(k) 其中g(k)是函数F(x)在迭代点x(k)处的梯度f(x(k)) , (k)一
对于n维优化问题,如果只利用函数值求最优值的解法,称 为直接搜索法;
解析法的收敛速率较高,直接法的可靠性较高。
本章介绍的坐标轮换法和鲍威尔法属于直接法;梯度法、 共轭梯度法、牛顿法和变尺度法属于解析法
无约束优化方法算法的基本过程是:
从选定的某初始点x(k)出发,沿着以一定规律产生的 搜索方向S(k) ,取适当的步长a(k) ,逐次搜寻函数值下降的 新迭代点x(k+1),使之逐步逼近最优点x* 。可以把初始点 x(k) 、搜索方向S(k) 、迭代步长a(k) 称为优化方法算法的 三要素。其中以搜索方向S(k)更为突出和重要,它从根本 上决定着一个算法的成败、收敛速率的快慢等。所以, 一个算法的搜索方向成为该优化方法的基本标志,分析、 确定搜索方向S(k)是研究优化方法的最根本的任务之一。
机械优化设计第四节无约束--坐标轮换法3-5解析
5
7.954 , 5.978 T 0.035 7.989 , 5.978T 0.018 7.989 , 5.996 T 0.04
计算第五轮的有
(5) (5)
x2 x0 (7.989 7.954)2 (5.996 5.978)2 0.0394
近似优化解为:
* (5) 7.989 x x2 5.996
*
f * f (x ) 8.000093
2.4、共轭方向法
1、共轭方向
坐标轮换法的收敛速度很慢,原因在于其搜索方向总是
平行于坐标轴,不适应函数变化情况如图所示若把一轮的起
点 与末点 (1)
(1)
x1
x2
连起来形成 一个新的搜索方向
S2
,
S2 与
S1 有何关系。
如图所示,设给定两个平行方向 S1 ,从两个任意初始点分别
)
e
i
否
in
是
(k) (k)
xn x0
否
是
k k 1
(0)
(k)
x xn
*
*
x x f f (x )
出口
特点: 简单易行,但由于它只能轮流沿几个坐标
方向前进,因而效率低下,特别是维数较高n>10 或目标函数性质不好的情况下收敛速度慢。本方 法的收敛效率在很大程度上取决于目标函数等值 线的形状。当椭圆簇的长短轴与坐标轴斜交,迭 代次数将大大增加,收敛速度很缓慢。目标函数
S2
*
x
S1
x
2
x1
S1
如图所示,同心椭圆簇具有 这样一个特点,就是二条任 意平行线的切点的连线必通 过椭圆族的中心。
沿这两个平行方向进行一维搜索求得极小点
第四节无约束--坐标轮换法3-5
S
1 1
x2
1
x
S1
共轭方向的定义: 设A 为 n n阶实对称正定矩阵,而 S1 S 2为 n n R 中的两个非零向量,如果满足S1 T AS 22 0 维空间 则称向量 S1 S 2 关于对称正定矩阵A 是共轭的或
S1 , S 2 关于A 共轭
共轭方向的性质 1)设 A为 n n 阶实对称正定矩阵, S1 S 2 S n 为对A共轭的n个非零向量,则这n个向量是 线形无关的
由于两平行方向 S1为等值线的切线,其切点分别为
1 2
x, x
故方向
1 2
S1
应垂直于 x
1
2
,
x
处的梯度方向.
即有
x, x
为目标函数 f ( x)在 S1 方向的极小点
1
所以在 两点目标函数的梯度 f ( x )
f ( x )
2
都与 矢量
S1 正交即有
* * 1 * T T S1 f ( x ) S1 f ( x ) 2 f ( x ) x x 0 2 * * 2 * T T S1 f ( x ) S1 f ( x ) 2 f ( x ) x x 0 1
e 0, 1, 0
' 得到 x 且将前一次一维搜索的极小点作为本次一维搜 索的起始点,依次进行一维搜索后,完成一轮 ' 计算,若未收敛则以前一次的末点 x n 为起始 点,进行下一轮的循环,如此一轮一轮迭代下 去,直到满足收敛准则,逼近最优点为止。 2.迭代计算步骤 (1) (0) 1)取初始点 x 作为第一轮的起点 x x x 迭代终止 精度 置 个坐标轴方向矢量为单位坐标矢量
4.无约束优化方法
- 轾 f (X k ) 犏 f (X k ) 蜒 臌 臌
T
轾2
? f (X k )
0
轾 f (X k ) 蜒 臌
T
轾 2 f (X ) - 1 ? f (X ) k k 犏 臌
0
阻尼牛顿法
• 需对上述牛顿法进行改进,引入数学规 划法的搜索概念,提出所谓“阻尼牛顿 法”
2011-3-18
16
a1 SiT AS1 + a2 SiT AS 2 + L + ai SiT ASi + L + am SiT AS m = 0 a1 SiT AS1 + a2 SiT AS 2 + L + ai SiT ASi + L + am SiT AS m = 0
ai = 0
彼此关于A共轭的向量线性无关
1 0 0 0 0 1 0 0 e1 = 0 , e2 = 0 , e3 = 1 , L en = 0 M M M M 0 0 0 1
第四章 无约束优化方法
1. 概述 2. 最速下降法 3. 牛顿型方法 梯度法及共轭梯度法; 4. 梯度法及共轭梯度法; DFP变尺度法 变尺度法. 5. DFP变尺度法. 坐标轮换法; 6. 坐标轮换法; 鲍威尔法; 7. 鲍威尔法;
2011-3-18 1
1.概述
• 有些实际问题,其数学模型本身就是一 个无约束优化问题可以按无约束问题来 处理 • 通过熟悉无约束优化问题的解法可以为 研究约束优化问题打下良好的基础 • 约束优化问题的求解可以通过一系列无 约束优化方法来达到
四章无约束优化方法
xk 1
f xk akf
xk
min
f
x k
akf
xk
min
T
f xk akf xk f xk 0
f
xk 1
T
f
xk
0
d k1 T d k 0
由此可知,在最速下降法中,相邻两个迭代点上旳函数 梯度相互垂直。而搜索方向就是负梯度方向,所以相邻 两个搜索方向相互垂直。
X X
(1) 1
(0) 2
X (0) 1
X (0) 2
X (1) 1
X (1) 2
X X
(2) 1
(2) 2
图4-12 坐标轮换法原理图(动画演示)
2. 搜索方向与步长旳拟定
• (1)搜索方向旳拟定
对于第k轮第i次旳计算
xik
xk i 1
aik dik
第k轮第I次旳迭代方向,它轮番取n维坐标旳单位向量。
假如按最速下降法,选择负梯度方向为搜索方向,会产生 锯齿现象。 为防止锯齿旳发生,取下一次旳迭代搜索方向直接指向极 小点,假如选定这么旳搜索方向,对于二元二次函数只需 进行两次直线搜索就能够求到极小点。
x1 x0 a0
x* x1 a1d1
d1 应满足什么条件?
数值法
能够处理复杂函数及没有数学体现式 旳优化设计问题
xk1 xk ak d k
搜索方向问题是无约束优化措施旳关键。
多种无约束优化措施旳区别:拟定搜索方向旳措施不同。
利用目旳函数旳一阶或二阶导数
无约束优化措施分类 (最速下降法、共轭梯度法、牛顿法)
利用目的函数值 (坐标轮换法、鲍威尔等)
第二节 最速下降法
则在新旳坐标系中,函数旳二次项变为
第四章无约束优化方法
F (X
(1) )
0
结论: 两个平行方向的极小点构成
即 S1T AS2 0
的新方向与原方向相互共轭 即S1与S2对A共轭
也即对于二维正定二次函数只要分别沿两个共轭方向寻优 14 即可找到最优点.
❖ 与此类似,可以推出对于n维正定二次函数,共轭方向的一 个十分重要的极为有用的性质:从任意初始点出发,依次沿 n个线性无关的与A共轭的方向S1,S2,…Sn各进行一维搜 索,那么总能在第n步或n步之前就能达到n维正定二次函数 的极小点;并且这个性质与所有的n个方向的次序无关。简 言之,用共轭方向法对于二次函数从理论上来讲,n步就可 达到极小点。因而说共轭方向法具有有限步收敛的特性。通 常称具有这种性质的算法为二次收敛算法。
第K+1环的方向组仍用老方向组
S1(k1),
S2(k 1) ,
... ...
S (k 1) n1
S (k 1) n
S1(k),
S2(k) ,
... ...
S(k) n1
,
S(k) n
初始点:
当F2 < F3时, 当F2≥F3时,
X (k 1) 0
X (k) n
X X (k 1)
(k)
0
n 1
F ( X ) 2 x12 x22 x1x127
4.2.1 鲍威尔基本算法(共轭方向的原始构成)
18
4.2.1 鲍威尔基本算法
x3
任取一初始点 X(0)→ X0(1)
第 第一环: e1, e2, e3 → S1 一 第二环: e2, e3 , S1 → S2 轮 第三环: e3 , S1 , S2 →S3
补上新增的方向
初始点:
X (k 1) 0
无约束优化之坐标轮换法
无约束优化方法——坐标轮换法一.基本原理坐标轮换法是每次允许一个变量变化,其余变量保持不变,即沿坐标方向轮流进行搜索的寻优方法。
它把多变量的优化问题轮流的转化成单变量的优化问题,因此又称变量轮换法。
在搜索的过程中可以不需要目标函数的导数,只需目标函数值信息。
它比利用目标函数导数建立搜索方向的方法简单的多。
以二元函数飞f(x1,x2)为例说明坐标轮换法的寻优过程。
从初始点x00出发,沿第一个坐标方向搜索,即d10=e1得x10=x00+a01*d01按照一维搜索方法确定最佳步长因子a01满足minf(x00+a*d01),然后从x01出发沿d02=e2方向搜索得x02=x01+a02*d02,其中步长因子a02满足minf(x01+a*d02),x02为一轮(k=0)的终点。
检验始、终点之间的距离是否满足精度要求,即判断||x02-x00||<e的条件是否满足。
若满足则x*=x02,否则令x10=x02,重新一次沿坐标方向进行下一轮的搜索。
对于n个变量的函数,若在第k 轮沿第i个坐标方向dki进行搜索,其迭代公式为xki=xk(i-1)+aki+dki(k=0,1,2…,i=0,1,2…n)其中搜索方向取坐标方向,即dki=ei(i=1,…n)。
若||xkn-x00||<e,则x*=xkn,否则x(k+1)0=xkn,进行下一轮搜索,一直到满足精度为止。
注:上述xki中,其中k为上标,i为下标二.例题及程序1.用坐标轮换法求f(1x,2x)=10(1x+2x-5)^2+(1x-2x)^2极小值2.程序(1)function y=f(x)y=10*(x(1)+x(2)-5)^2+(x(1)-x(2))^2; ………………………..%定义f文件(2)d1=e1;syms a1;x1=x0+a1*d1;y1=f(x1);z1=diff(y1,a1);subs(z1);a1=solve(z1);%求沿e1方向最佳步长x1=x0+a1*d1;d2=e2;syms a2;x2=x1+a2*d2;y2=f(x2);z2=diff(y2,a2);subs(z2);a2=solve(z2);%求沿e2方向最佳步长x2=x1+a2*d2;m=x2-x0;m=double(m);t=norm(m); ……….%定义f2文件(3)x0=[0;0];e=0.001;e1=[1;0];e2=[0;1];f2; ………………%定义f3文件(4)f3;while (t>=e)x0=x2;f2;endx2=double(x2);xo=x2;xo…………………%定义f4文件三.程序框图四.计算结果及说明运用MATLAB运算结果如上所示,运算结果比较精确,跟课本上用鲍威尔方法计算结果比较相近。
04 无约束优化方法
F 1A C
向上的极小点,而非原函数的 -2 -1
0
1
2
3
x1
极小点。
解决办法:阻尼牛顿法。
7
二.阻尼牛顿法
1.迭代公式
沿牛顿方向-[H(X(k))]-1f(X(k))作一维搜索,迭代公式:
X (k1) X (k ) k [H ( X (k ) )]1f ( X (k ) )
其中λ k使
f ( X (k ) k s(k ) ) min f ( X (k ) k s(k ) )
S1
1 0 ,S2
0 1
正交不共轭
19
2.正定二次函数的特点
(1)正定二次二元函数的等值线是椭圆线簇,椭圆线簇的中心
即目标函数的极值点。
(2)过同心椭圆线簇中心作任意直线,此直线与诸椭圆交点处
的切线相互平行。
反之过两平行线与椭圆切点X(a)和
x2
X(b)的连线必通过椭圆的中心。因此
只要沿方向X(a)—X(b)进行一维搜索,
1、坐标轮换法具有程序简单,易于掌握的优点,但它的计
算效率较低,因此它虽然步步在登高,但相当于沿两个垂直方
向在爬山,路途迂迴曲折,收敛很慢,因此它适用于维数较低
(一般n<10)的目标函数求优。
2、有“脊线”的目标函数等值线的情形,沿坐标轴方向函数值
不一定下降。
脊线
x2
A
p
0
x1
13
五、练习 用最优步长法求解 f (X)=(x1-2)4+(x1-2x2)2的极小点。 初始点X(0)=[0,3]T,要求迭代一轮。 请注意沿坐标轴移动的方向。
22
二、迭代过程
以二维问题为例: ① X(0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 无约束优化方法 §4-7 坐标轮换法
§4-3 坐标轮换法
间接法:梯度法;牛顿法;变尺度法 共同点:求导数 直接法:直接用函数值 搜索方向如何定?
坐标轮换法的基本思想:
把n维无约束优化问题转化为一系列一维优化问题来求 解,即沿着n个坐标轴方向e1,e2……en顺次进行一维搜索, 每n次搜索记为一轮,轮换迭代,求解极值点。 基本迭代格式:
如:(1)等值线为椭圆,且长短轴分别平行于坐标轴时 --高效
X0
x2
X*
x2
o
x1
o
(2)等值线为如图脊线时 --无效 (3)一般情况 --低效
x1
(1) T x = [0 0] ε = 0.1 初始点 0 的最优解。迭代精度 ,
z
课后练习题: 用坐标轮换法求目标函数(迭代两轮)
f ( x ) = x12 + 16 x 22 + 10 x1 x 2
(1) T x = [4 3] ε = 0.1 初始点 0 的最优解。迭代精度 ,
算法特点:
1)不需对目标函数求导,方法简单; 2)收敛速度通常较低(其有效性取决于目标 函数的性态),仅适于低维的情况。
x
(k ) i
=x
(k ) i −1
+α e
(k ) i i
(k = 1,2,3"; i = 1,2," n)
收敛准则:
(k ) x0( k ) − xn ≤ε
图4-12 坐标轮换法的基本原理示意图
计算步骤:
1)对于n个变量的函数,若在第k轮沿着第i个坐标 方向进行搜索,其迭代公式为: k k k i i −1 i i k 2)求最优搜索步长 α
x = x +α e
i
3)本轮所有方向搜索完毕,判断迭代终止条件:
x −x
k n
k 0
≤ε
k n
4)满足上式:
x =x
∗Leabharlann 否则,进行下一轮迭代。图4-13 坐标轮换法 程序框图
z
例题: 用坐标轮换法求目标函数
(迭代两轮)
f ( x ) = x12 + x 22 − x1 x 2 − 4 x1 − 10 x 2 + 60