2018届高三数学文科二轮复习教师用书:系统热门考点—以点带面含答案

合集下载

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过一轮复习,同学们大都掌握了基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题,而二轮复习承上启下,是知识系统化、条理化,促进灵活运用,提高数学素养的关键时期,为进一步突出重点,攻破难点,提高二轮复习的时效性,建议专题复习时,处理好以下3点:第1点 归纳常考知识,构建主干体系由于二轮复习时间较短,复习中不可能面面俱到,这就需要我们依据《考试大纲》和《考试说明》,结合浙江近几年的高考试题进行主干网络体系的构建,并紧紧抓住高考的“热点”,有针对性地训练.例如:“三角函数”在高考中的主要考点是什么?回顾近三年的高考试题,不难发现,三角函数一般会考两类题:一类题考查解三角形(正弦定理、余弦定理、面积公式),一类题考查三角变换(和(差)角公式、倍角公式、辅助角公式、三角函数的图象与性质).【例1】 (经典高考题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 【导学号:68334000】注:本书所有主观题附规范解答及评分细则[解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,2分即2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .4分 可得cos C =12, 因为C 为△ABC 的内角,所以C =π3. 7分 (2)由已知得12ab sin C =332. 又C =π3,所以ab =6. 9分由已知及余弦定理得a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.13分 所以△ABC 的周长为5+7. 14分【名师点评】 边角互化是利用正、余弦定理解题的有效途径,合理应用定理及其变形可化繁为简,提高运算效率,如本题也可以利用结论“a cos B +b cos A =c ”直接得出cos C =12. 【例2】 已知函数f (x )=(sin 2x +cos 2x )2-2sin 22x .(1)求f (x )的最小正周期;(2)若函数y =g (x )的图象是由y =f (x )的图象先向右平移π8个单位长度,再向上平移1个单位长度得到的,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,求y =g (x )的单调递增区间和最小值.[解题指导] f (x )―――――→三角恒等变换f (x )=A sin(ωx +φ)――→平移变换y =g (x )求g (x )的单调递增区间和最小值.[解] f (x )=(sin 2x +cos 2x )2-2sin 22x=2sin 2x cos 2x +cos 22x -sin 22x=sin 4x +cos 4x=2sin ⎝ ⎛⎭⎪⎫4x +π4. 4分(1)函数f (x )的最小正周期为T =2π4=π2. 6分(2)由题意,知g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π8+π4+1=2sin ⎝ ⎛⎭⎪⎫4x -π4+1. 8分 令-π2+2k π≤4x -π4≤π2+2k π(k ∈Z ), 解得-π16+k 2π≤x ≤3π16+k 2π(k ∈Z ). 10分当k =0时,得-π16≤x ≤3π16. 故当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,3π16, 12分 显然g (x )的单调递减区间是⎝ ⎛⎦⎥⎤3π16,π4,易知g (x )min =g (0)=0. 14分 【名师点评】 利用和(差)角公式、倍角公式、辅助角公式将含有多个不同的三角函数式转化为y =A sin(ωx +φ)的形式,再利用三角函数的性质求其单调区间、最值等问题.通过上述两例,我们可以发现高考对“三角函数”考什么、如何考等问题,明确地构建出了本部分知识的主干知识体系.总之,对主干知识的确定有两种途径:第一,跟着老师去复习,一般来说,老师对主干知识的把握比较准确;第二,自己多看、多做近几年的高考题,从而感悟高考考什么,怎么考,进而能使自己把握主干知识,从而进行针对性地二轮复习.。

18高三二诊文科数学答案.doc

18高三二诊文科数学答案.doc

2018年普通高等学校招生全国统一考试4月调研测试卷文科数学参考答案一、选择题1〜6 BABCBC 7〜12 BADCCD第(12)题提示:圆(% + 3sin a) + (y + 3cos a) =1 的圆心(-3sin a, - 3cosa )在圆 + 上,当a改变时,该圆在绕着原点转动,I,,集合4表示的区域是如右图所示的环形区域,直线3x + 4y+10 = 0恰好与环形的小圆相切,//Z所以4 B所表示的是直线3x + 4y+10 = 0截([(。

—尹彳—广圆x2 + y2=16所得的弦长.二、填空题(13) 64 (14) 8 (15) 3 (16) 7第(16)题提示:PF? - PF]二QF? = 2a , QF\ - QF? = 2a , QF\ = 4a,在^QF\F^中由余弦定理,FF i=QF2 +QF2 -2QF QFcosl20得,1 2 1 2 1 24c2 =16/ + 4/ 一2 4a -2a -cosl20 n e =福三、解答题(17)(本小题满分12分)解:(I) 3S n = (n + 2)a n , 3S〃_i = (〃+l)a〃_i两式相减,3a n = (n + 2)a n - (n -\-l)a n _i ,缶-=巴旦,其中2"j n -1累乘得,a =0+1)〃a =旳+1),其中心2,又a =2n 2 1 1a n = n(n +1)(II) _1 +J.+ + 丄=—+— + + ___________________ J_a a a 12 2 3 n(n +1)1 2 n111 11 1= (1—2)+( 2一3)+n~n~^V> = 1 ~n +1 < 1(18)(本小题满分12分)解:(I ) x = 6.5 , y = 20A (5 - 6.5)(15 - 20) + (6 - 6.5)(17 一20) + (7 - 6.5)(21 - 20) + (8 - 6. 5)(27- 20) "b=(5 - 6.5)2 + (6_6.5)2 + (7 _ 6.5)2 + (8- 6.5)2a" = 20 - 4x6.5 = -6 ,回归方程为= 4x - 6(II)当x = 9时,y = 30 ,预测该社区在2019年投资金额为30万元.4月调研测试卷•文科数学参考答案第1页共3页(19)(本小题满分12分)解:(I )设P 为ABi 中点,连结NP ,则NP 』2 BB I 又MO^2AA \ >所以MOPN 为平行四边形,MN//OP MN// 平面AOBi(II ) V A-MON V B-Ci Ai A =1 卫 =_L AMO 2 N — AC\O 4 BB / / 平而 AA C , VI I IV _ = 1N -Ci Ai A g =v B-Ci Ai A Bi -Ci Ai A V =1 V 二Bi -Ci A] A _ 3 ABC-A1B1C1:.V =A-MON 12 (20)(本小题满分12分)b 3 解:(I )由题 PM = MF? — MF\ ,PF2 -L FyF? , PF? — 2OM~= p = 2 联立 a = + F 和c =1 解得 / 二 4 , x b 2 =3 ,所求椭圆方程为—+ — = 14 3拓,联立椭圆方程得_^3 (4点2 + 3)x 2 + 8/3 k=0 , x =-五k , * = -- k =血k ,4k'+ 3 2 _4 4 + 3k~k 2 +3由题,若直线BS 关于y 轴对称后得到直线B'S',则得到的直线S'T'与ST 关于x 轴对称, 所以若直线ST 经过定点,该定点一定是直线S'T'与ST 的交点,该点必在y 轴上.(kx +_ x (—丄 x + f ) 设该点坐标(0, f ),= y2 -yi ,t = 刃也二卫卫= i: i k ?_______(II )设 S (兀1,刃),T 他,yi ),直线 BS :y = kx -x1代入X , X 化简得t =1 27X - X2 1ST 经过定点(0, 也)7 2 1x -x2(21)(本小题满分12分) 解:(I ) ' v 3 3 o —1 — )— /(x) = e (x 屮 x 2 = 由题'W 在, 恒成立,/⑴ 0 (0+8) 设 g (x) = (-.¥ 2 + 3x - 3) -e x(x)在(0, 1)上单调递增,gmax (x) = g (1) = —e > a3 a 2 -x +3兀一3 % a2 —兀 ・e 兀2—x + 3x — 3 x 2X 1 0o a (II) /(%) = (兀一l)e"+ 兀=2o 2x -e,g©) = e" (J + x) g 在(1, +oo)上单调递减. e[-e 9 + GO )a 3 兀=2 —( JQ -l)e x,其中 x > 0 2(—兀 + 3 兀—3):.a = 2x- (3 - x)e x , x > 0令 h(x) = 2x- (3 - x)e x , h f (x) = 2 + (兀一 2)e x , h'\x) = (x -l)e4月调研测试卷•文科数学参考答案第2页共3页丹(兀)在(一8, 1)上单调递减,在(1, +8)上单调递增,由h f(0) = 0 又丹⑵=2〉0 ,所以存在期)〉0 ,使h'(x)在(0, %o )上满足h\x) < 0 ,在(兀0,+00)上满足h r(x) > 0 ,即/z(兀)在(0,兀。

2018北师大版文科数学高考总复习教师用书2-8函数与方程Word版含答案

2018北师大版文科数学高考总复习教师用书2-8函数与方程Word版含答案

第8讲函数与方程、函数的应用最新考纲 1.结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;2.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;3.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.知识梳理1.函数的零点(1)函数的零点的概念函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点.(2)函数零点与方程根的关系方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.2.二次函数y=ax2+bx+c(a>0)的图像与零点的关系(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=kx(k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=a·b x+c(b>0,b≠1,a≠0).(5)对数函数模型:y=m log a x+n(a>0,a≠1,m≠0).4.指数、对数、幂函数模型性质比较1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)函数f(x)=lg x的零点是(1,0).()(2)图像连续的函数y=f(x)(x∈D)在区间(a,b)⊆D内有零点,则f(a)·f(b)<0.()(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).()解析(1)f(x)=lg x的零点是1,故(1)错.(2)f(a)·f(b)<0是连续函数y=f(x)在(a,b)内有零点的充分不必要条件,故(2)错.答案(1)×(2)×(3)√(4)√2.(教材改编)函数f(x)=e x+3x的零点个数是()A.0 B.1C.2 D.3解析由已知得f′(x)=e x+3>0,所以f(x)在R上单调递增,又f(-1)=1e-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.答案 B3.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是() A.y=cos x B.y=sin xC.y=ln x D.y=x2+1解析 由函数是偶函数,排除选项B 、C ,又选项D 中函数没有零点,排除D ,y =cos x 为偶函数且有零点. 答案 A4.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到( ) A .100只 B .200只 C .300只 D .400只解析 由题意知100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),当x =8时,y =100log 39=200. 答案 B5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________. 解析 因为函数f (x )=ax +1-2a 在区间(-1,1)上是单调函数,所以若f (x )在区间(-1,1)上存在一个零点,则满足f (-1)f (1)<0,即(-3a +1)·(1-a )<0,解得13<a <1. 答案 ⎝ ⎛⎭⎪⎫13,1考点一 函数零点所在区间的判断 【例1】 (1)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 (2)设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 解析 (1)∵a <b <c ,∴f (a )=(a -b )(a -c )>0, f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函数零点存在性定理可知:在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点;因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内,故选A.(2)法一 函数f (x )的零点所在的区间可转化为函数g (x )=ln x ,h (x )=-x +2图像交点的横坐标所在的取值范围.作图如下:可知f (x )的零点所在的区间为(1,2).法二 易知f (x )=ln x +x -2在(0,+∞)上为增函数, 且f (1)=1-2=-1<0,f (2)=ln 2>0.所以根据函数零点存在性定理可知在区间(1,2)内函数存在零点. 答案 (1)A (2)B规律方法 确定函数f (x )的零点所在区间的常用方法(1)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图像是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图像,观察图像与x 轴在给定区间上是否有交点来判断. 【训练1】 已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120=ln 2-1<0,f (3)=ln 3-12>0.故f (x )的零点x 0∈(2,3). 答案 C考点二 函数零点个数的判断【例2】 (1)函数f (x )=⎩⎨⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍).所以在(-∞,0]上有一个零点.当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2. (2)令f (x )=2x|log 0,5x |-1=0,得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x ,在同一坐标系下分别画出函数g (x ),h (x )的图像(如图).由图像知,两函数的图像有两个交点,因此函数f (x )有2个零点. 答案 (1)2 (2)B规律方法 函数零点个数的判断方法:(1)直接求零点,令f (x )=0,有几个解就有几个零点;(2)零点存在性定理,要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图像与性质确定函数零点个数;(3)利用图像交点个数,作出两函数图像,观察其交点个数即得零点个数. 【训练2】 (2015·湖北卷)f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为________.解析f (x )=2sin x cos x -x 2=sin 2x -x 2,则函数的零点即为函数y =sin 2x 与函数y =x 2图像的交点,如图所示,两图像有2个交点,则函数有2个零点. 答案 2考点三 函数零点的应用【例3】 (2017·昆明调研)已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的实根,求a 的取值范围. 解 由f (x -4)=f (x )知,函数的周期T =4. 又f (x )为偶函数,∴f (x )=f (-x )=f (4-x ),因此函数y =f (x )的图像关于x =2对称.又f (2)=f (6)=f (10)=2.要使方程f (x )=log a x 有三个不同的实根.由函数的图像(如图),必须有⎩⎨⎧f (6)<2,f (10)>2,a >1.即⎩⎨⎧log a 6<2,log a 10>2,a >1.解之得6<a <10.故a 的取值范围是(6,10).规律方法 已知函数有零点(方根有根)求参数值常用的方法:(1)直接法,直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合,先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后观察求解.【训练3】 (1)(2017·南昌检测)已知函数f (x )=⎩⎨⎧e x+a ,x ≤0,3x -1,x >0(a ∈R ),若函数f (x )在R上有两个零点,则a 的取值范围是( ) A .(-∞,-1) B .(-∞,0) C .(-1,0) D .[-1,0)(2)(2016·山东卷)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 解析 (1)当x >0时,f (x )=3x -1有一个零点x =13. 因此当x ≤0时,f (x )=e x +a =0只有一个实根, ∴a =-e x (x ≤0),则-1≤a <0.(2)在同一坐标系中,作y =f (x )与y =b 的图像.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,∴要使方程f (x )=b 有三个不同的根,则有4m -m 2<m , 即m 2-3m >0.又m >0,解得m >3. 答案 (1)D (2)(3,+∞)考点四 构建函数模型解决实际问题(易错警示)【例4】 (1)(2016·四川卷)某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2018年B .2019年C .2020年D .2021年(2)(2017·河南省实验中学期中)为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10,k 为常数),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和. ①求k 的值及f (x )的表达式;②隔热层修建多厚时,总费用f (x )达到最小?并求最小值.(1)解析 设2015年后的第n 年该公司投入的研发资金为y 万元,则y =130(1+12%)n . 依题意130(1+12%)n >200,得1.12n >2013. 两边取对数,得n ·lg1.12>lg 2-lg 1.3∴n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元. 答案 B(2)解 ①当x =0时,C =8,∴k =40, ∴C (x )=403x +5(0≤x ≤10), ∴f (x )=6x +20×403x +5=6x +8003x +5(0≤x ≤10).②由①得f (x )=2(3x +5)+8003x +5-10. 令3x +5=t ,t ∈[5,35],则y =2t +800t -10,∴y ′=2-800t 2,当5≤t <20时,y ′<0,y =2t +800t -10为减函数; 当20<t ≤35时,y ′>0,y =2t +800t -10为增函数. ∴函数y =2t +800t -10在t =20时取得最小值,此时x =5,因此f (x )的最小值为70.∴隔热层修建5 cm 厚时,总费用f (x )达到最小,最小值为70万元.规律方法 (1)构建函数模型解决实际问题的常见类型与求解方法: ①构建二次函数模型,常用配方法、数形结合、分类讨论思想求解. ②构建分段函数模型,应用分段函数分段求解的方法.③构建f (x )=x +ax (a >0)模型,常用基本不等式、导数等知识求解. (2)解函数应用题的程序是:①审题;②建模;③解模;④还原. 易错警示 求解过程中不要忽视实际问题是对自变量的限制.【训练4】 (1)(2017·成都调研)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.(2)某旅游景点预计2017年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N +,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x (x ∈N +,且1≤x ≤6),160x(x ∈N +,且7≤x ≤12).①写出2017年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式; ②试问2017年第几个月旅游消费总额最大?最大月旅游消费总额为多少元? (1)解析 由已知条件,得192=e b又48=e 22k +b =e b ·(e 11k )2∴e 11k =⎝ ⎛⎭⎪⎫4819212=⎝ ⎛⎭⎪⎫14=,设该食品在33 ℃的保鲜时间是t 小时,则t =e 33k +b =192 e 33k =192(e 11k )3=192×⎝ ⎛⎭⎪⎫123=24. 答案 24(2)解 ①当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N +时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式, 所以f (x )=-3x 2+40x (x ∈N +,且1≤x ≤12). ②第x 个月旅游消费总额为g (x )=⎩⎪⎨⎪⎧(-3x 2+40x )(35-2x ) (x ∈N +,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N +,且7≤x ≤12),即g (x )=⎩⎨⎧6x 3-185x 2+1 400x (x ∈N +,且1≤x ≤6),-480x +6 400 (x ∈N +,且7≤x ≤12).(ⅰ)当1≤x ≤6,且x ∈N +时, g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去). 当1≤x <5时,g ′(x )>0, 当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(万元). (ⅱ)当7≤x ≤12,且x ∈N +时, g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040(万元).综上,2017年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.[思想方法]1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图像交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图像公共点的个数来判断.3.求解函数应用问题的步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题.[易错防范]1.函数的零点不是点,是方程f(x)=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.3.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型.并根据实际问题,合理确定函数的定义域.4.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.基础巩固题组(建议用时:40分钟)一、选择题1.(2017·赣中南五校联考)函数f(x)=3x-x2的零点所在区间是()A.(0,1) B.(1,2)C.(-2,-1) D.(-1,0)解析 由于f (-1)=-23<0,f (0)=30-0=1>0,∴f (-1)·f (0)<0.则f (x )在(-1,0)内有零点.答案 D2.已知函数f (x )=⎩⎨⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( ) A.12,0 B .-2,0C.12 D .0解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0.答案 D3.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0,所以0<a <3. 答案 C4.(2017·德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a 4 L ,则m 的值为( )A .5B .8C .9D .10解析 ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12,∴f (t )=a ·⎝ ⎛⎭⎪⎫12,因此,当k min 后甲桶中的水只有a 4 L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12=14a ,即⎝ ⎛⎭⎪⎫12=14, ∴k =10,由题可知m =k -5=5.答案 A5.(2017·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18C .-78D .-38解析 令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案 C二、填空题6.(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.解析 ∵f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1,∴f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2.由此可得⎩⎨⎧ 2a+b =-3,①a 2+2ab =0,②a 3+3a 2=a 2b .③∵a ≠0,∴由②得a =-2b ,代入①式得b =1,a =-2.答案 -2 17.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求(已知lg 2≈0.301 0,lg 3≈0.477 1).解析 设过滤n 次才能达到市场要求,则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120, 所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.答案 88.(2015·安徽卷)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图像只有一个交点,则a 的值为________.解析函数y =|x -a |-1的图像如图所示,因为直线y =2a 与函数y =|x -a |-1的图像只有一个交点,故2a =-1,解得a =-12.答案 -12三、解答题9.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围. 解 (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧ f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧ 3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 12<a <34. 10.(2017·陕西实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q 10(其中a 、b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故有a +b log 39010=1,整理得a +2b =1.解方程组⎩⎨⎧ a +b =0,a +2b =1,得⎩⎨⎧ a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.能力提升题组(建议用时:20分钟)11.已知函数f (x )=⎩⎨⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞)D .(-∞,0]∪(1,+∞)解析 函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,画出h (x )=f (x )+x =⎩⎨⎧x ,x ≤0,e x +x ,x >0的大致图像(图略).观察它与直线y =m 的交点,得知当m ≤0或m >1时,有交点,即函数g (x )=f (x )+x -m 有零点.答案 D12.(2017·合肥质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎨⎧ 0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎨⎧ 7a +b =0.1,9a +b =-0.3,解得⎩⎨⎧ a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t 2-152t +22516+4516-2=-15⎝ ⎛⎭⎪⎫t -1542+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.答案 B13.(2015·湖南卷)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 解析由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图像,如图所示.则当0<b <2时,两函数图像有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 答案 (0,2)14.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图像;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值; (3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =错误! 故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数.由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图像可知,当0<m <1时,函数f (x )的图像与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.。

2018届高考数学二轮复习 第二部分 板块(二)系统热门考点——以点带面教师用书 理

2018届高考数学二轮复习 第二部分 板块(二)系统热门考点——以点带面教师用书 理

第二部分 板块(二) 系统热门考点——以点带面[速解技法——学一招]函数性质主要指函数的单调性、奇偶性、周期性、对称性,要深刻理解并加以巧妙地运用.以对称性为例,若函数f (x )满足f (a +x )=f (b -x ),则函数图象关于直线x =a +b2对称;若函数f (x )满足f (a +x )+f (b -x )=c ,则函数图象关于点⎝⎛a +b 2,[例1] 定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在有( )A .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32B .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫32C .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫-14D .f ⎛⎪⎫-1<f ⎛⎪⎫3<f ⎛⎪⎫1f (x -2)=f (2-x ),所以函数f (x )的图象关于直线x f (x )在[-1,0]上也是增函数, [1,3]上是减函数.x 的定义域为[-1,1],若f (log 2m )<f (log 4(m +2))成立,则实数m 的取值范围为________.[解析] 由f (x )=x 3+sin x 的定义域为[-1,1], 易知f (x )在[-1,1]上单调递增, 由f (log 2m )<f (log 4(m +2)),可得⎩⎪⎨⎪⎧-1≤log 2m ≤1,-1≤log 4m +,log 2m <log4m +,m >0,m +2>0,解得⎩⎪⎨⎪⎧12≤m ≤2,-74≤m ≤2,0<m <2,m >0,m >-2,故12≤m <2. 综上可知,实数m 的取值范围为⎣⎢⎡⎭⎪⎫12,2. [答案] ⎣⎢⎡⎭⎪⎫12,2 [经典好题——练一手]1.已知定义在R 上的函数f (x )满足f (2+x )=-f (2-x ),当x <2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值为( )A .可正可负B .可能为0C .恒大于0D .恒小于0解析:选D 由f (2+x )=-f (2-x )可知,函数图象关于点(2,0)中心对称.因为x <2时,f (x )单调递增,所以x >2时,f (x )单调递增.因为x 1+x 2<4且(x 1-2)·(x 2-2)<0,设x 1<2<x 2,则x 2<4-x 1,所以f (x 2)<f (4-x 1).又因为f (4-x 1)=-f (x 1),所以f (x 2)<-f (x 1),即f (x 1)+f (x 2)<0.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C 由函数f (x )=2|x -m |-1为偶函数可知,m =0,故f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 0.53|>0.∴b =f (log 25)>a =f (log 0.53)>c =f (2m ).3.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 解析:由题意得g (-1)=f (-1)+2.又f (-1)+(-1)2=-[f (1)+12]=-2,所以f (-1)=-3.故f (-1)+2=-3+2=-1,即g (-1)=-1. 答案:-14.函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ).当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是________.解析:由f (x +2)=f (x ),得函数的周期是2.由ax +2a -f (x )=0, 得f (x )=ax +2A .设y =f (x ),则y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图.要使方程ax +2a -f (x )=0恰有四个不相等的实数根,则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG ,由题意可知,G (1,2),H (3,2),A (-2,0), 所以k AH =25,k AG =23,所以25<a <23.答案:⎝ ⎛⎭⎪⎫25,23[常用结论——记一番]1.函数的单调性 在公共定义域内:(1)若函数f (x )是增函数,函数g (x )是增函数,则f (x )+g (x )是增函数; (2)若函数f (x )是减函数,函数g (x )是减函数,则f (x )+g (x )是减函数; (3)若函数f (x )是增函数,函数g (x )是减函数,则f (x )-g (x )是增函数; (4)若函数f (x )是减函数,函数g (x )是增函数,则f (x )-g (x )是减函数. [提示] 在利用函数单调性解不等式时,易忽略函数定义域这一限制条件. 2.函数的奇偶性(1)判断函数的奇偶性有时可以用定义的等价形式:f (x )±f (-x )=0,f xf -x=±1;(2)设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.3.有关函数f (x )周期性的常用结论:(1)若f (x +a )=f (x -a ),则函数f (x )的周期为2|a |; (2)若f (x +a )=-f (x ),则函数f (x )的周期为2|a |; (3)若f (x +a )=1f x,则函数f (x )的周期为2|a |; (4)若f (x +a )=-1f x,则函数f (x )的周期为2|a |.(二)最值函数 大显身手 [速解技法——学一招][例1] 对于任意x ∈R ,函数f (x )表示y =-x +3,y =2x +2,y =x 2-4x +3中的最大者,则f (x )的最小值是( )A .2B .3C .8D .-1[解析] 选A 如图,分别画出函数y =-x +3,y =32x +12,y =x 2-4x +3的图象,得到三个交点A (0,3),B (1,2),C (5,8). 由图象可得函数f (x )的表达式为f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x +3,0<x ≤1,32x +12,1<x ≤5,x 2-4x+3,x >5,所以f (x )的图象是图中的实线部分,图象的最低点是B (1,2),所以函数f (x )的最小值是2.[例2] 已知函数f (x )=x 2-x +m -12,g (x )=-log 2x ,min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),则当函数h (x )有三个零点时,实数m 的取值范围为( )A .⎝ ⎛⎭⎪⎫0,34B .⎝⎛⎦⎥⎤-∞,34 C .⎝ ⎛⎭⎪⎫12,34D .⎝ ⎛⎭⎪⎫12,+∞[解析] 选C 在同一直角坐标系中,作出函数y =f (x )和y =g (x )的图象如图所示.当两函数图象交于点A (1,0)时,即有1-1+m -12=0,解得m =12,所以当函数h (x )有三个零点时, 即为点A 和y =f (x )与x 轴的两个交点,若满足条件,则需⎩⎪⎨⎪⎧f ,f ⎝ ⎛⎭⎪⎫12<0,f ,解得12<m <34.所以实数m 的取值范围是⎝ ⎛⎭⎪⎫12,34. [经典好题——练一手]1.设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2解析:选D max{|a +b |2,|a -b |2}≥|a +b |2+|a -b |22=|a |2+|b |2,故选D.2.(2017·兰州模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ≥0,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |=( )A .255B .223C .1D .52解析:选A 如图,设OA ―→=a ,OB ―→=b ,则a =(1,0),b =(0,2),∵λ≥0,μ≥0,λ+μ=1,∴0≤λ≤1.又c =λa +μb ,∴c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.∴max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤1,4-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤1,4-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,4.∴f (λ)min =45,此时λ=45,μx ,则x 2+y 2的最大值为________. 10x -5x 2≥0⇒0≤x ≤2. 9=16⇒x 2+y 2≤4. 2=1,令x -1=sin θ,255y =cos θ,θ∈[0,2π],则x 2+y 2=(sin θ+1)2+⎝ ⎛⎭⎪⎫52cos θ2=94-14(sin θ-4)2+4, ∵-1≤sin θ≤1,∴当sin θ=1时,x 2+y 2取得最大值,即(x 2+y 2)max =4. 答案:4(三)应用导数 开阔思路 [速解技法——学一招]1.函数的单调性与导数的关系 ①f ′(x )>0⇒f (x )为增函数; ②f ′(x )<0⇒f (x )为减函数; ③f ′(x )=0⇒f (x )为常数函数. 2.求函数f (x )极值的方法求函数的极值应先确定函数的定义域,解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表的形式进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.[例1] 若函数f (x )=2sin x (x ∈[0,π))的图象在切点P 处的切线平行于函数g (x )=2x ⎝ ⎛⎭⎪⎫x3+1的图象在切点Q 处的切线,则直线PQ 的斜率为( )A .83 B .2 C .73D .33[解析] 选A 由题意得f ′(x )=2cos x ,g ′(x )=x 12+x -12.设P (x 1,f (x 1)),Q (x 2,g (x 2)),又f ′(x 1)=g ′(x 2),即2cos x 1=x 122+x -122,故4cos 2x 1=x 2+x -12+2, 所以-4+4cos 2x 1=x 2+x -12-2, 即-4sin 2x 1=(x 122-x -122)2,所以sin x 1=0,x 1=0,x 122=x -122,x 2=1,故P (0,0),Q ⎝ ⎛⎭⎪⎫1,83,故k PQ =83.[例2] 已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________. [解析] 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).[答案] (-∞,-1)∪(1,+∞)[例3] 已知函数f (x )=(ax +b )ln x -bx +3在(1,f (1))处的切线方程为y =2. (1)求a ,b 的值; (2)求函数f (x )的极值;(3)若g (x )=f (x )+kx 在(1,3)上是单调函数,求k 的取值范围. [解] (1)因为f (1)=-b +3=2,所以b =1.又f ′(x )=b x+a ln x +a -b =1x+a ln x +a -1,而函数f (x )在(1,f (1))所以f ′(1)=1+a -1=0,所以(2)由(1)得f (x )=ln x -x +3,f .令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故f (x )的极大值为f (1)=2,无极小值.(3)由g (x )=f (x )+kx ,得g (x )=ln x +(k -1)x +3(x >0),g ′(x )=1x+k -1,又g (x )在x ∈(1,3)上是单调函数, 若g (x )为增函数,有g ′(x )≥0,即g ′(x )=1x +k -1≥0,即k ≥1-1x在x ∈(1,3)上恒成立.又1-1x ∈⎝ ⎛⎭⎪⎫0,23,所以k ≥23.若g (x )为减函数,有g ′(x )≤0,即g ′(x )=1x +k -1≤0,即k ≤1-1x在x ∈(1,3)上恒成立,又1-1x ∈⎝ ⎛⎭⎪⎫0,23,所以k ≤0.综上,k 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫23,+∞.[经典好题——练一手]1.f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 016+ln x +x ·1x=2 017+ln x ,由f ′(x 0)=2 017,得2 017+ln x 0=2 017,所以ln x 0=0,解得x 0=1.2.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f n -f mn -m,f ′(x 2)=f n -f mn -m .则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,12B .⎝ ⎛⎭⎪⎫32,3 C .⎝ ⎛⎭⎪⎫12,1D .⎝ ⎛⎭⎪⎫13,1 解析:选C 因为f (x )=x 3-x 2+a ,所以f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f a -fa -0=a 2-a ,所以方程3x 2-2x =a 2-a在区间(0,a )上有两个不相等的实根.令g (x )=3x 2-2x -a 2+a (0<x <a ), 则⎩⎪⎨⎪⎧Δ=4--a 2+a ,g=-a 2+a >0,g a =2a 2-a >0,解得12<a <1,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1.3.已知函数f (x )=x 33-b 2x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +fx a在点(b ,g (b ))处的切线斜率的最小值是________.解析:因为f ′(x )=x 2-bx +a ,所以g (x )=a ln x +x 2-bx a +1.所以g ′(x )=a x+2x -ba(x >0),因为a >0,b >0,则g ′(b )=a b+2b -b a=a b +b a≥2,当且仅当a =b =1时取“=”,所以斜率的最小值为2. 答案:24.已知函数f (x )=(x +1)2ln(x +1)-x ,φ(x )=mx 2. (1)当m =12时,求函数g (x )=f (x )-φ(x )的极值;(2)当m =1且x ≥0时,证明:f (x )≥φ(x );(3)若x ≥0,f (x )≥φ(x )的取值范围. 解:(1)当m =12时,21). g x =0变化时,g所以函数g (x )的极小值为g (0)=0,无极大值.(2)证明:当m =1时,令p (x )=f (x )-φ(x )=(x +1)2·ln(x +1)-x -x 2(x ≥0), 所以p ′(x )=2(x +1)ln(x +1)+(x +1)2·1x +1-1-2x =2(x +1)ln(x +1)-x . 设p ′(x )=G (x ),则G ′(x )=2ln(x +1)+1>0, 所以函数p ′(x )在[0,+∞)上单调递增,所以p ′(x )≥p ′(0)=0,所以函数p (x )在[0,+∞)上单调递增, 所以p (x )≥p (0)=0. 所以f (x )≥φ(x ).(3)设h (x )=(x +1)2ln(x +1)-x -mx 2(x ≥0), 所以h ′(x )=2(x +1)ln(x +1)+x -2mx .由(2)知当x ≥0时,(x +1)2ln(x +1)≥x 2+x =x (x +1), 所以(x +1)ln(x +1)≥x ,所以h ′(x )≥3x -2mx . ①当3-2m ≥0,即m ≤32时,h ′(x )≥0,所以h (x )在[0,+∞)上单调递增, 所以h (x )≥h (0)=0,满足题意. ②当3-2m <0,即m >32时,设H (x )=h ′(x )=2(x +1)ln(x +1)+(1-2m )x , 则H ′(x )=2ln(x +1)+3-2m , 令H ′(x )=0,得x 0=e 2m -32-1>0,故h ′(x )在[0,x 0)上单调递减,在[x 0,+∞)上单调递增. 当x ∈[0,x 0)时,h ′(x )<h ′(0)=0, 所以h (x )在[0,x 0)上单调递减, 所以h (x )<h (0)=0,不满足题意. 综上,实数m 的取值范围为⎝⎛⎦⎥⎤-∞,32. [常用结论——记一番]1.函数极值的判别的易错点(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值.在x 0处有f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.2.函数最值的判别方法(1)求函数f (x )在闭区间[a ,b ]上最值的关键是求出f ′(x )=0的根的函数值,再与f (a ),f (b )作比较,其中最大的一个是最大值,最小的一个是最小值.(2)求函数f (x )在非闭区间上的最值,只需利用导数法判断函数f (x )的单调性,即可得结论.(四)三角问题 重在三变[速解技法——学一招]“三变”是指变角、变数与变式.变角如2α=α+β+α-β,α=α+β-β.变数特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.变式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.tan α±tan β=α±β∓tan αtan β,sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α2;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=[例1] 对于锐角α,若sin ⎝ ⎛⎪⎫α-π=3⎝) A .2425 .2 ⎝ ⎛⎭⎪⎫α-π12=35, ⎦⎥⎤⎭⎪⎫+π3cos ⎝ ⎛⎭⎪⎫α-π12 =-2×5×5=-25.[例2] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[解析] 选A 因为α∈⎣⎢⎡⎦⎥⎤π4,π,所以2α∈⎣⎢⎡⎦⎥⎤π2,2π,又sin 2α=55,故2α∈⎣⎢⎡⎦⎥⎤π2,π,α∈⎣⎢⎡⎦⎥⎤π4,π2,所以cos 2α=-255.又β∈⎣⎢⎡⎦⎥⎤π,3π2,故β-α∈⎣⎢⎡⎦⎥⎤π2,5π4, 于是cos(β-α)=-31010,所以cos(α+β)=cos[2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22, 且α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,故α+β=7π4.[经典好题——练一手]1.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( )A .-7210B .7210C .-210D .210 解析:选D 由题意可得tan θ=2,cos θ=±55, 所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35, 所以sin 2θ=cos 2θ·tan 2θ=45,所以sin ⎝⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝ ⎛⎭⎪⎫45-35=210. 2.(2017·沈阳质检)已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( )A .2π,⎣⎢⎡⎦⎥⎤3π8,7π8 B .π,⎣⎢⎡⎦⎥⎤3π8,7π8C .2π,⎣⎢⎡⎦⎥⎤-π8,3π8D .π,⎣⎢⎡⎦⎥⎤-π8,3π8解析:选B ∵f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4+1,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z),得3π8+k π≤x ≤7π8+k π(k ∈Z),令k =0得f (x )在⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减.3.已知α为锐角,若sin ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.解析:cos ⎝ ⎛⎭⎪⎫2α-π6=cos ⎝ ⎛⎭⎪⎫2α+π3-π2=sin ⎝ ⎛⎭⎪⎫2α+π3=⎦⎥⎤⎪⎫+π=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6,因为α为锐角,sin ⎝ ⎛⎭⎪⎫α+π6=35<32,所以cos ⎝ ⎛⎭⎪⎫α+π6=45,所以cos ⎝⎛⎭⎪⎫2α-π6=2×35×45=2425. 答案:24254.若0<α<π2,0<β<π2,sin ⎝ ⎛⎫π-=3,⎝cos ⎝ ⎛⎭⎪⎫β2-α的值为________.解析:由题易知-π6<π3-α<π3,-π12,所以cos ⎝ ⎛⎭⎪⎫π3-α=1-⎝ ⎛⎭⎪⎫352==-55,所以cos ⎝ ⎛⎭⎪⎫β2-α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫β2-π3=]αcos α的问题,利用(sin α±cos α)2=1±2sin αcos α,建立sin α±cos α与sin αcos α的关系.(2)对于含有sin α,cos α的齐次式⎝ ⎛如sin α+cos αsin α-cos α,)sin αcos α,利用tan α=sin αcos α转化为含tan α的式子.(3)对于形如cos 2α+sin α与cos 2α+sin αcos α的变形,前者用平方关系sin 2α+cos 2α=1化为二次型函数,而后者用降幂公式化为一个角的三角函数.(4)含tan α+tan β与tan αtan β时考虑tan(α+β)=tan α+tan β1-tan αtan β.(五)正弦余弦 相得益彰 [速解技法——学一招] 三角函数求值的解题策略(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.(4)求角的大小,应注意角的范围.[例1] (2017·福州质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =3(a cos B +b cos A ).(1)求角C ;(2)若c =23,求△ABC 面积的最大值. [解] (1)∵c tan C =3(a cos B +b cos A ), ∴sin C tan C =3(sin A cos B +sin B cos A ), ∴sin C tan C =3sin(A +B )=3sin C , ∵0<C <π,∴sin C ≠0, ∴tan C =3,∴C =60°. (2)∵c =23,C =60°,由余弦定理c 2=a 2+b 2-2ab cos C , 得12=a 2+b 2-ab ≥2ab -ab , ∴ab ≤12,∴S △ABC =12ab sin C ≤33,当且仅当a =b =23时取“=”, 所以△ABC 的面积的最大值为3 3.[例2] 已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx,1),其中ω>0,x ∈R.函数f (x )=m ·n 的最小正周期为π.(1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA ―→·BC ―→的值. [解] (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6.因为f (x )的最小正周期为π,所以T =2π2|ω|=π.因为ω>0,所以ω=1.(2)设△ABC 中内角A ,B ,C 所对的边分别是a ,b ,C . 因为f (B )=-2,所以2sin ⎝ ⎛⎭⎪⎫2B +π6=-2, 即sin ⎝ ⎛⎭⎪⎫2B +π6=-1,得B =2π3.因为BC =3,所以a = 3.因为sin B =3sin A ,所以b =3a ,得b =3. 由正弦定理有3sin A=3sin2π3,解得sin A =12. 因为0<A <π3,所以A =π6.得C =π6,c =a = 3.所以BA ―→·BC ―→=ca cos B =3=-32.]C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三B .等腰三角形 D .钝角三角形,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =,π),所以2A =180°-2B ,即A +B =90°,所以A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a cos C +c cos A =2b sin A ,则A 的值为( )A .5π6B .π6C .2π3D .π6或5π6解析:选D 由a cos C +c cos A =2b sin A 结合正弦定理可得sin A cos C +sin C cos A =2sin B sin A ,即sin(A +C )=2sin B sin A ,故sin B =2sin B sin A .又sin B ≠0,可得sin A =12,故A =π6或5π6.3.非直角△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3.若sin C+sin(A -B )=3sin 2B ,则△ABC 的面积为( )A .1534B .154C .2134或36D .3328解析:选D 因为sin C +sin(A -B )=sin(A +B )+sin(A -B )=2sin A cos B =6sin B cosB ,因为△ABC 非直角三角形,所以cos B ≠0, 所以sin A =3sin B ,即a =3b .又c =1,C =π3,由余弦定理得a 2+b 2-ab =1,结合a =3b ,可得b 2=17,所以S △ABC =12ab sin C =32b 2sin π3=3328.4.(2017·陕西质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,已知2a cos 2C 2+2c cos 2A 2=52b .(1)求证:2(a +c )=3b ; (2)若cos B =14,S =15,求b .解:(1)证明:由已知得,a (1+cos C )+c (1+cos A )=52b .在△ABC 中,由余弦定理,得a cos C +c cos A =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =2b 22b=b .∴a +c =32b ,即2(a +c )=3b .(2)∵cos B =14,∴sin B =154.∵S =12ac sin B =158ac =15,∴ac =8.又b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ),2(a +c )=3b ,∴b 2=9b 24-16×⎝ ⎛⎭⎪⎫1+14,解得b 2=16,∴b =4.[常用结论——记一番]1.解三角形中常用结论:(1)三角形中正弦、余弦、正切满足的关系式有:a sin A =b sin B =csin C=2R ,c 2=a 2+b 2-2ab cos C ,tan A +tan B +tan C =tan A tan B tan C ,a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .(2)三角形形状判断(一般用余弦定理): 直角三角形⇔a 2+b 2=c 2;锐角三角形⇔a 2+b 2>c 2(c 为最大边); 钝角三角形⇔a 2+b 2<c 2(c 为最大边). (3)在锐角三角形ABC 中: ①A +B >π2,C +B >π2,A +C >π2;②任意角的正弦值都大于其他角的余弦值.(4)在△ABC 中,A ,B ,C 成等差数列⇔B =60°;在△ABC 中,A ,B ,C 成等差数列,且aa ,b ,c ,其面积为S . c 分别表示a ,b ,c 边上的高).sin B .内切圆的半径).(六)向量小题 三招搞定 [速解技法——学一招]解决与向量有关的小题,一般用三招,即“构图、分解、建系”,就能突破难点,顺利解决问题.[例1] 已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为( )A .255B .2C . 5D .2 5[解析] 选C 由AB ―→·BC ―→=0可知,AB ―→⊥BC ―→.故以B 为坐标原点,分别以BA ,BC 所在的直线为x 轴,y 轴建立如图所示的平面直角坐标系,则由题意,可得B (0,0),A (1,0),C (0,2).设D (x ,y ),则AD ―→=(x -1,y ),DC ―→=(-x,2-y ). 由AD ―→·DC ―→=0,可得(x -1)(-x )+y (2-y )=0, 整理得⎝ ⎛⎭⎪⎫x -122+(y -1)2=54.所以点D 在以E ⎝ ⎛⎭⎪⎫12,1为圆心,半径r =52的圆上.因为|BD ―→|表示B ,D 两点间的距离, 而|EB ―→|=52,所以|BD ―→|的最大值为|EB ―→|+r =52+52= 5.[例2] 已知点C 为线段AB 上一点,P 为直线AB 外一点,PC 是∠APB 的平分线,I 为PC 上一点,满足BI ―→=BA ―→+λAC ―→⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|(λ>0),|PA ―→|-|PB ―→|=4,|PA ―→-PB ―→|=10,则BI ―→·BA―→| BA ―→|的值为( )A .2B .3C .4D .5[解析] 选B因为|PA ―→-PB ―→|=|BA ―→|=10,PC 是∠APB 的平分线,又BI ―→=BA ―→+λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|(λ>0), 即AI ―→=λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|, 所以I 在∠BAP 的平分线上, 由此得I 是△ABP 的内心.如图,过I 作IH ⊥AB 于H ,以I 为圆心,IH 为半径作△PAB 的内切圆,分别切PA ,PB 于E ,F ,因为|PA ―→|-|PB ―→|=4,|PA ―→-PB ―→|=10, |BH ―→|=|FB ―→|=12(|PB ―→|+|AB ―→|-|PA ―→|)=12[|AB ―→|-(|PA ―→|-|PB ―→|)]=3.|BH ―→|=3.]ABC 中,∠ABC =90°,|AB |=|BC |=2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足|MN ―→|=2,则BM ―→·BN ―→的取值范围为( )A .⎣⎢⎡⎦⎥⎤32,2B .⎝ ⎛⎭⎪⎫32,2C .⎣⎢⎡⎭⎪⎫32,2 D .⎣⎢⎡⎭⎪⎫32,+∞ 解析:选C 以等腰直角三角形的直角边BC 为x 轴,BA 为y 轴,建立平面直角坐标系如图所示,则B (0,0),直线AC 的方程为x +y =2.设M (a,2-a ),0<a <1,N (b,2-b ),∵MN =2,∴(a -b )2+(2-a -2+b )2=2, 即(a -b )2=1,解得b =a +1或b =a -1(舍去),则N (a +1,1-a ),∴BM ―→=(a,2-a ),BN ―→=(a +1,1-a ), ∴BM ―→·BN ―→=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝ ⎛⎭⎪⎫a -122+32,∵0<a <1,∴当a =12时,BM ―→·BN ―→取得最小值32,又BM ―→·BN ―→<2,故BM ―→·BN ―→的取值范围为⎣⎢⎡⎭⎪⎫32,2.2.已知向量a ,b 满足a ·(a +2b )=0,|a |=|b |=1,且|c -a -2b |=1,则|c |的最大值为( )A .2B .4C .5+1D .3+1解析:选D 设a =OA ―→,a +2b =OB ―→,c =OC ―→,且设点A 在x 轴上,则点B 在y 轴上,由|c -a -2b |=1,可知|c -(a +2b )|=|OC ―→-OB ―→|=|BC ―→|=1,所以点C 在以B 为圆心,1为半径的圆上,如图所示.法一:因为a ·(a +2b )=0,所以2a ·b =-|a |2.又|a |=|b |=1,所以|a +2b |=|a |2+4|b |2+4a ·b =4|b |2-|a |2=3, 所以|c |max =|OB ―→|+1=|a +2b |+1=3+1. 法二:连接AB ,因为OB ―→=OA ―→+AB ―→=a +2b , 所以AB ―→=2b .因为|a |=|b |=1,所以|AB ―→|=2,|OA ―→|=1, 所以|OB ―→|=|AB ―→|2-|OA ―→|2=3,所以|c |max =|OB ―→|+1=3+1.3.(2017·福州质检)正方形ABCD 中,E 为BC 的中点,向量AE ―→,BD ―→的夹角为θ,则cos θ=________.解析:法一:设正方形的边长为a , 则|AE ―→|=52a ,|BD ―→|=2a ,又AE ―→·BD ―→=⎝ ⎛⎭⎪⎫AB ―→+12AD ―→·(AD ―→-AB ―→)=12AD ―→2-AB ―→2+12AD ―→·AB ―→=-12a 2, 所以cos θ=AE ―→·BD ―→|AE ―→|·|BD ―→|=-12a 25a 2·2a=-1010.法二:设正方形的边长为2,建立如图所示的平面直角坐标系.则A (0,0),B (2,0),D (0,2),E (2,1), ∴AE ―→=(2,1),BD ―→=(-2,2), ∴AE ―→·BD ―→=2×(-2)+1×2=-2,所以cos θ=AE ―→·BD ―→| AE ―→|·|BD ―→|=-25×22=-答案:-10104.在Rt △ABC 中,D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2=________. 解析:法一:⎝ ⎛⎭⎪⎫4⎝ ⎛⎭⎪⎫4=16+16,|PB |2=⎝ ⎛⎭⎪⎫a 42+⎝ ⎛⎭⎪⎫b 4-b 2=a 216+9b216,|PA |2=⎝ ⎛⎭⎪⎫a 4-a 2+⎝ ⎛⎭⎪⎫b 42=9a 216+b216,所以|PA |2+|PB |2=a 216+9b 216+9a 216+b 216=10⎝ ⎛⎭⎪⎫a 216+b 216=10|PC |2,所以|PA |2+|PB |2|PC |2=10. 法二:(特殊值法)令|AC |=|CB |=1,则|PC |=14|AB |=24,|PA |2=|PB |2=58,易得|PA |2+|PB |2|PC |2=10. 答案:10[常用结论——记一番]1.在四边形ABCD 中:(1)AB ―→=DC ―→,则四边形ABCD 为平行四边形;(2)AB ―→=DC ―→且(AB ―→+AD ―→)·(AB ―→-AD ―→)=0,则四边形ABCD 为菱形; (3)AB ―→=DC ―→且|AB ―→+AD ―→|=|AB ―→-AD ―→|,则四边形ABCD 为矩形; (4)若AB ―→=λDC ―→(λ>0,λ≠1),则四边形ABCD 为梯形.2.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔OA ―→2=OB ―→2=OC ―→2. (2)O 为△ABC 的重心⇔OA ―→+OB ―→+OC ―→=0.(3)O 为△ABC 的垂心⇔OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→. (4)O 为△ABC 的内心⇔a OA ―→+b OB ―→+c OC ―→=0. (5)O 为△ABC 的A 的旁心⇔a OA ―→=b OB ―→+c OC ―→.(七)玩转通项 搞定数列 [速解技法——学一招] 几种常见的数列类型及通项的求法(1)递推公式为a n +1=a n +f (n )解法:把原递推公式转化为a n +1-a n =f (n ),利用累加法(逐差相加法)求解. (2)递推公式为a n +1=f (n )a n 解法:把原递推公式转化为a n +1a n=f (n ),利用累乘法(逐商相乘法)求解. (3)递推公式为a n +1=pa n +q解法:通过待定系数法,将原问题转化为特殊数列{a n +k }的形式求解. (4)递推公式为a n +1=pa n +f (n )解法:利用待定系数法,构造数列{b n },消去f (n )带来的差异. [例1] 已知数列{a n }满足a 1=23,a n +1=nn +1a n ,求a n .[解] 由条件知a n +1a n =nn +1,分别令n =1,2,3,…,(n -1),代入上式得(n -1)个等式累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n.[例2] 已知数列{a n }的首项a 1⎩⎨⎭⎬1a n a n +1的前10项和. [解] 因为a n +1=a n2a n +1,=n -n +⎭⎪⎫-12n +1,+1a 2a 3+…+1a 10a 11=12⎝ ⎛1-⎭⎪⎫119-121=12⎝ ⎛⎭⎪⎫1-121=1021. [经典好题——练一手]1.已知数列{a n }的首项a 1=2,且a n +1=a n +n +1,则数列{a n }的通项公式a n =( ) A .n n -2 B .n n +2 C .n n +2-1D .n n +2+1解析:选D 因为a n +1=a n +n +1, 所以a n +1-a n =n +1,分别把n =1,2,3,…,n -1代入上式,得到(n -1)个等式,a n -a n -1=(n -1)+1, a n -1-a n -2=(n -2)+1, a n -2-a n -3=(n -3)+1,…a 2-a 1=1+1.又a 1=2=1+1,故将上述n 个式子相加得a n =[(n -1)+(n -2)+(n -3)+…+2+1]+n +1=[n +(n -1)+(n -2)+…+2+1]+1=n n +2+1.2.已知数列{a n }满足a 1=1,a n =12a n -1+1(n ≥2),则数列{a n }的通项公式a n =________.解析:由a n =12a n -1+1(n ≥2),得a n -2=12(a n -1-2),而a 1-2=1-2=-1,∴数列{a n -2}是首项为-1,公比为12的等比数列.∴a n -2=-⎝ ⎛⎭⎪⎫12n -1,∴a n =2-⎝ ⎛⎭⎪⎫12n -1.答案:2-⎝ ⎛⎭⎪⎫12n -13.设{a n }是首项为1的正项数列,且a 2n -a 2n -1-na n -na n -1=0(n ∈N *,n ≥2),则数列的通项公式a n =________.解析:由题设得(a n +a n -1)(a n -a n -1-n )=0, 由a n >0,a n -1>0知a n +a n -1>0,于是a n -a n -1=n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n n +2.答案:n n +24.在数列{a n }中,已知a 1=-1,a n +1=2a n +4·3n -1,求通项公式a n .解:原递推式可化为a n +1+λ·3n=2(a n +λ·3n -1),比较系数得λ=-4,即a n +1-4·3n=2(a n -4·3n -1),则数列{a n -4·3n -1}是首项为a 1-4·31-1=-5,公比为2的等比数列,故a n -4·3n -1=-5·2n -1,即a n =4·3n -1-5·2n -1.[常用结论——记一番]等差(比)数列的重要结论(1)数列{a n }是等差数列⇔数列{c a n }是等比数列;数列{a n }是等比数列,则数列{log a |a n |}是等差数列.(2){a n },{b n }是等差数列,S n ,T n 分别为它们的前n 项和,若b m ≠0,则a m b m =S 2m -1T 2m -1.(3)首项为正(或为负)递减(或递增)的等差数列前n 项和最大(或最小)问题转化为解不等式⎩⎪⎨⎪⎧a n ≥0,a n +1≤0⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,也可化为二次型函数S n =An 2+Bn 来分析,注意n ∈N *. (4)等差(比)数列中,S m ,S 2m -S m ,S 3m -S 2m ,…(各项均不为0)仍是等差(比)数列.(八)掌握规律 巧妙求和 [速解技法——学一招] 求数列的前n 项和的主要方法(1)公式法:对于等差数列或等比数列可用公式法.(2)裂项相消法:将数列的每一项分解为两项的差,在求和时中间的一些项可以相互抵消,从而累加相消.(3)错位相减法:若{a n }为等差数列,{b n }为等比数列,则对于数列{a n b n }的前n 项和可用错位相减法.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和等于同一个常数,那么求这个数列前n 项和即可用倒序相加法.(5)分组求和法:将原数列分解成可用公式法求和的若干个数列. [例1] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)令b n =2a n ,由(1)可知a n ·b n =(2n -1)×22n -1,设T n 为数列{a n ·b n }的前n 项和,所以T n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4T n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3T n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1,所以T n =2+3+25+…+22n -1-n -2n +1-3=2+2×-4n -11-4-n -2n +1-3=-6+-4n -1+n -2n +19=10+n -2n +19.[例2] 已知数列{a n }满足a 1=12,a n +1=a 2n +a n ,b n =11+a n(n ∈N *),S n =b 1+b 2+…+b n ,P n =b 1b 2·…·b n ,求2P n +S n 的值.[解] 因为a 1=12,a n +1=a 2n +a n ,n ∈N *,所以a n +1>a n >0,a n +1=a n (a n +1),所以b n =11+a n =a 2n a n a n +1=a n +1-a n a n a n +1=1a n -1a n +1.P n =b 1b 2·…·b n =a 1a 2·a 2a 3·…·a n a n +1=12a n +1,S n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=2-1a n +1,故2P n +S n =1a n +1+⎝⎛⎭⎪⎫2-1a n +1=2.[经典好题——练一手]1.(2018届高三·湖南十校联考)数列112,314,518,7116,…的前n 项和S n =________.解析:利用分组求和法,可得S n =(1+3+5+…+2n -1)+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n .答案:n 2+1-12n2.(2017·武汉调研)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前9项和为________.解析:设数列{a n }的公差为d ,由S n ≤S 5,得⎩⎪⎨⎪⎧a 5≥0,a 6≤0,即⎩⎪⎨⎪⎧a 1+4d ≥0,a 1+5d ≤0,得-94≤d ≤-95,又a 2为整数,∴d =-2,a n =a 1+(n -1)×d =11-2n , 故1=1 ⎛⎪⎫1-1答案:-93.(2018届高三·安徽名校阶段性测试)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n +1·log 12a n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.因此a 2+a 4=20,即有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32,又数列{a n }单调递增,则⎩⎪⎨⎪⎧q =2,a 1=2,故a n =2n.(2)∵b n =2n +1·log 122n =-n ·2n +1,∴-S n =1×22+2×23+3×24+…+n ×2n +1,①-2S n =1×23+2×24+3×25+…+(n -1)×2n +1+n ×2n +2.② ①-②,得S n =22+23+24+…+2n +1-n ·2n +2=-2n1-2-n ·2n +2=(1-n )2n +2-4.4.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 3+a 8-(a 2+a 7)=2d =-6. ∴d =-3,∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =qn -1,即-3n +2+b n =qn -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n n -2+(1+q +q 2+…+qn -1),故当q =1时,S n =n n -2+n =3n 2+n 2;当q ≠1时,S n =n n -2+1-q n1-q. [常用结论——记一番]常用裂项公式(1)1nn +=1n -1n +1; (2)1n +1+n=n +1-n ;(3)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=a n a n -1·a n -1a n -2·…·a 2a 1·a 1; (4)n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)];(5)1n n +n +=12⎣⎢⎡⎦⎥⎤1nn +-1n +n +; (6)n 2n -n +=1+12⎝ ⎛⎭⎪⎫12n -1-12n +1.(九)求得通项 何愁放缩 [速解技法——学一招]错误![例1] 已知数列{a n }满足a 1n +3)a n +8n +8, (1)求a n ; (2)求证:1a 1-1+1a 2-1+…+2)(n +3), n +n +=n +n +n +n +a n +1n +n +-a nn +n +=8⎝⎛1n +2-1n +3利用累加法,可得a n +1n +n +-a 13×2⎛1化简求得n +1)(n +2),所以a 1n 2+4<=1通过计算,当n ≥4时,17+123+147+…+14n 2+4n -1<17+123+147+12⎣⎢⎡⎝⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫19-111+…+⎝ ⎛ 12n -1-⎦⎥⎤⎭⎪⎫12n +1<17+123+147+114<27.法二:14n 2+4n -1<14n 2+4n -3=1n -n +=14⎝ ⎛⎭⎪⎫12n -1-12n +3.当n ≥3时,17+123+…+14n 2+4n -1<17+123+14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15-19+⎝ ⎛⎭⎪⎫17-111+…+⎝ ⎛⎭⎪⎫12n -1-12n +3<17+123+14⎝ ⎛⎭⎪⎫15+17<17+121+221=27. [例2] 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1(n ∈N *),且a 1,a 2+5,a 3成等差数列.(1)求数列{a n }的通项公式;(2)求证:对一切正整数n ,有1a 1+1a 2+…+1a n <32.[解] (1)由2S n =a n +1-2n +1+1,得2S n +1=a n +2-2n +2+1,两式相减得a n +2=3a n +1+2n +1,2S 1=a 2-3⇔a 2=2a 1+3,a 3=3a 2+4=6a 1+13,a 1,a 2+5,a 3成等差数列⇔a 1+a 3=2(a 2+5)⇔a 1=1. a n +1=3a n +2n ⇔a n +1+2n +1=3(a n +2n ),∴数列{a n +2n}为首项是3,公比是3的等比数列. 则a n +2n=3n,∴a n =3n-2n.(2)证明:法一:当n =1时,1a 1=1<32,当n ≥2时,⎝ ⎛⎭⎪⎫32n ≥⎝ ⎛⎭⎪⎫322>2⇔3n >2×2n ⇔a n >2n⇔1a n <12n .∴1a 1+1a 2+…+1a n <1+122+123+…+12n =1+12-12n <32. 由上式得:对一切正整数n ,有1a 1+1a 2+…+1a n <32.法二:a n =3n-2n=(3-2)(3n -1+3n -2×2+3n -3×22+…+2n -1)≥3n -1,∴1a n ≤13n -1, ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13<32. [经典好题——练一手]已知数列{a n }满足:a 1=2且a n +1=n +a n a n +n(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫n a n -1为等比数列,并求数列{a n }的通项公式;。

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题2 突破点4 等差数列、等比数列 Word版含答案

2018年浙江高考数学二轮复习教师用书第1部分 重点强化专题 专题2 突破点4 等差数列、等比数列 Word版含答案

专题二 数 列 建知识网络 明内在联系[高考点拨] 数列专题是浙江新高考的必考专题之一,主要考查等差、等比数列的基本量运算及数列求和的能力,该部分即可单独命题,又可与其他专题综合命题,考查方式灵活多样,结合浙江新高考的命题研究,本专题我们按照“等差、等比数列”和“数列求和及综合应用”两条主线展开分析和预测.突破点 等差数列、等比数列(对应学生用书第页)[核心知识提炼]提炼等差数列、等比数列的运算()通项公式;)-(+等差数列:=.-·等比数列:= ()求和公式;=+等差数列:= .(≠)=等比数列:=()性质若+=+,;+在等差数列中+= .·=·在等比数列中提炼等差数列、等比数列的判定与证明数列{}是等差数列或等比数列的证明方法:()证明数列{}是等差数列的两种基本方法 为同一常数;)*∈(-+利用定义,证明① .(≥)++-=利用中项性质,即证明②()证明{}是等比数列的两种基本方法 ①利用定义,证明(∈*)为同一常数; ②利用等比中项,即证明=-+(≥).提炼数列中项的最值的求法()根据数列与函数之间的对应关系,构造相应的函数()=,利用求解函数最值的方法(多利用函数的单调性)进行求解,但要注意自变量的取值必须是正整数的限制.()利用数列的单调性求解,利用不等式+≥(或+≤)求解出的取值范围,从而确定数列单调性的变化,进而确定相应的最值.()转化为关于的不等式组求解,若求数列{}的最大项,则可解不等式组(\\(≥-,≥+;))若求数列{}的最小项,则可解不等式组(\\(≤-,≤+,))求出的取值范围之后,再确定取得最值的项.[高考真题回访]回访 等差数列及其运算.(·浙江高考)已知等差数列{}的公差为,前项和为,则“>”是“+>”的( )【导学号:】.充分不必要条件 .必要不充分条件 .充分必要条件 .既不充分也不必要条件[法一:∵数列{}是公差为的等差数列, ∴=+,=+,=+, ∴+=+=+. 若>,则>+>+, 即+>.若+>,则+>+,即>,∴>.∴“>”是“+>”的充分必要条件. 故选.法二:∵+>⇔+++>(+)⇔>⇔+>⇔>,∴“>”是“+>”的充分必要条件. 故选.].(·浙江高考)已知{}是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) .>,>。

2018年江苏高考数学二轮复习教师用书:第1部分 知识专题突破 专题6 数列 含答案 精品

2018年江苏高考数学二轮复习教师用书:第1部分 知识专题突破 专题6 数列 含答案 精品

专题六 数列———————命题观察·高考定位———————(对应学生用书第21页)1.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.32 [设{a n}的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1-q31-q =74,a1-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.]2.(2016·江苏高考)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.20 [法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20.]3.(2014·江苏高考)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.4 [因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4.]4.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为______.2011[由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式,∴a n =n 2+n2(n ∈N *).∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011.] 5.(2017·江苏高考)对于给定的正整数k ,若数列{a n }满足:a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【导学号:56394035】[证明] (1)因为{a n }是等差数列,设其公差为d ,则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d=2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此, 当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .② 由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③a n +2+a n +3=4a n +1-(a n -1+a n ).④将③④代入②,得a n -1+a n +1=2a n ,其中n ≥4, 所以a 3,a 4,a 5,…是等差数列,设其公差为d ′.在①中,取n =4,则a 2+a 3+a 5+a 6=4a 4,所以a 2=a 3-d ′,在①中,取n =3,则a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d ′,所以数列{a n }是等差数列. [命题规律](1)对等差数列与等比数列基本量的考查是重点,主要考查利用通项公式、前n 项和公式建立方程组求解,属于低档题,主要是以填空题的形式出现.(2)对等差数列与等比数列性质的考查是热点,具有“新、巧、活”的特点,考查利用性质解决有关的计算问题,属中低档题,主要是以填空题的形式出现.(3)数列的通项公式及递推公式的应用也是命题的热点,根据a n 与S n 的关系求通项公式以及利用构造或转化的方法求通项公式也是常考的热点.填空、解答题都有出现.(4)数列的求和问题,多以考查等差、等比数列的前n 项和公式、错位相减法和裂项相消法为主,且考查频率较高,是高考命题的热点.填空、解答题都有出现.(5)数列与函数、不等式的综合问题也是高考考查的重点,主要考查利用函数的观点解决数列问题以及用不等式的方法研究数列的性质,多为中档题,以解答题的形式出现. (6)数列与解析几何交汇主要涉及点列问题,难度中等及以上,常以解答题形式出现. (7)数列应用题主要以等差数列、等比数列及递推数列为模型进行考查,难度中等及以上,常以解答题形式出现.———————主干整合·归纳拓展———————(对应学生用书第21页) [第1步▕ 核心知识再整合]1.等差数列(1)通项公式⎩⎪⎨⎪⎧a n =a 1+n -d ,a n=a m +n -m d m ,n ∈N *,m ≤n ,d =a n-a mn -m .(2)前n 项和公式:S n =n a 1+a n2=na 1+n n -2d .(3)常用性质:①如果数列{a n }是等差数列,m +n =p +q ⇒a m +a n =a p +a q (m ,n ,p ,q ∈N *),特别地,当n 为奇数时,a 1+a n =a 2+a n -1=……=2a 中.②若等差数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列. ③若等差数列{a n },{b n }的前n 项和为A n ,B n ,则a n b n =A 2n -1B 2n -1.④若等差数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 仍是等差数列.(4)等差数列的单调性设等差数列{a n }的公差为d ,当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;若d =0,则数列{a n }为常数数列. (5)等差数列的最值若{a n }是等差数列,求前n 项和的最值时, ①若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,则前n 项和S n 最大;②若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,则前n 项和S n 最小.2.等比数列(1)通项公式⎩⎪⎨⎪⎧a n =a 1·q n -1,a n=a m·qn -mm ,n ∈N *,m <n ,q n -m=a n a m.(2)前n 项和公式S n =⎩⎪⎨⎪⎧na 1q =,a 1-q n 1-q或a 1-a n q1-q q(3)常用性质:①如果数列{a n }是等比数列m +n =p +q ⇒a m ·a n =a p ·a q (m ,n ,p ,q ∈N *),特别地,当n 为奇数时,a 1·a n =a 2·a n -1=……=a 2中.②等比数列{a n }的前n 项和为S n ,满足S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…成等比数列(其中S n ,S 2n -S n ,S 3n -S 2n ,…均不为0).(4)等比数列的单调性 设等比数列{a n }的公比为q , 当⎩⎪⎨⎪⎧a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,{a n }为递增数列;当⎩⎪⎨⎪⎧a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,{a n }为递减数列;当q =1时,则数列{a n }为常数数列. 3.数列常见通项公式的求法(1)观察法:利用递推关系写出前几项,根据前几项的特点观察、归纳、猜想出a n 的表达式,然后用数学归纳法证明.(2)利用前n 项和与通项的关系a n =⎩⎪⎨⎪⎧S 1n =,S n -S n -1 n(3)公式法:利用等差(比)数列求通项公式.(4)累加法:在已知数列{a n }中,满足a n +1=a n +f (n ),把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解.(5)叠乘法:在已知数列{a n }中,满足a n +1=f (n )a n ,把原递推公式转化为a n +1a n=f (n ),再利用叠乘法(逐商相乘法)求解.(6)构造等比数列法:在已知数列{a n }中,满足a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p ,再利用换元法转化为等比数列求解.4.数列求和的主要方法(1)公式法:如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.(2)倒序相加法:如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (3)分组转化求和法:若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.(4)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (5)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的拆项公式如下: ①分式型1n n +=1n -1n +1,1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2,1nn +n +=12⎣⎢⎡⎦⎥⎤1nn +-1n +n +. ②乘式型n (n +1)=-13[(n -1)n (n +1)-n (n +1)(n +2)],n (n +1)(n +2)=-14[(n -1)n (n +1)(n +2)-n (n +1)(n +2)(n +3)].③阶乘型n n +!=n +-1n +!=1n !-1n +!,C n -1m -1=C n m -C n m -1,k C k n =n C k -1n -1. ④三角函数型tan a n tan a n +1=1-tan a n +1+tan a na n +1+a n,1sin a n sin a n +1=cot a n -cot a n +1a n +1-a n ,1cos a n cos a n +1=tan a n +1-tan a na n +1-a n ,cos ⎣⎢⎡⎦⎥⎤k n +2=sin k n +-sin kn 2sink 2,sin ⎣⎢⎡⎦⎥⎤k n +2=cos k n +-cos kn-2sink2.⑤根式型1n +n +1=n +1-n .(6)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.[第2步▕ 高频考点细突破]【例1n S n ,若a 2-a 5=-78,S 3=13,则数列{a n }的通项公式a n =________.[解析] 由题意得a 1q (q 3-1)=78,a 1(1+q +q 2)=13⇒q (q -1)=6,∵q >0∴q =3,a 1=1,a n =3n -1.[答案] 3n -1[规律方法] 等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式、求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现. [举一反三](江苏省南通中学2017届高三上学期期中考试)设S n 是等比数列{a n }的前n 项的和,若a 3+2a 6=0,则S 3S 6的值是________.【导学号:56394036】2 [a 3+2a 6=0⇒a 6a 3=-12⇒q 3=-12,因此S 3S 6=a 1·1-q 31-q a 1·1-q 1-q =1-q 31-q =1+121-14=2.]【例2】 n 且满足:a 1a 9=4,则数列{log 2a n }的前9项之和为________. [解析] ∵a 1a 9=a 25=4,∴a 5=2,∴log 2a 1+log 2a 2+…+log 2a 9=log 2(a 1a 2…a 9)=log 2a 95=9log 2a 5=9. [答案] 9[规律方法] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.等差数列(或等比数列)中若出现的是通项与数列和的关系,则优先考虑等差数列(或等比数列)性质m +n =p +q ⇒a m +a n =a p +a q (m ,n ,p ,q ∈N *)(m +n =p +q ⇒a m ·a n =a p ·a q (m ,n ,p ,q ∈N *)).[举一反三](2017届高三七校联考期中考试)设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k是常数.若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,则k 的值为________.0或1 [∵S n =kn 2+n ,n ∈N *,∴ 数列{a n }是首项为k +1,公差为2k 的等差数列,a n =2kn +1-k .又对于任意的m ∈N *都有a 22m =a m a 4m ,∴a 22=a 1a 4,(3k +1)2=(k +1)·(7k +1),解得k =0或1.又k =0时a n =1,显然对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列;k =1时a n =2n ,a m =2m ,a 2m =4m ,a 4m =8m ,显然对于任意的m ∈N *,a m ,a 2m ,a 4m 也成等比数列.综上所述,k =0或1.]【例3n n①|a 1|≠|a 2|;②r (n -p )S n +1=(n 2+n )a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0. (1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列.[解] (1)n =1时,r (1-p )(a 1+a 2)=2a 1-2a 1,其中r ,p ∈R ,且r ≠0.又|a 1|≠|a 2|. ∴1-p =0,解得p =1.(2)设a n =ka n -1(k ≠±1),r (n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,∴rS 3=6a 2,2rS 4=12a 3+4a 1,化为:r (1+k +k 2)=6k ,r (1+k +k 2+k 3)=6k 2+2.联立解得r =2,k =1(不合题意),舍去,因此数列{a n }不是等比数列.(3)证明:r =2时,2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,∴2S 3=6a 2,4S 4=12a 3+4a 1,6S 5=20a 4+10a 1.化为:a 1+a 3=2a 2,a 2+a 4=2a 3,a 3+a 5=2a 4.假设数列{a n }的前n 项成等差数列,公差为d .则2(n -1)⎣⎢⎡⎦⎥⎤na 1+n n -2d +a n +1=(n 2+n )[a 1+(n -1)d ]+(n 2-n -2)a 1,化为a n +1=a 1+(n +1-1)d ,因此第n +1项也满足等差数列的通项公式, 综上可得,数列{a n }成等差数列.[规律方法] (1)定义法:a n +1-a n =d (常数)(n ∈N *){a n }是等差数列;a n +1a n=q (q 是非零常数){a n }是等比数列;(2)等差(比)中项法:2a n +1=a n +a n +2(n ∈N *){a n }是等差数列;a 2n +1=a n ·a n +2(n ∈N *,a n ≠0){a n }是等比数列;(3)通项公式法:a n =pn +q (p ,q 为常数){a n }是等差数列;a n =a 1·qn -1(其中a 1,q 为非零常数,n ∈N *){a n }是等比数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数){a n }是等差数列;S n =Aq n -A (A 为非零常数,q ≠0,1){a n }是等比数列. [举一反三](2017·江苏省盐城市高考数学二模)已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n+1)b n =a n +1-S n n ,(n +2)c n =a n +1+a n +22-S n n,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列.【导学号:56394037】[解] (1)∵数列{a n }是公差为2的等差数列,∴a n =a 1+2(n -1),S nn=a 1+n -1. ∴(n +2)c n =a 1+2n +a 1+n +2-(a 1+n -1)=n +2,解得c n =1.(2)证明:由(n +1)b n =a n +1-S n n,可得:n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1, 相减可得:a n +2-a n +1=(n +2)b n +1-nb n , 可得:(n +2)c n =a n +1+a n +22-S n n=a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =n +b n +1-nb n2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).∵b n ≤λ≤c n ,∴λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.∴(n +1)λ=a n +1-S n n ,(n +2)λ=12(a n +1+a n +2)-S nn,相减可得:12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1),∴数列{a n }是等差数列.【例4n >1,且满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.[解] (1)∵a 3+2是a 2,a 4的等差中项,∴2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,可得a 3=8,∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解之得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n.(2)∵b n =a n log 12a n =2n log 122n =-n ·2n,∴S n =-(1×2+2×22+…+n ·2n),① 2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23…+2n -n ·2n +1=-2n1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62,∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.[规律方法] 等差数列、等比数列的综合问题的解题关键仍然是“基本量”方法,其通过方程或者方程组求出数列的基本量,然后再解决后续问题. [举一反三](泰州中学2016-2017年度第一学期第一次质量检测文科)已知各项都为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项.(1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4.设各项都为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2a 4=a 23=16, 解得a 3=a 1q 2=4,② 由①②得3q 2-4q -4=0, 解得q =2或q =-23(舍去),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)×20+2×2+(3+1)×22+4×23+(5+1)×24+…+[(n -1)+1]×2n -2+n ×2n -1=(20+2×2+3×22+4×23+…+n ×2n -1)+(20+22+…+2n -2),设H n =20+2×2+3×22+4×23+…+n ×2n -1,③则2H n =2+2×22+3×23+…+(n -1)×2n -1+n ×2n,④③-④,得-H n =20+2+22+23+…+2n -1-n ×2n=1-2n1-2-n ×2n =(1-n )×2n-1,∴H n =(n -1)×2n+1,∴T n =(n -1)×2n+1+1-41-4=⎝ ⎛⎭⎪⎫n -23×2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)×2n -1=⎝⎛⎭⎪⎫n -53×2n -1+23+(n +1)×2n -1=⎝⎛⎭⎪⎫2n -23×2n -1+23,经检验,T 1=2符合上式.∴T n=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫2n -23×2n -1+23,n 为奇数,⎝ ⎛⎭⎪⎫n -23×2n+23,n 为偶数.【例5】 ({a n },若2a 4+a 3-2a 2-a 1=8,则2a 8+a 7的最小值为________.[解析] 设{a n }的公比为q ,由2a 4+a 3-2a 2-a 1=8,得(2a 2+a 1)q 2-(2a 2+a 1)=8,所以(2a 2+a 1)(q 2-1)=8,显然q 2>1,2a 8+a 7=(2a 2+a 1)q 6=8q 6q 2-1,令t =q 2,则2a 8+a 7=8t 3t -1,设函数f (t )=8t 3t -1(t >1),f ′(t )=8t 2t -t -2,易知当t ∈⎝ ⎛⎭⎪⎫1,32时f (t )为减函数,当t ∈⎝ ⎛⎭⎪⎫32,+∞时,f (t )为增函数时,所以f (t )的最小值为f ⎝ ⎛⎭⎪⎫32=54,故2a 8+a 7的最小值为54. [答案] 54[规律方法] (1)在处理数列单调性问题时应利用数列的单调性定义,即“若数列{a n }是递增数列⇔∀n ≥1,a n +1≥a n 恒成立”;(2)数列a n =f (n )的单调性与y =f (x ),x ∈[1,+∞)的单调性不完全一致;(3)当数列对应的连续函数是单调函数,则可以借助其单调性来求解数列的单调性问题. [举一反三](南京市2016届高三年级模拟考试)已知数列{a n }是递增数列,且对n ∈N *,都有a n =n 2+λn恒成立,则实数λ的取值范围是________.【导学号:56394038】(-3,+∞) [利用递增数列的定义,a n +1>a n ,a n +1-a n =2n +1+λ>0⇒λ>-2n -1,n ∈N *恒成立,则λ>-3.(注:本题易错的解法是根据数列所对应的函数单调性a n =n 2+λn =⎝⎛⎭⎪⎫n +λ22-λ24,然后-λ2≤1⇒λ≥-2.由数列是递增数列去断定数列对应的函数是递增函数,是错误的)]【例6】 (2016n a n +1=a n (1-a n+1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________.[解析] 由a n +1=a n (1-a n +1)得:1a n +1-1a n =1,因此数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,所以1a n =n ,即a n=1n ,b n =a n a n +1=1nn +=1n -1n +1,所以S 10=b 1+b 2+…+b 10=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫110-111=1-111=1011.[答案]1011[规律方法] (1)通常情况下数列的第(1)题是需要求数列的通项公式,而且其中也设出一个新的数列,我们在做的过程中,要把这个条件作为一种提示,配凑成这种新的数列,即可解决;若题中没有设出这样的新数列,可以看知识整合中6种求通项公式的方法;(2)对于数列求和,需要先判断用哪种求和的方法,然后进行求解. [举一反三](无锡市普通高中2017届高三上学期期中基础性检测)设数列{a n }的前n 项和为S n ,已知4S n =2a n -n 2+7n (n ∈N *),则a 11=________.-2 [由题设4S n =2a n -n 2+7n (n ∈N *)可得4S n -1=2a n -1-(n -1)2+7(n -1),将以上两式两边相减可得4a n =2a n -2a n -1-2n +1+7,即a n =-a n -1-n +4,所以a n +a n -1=-n +4,又因为a 1=3,所以a 2=-3-2+4=-1,故a 3=1-3+4=2,依次可推得a 11=-2.]【例7】 (n S n ,且S n+a n =4,n ∈N *.(1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列?若存在,求出C 的值;若不存在,请说明理由;(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝ ⎛⎭⎪⎫12n -n +22成立,求证:数列 {b n }是等差数列. [解] (1)a 1=4-a 1,所以a 1=2, 由S n +a n =4得n ≥2时,S n -1+a n -1=4, 两式相减得,2a n =a n -1,a n a n -1=12. 数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n(n ∈N *).(2)由于数列{d n }是常数列,d n =c n +log C a n =2n +3+(2-n )log C 2=2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数列,只有2-log C 2=0;解得C =2,此时d n =7.(3)证明:b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝ ⎛⎭⎪⎫12n -n +22.①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝ ⎛⎭⎪⎫12n -1-n +12,②②式两边同时乘以12得,b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝ ⎛⎭⎪⎫12n -n +14.③①式减去③式得,b n a 1=-n -34,所以b n =-n 8-38,且b n +1-b n =-18.所以数列{b n }是以-12为首项,公差为-18的等差数列.[举一反三](南京市2017届高三年级学情调研)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1.①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.[解] (1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧a 1+da 1+2d =15,4a 1+6d =16,解得⎩⎪⎨⎪⎧a 1=1d =2或⎩⎪⎨⎪⎧a 1=7d =-2(舍去).所以a n =2n -1.(2)①因为b 1=a 1,b n +1-b n =1a n a n +1,所以b 1=a 1=1,b n +1-b n =1a n a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎪⎫1-13,b 3-b 2=12⎝ ⎛⎭⎪⎫13-15,……b n -b n -1=12⎝ ⎛⎭⎪⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -1=n -12n -1, 所以b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式.故b n =3n -22n -1,n ∈N *.②假设存在正整数m 、n (m ≠n ),使得b 2,b m ,b n 成等差数列,则b 2+b n =2b m . 又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,所以43+⎝ ⎛⎭⎪⎫32-14n -2=2⎝ ⎛⎭⎪⎫32-14m -2,即12m -1=16+14n -2, 化简得:2m =7n -2n +1=7-9n +1.当n +1=3,即n =2时,m =2,不符合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.所以存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.【例8】 (n n S n =t (S n -a n +1)(t 为常数,且t ≠0,t ≠1).(1)求{a n }的通项公式;(2)设b n =a 2n +S n ·a n ,若数列{b n }为等比数列,求t 的值;(3)在满足条件(2)的情形下,设c n =4a n +1,数列{c n }的前n 项和为T n ,若不等式12k4+n -T n ≥2n-7对任意的n ∈N *恒成立,求实数k 的取值范围. [解] (1)当n =1时,S 1=t (S 1-a 1+1),得a 1=t .当n ≥2时,由S n =t (S n -a n +1),即(1-t )S n =-ta n +t ,① 得(1-t )S n -1=-ta n -1+t ,②①-②,得(1-t )a n =-ta n +ta n -1,即a n =ta n -1,∴a na n -1=t (n ≥2),∴{a n }是等比数列,且公比是t ,∴a n =t n . (2)由(1)知,b n =(t n )2+t-t n1-t·t n,即b n =t 2n +t n +1-2t 2n +11-t,若数列{b n }为等比数列,则有b 22=b 1·b 3, 而b 1=2t 2,b 2=t 3(2t +1),b 3=t 4(2t 2+t +1), 故[t 3(2t +1)]2=(2t 2)·t 4(2t 2+t +1), 解得t =12,再将t =12代入b n ,得b n =⎝ ⎛⎭⎪⎫12n,由b n +1b n =12,知{b n }为等比数列,∴t =12. (3)由t =12,知a n =⎝ ⎛⎭⎪⎫12n ,∴c n =4⎝ ⎛⎭⎪⎫12n+1,∴T n =4×12⎝ ⎛⎭⎪⎫1-12n 1-12+n =4+n -42n ,由不等式12k 4+n -T n ≥2n -7恒成立,得3k ≥2n -72n 恒成立,设d n =2n -72n ,由d n +1-d n =2n -52n +1-2n -72n =-2n +92n +1,∴当n ≤4时,d n +1>d n ,当n >4时,d n +1<d n ,而d 4=116,d 5=332,∴d 4<d 5,∴3k ≥332,∴k ≥132.[规律方法] 数列与不等式交汇命题,不等式常作为证明或求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用. [举一反三](江苏省南通中学2017届高三上学期期中考试)设公差不为零的等差数列{a n }的前5项和为55,且a 2,a 6+a 7,a 4-9成等比数列. (1)求数列{a n }的通项公式; (2)设数列b n =1a n -a n -,求证:数列{b n }的前n 项和S n <12.[解] (1)设等差数列的首项为a 1,公差为d , 则⎩⎪⎨⎪⎧5a 1+5×42d =55a 1+5d +a 1+6d2=a 1+d a 1+3d -⇒⎩⎪⎨⎪⎧a 1=7d =2或⎩⎪⎨⎪⎧a 1=11d =0(舍去),故数列{a n }的通项公式为a n =7+2(n -1),即a n =2n +5. (2)证明:由(1)a n =2n +5, 得b n =1a n -a n -=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.S n =b 1+b 2+…+b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.【例9】 (2017·海安模拟)设函数f n (x )=-1+x +22+32+…+n2(x ∈R ,n ∈N *),证明:(1)对每个n ∈N *,存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n ()x n =0;(2)对任意p ∈N *,由(1)中x n 构成的数列{}x n 满足0<x n -x n +p <1n.【导学号:56394039】[证明] (1)对每个n ∈N *,当x >0时,f n ′(x )=1+x2+…+x n -1n>0,则f n (x )在(0,+∞)内单调递增,而f 1(1)=0,当n ≥2时,f n (1)=122+132+…+1n 2>0,故f n (1)≥0,又f n ⎝ ⎛⎭⎪⎫23=-1+23+∑k =2n⎝ ⎛⎭⎪⎫23kk 2≤-13+14∑k =2n⎝ ⎛⎭⎪⎫23k =-13+14·⎝ ⎛⎭⎪⎫232⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -11-23=-13·⎝ ⎛⎭⎪⎫23n -1<0,所以对每个n ∈N *,存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n (x n )=0.(2)当x >0时,f n +1(x )=f n (x )+x n +1n +2>f n (x ),并由(1)知f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)内单调递增知,x n +1<x n ,故{x n }为单调递减数列, 从而对任意n ,p ∈N *,x n +p <x n . 对任意p ∈N *,f n (x n ) =-1 + x n + x 2n2 + … + x 2nn=0.①f n +p (x n +p ) =-1 + x n +p +x 2n +p22+…+x n n +p n 2+x n +1n +pn +2+…+x n +pn +pn +p2=0.②①-②并移项,利用0<x n +p <x n ≤1,得x n -x n +p =∑k =2nx k n +p -x k n k 2+∑k =n +1n +p x k n +p k 2≤∑k =n +1n +px k n +pk 2 ≤∑k =n +1n +p1k 2<∑k =n +1n +p1k k -=1n -1n +p <1n. 因此,对任意p ∈N *,0<x n -x n +p <1n.[规律方法] 对于数列、函数、不等式的问题.可以利用函数的单调性,结合极限思想解决问题;也可以利用均值不等式等号成立的条件,结合极限思想获得思路;也可以利用方程进行等量变换,减少未知量,确定参数的取值范围;也可以等价转化不等关系为恒成立问题,利用函数最值得到解法;还可以利用函数的性质,数形结合,求出参数的取值范围. [举一反三](2017·如皋月考)已知二次函数f (x )=ax 2+bx +c 的图象通过原点,对称轴为x =-2n (n ∈N *).f ′(x )是f (x )的导函数,且f ′(0)=2n (n ∈N *) . (1)求f (x )的表达式(含有字母n );(2)若数列{a n }满足a n +1=f ′(a n ),且a 1=4,求数列{a n }的通项公式;(3)在(2)的条件下,若b n =n ·2a n +1-a n2,S n =b 1+b 2+…+b n ,是否存在自然数M ,使得当n >M 时n ·2n +1-S n >50恒成立?若存在,求出最小的M ;若不存在,说明理由.[解] (1)由已知,可得c =0,f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =2n ,b2a=2n , 解之得a =12,b =2n .∴f (x )=12x 2+2nx .(2)∵a n +1=a n +2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2(1+2+3+…+n -1)+4=2×n n -12+4=n 2-n +4.(3)a n +1-a n =(n +1)2-(n +1)+4-(n 2-n +4)=2n , ∴b n =n ·2a n +1-a n2=n ·2n.S n =1·21+2·22+3·23+…+n ·2n ,①2S n =1·22+2·23+3·24+…+n ·2n +1.② ①-②得:-S n =21+22+…+2n -n ·2n +1=2n +1-2-n ·2n +1,∴n ·2n +1-S n =2n +1-2>50,即2n +1>52,当n ≥5时,2n +1>52.∴存在M =4,使得当n >M 时,n ·2n +1-S n >50恒成立.[第3步▕ 高考易错明辨析]1.忽视n 的取值范围致误已知数列{a n }中,a 1=1,前n 项的和为S n ,对任意的自然数n ≥2,a n 是3S n -4与2-32S n -1的等差中项.求通项a n . [错原] 忽视了a n +1a n =-12成立的前提n ≥2,只能说明数列从第2项起为等比数列,至于整个数列{a n }是否为等比数列还需验证a 2a 1是否等于-12,这种在解答过程中忽视数列“定义域”限制而致错的题目频率是非常高的,应引起足够的重视.[正解] 由已知,当n ≥2时,2a n =(3S n -4)+⎝ ⎛⎭⎪⎫2-32S n -1,又a n =S n -S n -1, 得a n =3S n -4(n ≥2),a n +1=3S n +1-4,以上两式相减得a n +1-a n =3a n +1, ∴a n +1a n =-12, ∴a 2,a 3,…,a n ,…成等比数列,其中a 2=3S 2-4=3(1+a 2)-4.即a 2=12,q =-12,∴当n ≥2时,a n =a 2qn -2=12·⎝ ⎛⎭⎪⎫-12n -2=-⎝ ⎛⎭⎪⎫-12n -1, ∴a n =⎩⎪⎨⎪⎧1, n =1,-⎝ ⎛⎭⎪⎫-12n -1, n ≥2.2.求等比数列的公比时忽视隐含条件致误已知一个等比数列的前四项之积为116,第2,3项的和为2,求这个等比数列的公比.[错原] 设这四个数为aq 3,a q,aq ,aq 3,公比为q 2,就等于规定了这个等比数列各项要么同为正,要么同为负,但题中q 可以为负![正解] 依题意,设这四个数为a ,aq ,aq 2,aq 3, 则⎩⎪⎨⎪⎧a 4q 6=116,aq +aq 2= 2.解得q =3±22或q =-5±2 6. 3.解数列问题时由思维定势导致错误已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是________. [错原] 默认q >0,遗漏当q <0时的情况.所以需要分q 为正、负两种情况. [正解] 因为等比数列{a n }中a 2=1, 所以S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1+q +1q =1+q +1q;当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2-q⎝ ⎛⎭⎪⎫-1q =-1;所以S 3∈(-∞,-1]∪[3,+∞).———————专家预测·巩固提升———————(对应学生用书第27页)1.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a n n+1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=________.3 [由定义在R 上的函数 f (x )是奇函数且满足 f ⎝ ⎛⎭⎪⎫32-x =f (x )知,f ⎝ ⎛⎭⎪⎫x -32=f ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫32-x =-f ⎝ ⎛⎭⎪⎫32-x =-f (x ),所以f (x -3)= f ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -32-32= -f ⎝ ⎛⎭⎪⎫x -32=-(-f (x ))=f (x ),所以f (x )的周期为3,由S n n =2×a n n +1得,S n =2a n+n ,当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-(n -1),所以a n =2a n -1-1,所以a 2=-3,a 3=-7,a 4=-15,a 5=-31,a 6=-63,所以f (a 5)+f (a 6)=f (-31)+f (-63) =-f (3×10+1)-f (3×21+0)=-f (1)-f (0)=-f (1-3)-0=-f (-2)=3.]2.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=a n +c n2,c n + 1=a n +b n2,则∠A n 的最大值是________.π3 [由b n +1=a n +c n 2,c n +1=a n +b n2得 b n +1+c n +1=a n +c n 2+a n +b n 2=12(b n +c n )+a n ,又a n +1=a n =a 1,所以b n +1+c n +1-2a 1=12(b n +c n-2a 1),而b 1+c 1=2a 1,所以b n +c n =2a 1,所以cos ∠A n =b 2n +c 2n -a 2n 2b n c n =b n +c n 2-a 2n -2b n c n2b n c n =3a 212b n c n-1≥3a 212⎝ ⎛⎭⎪⎫b n +c n 22-1=3a 212a 21-1=12,所以∠A n 的最大值是π3.]3.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c .若内角A ,B ,C 依次成等差数列,且a 和c 是-x 2+6x -8=0的两根,则S △ABC =________. 23 [∵内角A ,B ,C 依次成等差数列,∴B =60°, ∵a 和c 是-x 2+6x -8=0的两根,∴a =2,c =4, ∴S △ABC =12ac sin B =12×2×4×32=2 3.]4.(改编题)函数 f 1(x )=x 3,f2(x )=⎩⎪⎨⎪⎧2x 2,x ∈⎣⎢⎡⎦⎥⎤0,12,log 14x ,x ∈⎝ ⎛⎦⎥⎤12,1,f 3(x )=⎩⎪⎨⎪⎧31-2x,x ∈⎣⎢⎡⎦⎥⎤0,12,1,x ∈⎝ ⎛⎦⎥⎤12,1,f 4(x )=14|sin(2πx )|,等差数列{a n }中,a 1=0,a 2 015=1,b n =|f k (a n +1)-f k (a n )|(k =1,2,3,4),用P k 表示数列{b n }的前2 014项的和,则P 1,P 2,P 3,P 4的关系为________.【导学号:56394040】P 4<1=P 1=P 2<P 3=2 [{a n }是等差数列,且a 1=0,a 2 015=1,可知该数列为递增数列,且a 1 008=12,a 504<14,a 505>14.对于f 1(x )=x 3,该函数在[0,1]上为增函数,于是有f 1(a n +1)-f 1(a n )>0, 于是b 1=f 1(a n +1)-f 1(a n ),所以P 1=f 1(a 2 015)-f 1(a 1)=1-0=1.对于f 2(x ),该函数在⎣⎢⎡⎦⎥⎤0,12上递增,在⎝ ⎛⎦⎥⎤12,1上递减, 于是P 2=f 2(a 1 008)-f 2(a 1)+f 2(a 1 008)-f 2(a 2 015)=12-0+12-0=1.对于f 3(x ),该函数在⎣⎢⎡⎦⎥⎤0,12上递减,在⎝ ⎛⎦⎥⎤12,1上为常数,类似有P 3=f 3(a 1)-f 3(a 1 008)=f 3(0)-f 3⎝ ⎛⎭⎪⎫12=3-1=2.对于f 4(x ),该函数在⎣⎢⎡⎦⎥⎤0,14和⎣⎢⎡⎦⎥⎤12,34递增,在⎣⎢⎡⎦⎥⎤14,12和⎣⎢⎡⎦⎥⎤34,1上递减,且是以12为周期的周期函数,故只需讨论⎣⎢⎡⎦⎥⎤0,12的情况,再2倍即可,仿前可知,P 4=2[f4(a 504)- f4(a 1)+ f4(a 505)- f4(a 1008)]<2⎝ ⎛⎭⎪⎫14sin π2-14sin 0+14sin π2-14sin π=1, 故P 4<1,则P 4<1=P 1=P 2<P 3=2.]。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点3 平面向量 Word版含答案

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点3 平面向量 Word版含答案

突破点3 平面向量(对应学生用书第14页)[核心知识提炼]提炼1 平面向量共线、垂直的两个充要条件 若a =(x 1,y 1),b =(x 2,y 2),则: (1)a∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 提炼2 数量积常见的三种应用已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)证明向量垂直:a⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. (2)求向量的长度:|a |=a·a =x 21+y 21. (3)求向量的夹角:cos 〈a ,b 〉=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提炼3平面向量解题中应熟知的常用结论(1)A ,B ,C 三点共线的充要条件是存在实数λ,μ,有OA →=λOB →+μOC →,且λ+μ=1. (2)C 是线段AB 中点的充要条件是OC →=12(OA →+OB →).(3)G 是△ABC 的重心的充要条件为GA →+GB →+GC →=0,若△ABC 的三个顶点坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心坐标为x 1+x 2+x 33,y 1+y 2+y 33.(4)PA →·PB →=PB →·PC →=PA →·PC →⇔P 为△ABC 的垂心.(5)非零向量a ,b 垂直的充要条件:a⊥b ⇔a·b =0⇔|a +b|=|a -b|⇔x 1x 2+y 1y 2=0. (6)向量b 在a 的方向上的投影为|b |cos θ=a·b|a |, 向量a 在b 的方向上的投影为|a |cos θ=a·b|b|. [高考真题回访]回访1 平面向量的线性运算1.(2018·浙江高考)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.4 25 [设a ,b 的夹角为θ. ∵|a |=1,|b |=2,∴|a +b |+|a -b |=a +b2+a -b2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ, 则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20], ∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].] 2.(2018·浙江高考)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2D [由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a-b |2=|a |2+|b |2,故选D.]3.(2018·浙江高考)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1.( )【导学号:68334048】A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定B [|b +t a |2=b 2+2a ·b ·t +t 2a 2=|a |2t 2+2|a |·|b |cos θ·t +|b |2. 因为|b +t a |min =1,所以4|a |2·|b |2-4|a |2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1. 所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ. 即θ确定,|b |唯一确定.] 回访2 平面向量的数量积及其应用4.(2018·浙江高考)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P, 恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BCD [A 项,若∠ABC =90°,如图,则PB →·PC →=|PB →|·|PC →|cos ∠BPC =|PB →|2,P 0B →·P 0C →=|P 0B →|2.当点P 落在点P 0的右侧时,|PB →|2<|P 0B →|2,即PB →·PC →<P 0B →·P 0C →,不符合;B 项,若∠BAC =90°,如图,则PB →·PC →=|PB →|·|PC →|cos ∠BPC =-|PB →|·|PA →|,P 0B →·P 0A →=-|P 0B →||P 0A →|=-3.当P 为AB 的中点时,PB →·PC →=-4, PB →·PC →<P 0B →·P 0C →,不符合;C 项,若AB =AC ,假设∠BAC =120°,如图,则AC ′=2,PB →·PC →=|PB →|·|PC →|cos ∠BPC =-|PB →||PC ′→|,P 0B →·P 0C →=|P 0B →||P 0C →|cos ∠BP 0C =-|P 0B →||P 0C ′→|=-5.当P 落在A 点时,-|PB →||PC ′→|=-8,所以PB →·PC →<P 0B →·P 0C →,不符合.故选D.]5.(2018·浙江高考)已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是________. 【导学号:68334049】7 [∵a ·b =|a |·|b |cos 〈a ,b 〉=1×2×cos〈a ,b 〉=1,∴cos 〈a ,b 〉=12,∴〈a ,b 〉=60°.以a 的起点为原点,所在直线为x 轴建立直角坐标系, 则a =(1,0),b =(1,3). 设e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cos θ+3sin θ|≤|cos θ|+|cos θ|+|3sin θ| =2|cos θ|+3|sin θ| ≤θ|2+|sin θ|22+=7.]6.(2018·浙江高考)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.233 [∵e 1·e 2=12, ∴|e 1||e 2|cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=60°.又∵b ·e 1=b ·e 2=1>0,∴〈b ,e 1〉=〈b ,e 2〉=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.]7.(2018·浙江高考)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 2 [根据题意,得⎝ ⎛⎭⎪⎫|x ||b |2=x 2x e 1+y e 22=x 2x e 12+y e 22+2xy e 1·e 2=x 2x 2+y 2+2xy cosπ6=x 2x 2+y 2+3xy=11+⎝ ⎛⎭⎪⎫y x 2+3y x =1⎝ ⎛⎭⎪⎫y x +322+14.因为⎝ ⎛⎭⎪⎫yx +322+14≥14,所以0<⎝ ⎛⎭⎪⎫|x ||b|2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.](对应学生用书第15页) 热点题型1 平面向量的运算题型分析:该热点是高考的必考点之一,考查方式主要体现在以下两个方面:一是以平面图形为载体考查向量的线性运算;二是以向量的共线与垂直为切入点,考查向量的夹角、模等. 【例1】 (1)(2018·杭州第二次调研)在梯形ABCD 中,AB ∥DC ,AB ⊥AD ,AD =DC =1,AB =2.若AP →=16AD →+56AB →,则|BC →+tPB →|(t ∈R )的取值范围是( )【导学号:68334050】A.⎣⎢⎡⎭⎪⎫55,+∞ B .[2,+∞)C.⎣⎢⎡⎦⎥⎤55,1 D .[1,+∞)(2)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58B.18C.14D.118(1)A (2)B [(1)以A 为坐标原点,AB ,AD 分别为x 轴,y 轴建立直角坐标系(图略),则D (0,1),B (2,0),C (1,1),设P (x ,y ),由AP →=16AD →+56AB →得(x ,y )=16(0,1)+56(2,0),x =53,y =16,所以P ⎝ ⎛⎭⎪⎫53,16, ∴PB →=⎝ ⎛⎭⎪⎫13,-16,BC →=(-1,1),即|BC →+tPB →|=⎝ ⎛⎭⎪⎫t 3-12+⎝ ⎛⎭⎪⎫1-t 62=536t 2-t +2≥55,当且仅当t =185时等号成立,故选A.(2)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →.又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.][方法指津]1.平面向量的线性运算要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现.2.正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识,注重数形结合思想、方程思想与转化思想的应用.提醒:运算两平面向量的数量积时,务必要注意两向量的方向.[变式训练1] (1)已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c·(a +b )=( )A .(2,12)B .(-2,12)C .14D .10(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=__________. 【导学号:68334051】(1)C (2)-2 [(1)易知a -b =(-4,1),由(a -b )⊥c ,可得(-4)×x +1×4=0,即-4x +4=0,解得x =1, ∴c =(1,4).而a +b =(2,3),∴c·(a +b )=1×2+4×3=14.故选C.(2)∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n=-2.]热点题型2 三角与向量的综合问题题型分析:平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件. 【例2】 (名师押题)已知向量a =⎝ ⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求y =f (x )+4cos ⎝⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围.[解] (1)∵a ∥b ,∴34cos x +sin x =0,2分 ∴tan x =-34,4分 ∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. 6分 (2)f (x )=2(a +b )·b =2sin ⎝ ⎛⎭⎪⎫2x +π4+32,8分由正弦定理得a sin A =bsin B,可得sin A =22. 9分 ∵b >a ,∴A =π4,10分 y =f (x )+4cos ⎝⎛⎭⎪⎫2A +π6=2sin ⎝⎛⎭⎪⎫2x +π4-12.13分∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12,∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.15分[方法指津]平面向量与三角函数问题的综合主要利用向量数量积运算的坐标形式,多与同角三角函数关系、诱导公式以及和角与倍角等公式求值等问题相结合,计算的准确性和三角变换的灵活性是解决此类问题的关键点.[变式训练2] 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, 4分 ∴tan x =1.6分(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12,8分∴sin ⎝⎛⎭⎪⎫x -π4=12.12分又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4, ∴x -π4=π6,即x =5π12.15分。

2018北师大版文科数学高考总复习教师用书:2-5指数与

2018北师大版文科数学高考总复习教师用书:2-5指数与

第5讲 指数与指数函数最新考纲 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像;4.体会指数函数是一类重要的函数模型.知 识 梳 理1.根式(1)概念:式子na 叫作根式,其中n 叫作根指数,a 叫作被开方数.(2)性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0. 2.分数指数幂(1)规定:正数的正分数指数幂的意义是=na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是=1n a m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .3.指数函数的图像与性质a >1 0<a <1图像定义域 R 值域 (0,+∞)性质过定点(0,1),即x =0时,y =1 当x >0时,y >1;当x <0时,y >1;当x <0时,0<y <1 当x >0时,0<y <1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)4(-4)4=-4.( )(2)(-1)=(-1)=-1.( ) (3)函数y =2x -1是指数函数.( )(4)函数y =a x 2+1(a >1)的值域是(0,+∞).( ) 解析 (1)由于4(-4)4=444=4,故(1)错.(2)(-1)=4(-1)2=1,故(2)错.(3)由于指数函数解析式为y =a x (a >0,且a ≠1),故y =2x -1不是指数函数,故(3)错. (4)由于x 2+1≥1,又a >1,∴a x 2+1≥a .故y =a x 2+1(a >1)的值域是[a ,+∞),(4)错. 答案 (1)× (2)× (3)× (4)×2.(教材改编)化简[(-2)6]-(-1)0的结果为( ) A .-9 B .7 C .-10 D .9解析 原式=(26)-1=8-1=7. 答案 B3.函数y =a x -a -1(a >0,且a ≠1)的图像可能是( )解析 函数y =a x -1a 是由函数y =a x 的图像向下平移1a 个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a >1,平移距离大于1,所以C 项错误,故选D.答案 D4.(2015·山东卷)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a解析 根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,而c =1.50.6>1,∴b <a <c . 答案 C5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析 由题意知0<2-a <1,解得1<a <2. 答案 (1,2)考点一 指数幂的运算【例1】 化简:(1) (a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278+(0.002)-10(5-2)-1+(2-3)0.解 (1)原式==ab -1.(2)原式=⎝ ⎛⎭⎪⎫-278+⎝ ⎛⎭⎪⎫1500-105-2+1 =⎝ ⎛⎭⎪⎫-827+500-10(5+2)+1 =49+105-105-20+1=-1679.规律方法 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【训练1】 化简求值:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-(0.01)0.5;解 (1)原式=1+14×⎝ ⎛⎭⎪⎫49-⎝ ⎛⎭⎪⎫1100=1+14×23-110=1+16-110=1615.(2)原式=考点二 指数函数的图像及应用【例2】 (1)函数f (x )=1-e |x |的图像大致是( )(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 解析(1)f (x )=1-e |x |是偶函数,图像关于y 轴对称,又e |x |≥1, ∴f (x )的值域为(-∞,0], 因此排除B 、C 、D ,只有A 满足.(2)曲线|y |=2x +1与直线y =b 的图像如图所示,由图像可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案 (1)A (2)[-1,1]规律方法 (1)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(2)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图像,数形结合求解.【训练2】 (1)(2017·陕西五校联考)定义运算a ⊕b =⎩⎨⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图像是( )(2)方程2x =2-x 的解的个数是________. 解析 (1)因为当x ≤0时,2x ≤1;当x >0时,2x >1.则f (x )=1⊕2x=⎩⎨⎧2x ,x ≤0,1,x >0,图像A 满足.(2)方程的解可看作函数y =2x 和y =2-x 的图像交点的横坐标,分别作出这两个函数图像(如图).由图像得只有一个交点,因此该方程只有一个解. 答案 (1)A (2)1考点三 指数函数的性质及应用(易错警示) 【例3】 (1)下列各式比较大小正确的是( ) A .1.72.5>1.73 B .0.6-1>0.62 C .0.8-0.1>1.250.2 D .1.70.3<0.93.1 (2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.(1)解析 A 中,∵函数y =1.7x 在R 上是增函数,2.5<3, ∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误;D 中,∵1.70.3>1, 0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B. 答案 B(2)解 ①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令u =-x 2-4x +3=-(x +2)2+7.在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13u在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的递增区间是(-2,+∞),递减区间是(-∞,-2).②令h (x )=ax 2-4x +3,y =⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③由f (x )的值域是(0,+∞)知,ax 2-4x +3的值域为R ,则必有a =0.规律方法 (1)比较指数式的大小的方法是:①能化成同底数的先化成同底数幂,再利用单调性比较大小;②不能化成同底数的,一般引入“1”等中间量比较大小.(2)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.易错警示在研究指数型函数的单调性时,当底数a与“1”的大小关系不确定时,要分类讨论.【训练3】(1)(2015·天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a(2)设函数f(x)=则使得f(x)≤3成立的x的取值范围是________.解析(1)由函数f(x)=2|x-m|-1为偶函数,得m=0,所以f(x)=2|x|-1,当x>0时,f(x)为增函数,log0.53=-log23,所以log25>|-log23|>0,所以b=f(log25)>a=f(log0.53)>c=f(2m)=f(0),故b>a>c,选B.(2)当x≥8时,f(x)=≤3,∴x≤27,即8≤x≤27;当x<8时,f(x)=2e x-8≤3恒成立,故x<8.综上,x∈(-∞,27].答案(1)B(2)(-∞,27][思想方法]1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图像上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.3.指数函数的单调性取决于底数a的大小,当底数a与1的大小关系不确定时应分0<a<1和a>1两种情况分类讨论.[易错防范]1.对与复合函数有关的问题,要弄清楚复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.2.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(≤0)形式的方程或不等式,常借助换元法解题,但应注意换元后“新元”的范围.基础巩固题组(建议用时:40分钟)一、选择题1.(2017·衡水中学模拟)若a =⎝ ⎛⎭⎪⎫23x ,b =x 2,c =x ,则当x >1时,a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b解析 当x >1时,0<a =⎝ ⎛⎭⎪⎫23x <23,b =x 2>1,c =x <0,所以c <a <b .答案 A2.函数f (x )=a x -b 的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0解析 由f (x )=a x -b 的图像可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1. 函数f (x )=a x -b 的图像是在f (x )=a x 的基础上向左平移得到的,所以b <0. 答案 D3.(2017·南昌一模)已知a =⎝ ⎛⎭⎪⎫35,b =⎝ ⎛⎭⎪⎫25,c =⎝ ⎛⎭⎪⎫25,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析 ∵y =⎝ ⎛⎭⎪⎫25x 在R 上为减函数,35>25,∴b <c .又∵y =x 在(0,+∞)上为增函数,35>25, ∴a >c ,∴b <c <a . 答案 D4.(2017·安阳模拟)已知函数f (x )=a x (a >0,且a ≠1),如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( ) A .1 B .a C .2 D .a 2解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0.又∵f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1. 答案 A5.(2017·西安调研)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 答案 B 二、填空题6.⎝ ⎛⎭⎪⎫32×⎝ ⎛⎭⎪⎫-760+814×42-=________.解析 原式=⎝ ⎛⎭⎪⎫23×1+2×2-⎝ ⎛⎭⎪⎫23=2.答案 27.(2015·江苏卷)不等式2x 2-x <4的解集为________. 解析 ∵2x 2-x <4,∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2. 答案 {x |-1<x <2}8.(2017·安徽江淮十校联考)已知max(a ,b )表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.解析 f (x )=⎩⎨⎧e x,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x ≥e(x =1时,取等号), 当x <1时,f (x )=e |x -2|=e 2-x >e , 因此x =1时,f (x )有最小值f (1)=e. 答案 e 三、解答题9.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1).(1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立. 解 (1)由于a x -1≠0,则a x ≠1,得x ≠0, 所以函数f (x )的定义域为{x |x ≠0}. 对于定义域内任意x ,有 f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫ax1-a x +12(-x )3 =⎝ ⎛⎭⎪⎫-1-1a x-1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况, 当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0,即1a x -1+12>0,即a x +12(a x -1)>0,则a x >1. 又∵x >0,∴a >1.因此a >1时,f (x )>0.10.已知定义域为R 的函数f (x )=-2x +b 2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b 2+a =0,解得b =1,所以f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a=--12+11+a,解得a =2. (2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1. 由上式易知f (x )在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得t >1或t <-13,故原不等式的解集为⎩⎨⎧⎭⎬⎫t |t >1或t <-13. 能力提升题组(建议用时:20分钟)11.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)解析 因为2x >0,所以由2x(x -a )<1得a >x -⎝ ⎛⎭⎪⎫12x ,令f (x )=x -⎝ ⎛⎭⎪⎫12x ,则函数f (x )在(0,+∞)上是增函数,所以f (x )>f (0)=0-⎝ ⎛⎭⎪⎫120=-1, 所以a >-1.答案 D12.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <2解析作出函数f (x )=|2x -1|的图像如图中实线所示,∵a <b <c ,且f (a )>f (c )>f (b ),结合图像知a <0,0<c <1,∴0<2a <1,1<2c <2,∴f (a )=|2a -1|=1-2a <1,∴f (c )=|2c -1|=2c -1,又f (a )>f (c ),即1-2a >2c -1,∴2a +2c <2.答案 D13.(2017·北京丰台一模)已知奇函数y =⎩⎨⎧f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图像如图所示,那么g (x )=________.解析 依题意,f (1)=12,∴a =12,∴f (x )=⎝ ⎛⎭⎪⎫12x ,x >0.当x <0时,-x >0. ∴g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x =-2x . 答案 -2x (x <0)14.(2017·合肥期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解 (1)∵f (x )=e x -⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x +⎝ ⎛⎭⎪⎫1e x , ∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立,⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立,⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立, ⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0, 又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立. 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.。

2018年江苏高考数学二轮复习教师用书第1部分 知识专题突破 专题3 导数 Word版含答案

2018年江苏高考数学二轮复习教师用书第1部分 知识专题突破 专题3 导数 Word版含答案

专题三导数———————命题观察·高考定位———————(对应学生用书第页).(·江苏高考)已知函数()=-+-,其中是自然对数的底数.若(-)+()≤,则实数的取值范围是.[因为(-)=(-)-(-)+--=-+-+=-(),所以()=-+-是奇函数.因为(-)+()≤,所以()≤-(-),即()≤(-).因为′()=-++-≥-+=≥,所以()在上单调递增,所以≤-,即+-≤,所以-≤≤.].(·江苏高考)本在平面直角坐标系中,若曲线=+(,为常数)过点(,-),且该曲线在点处的切线与直线++=平行,则+的值是.-[=+的导数为′=-,直线++=的斜率为-.由题意得(\\(+()=-,-()=-(),))解得(\\(=-,=-,))则+=-.].(·江苏高考)抛物线=在=处的切线与两坐标轴围成的三角形区域为(包含三角形内部与边界).若点(,)是区域内的任意一点,则+的取值范围是.[由于′=,所以抛物线在=处的切线方程为-=(-),即=-.画出可行域(如图).设+=,则=-+,可知当直线=-+经过点,(,-)时,分别取到最大值和最小值,此时最大值=,最小值=-,故取值范围是.].(·江苏高考)已知函数()=++(,∈).()试讨论()的单调性;()若=-(实数是与无关的常数),当函数()有三个不同的零点时,的取值范围恰好是(-∞,-)∪∪,求的值.【导学号:】[解]()′()=+,令′()=,解得=,=-.当=时,因为′()=≥,所以函数()在(-∞,+∞)上单调递增;当>时,∈∪(,+∞)时,′()>,∈时,′()<,所以函数()在,(,+∞)上单调递增,在上单调递减;当<时,∈(-∞,)∪时,′()>,∈时,′()<,所以函数()在(-∞,),上单调递增,在上单调递减.()由()知,函数()的两个极值为()=,=+,则函数()有三个零点等价于()·=<,从而(\\(>,,-()<<))或(\\(<,<<-().))又=-,所以当>时,-+>或当<时,-+<.设()=-+,因为函数()有三个零点时,的取值范围恰好是(-∞,-)∪∪,则在(-∞,-)上()<,且在∪上()>均恒成立,从而(-)=-≤,且=-≥,因此=.此时,()=++-=(+)[+(-)+-].因为函数有三个零点,则+(-)+-=有两个异于-的不等实根,所以Δ=(-)-(-)=+->,且(-)-(-)+-≠,解得∈(-∞,-)∪∪.综上=..(·江苏高考)已知函数()=+(>,>,≠,≠).()设=,=.①求方程()=的根;②若对于任意∈,不等式()≥()-恒成立,求实数的最大值.()若<<,>,函数()=()-有且只有个零点,求的值.[解]()因为=,=,所以()=+-.①方程()=,即+-=,亦即()-×+=,所以(-)=,于是=,解得=.②由条件知()=+-=(+-)-=(())-.因为()≥()-对于∈恒成立,且()>,所以≤对于∈恒成立.而=()+≥=,且=,。

2018届高三数学(文)高考总复习教师用书:第二章 函数、导数及其应用 Word版含答案

2018届高三数学(文)高考总复习教师用书:第二章 函数、导数及其应用 Word版含答案

第二章⎪⎪⎪函数、导数及其应用第一节函数及其表示1.函数与映射的概念函数映射两集合 A ,B 设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应 关系 f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法 y =f (x ),x ∈A对应f :A →B 是一个映射2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案:D2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案:B 3.函数f (x )=x -4|x |-5的定义域是________________. 答案:[4,5)∪(5,+∞)4.已知f (x )=3x 3+2x +1,若f (a )=2,则f (-a )=________. 解析:∵f (x )=3x 3+2x +1,∴f (a )+f (-a )=3a 3+2a +1+3(-a )3+2×(-a )+1=2, ∴f (-a )=2-f (a )=0. 答案:01.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域.2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论.[小题纠偏]1.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.答案:±12.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t .∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函数的定义域(基础送分型考点——自主练透)[题组练透]1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:选C 由题意知,x 2-x >0,即x <0或x >1. 则函数的定义域为(-∞,0)∪(1,+∞),故选C. 2.(2017·贵阳监测)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由函数y =1-x 22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1,故选D.3.若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f (x +1)x -1的定义域是( )A .[0,2 016]B .[0,1)∪(1,2 016]C .(1,2 017]D .[-1,1)∪(1,2 016]解析:选B 令t =x +1,则由已知函数的定义域为[1,2 017],可知1≤t ≤2 017.要使函数f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函数f (x +1)的定义域为[0,2016].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 016,x -1≠0,解得0≤x <1或1<x ≤2 016.故函数g (x )的定义域为[0,1)∪(1,2 016].4.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2][谨记通法] 函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 考点二 求函数的解析式(重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式.解:(1)(配凑法)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.∴f (x )的解析式是f (x )=2x +1-2-x3.[由题悟法]求函数解析式的4种方法[即时应用]1.已知f(x+1)=x+2x,求f(x)的解析式.解:法一:(换元法)设t=x+1,则x=(t-1)2,t≥1,代入原式有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1.故f(x)=x2-1,x≥1.法二:(配凑法)∵x+2x=(x)2+2x+1-1=(x+1)2-1,∴f(x+1)=(x+1)2-1,x+1≥1,即f(x)=x2-1,x≥1.2.设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,求f(x)的解析式.解:设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b=2x+2,∴a=1,b=2,f(x)=x2+2x+c.又∵方程f(x)=0有两个相等实根,∴Δ=4-4c=0,解得c=1.故f(x)=x2+2x+1.考点三分段函数(题点多变型考点——多角探明)[锁定考向]高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般较小.常见的命题角度有:(1)分段函数的函数求值问题; (2)分段函数的自变量求值问题;(3)分段函数与方程、不等式问题.[题点全练]角度一:分段函数的函数求值问题1.(2017·西安质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是________. 解析:由题意可得f ⎝⎛⎭⎫14=log 214=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109. 答案:109角度二:分段函数的自变量求值问题2.已知f (x )=⎩⎨⎧x 12,x ∈[0,+∞),|sin x |,x ∈⎝⎛⎭⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝⎛⎭⎫-π2,0, 解得a =-π6.综上可知,a =14或-π6.答案:14或-π6角度三:分段函数与方程、不等式问题3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)[通法在握]1.分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.[演练冲关]1.(2017·唐山统考)已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2015·山东高考)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C.3.(2016·云南一检)已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为________. 解析:∵f (10)=f (100-90)=lg 100=2,f (-100)=f (-10-90)=-(-10)=10,∴f (10)-f (-100)=2-10=-8.答案:-8一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .(6,+∞) B .(-3,6) C .(-3,+∞)D .[-3,6)解析:选D 要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74 B.74C.43D .-43解析:选B 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74. 3.(2017·黄山质检)已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=( ) A .x +1 B .2x -1 C .-x +1D .x +1或-x -1解析:选A f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1.故选A. 4.已知f (x )满足f ⎝⎛⎭⎫3x -1=lg x ,则f ⎝⎛⎭⎫-710=________. 解析:令3x -1=-710,得x =10,∴f ⎝⎛⎭⎫-710=lg 10=1. 答案:15.设函数f (x )=⎩⎪⎨⎪⎧1x , x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:f (2)=12,则f (f (2))=f ⎝⎛⎭⎫12=-52. 当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), ∴f (x )∈[-3,+∞). 答案:-52[-3,+∞)二保高考,全练题型做到高考达标1.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2B .2C .-2或2 D. 2解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2,故选B.2.(2017·长沙四校联考)f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x ,x ≤0,log 3x ,x >0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=( ) A .-2 B .-3 C .9D .-9 解析:选C ∵f ⎝⎛⎭⎫19=log 319=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=f (-2)=⎝⎛⎭⎫13-2=9.故选C. 3.函数f (x )=ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为( ) A .(-1,1] B .(0,1] C .[0,1]D .[1,+∞)解析:选B由条件知⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0.即⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].∴原函数的定义域为(0,1].4.已知函数y =f (x )的定义域是[0,3],则函数g (x )=f (3x )x -1的定义域是( ) A.⎣⎡⎭⎫0,13∪⎝⎛⎦⎤13,1 B .[0,1) C .[0,1)∪(1,3]D .[0,1)∪(1,9]解析:选B 由⎩⎪⎨⎪⎧0≤3x ≤3,x -1≠0可得0≤x <1,选B.5.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③. 6.函数f (x ),g (x )分别由下表给出.则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1, ∴f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 27.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝⎛⎭⎫122=14. 答案:148.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]9.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x ,即g (x )=9-2x . 答案:g (x )=9-2x10.如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式. (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函数y =mx 上,所以m =4,又因为A (n ,-2)在反比例函数y =m x =4x 的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函数y =kx +b 上的点,联立方程组⎩⎪⎨⎪⎧-2k +b =-2,k +b =4,解得⎩⎪⎨⎪⎧k =2,b =2.所以y =4x,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校1.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34 D.32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B. 2.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2, f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2, f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1, ∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:73.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M为函数y=f(x)的最大值M为函数y=f(x)的最小值[小题体验]1.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3C.y=ln x D.y=|x|答案:B2.y=x2-6x+5的单调减区间为________.解析:y=x2-6x+5=(x-3)2-4,表示开口向上,对称轴为x=3的抛物线,其单调减区间为(-∞,3].答案:(-∞,3]3.若函数f(x)=1x在区间[2,a]上的最大值与最小值的和为34,则a=________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数, ∴f (x )m ax =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:41.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x .3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7] 2.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数, ∴f (x )m ax -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. 2.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解:法一(定义法):设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增. 法二(导数法):f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增. 3.判断函数y =x +2x +1在(-1,+∞)上的单调性.解:法一:任取x 1,x 2∈(-1,+∞),且x 1<x 2, 则y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1).∵x 1>-1,x 2>-1, ∴x 1+1>0,x 2+1>0, 又x 1<x 2,∴x 2-x 1>0, ∴x 2-x 1(x 1+1)(x 2+1)>0,即y 1-y 2>0. ∴y 1>y 2,∴函数y =x +2x +1在(-1,+∞)上单调递减.法二:y =x +2x +1=1+1x +1.∵y =x +1在(-1,+∞)上是增函数, ∴y =1x +1在(-1,+∞)上是减函数,∴y =1+1x +1在(-1,+∞)上是减函数.即函数y =x +2x +1在(-1,+∞)上单调递减.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤:取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞)D.⎝⎛⎭⎫12,+∞ 解析:选B y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0 =⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0,=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的草图,如图.由图易知原函数在⎣⎡⎦⎤0,12上单调递增.故选B. 2.函数y =⎝⎛⎭⎫13-223+1x x 的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞D.⎣⎡⎭⎫34,+∞解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫13-223+1x x 在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用(题点多变型考点——多角探明) [锁定考向]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2017·哈尔滨联考)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.故选C.角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][通法在握]函数单调性应用问题的常见类型及解题策略(1)求函数最值(五种常用方法)(2)比较大小比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[演练冲关]1.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ) A .(-∞,1] B .(-∞,-1] C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1,故选A.2.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)解析:选D ∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.3.函数f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. 解析:∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数,∴f ⎝⎛⎭⎫12=12,f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.答案:152一抓基础,多练小题做到眼疾手快1.(2017·珠海摸底)下列函数中,定义域是R 且为增函数的是( ) A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x 与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.一次函数y =kx +b 在R 上是增函数,则k 的取值范围为( ) A .(0,+∞) B .[0,+∞) C .(-∞,0)D .(-∞,0]解析:选A 法一:由一次函数的图象可知选A. 法二:设∀x 1,x 2∈R 且x 1<x 2, ∵f (x )=kx +b 在R 上是增函数,∴(x 1-x 2)(f (x 1)-f (x 2))>0,即k (x 1-x 2)2>0, ∵(x 1-x 2)2>0,∴k >0,故选A. 3.(2017·北京东城期中)已知函数y =1x -1,那么( ) A .函数的单调递减区间为(-∞,1),(1,+∞) B .函数的单调递减区间为(-∞,1)∪(1,+∞) C .函数的单调递增区间为(-∞,1),(1,+∞) D .函数的单调递增区间为(-∞,1)∪(1,+∞)解析:选A 函数y =1x -1可看作是由y =1x 向右平移1个单位长度得到的,∵y =1x 在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函数y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A.4.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y m ax =14. 答案:145.函数f (x )=log 12(x 2-4)的单调递增区间为________.解析:由x 2-4>0得x <-2或x >2.又u =x 2-4在(-∞,-2)上为减函数,在(2,+∞)上为增函数,y =log 12u 为减函数,故f (x )的单调递增区间为(-∞,-2).答案:(-∞,-2)二保高考,全练题型做到高考达标1.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).2.已知函数f (x )是定义在R 上的偶函数, 且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f ⎝⎛⎭⎫log 12a≤2f (1),则a 的取值范围是( )A .[1,2]B.⎝⎛⎦⎤0,12C.⎣⎡⎦⎤12,2D .(0,2]解析:选C 因为log 12a =-log 2 a ,且f (x )是偶函数,所以f (log 2a )+f (log 12a )=2f (log 2a )=2f (|log 2a |)≤2f (1),即f (|log 2a |)≤f (1),又函数在[0,+∞)上单调递增,所以0≤|log 2a |≤1,即-1≤log 2 a ≤1,解得12≤a ≤2.3.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.4.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是R 上的单调递减函数,则实数a 的取值范围是( )A .(-∞,2) B.⎝⎛⎦⎤-∞,138 C .(0,2)D.⎣⎡⎭⎫138,2解析:选B 因为函数为递减函数,则⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1,解得a ≤138,故选B.5.(2017·安徽皖江名校联考)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)解析:选C 函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,∴函数在[-2,2]上单调递增,∴⎩⎪⎨⎪⎧ -2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .∴⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C.6.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:67.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)8.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.解析:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1]. 10.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x , 设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝⎛⎭⎫a -1x 2-⎝⎛⎭⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2, h (x 1)-h (x 2)=(x 1-x 2)⎝⎛⎭⎫2-1x 1x 2.因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0,所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3,所以实数a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞) B .[0, 3 ] C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数.(2)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (2)因为f (x )在(0,+∞)上是单调递减函数, 所以f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1, 所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.第三节函数的奇偶性及周期性1.函数的奇偶性 奇偶性 定义图象特点 偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题体验]1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ) A .y =x B .y =cos x C .y =e x D .y =ln |x |答案:D2.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=________.答案:-23.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________. 答案:-11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.下列函数中,为奇函数的是( ) A .y =3x +13xB .y =x ,x ∈{0,1}C .y =x ·sin xD .y =⎩⎪⎨⎪⎧1,x <0,0,x =0,-1,x >0解析:选D 由函数奇偶性定义易知函数y =3x +13x 和y =x ·sin x 都是偶函数,排除A和C ;函数y =x ,x ∈{0,1}的定义域不关于坐标原点对称,既不是奇函数又不是偶函数,排除B ;由奇函数的定义知y =⎩⎪⎨⎪⎧1,x <0,0,x =0,-1,x >0是奇函数,故选D.考点一 函数奇偶性的判断(基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3;(3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x, ∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法(2)图象法(3)性质法①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性(重点保分型考点——师生共研)[典例引领]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 018)=f (2 016)+f (2 017)+f (2 018)=f (0)+f (1)+f (2)=1.[由题悟法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论(1)若f (x +a )=-f (x ),则T =2a , (2)若f (x +a )=1f (x ),则T =2a , (3)若f (x +a )=-1f (x ),则T =2a (a >0). [即时应用]1.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( ) A .-1B .1C .-2D .2解析:选A 由f (x )是R 上周期为5的奇函数,知 f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1,故选A.2.已知定义在R 上的函数满足f (x +2)=-1f (x ),x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2 017)的值为________.解析:∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x ),∴函数y =f (x )的周期T =4. 又x ∈(0,2]时,f (x )=2x -1, ∴f (1)=1,f (2)=3,f (3)=-1f (1)=-1,f (4)=-1f (2)=-13.∴f (1)+f (2)+f (3)+…+f (2 017)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)=504⎝⎛⎭⎫1+3-1-13+1 =1 345. 答案:1 345考点三 函数性质的综合应用(题点多变型考点——多角探明) [锁定考向]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.(2017·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-x C .-2-xD .2x解析:选C x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .故选C.角度二:单调性与奇偶性结合2.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫32,+∞ C.⎝⎛⎭⎫12,32D.⎝⎛⎭⎫32,+∞ 解析:选C 因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,所以12<a <32.角度三:周期性与奇偶性结合3.已知f (x )是定义在R 上以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围是( )A .(-1,4)B .(-2,1)C .(-1,2)D .(-1,0)解析:选A 因为函数f (x )是定义在R 上以3为周期的偶函数,所以f (5)=f (-1)=f (1),即2a -3a +1<1, 化简得(a -4)(a +1)<0, 解得-1<a <4,故选A.角度四:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). 因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).[通法在握]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,。

2018北师大版文科数学高考总复习教师用书2-1函数及其表示Word版含答案

2018北师大版文科数学高考总复习教师用书2-1函数及其表示Word版含答案

第1讲函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知识梳理1.函数的基本概念(1)函数的定义给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一的数f(x)与之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B或y=f(x),x∈A,此时x叫作自变量,集合A叫作函数的定义域,集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素是:定义域、值域和对应关系.(3)表示函数的常用方法有:解析法、列表法和图像法.(4)分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.2.函数定义域的求法1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示 (1)函数y =1与y =x 0是同一个函数.( )(2)与x 轴垂直的直线和一个函数的图像至多有一个交点.( )(3)函数y =x 2+1-1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( ) 解析 (1)函数y =1的定义域为R ,而y =x 0的定义域为{x |x ≠0},其定义域不同,故不是同一函数. (3)由于x 2+1≥1,故y =x 2+1-1≥0,故函数y =x 2+1-1的值域是{y |y ≥0}. (4)若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)√ (3)× (4)×2.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )解析 A 中函数定义域不是[-2,2],C 中图像不表示函数,D 中函数值域不是[0,2]. 答案 B3.(2017·合肥一模)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 解析 由题意,得⎩⎨⎧1-x 2≥0,2x 2-3x -2≠0.解之得-1≤x ≤1且x ≠-12. 答案 D4.(2015·陕西卷)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A .-1 B.14 C.12 D.32解析 因为-2<0,所以f (-2)=2-2=14>0,所以f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 答案 C5.(2015·全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. 解析 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图像上,所以4=-a +2,则a =-2. 答案 -2考点一 求函数的定义域 【例1】 (1)(2017·郑州调研)函数f (x )=ln xx -1+的定义域为( ) A .(0,+∞) B .(1,+∞) C .(0,1) D .(0,1)∪(1,+∞)(2)若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f (x +1)x -1的定义域是____________. 解析 (1)要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧xx -1>0,x ≥0,解得x >1,故函数f (x )=lnxx -1+的定义域为(1,+∞).(2)∵y =f (x )的定义域为[1,2 017], ∴g (x )有意义,应满足⎩⎨⎧1≤x +1≤2 017,x -1≠0.∴0≤x ≤2 016,且x ≠1.因此g (x )的定义域为{x |0≤x ≤2 016,且x ≠1}. 答案 (1)B (2){x |0≤x ≤2 016,且x ≠1} 规律方法 求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.【训练1】 (1)(2015·湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6](2)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析(1)要使函数f (x )有意义,应满足⎩⎨⎧4-|x |≥0,x 2-5x +6x -3>0,∴⎩⎨⎧|x |≤4,x -2>0且x ≠3,则2<x ≤4,且x ≠3. 所以f (x )的定义域为(2,3)∪(3,4].(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,则x 2+2ax -a ≥0恒成立.因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 答案 (1)C (2)[-1,0] 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.解析 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1, 则2ax +a +b =x -1, ∴⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x 换成x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,解得f (x )=23x +13.答案 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13 规律方法 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.【训练2】 (1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________. 解析 (1)令x +1=t ,则x =(t -1)2(t ≥1),代入原式得 f (t )=(t -1)2+2(t -1)=t 2-1, 所以f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1). (3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 将x 换成-x ,则-x 换成x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). 答案 (1)x 2-1(x ≥1) (2)-12x (x +1) (3)23lg(x +1)+13lg(1-x )(-1<x <1) 考点三 分段函数(多维探究) 命题角度一 求分段函数的函数值【例3-1】 (2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .12解析 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1 ∴f (log 212)=2(log 212-1)=2log 26=6, 因此f (-2)+f (log 212)=3+6=9. 答案 C命题角度二 求参数的值或取值范围【例3-2】 (1)(2015·山东卷)设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1 B.78 C.34 D.12(2)(2014·全国Ⅰ卷)设函数f (x )=则使得f (x )≤2成立的x 的取值范围是________. 解析 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32时,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4,解之得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则-b =4,解得b =12. (2)当x <1时,e x -1≤2,解得x ≤1+ln 2, 所以x <1.当x ≥1时,≤2,解得x ≤8,所以1≤x ≤8. 综上可知x 的取值范围是(-∞,8]. 答案 (1)D (2)(-∞,8]规律方法 (1)根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2015·全国Ⅰ卷)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A .-74 B .-54 C .-34 D .-14(2)(2017南京、盐城模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________.解析 (1)当a ≤1时,f (a )=2a -1-2=-3, 即2a -1=-1,不成立,舍去; 当a >1时,f (a )=-log 2(a +1)=-3, 即log 2(a +1)=3,解得a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A. (2)当x ≤0时,由题意得x2+1≥-1,解之得-4≤x≤0.当x>0时,由题意得-(x-1)2≥-1,解之得0<x≤2,综上f(x)≥-1的解集为{x|-4≤x≤2}.答案(1)A(2){x|-4≤x≤2}[思想方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图像的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.4.分段函数问题要用分类讨论思想分段求解.[易错防范]1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A,B若不是数集,则这个映射便不是函数.3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.基础巩固题组(建议用时:30分钟)一、选择题1.(2017·宜春质检)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1] B.(-3,1)C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)解析使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).答案 D2.(2017·衡水中学月考)设f ,g 都是由A 到A 的映射,其对应法则如下: 映射f 的对应法则则f [g (1)]的值为( ) A .1 B .2 C .3 D .4解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 A3.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A .x +1 B .2x -1C .-x +1D .x +1或-x -1解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A4.(2017·衡阳八中一模)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 C5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ) A .y =⎣⎢⎡⎦⎥⎤x 10 B .y =⎣⎢⎡⎦⎥⎤x +310 C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 解析 取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B. 答案 B6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =x B .y =lg x C .y =2x D .y =1x解析 函数y =10lg x 的定义域、值域均为(0,+∞),而y =x ,y =2x 的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D. 答案 D7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是( )A.12B.14 C .-25 D.18解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110, ∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.答案 C8.(2017·铜陵一模)设P (x 0,y 0)是函数f (x )图像上任意一点,且y 20≥x 20,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x -1C .f (x )=x +4xD .f (x )=tan x解析 对于A 项,当x =1,f (1)=0,此时02≥12不成立.对于B 项,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在D 项中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.∴A ,B ,D 均不正确.选C.事实上,在C 项中,对任意x 0∈R ,y 20=⎝ ⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x 20+8>0,有y 20≥x 20成立. 答案 C二、填空题9.(2016·江苏卷)函数y =3-2x -x 2的定义域是________.解析 要使函数有意义,则3-2x -x 2≥0,∴x 2+2x -3≤0,解之得-3≤x ≤1.答案 [-3,1]10.已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. 解析 ∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1. ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案 -211.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x =-log 2x . 答案 f (x )=-log 2 x12.设函数f (x )=⎩⎨⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________. 解析 由题意知,若x ≤0,则2x =12,解得x =-1;若x >0,则|log 2x |=12,解得x =212或x =2-12,故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22能力提升题组(建议用时:15分钟)13.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =⎩⎨⎧ 1,x >0,0,x =0,-1,x <0.则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ;当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ;当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x .答案 D14.设函数f (x )=⎩⎨⎧ 3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是() A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案 C15.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为________. 解析 要使函数f (x )有意义,则⎩⎪⎨⎪⎧ 1+1x >0,x ≠0,1-x 2≥0⇒⎩⎨⎧ x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].答案 (0,1]16.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.答案 0 22-3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统热门考点——以点带面(一)巧用性质 妙解函数 [速解技法——学一招]函数性质主要指函数的单调性、奇偶性、周期性、对称性,要深刻理解并加以巧妙地运用.以对称性为例,若函数f (x )满足f (a +x )=f (b -x ),则函数图象关于直线x =a +b2对称;若函数f (x )满足f (a +x )+f (b -x )=c ,则函数图象关于点⎝⎛⎭⎪⎫a +b 2,c 2对称.[例1] 定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在[0,1]上是增函数,则有( )A .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32B .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫32C .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫-14D .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14 [解析] 选B 由题设知f (x )=-f (x -2)=f (2-x ),所以函数f (x )的图象关于直线x =1对称.由于奇函数f (x )在[0,1]上是增函数,故f (x )在[-1,0]上也是增函数, 综上,函数f (x )在[-1,1]上是增函数,在[1,3]上是减函数.又f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-32=f ⎝ ⎛⎭⎪⎫12, 所以f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32. [例2] 已知函数f (x )=x 3+sin x 的定义域为[-1,1],若f (log 2m )<f (log 4(m +2))成立,则实数m 的取值范围为________.[解析] 由f (x )=x 3+sin x 的定义域为[-1,1], 易知f (x )在[-1,1]上单调递增, 由f (log 2m )<f (log 4(m +2)),可得⎩⎪⎨⎪⎧-1≤log 2m ≤1,-1≤log 4m +2 ≤1,log 2m <log 4m +2 ,m >0,m +2>0,解得⎩⎪⎨⎪⎧12≤m ≤2,-74≤m ≤2,0<m <2,m >0,m >-2,故12≤m <2. 综上可知,实数m 的取值范围为⎣⎢⎡⎭⎪⎫12,2. [答案] ⎣⎢⎡⎭⎪⎫12,2 [经典好题——练一手]1.已知定义在R 上的函数f (x )满足f (2+x )=-f (2-x ),当x <2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)²(x 2-2)<0,则f (x 1)+f (x 2)的值为( )A .可正可负B .可能为0C .恒大于0D .恒小于0解析:选D 由f (2+x )=-f (2-x )可知,函数图象关于点(2,0)中心对称.因为x <2时,f (x )单调递增,所以x >2时,f (x )单调递增.因为x 1+x 2<4且(x 1-2)²(x 2-2)<0,设x 1<2<x 2,则x 2<4-x 1,所以f (x 2)<f (4-x 1).又因为f (4-x 1)=-f (x 1),所以f (x 2)<-f (x 1),即f (x 1)+f (x 2)<0.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C 由函数f (x )=2|x -m |-1为偶函数可知,m =0,故f (x )=2|x |-1.当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 0.53|>0.∴b =f (log 25)>a =f (log 0.53)>c =f (2m ).3.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. 解析:由题意得g (-1)=f (-1)+2.又f (-1)+(-1)2=-[f (1)+12]=-2,所以f (-1)=-3.故f (-1)+2=-3+2=-1,即g (-1)=-1. 答案:-14.函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ).当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是________.解析:由f (x +2)=f (x ),得函数的周期是2.由ax +2a -f (x )=0, 得f (x )=ax +2A .设y =f (x ),则y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图. 要使方程ax +2a -f (x )=0恰有四个不相等的实数根,则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG ,由题意可知,G (1,2),H (3,2),A (-2,0), 所以k AH =25,k AG =23,所以25<a <23.答案:⎝ ⎛⎭⎪⎫25,23[常用结论——记一番]1.函数的单调性 在公共定义域内:(1)若函数f (x )是增函数,函数g (x )是增函数,则f (x )+g (x )是增函数; (2)若函数f (x )是减函数,函数g (x )是减函数,则f (x )+g (x )是减函数; (3)若函数f (x )是增函数,函数g (x )是减函数,则f (x )-g (x )是增函数; (4)若函数f (x )是减函数,函数g (x )是增函数,则f (x )-g (x )是减函数. [提示] 在利用函数单调性解不等式时,易忽略函数定义域这一限制条件. 2.函数的奇偶性(1)判断函数的奇偶性有时可以用定义的等价形式:f (x )±f (-x )=0,f xf -x=±1;(2)设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇³奇=偶,偶+偶=偶,偶³偶=偶,奇³偶=奇.3.有关函数f (x )周期性的常用结论:(1)若f (x +a )=f (x -a ),则函数f (x )的周期为2|a |; (2)若f (x +a )=-f (x ),则函数f (x )的周期为2|a |; (3)若f (x +a )=1f x,则函数f (x )的周期为2|a |;(4)若f (x +a )=-1f x,则函数f (x )的周期为2|a |. (二)最值函数 大显身手 [速解技法——学一招][例1] 对于任意x ∈R ,函数f (x )表示y =-x +3,y =2x +2,y =x 2-4x +3中的最大者,则f (x )的最小值是( )A .2B .3C .8D .-1[解析] 选A 如图,分别画出函数y =-x +3,y =32x +12,y =x 2-4x +3的图象,得到三个交点A (0,3),B (1,2),C (5,8). 由图象可得函数f (x )的表达式为f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x +3,0<x ≤1,32x +12,1<x ≤5,x 2-4x +3,x >5,所以f (x )的图象是图中的实线部分,图象的最低点是B (1,2),所以函数f (x )的最小值是2.[例2] 已知函数f (x )=x 2-x +m -12,g (x )=-log 2x ,min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),则当函数h (x )有三个零点时,实数m 的取值范围为( )A .⎝ ⎛⎭⎪⎫0,34B .⎝⎛⎦⎥⎤-∞,34 C .⎝ ⎛⎭⎪⎫12,34D .⎝ ⎛⎭⎪⎫12,+∞[解析] 选C 在同一直角坐标系中,作出函数y =f (x )和y =g (x )的图象如图所示.当两函数图象交于点A (1,0)时,即有1-1+m -12=0,解得m =12,所以当函数h (x )有三个零点时, 即为点A 和y =f (x )与x 轴的两个交点,若满足条件,则需⎩⎪⎨⎪⎧f 0 >0,f ⎝ ⎛⎭⎪⎫12<0,f 1 >0,解得12<m <34.所以实数m 的取值范围是⎝ ⎛⎭⎪⎫12,34.[经典好题——练一手]1.设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2解析:选D max{|a +b |2,|a -b |2}≥|a +b |2+|a -b |22=|a |2+|b |2,故选D.2.(2017²兰州模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ²b =0,c =λa +μb (λ≥0,μ≥0,且λ+μ=1),则当max{c ²a ,c ²b }取最小值时,|c |=( )A .255B .223C .1D .52解析:选A 如图,设OA ―→=a ,OB ―→=b ,则a =(1,0),b =(0,2),∵λ≥0,μ≥0,λ+μ=1,∴0≤λ≤1.又c =λa +μb ,∴c ²a =(λa +b -λb )²a =λ;c ²b =(λa +b -λb )²b =4-4λ.由λ=4-4λ,得λ=45.∴max{c ²a ,c ²b }=⎩⎪⎨⎪⎧λ,45≤λ≤1,4-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤1,4-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,4. ∴f (λ)min =45,此时λ=45,μ=15,∴c =45a +15b =⎝ ⎛⎭⎪⎫45,25. ∴|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.3.设x ,y 为实数,且5x 2+4y 2=10x ,则x 2+y 2的最大值为________. 解析:法一:5x 2+4y 2=10x ⇒4y 2=10x -5x 2≥0⇒0≤x ≤2. 4(x 2+y 2)=10x -x 2=25-(5-x )2≤25-9=16⇒x 2+y 2≤4. 法二:5x 2-4y 2=10x ⇒(x -1)2+45y 2=1,令x -1=sin θ,255y =cos θ,θ∈[0,2π], 则x 2+y 2=(sin θ+1)2+⎝ ⎛⎭⎪⎫52cos θ2=94-14(sin θ-4)2+4, ∵-1≤sin θ≤1,∴当sin θ=1时,x 2+y 2取得最大值,即(x 2+y 2)max =4. 答案:4(三)应用导数 开阔思路 [速解技法——学一招]1.函数的单调性与导数的关系 ①f ′(x )>0⇒f (x )为增函数; ②f ′(x )<0⇒f (x )为减函数; ③f ′(x )=0⇒f (x )为常数函数. 2.求函数f (x )极值的方法求函数的极值应先确定函数的定义域,解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表的形式进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.[例1] 若函数f (x )=2sin x (x ∈[0,π))的图象在切点P 处的切线平行于函数g (x )=2x ⎝ ⎛⎭⎪⎫x3+1的图象在切点Q 处的切线,则直线PQ 的斜率为( )A .83 B .2 C .73D .33[解析] 选A 由题意得f ′(x )=2cos x ,g ′(x )=x 12+x -12.设P (x 1,f (x 1)),Q (x 2,g (x 2)),又f ′(x 1)=g ′(x 2),即2cos x 1=x 122+x -122,故4cos 2x 1=x 2+x -12+2, 所以-4+4cos 2x 1=x 2+x -12-2, 即-4sin 2x 1=(x 122-x -122)2,所以sin x 1=0,x 1=0,x 122=x -122,x 2=1,故P (0,0),Q ⎝ ⎛⎭⎪⎫1,83,故k PQ =83.[例2] 已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________. [解析] 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).[答案] (-∞,-1)∪(1,+∞)[例3] 已知函数f (x )=(ax +b )ln x -bx +3在(1,f (1))处的切线方程为y =2. (1)求a ,b 的值; (2)求函数f (x )的极值;(3)若g (x )=f (x )+kx 在(1,3)上是单调函数,求k 的取值范围. [解] (1)因为f (1)=-b +3=2,所以b =1.又f ′(x )=b x+a ln x +a -b =1x+a ln x +a -1,而函数f (x )在(1,f (1))处的切线方程为y =2, 所以f ′(1)=1+a -1=0,所以a =0.(2)由(1)得f (x )=ln x -x +3,f ′(x )=1x-1(x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故f (x )的极大值为f (1)=2,无极小值.(3)由g (x )=f (x )+kx ,得g (x )=ln x +(k -1)x +3(x >0),g ′(x )=1x+k -1,又g (x )在x ∈(1,3)上是单调函数, 若g (x )为增函数,有g ′(x )≥0,即g ′(x )=1x +k -1≥0,即k ≥1-1x在x ∈(1,3)上恒成立.又1-1x ∈⎝ ⎛⎭⎪⎫0,23,所以k ≥23.若g (x )为减函数,有g ′(x )≤0,即g ′(x )=1x +k -1≤0,即k ≤1-1x在x ∈(1,3)上恒成立,又1-1x ∈⎝ ⎛⎭⎪⎫0,23,所以k ≤0.综上,k 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫23,+∞.[经典好题——练一手]1.f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 016+ln x +x ²1x=2 017+ln x ,由f ′(x 0)=2 017,得2 017+ln x 0=2 017,所以ln x 0=0,解得x 0=1.2.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f n -f mn -m,f ′(x 2)=f n -f mn -m.则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,12B .⎝ ⎛⎭⎪⎫32,3 C .⎝ ⎛⎭⎪⎫12,1D .⎝ ⎛⎭⎪⎫13,1 解析:选C 因为f (x )=x 3-x 2+a ,所以f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f a -f 0 a -0=a 2-a ,所以方程3x 2-2x =a 2-a在区间(0,a )上有两个不相等的实根.令g (x )=3x 2-2x -a 2+a (0<x <a ), 则⎩⎪⎨⎪⎧Δ=4-12 -a 2+a >0,g 0 =-a 2+a >0,g a =2a 2-a >0,解得12<a <1,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1.3.已知函数f (x )=x 33-b2x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′ xa在点(b ,g (b ))处的切线斜率的最小值是________.解析:因为f ′(x )=x 2-bx +a ,所以g (x )=a ln x +x 2-bxa+1.所以g ′(x )=a x +2x -ba(x >0),因为a >0,b >0,则g ′(b )=a b +2b -b a =a b +ba≥2,当且仅当a =b =1时取“=”,所以斜率的最小值为2. 答案:24.已知函数f (x )=(x +1)2ln(x +1)-x ,φ(x )=mx 2. (1)当m =12时,求函数g (x )=f (x )-φ(x )的极值;(2)当m =1且x ≥0时,证明:f (x )≥φ(x );(3)若x ≥0,f (x )≥φ(x )恒成立,求实数m 的取值范围. 解:(1)当m =12时,g (x )=f (x )-φ(x )=(x +1)2²ln(x +1)-x -x 22,x >-1,所以g ′(x )=2(x +1)ln(x +1)+(x +1)2²1x +1-1-x =2(x +1)ln(x +1). 由⎩⎪⎨⎪⎧x >-1,g ′ x =0,解得x =0,当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )的极小值为g (0)=0,无极大值.(2)证明:当m =1时,令p (x )=f (x )-φ(x )=(x +1)2²ln(x +1)-x -x 2(x ≥0), 所以p ′(x )=2(x +1)ln(x +1)+(x +1)2²1x +1-1-2x =2(x +1)ln(x +1)-x . 设p ′(x )=G (x ),则G ′(x )=2ln(x +1)+1>0, 所以函数p ′(x )在[0,+∞)上单调递增,所以p ′(x )≥p ′(0)=0,所以函数p (x )在[0,+∞)上单调递增, 所以p (x )≥p (0)=0. 所以f (x )≥φ(x ).(3)设h (x )=(x +1)2ln(x +1)-x -mx 2(x ≥0), 所以h ′(x )=2(x +1)ln(x +1)+x -2mx .由(2)知当x ≥0时,(x +1)2ln(x +1)≥x 2+x =x (x +1), 所以(x +1)ln(x +1)≥x ,所以h ′(x )≥3x -2mx . ①当3-2m ≥0,即m ≤32时,h ′(x )≥0,所以h (x )在[0,+∞)上单调递增, 所以h (x )≥h (0)=0,满足题意. ②当3-2m <0,即m >32时,设H (x )=h ′(x )=2(x +1)ln(x +1)+(1-2m )x , 则H ′(x )=2ln(x +1)+3-2m , 令H ′(x )=0,得x 0=e2m -32-1>0, 故h ′(x )在[0,x 0)上单调递减,在[x 0,+∞)上单调递增. 当x ∈[0,x 0)时,h ′(x )<h ′(0)=0, 所以h (x )在[0,x 0)上单调递减, 所以h (x )<h (0)=0,不满足题意. 综上,实数m 的取值范围为⎝⎛⎦⎥⎤-∞,32. [常用结论——记一番]1.函数极值的判别的易错点(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值.在x 0处有f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.2.函数最值的判别方法(1)求函数f (x )在闭区间[a ,b ]上最值的关键是求出f ′(x )=0的根的函数值,再与f (a ),f (b )作比较,其中最大的一个是最大值,最小的一个是最小值.(2)求函数f (x )在非闭区间上的最值,只需利用导数法判断函数f (x )的单调性,即可得结论.(四)三角问题 重在三变[速解技法——学一招]“三变”是指变角、变数与变式. 1 变角如2α= α+β + α-β ,α= α+β -β. 2 变数特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等. 3 变式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.tan α±tan β=tan α±β 1∓tan αtan β ,sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1.[例1] 对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝ ⎛⎭⎪⎫2α+π3=( ) A .2425B .38C .28D .-2425[解析] 选D 由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35, 可得cos ⎝⎛⎭⎪⎫α-π12=45,所以cos ⎝ ⎛⎭⎪⎫2α+π3=sin ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫2α+π3=sin ⎝ ⎛⎭⎪⎫π6-2α=-2sin ⎝ ⎛⎭⎪⎫α-π12cos ⎝⎛⎭⎪⎫α-π12 =-2³35³45=-2425.[例2] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( )A .7π4B .9π4C .5π4或7π4D .5π4或9π4[解析] 选A 因为α∈⎣⎢⎡⎦⎥⎤π4,π,所以2α∈⎣⎢⎡⎦⎥⎤π2,2π, 又sin 2α=55,故2α∈⎣⎢⎡⎦⎥⎤π2,π,α∈⎣⎢⎡⎦⎥⎤π4,π2,所以cos 2α=-255. 又β∈⎣⎢⎡⎦⎥⎤π,3π2,故β-α∈⎣⎢⎡⎦⎥⎤π2,5π4, 于是cos(β-α)=-31010,所以cos(α+β)=cos[2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255³⎝ ⎛⎭⎪⎫-31010-55³1010=22, 且α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,故α+β=7π4.[经典好题——练一手]1.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( ) A .-7210 B .7210C .-210D .210 解析:选D 由题意可得tan θ=2,cos θ=±55, 所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35, 所以sin 2θ=cos 2θ²tan 2θ=45,所以sin ⎝⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22³⎝ ⎛⎭⎪⎫45-35=210. 2.(2017²沈阳质检)已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( )A .2π,⎣⎢⎡⎦⎥⎤3π8,7π8B .π,⎣⎢⎡⎦⎥⎤3π8,7π8C .2π,⎣⎢⎡⎦⎥⎤-π8,3π8 D .π,⎣⎢⎡⎦⎥⎤-π8,3π8解析:选B ∵f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4+1,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z),得3π8+k π≤x ≤7π8+k π(k ∈Z),令k =0得f (x )在⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减.3.已知α为锐角,若sin ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.解析:cos ⎝ ⎛⎭⎪⎫2α-π6=cos ⎝ ⎛⎭⎪⎫2α+π3-π2=sin ⎝ ⎛⎭⎪⎫2α+π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α+π6=2sin ⎝⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6,因为α为锐角,sin ⎝⎛⎭⎪⎫α+π6=35<32,所以π6<α+π6<π3,故cos ⎝ ⎛⎭⎪⎫α+π6=45,所以cos ⎝⎛⎭⎪⎫2α-π6=2³35³45=2425.答案:24254.若0<α<π2,0<β<π2,sin ⎝ ⎛⎭⎪⎫π3-α=35,cos ⎝ ⎛⎭⎪⎫β2-π3=255,则cos ⎝ ⎛⎭⎪⎫β2-α的值为________.解析:由题易知-π6<π3-α<π3,-π3<β2-π3<-π12,所以cos ⎝ ⎛⎭⎪⎫π3-α=1-⎝ ⎛⎭⎪⎫352=45,sin ⎝ ⎛⎭⎪⎫β2-π3=-1-⎝ ⎛⎭⎪⎫2552=-55,所以cos ⎝ ⎛⎭⎪⎫β2-α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫β2-π3=45³255+35³55=11525. 答案:11525[常用结论——记一番]三角公式中常用的变形:(1)对于含有sin α±cos α,sin αcos α的问题,利用(sin α±cos α)2=1±2sin αcos α,建立sin α±cos α与sin αcos α的关系.(2)对于含有sin α,cos α的齐次式⎝ ⎛如sin α+cos αsin α-cos α,)sin αcos α,利用tan α=sin αcos α转化为含tan α的式子.(3)对于形如cos 2α+sin α与cos 2α+sin αcos α的变形,前者用平方关系sin 2α+cos 2α=1化为二次型函数,而后者用降幂公式化为一个角的三角函数.(4)含tan α+tan β与tan αtan β时考虑tan(α+β)=tan α+tan β1-tan αtan β.(五)正弦余弦 相得益彰 [速解技法——学一招] 三角函数求值的解题策略(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.(4)求角的大小,应注意角的范围.[例1] (2017²福州质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tanC =3(a cos B +b cos A ).(1)求角C ;(2)若c =23,求△ABC 面积的最大值. [解] (1)∵c tan C =3(a cos B +b cos A ), ∴sin C tan C =3(sin A cos B +sin B cos A ), ∴sin C tan C =3sin(A +B )=3sin C , ∵0<C <π,∴sin C ≠0, ∴tan C =3,∴C =60°. (2)∵c =23,C =60°,由余弦定理c 2=a 2+b 2-2ab cos C , 得12=a 2+b 2-ab ≥2ab -ab , ∴ab ≤12,∴S △ABC =12ab sin C ≤33,当且仅当a =b =23时取“=”, 所以△ABC 的面积的最大值为3 3.[例2] 已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx,1),其中ω>0,x ∈R.函数f (x )=m ²n 的最小正周期为π.(1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA ―→²BC ―→的值. [解] (1)f (x )=m ²n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6.因为f (x )的最小正周期为π,所以T =2π2|ω|=π.因为ω>0,所以ω=1.(2)设△ABC 中内角A ,B ,C 所对的边分别是a ,b ,C . 因为f (B )=-2,所以2sin ⎝⎛⎭⎪⎫2B +π6=-2, 即sin ⎝⎛⎭⎪⎫2B +π6=-1,得B =2π3. 因为BC =3,所以a = 3.因为sin B =3sin A ,所以b =3a ,得b =3. 由正弦定理有3sin A=3sin2π3,解得sin A =12. 因为0<A <π3,所以A =π6. 得C =π6,c =a = 3.所以BA ―→²BC ―→=ca cos B =3³3³cos 2π3=-32.[经典好题——练一手]1.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A .直角三角形B .等腰三角形C .等边三角形D .钝角三角形解析:选A 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.故选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a cos C +c cos A =2b sin A ,则A 的值为( )A .5π6 B .π6C .2π3D .π6或5π6解析:选D 由a cos C +c cos A =2b sin A 结合正弦定理可得sin A cos C +sin C cos A =2sin B sin A ,即sin(A +C )=2sin B sin A ,故sin B =2sin B sin A .又sin B ≠0,可得sin A =12,故A =π6或5π6.3.非直角△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3.若sin C+sin(A -B )=3sin 2B ,则△ABC 的面积为( )A .1534 B .154C .2134或36D .3328解析:选D 因为sin C +sin(A -B )=sin(A +B )+sin(A -B )=2sin A cos B =6sin B cosB ,因为△ABC 非直角三角形,所以cos B ≠0, 所以sin A =3sin B ,即a =3b . 又c =1,C =π3,由余弦定理得a 2+b 2-ab =1, 结合a =3b ,可得b 2=17,所以S △ABC =12ab sin C =32b 2sin π3=3328.4.(2017²陕西质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,已知2a cos 2C 2+2c cos 2A 2=52b .(1)求证:2(a +c )=3b ; (2)若cos B =14,S =15,求b .解:(1)证明:由已知得,a (1+cos C )+c (1+cos A )=52b .在△ABC 中,由余弦定理,得a cos C +c cos A =a ²a 2+b 2-c 22ab +c ²b 2+c 2-a 22bc =2b 22b=b .∴a +c =32b ,即2(a +c )=3b .(2)∵cos B =14,∴sin B =154.∵S =12ac sin B =158ac =15,∴ac =8.又b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ),2(a+c)=3b,∴b2=9b24-16³⎝⎛⎭⎪⎫1+14,解得b2=16,∴b=4.[常用结论——记一番] 1.解三角形中常用结论:(1)三角形中正弦、余弦、正切满足的关系式有:asin A=bsin B=csin C=2R,c2=a2+b2-2ab cos C,tan A+tan B+tan C=tan A tan B tan C,a>b⇔A>B⇔sin A>sin B⇔cos A<cos B.(2)三角形形状判断(一般用余弦定理):直角三角形⇔a2+b2=c2;锐角三角形⇔a2+b2>c2(c为最大边);钝角三角形⇔a2+b2<c2(c为最大边).(3)在锐角三角形ABC中:①A+B>π2,C+B>π2,A+C>π2;②任意角的正弦值都大于其他角的余弦值.(4)在△ABC中,A,B,C成等差数列⇔B=60°;在△ABC中,A,B,C成等差数列,且a,b,c成等比数列⇔三角形为等边三角形.2.设△ABC的内角A,B,C的对边分别为a,b,c,其面积为S.(1)S=12ah a=12bh b=12ch c(h a,h b,h c分别表示a,b,c边上的高).(2)S=12ab sin C=12bc sin A=12ca sin B.(3)S=12r(a+b+c)(r为三角形ABC内切圆的半径).(六)向量小题 三招搞定 [速解技法——学一招]解决与向量有关的小题,一般用三招,即“构图、分解、建系”,就能突破难点,顺利解决问题.[例1] 已知AB ―→²BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→²DC ―→=0,则|BD ―→|的最大值为( )A .255B .2C . 5D .2 5[解析] 选C 由AB ―→²BC ―→=0可知,AB ―→⊥BC ―→.故以B 为坐标原点,分别以BA ,BC 所在的直线为x 轴,y 轴建立如图所示的平面直角坐标系,则由题意,可得B (0,0),A (1,0),C (0,2).设D (x ,y ),则AD ―→=(x -1,y ),DC ―→=(-x,2-y ). 由AD ―→²DC ―→=0,可得(x -1)(-x )+y (2-y )=0, 整理得⎝ ⎛⎭⎪⎫x -122+(y -1)2=54.所以点D 在以E ⎝ ⎛⎭⎪⎫12,1为圆心,半径r =52的圆上.因为|BD ―→|表示B ,D 两点间的距离, 而|EB ―→|=52,所以|BD ―→|的最大值为|EB ―→|+r =52+52= 5.[例2] 已知点C 为线段AB 上一点,P 为直线AB 外一点,PC 是∠APB 的平分线,I 为PC 上一点,满足BI ―→=BA ―→+λAC ―→⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|(λ>0),|PA ―→|-|PB ―→|=4,|PA ―→-PB ―→|=10,则BI ―→²BA―→| BA ―→|的值为( )A .2B .3C .4D .5[解析] 选B因为|PA ―→-PB ―→|=|BA ―→|=10,PC 是∠APB 的平分线,又BI ―→=BA ―→+λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|(λ>0), 即AI ―→=λ⎝ ⎛⎭⎪⎪⎫AC ―→|AC ―→|+AP ―→|AP ―→|, 所以I 在∠BAP 的平分线上, 由此得I 是△ABP 的内心.如图,过I 作IH ⊥AB 于H ,以I 为圆心,IH 为半径作△PAB 的内切圆,分别切PA ,PB 于E ,F ,因为|PA ―→|-|PB ―→|=4,|PA ―→-PB ―→|=10, |BH ―→|=|FB ―→|=12(|PB ―→|+|AB ―→|-|PA ―→|)=12[|AB ―→|-(|PA ―→|-|PB ―→|)]=3. 在Rt △BIH 中,cos ∠IBH =|BH ―→||BI ―→|,所以BI ―→²BA ―→|BA ―→|=|BI ―→|cos ∠IBH =|BH ―→|=3.[经典好题——练一手]1.(2017²宝鸡质检)在等腰直角△ABC 中,∠ABC =90°,|AB |=|BC |=2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足|MN ―→|=2,则BM ―→²BN ―→的取值范围为( )A .⎣⎢⎡⎦⎥⎤32,2B .⎝ ⎛⎭⎪⎫32,2C .⎣⎢⎡⎭⎪⎫32,2 D .⎣⎢⎡⎭⎪⎫32,+∞ 解析:选C 以等腰直角三角形的直角边BC 为x 轴,BA 为y 轴,建立平面直角坐标系如图所示,则B (0,0),直线AC 的方程为x +y =2.设M (a,2-a ),0<a <1,N (b,2-b ),∵MN =2,∴(a -b )2+(2-a -2+b )2=2, 即(a -b )2=1,解得b =a +1或b =a -1(舍去),则N (a +1,1-a ),∴BM ―→=(a,2-a ),BN ―→=(a +1,1-a ), ∴BM ―→²BN ―→=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝ ⎛⎭⎪⎫a -122+32,∵0<a <1,∴当a =12时,BM ―→²BN ―→取得最小值32,又BM ―→²BN ―→<2,故BM ―→²BN ―→的取值范围为⎣⎢⎡⎭⎪⎫32,2.2.已知向量a ,b 满足a ²(a +2b )=0,|a |=|b |=1,且|c -a -2b |=1,则|c |的最大值为( )A .2B .4C .5+1D .3+1解析:选D 设a =OA ―→,a +2b =OB ―→,c =OC ―→,且设点A 在x 轴上,则点B 在y 轴上,由|c -a -2b |=1,可知|c -(a +2b )|=|OC ―→-OB ―→|=|BC ―→|=1,所以点C 在以B 为圆心,1为半径的圆上,如图所示.法一:因为a ²(a +2b )=0,所以2a ²b =-|a |2.又|a |=|b |=1,所以|a +2b |=|a |2+4|b |2+4a ²b =4|b |2-|a |2=3, 所以|c |max =|OB ―→|+1=|a +2b |+1=3+1. 法二:连接AB ,因为OB ―→=OA ―→+AB ―→=a +2b , 所以AB ―→=2b .因为|a |=|b |=1,所以|AB ―→|=2,|OA ―→|=1, 所以|OB ―→|=|AB ―→|2-|OA ―→|2=3,所以|c |max =|OB ―→|+1=3+1.3.(2017²福州质检)正方形ABCD 中,E 为BC 的中点,向量AE ―→,BD ―→的夹角为θ,则cos θ=________.解析:法一:设正方形的边长为a , 则|AE ―→|=52a ,|BD ―→|=2a ,又AE ―→²BD ―→=⎝ ⎛⎭⎪⎫AB ―→+12AD ―→²(AD ―→-AB ―→)=12AD ―→2-AB ―→2+12AD ―→²AB ―→=-12a 2, 所以cos θ=AE ―→²BD ―→|AE ―→|²|BD ―→|=-12a 25a 2²2a=-1010.法二:设正方形的边长为2,建立如图所示的平面直角坐标系.则A (0,0),B (2,0),D (0,2),E (2,1), ∴AE ―→=(2,1),BD ―→=(-2,2), ∴AE ―→²BD ―→=2³(-2)+1³2=-2,所以cos θ=AE ―→²BD ―→| AE ―→|²|BD ―→|=-25³22=-1010.答案:-10104.在Rt △ABC 中,D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2=________. 解析:法一:(坐标法)将直角△ABC 放入直角坐标系中,如图. 设A (a,0),B (0,b ),a >0,b >0,则D ⎝ ⎛⎭⎪⎫a 2,b 2,P ⎝ ⎛⎭⎪⎫a 4,b4, 所以|PC |2=⎝ ⎛⎭⎪⎫a 42+⎝ ⎛⎭⎪⎫b 42=a 216+b216,|PB |2=⎝ ⎛⎭⎪⎫a 42+⎝ ⎛⎭⎪⎫b 4-b 2=a 216+9b216,|PA |2=⎝ ⎛⎭⎪⎫a 4-a 2+⎝ ⎛⎭⎪⎫b 42=9a 216+b216,所以|PA |2+|PB |2=a 216+9b 216+9a 216+b 216=10⎝ ⎛⎭⎪⎫a 216+b 216=10|PC |2,所以|PA |2+|PB |2|PC |2=10. 法二:(特殊值法)令|AC |=|CB |=1,则|PC |=14|AB |=24,|PA |2=|PB |2=58,易得|PA |2+|PB |2|PC |2=10. 答案:10[常用结论——记一番]1.在四边形ABCD 中:(1)AB ―→=DC ―→,则四边形ABCD 为平行四边形;(2)AB ―→=DC ―→且(AB ―→+AD ―→)²(AB ―→-AD ―→)=0,则四边形ABCD 为菱形; (3)AB ―→=DC ―→且|AB ―→+AD ―→|=|AB ―→-AD ―→|,则四边形ABCD 为矩形; (4)若AB ―→=λDC ―→(λ>0,λ≠1),则四边形ABCD 为梯形.2.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔OA ―→2=OB ―→2=OC ―→2. (2)O 为△ABC 的重心⇔OA ―→+OB ―→+OC ―→=0.(3)O 为△ABC 的垂心⇔OA ―→²OB ―→=OB ―→²OC ―→=OC ―→²OA ―→. (4)O 为△ABC 的内心⇔a OA ―→+b OB ―→+c OC ―→=0. (5)O 为△ABC 的A 的旁心⇔a OA ―→=b OB ―→+c OC ―→.(七)玩转通项 搞定数列 [速解技法——学一招] 几种常见的数列类型及通项的求法(1)递推公式为a n +1=a n +f (n )解法:把原递推公式转化为a n +1-a n =f (n ),利用累加法(逐差相加法)求解. (2)递推公式为a n +1=f (n )a n 解法:把原递推公式转化为a n +1a n=f (n ),利用累乘法(逐商相乘法)求解. (3)递推公式为a n +1=pa n +q解法:通过待定系数法,将原问题转化为特殊数列{a n +k }的形式求解. (4)递推公式为a n +1=pa n +f (n )解法:利用待定系数法,构造数列{b n },消去f (n )带来的差异. [例1] 已知数列{a n }满足a 1=23,a n +1=nn +1a n ,求a n .[解] 由条件知a n +1a n =nn +1,分别令n =1,2,3,…,(n -1),代入上式得(n -1)个等式累乘,即a 2a 1²a 3a 2²a 4a 3²…²a n a n -1=12³23³34³…³n -1n ⇒a n a 1=1n. 又∵a 1=23,∴a n =23n .[例2] 已知数列{a n }的首项a 1=1,a n +1=a n2a n +1,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和. [解] 因为a n +1=a n2a n +1,所以1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n=2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列,所以1a n =2n -1,所以a n =12n -1,而1a n a n +1=1 2n -1 2n +1 =12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1a 1a 2+1a 2a 3+…+1a 10a 11=12⎝ ⎛1-13+13-15+…+⎭⎪⎫119-121=12⎝ ⎛⎭⎪⎫1-121=1021. [经典好题——练一手]1.已知数列{a n }的首项a 1=2,且a n +1=a n +n +1,则数列{a n }的通项公式a n =( ) A .n n -12B .n n +12 C .n n +12-1D .n n +12+1解析:选D 因为a n +1=a n +n +1, 所以a n +1-a n =n +1,分别把n =1,2,3,…,n -1代入上式,得到(n -1)个等式,a n -a n -1=(n -1)+1, a n -1-a n -2=(n -2)+1, a n -2-a n -3=(n -3)+1,…a 2-a 1=1+1.又a 1=2=1+1,故将上述n 个式子相加得a n =[(n -1)+(n -2)+(n -3)+…+2+1]+n +1=[n +(n -1)+(n -2)+…+2+1]+1=n n +12+1.2.已知数列{a n }满足a 1=1,a n =12a n -1+1(n ≥2),则数列{a n }的通项公式a n =________.解析:由a n =12a n -1+1(n ≥2),得a n -2=12(a n -1-2),而a 1-2=1-2=-1,∴数列{a n -2}是首项为-1,公比为12的等比数列.∴a n -2=-⎝ ⎛⎭⎪⎫12n -1,∴a n =2-⎝ ⎛⎭⎪⎫12n -1.答案:2-⎝ ⎛⎭⎪⎫12n -13.设{a n }是首项为1的正项数列,且a 2n -a 2n -1-na n -na n -1=0(n ∈N *,n ≥2),则数列的通项公式a n =________.解析:由题设得(a n +a n -1)(a n -a n -1-n )=0, 由a n >0,a n -1>0知a n +a n -1>0,于是a n -a n -1=n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n n +12.答案:n n +124.在数列{a n }中,已知a 1=-1,a n +1=2a n +4²3n -1,求通项公式a n .解:原递推式可化为a n +1+λ²3n=2(a n +λ²3n -1),比较系数得λ=-4,即a n +1-4²3n=2(a n -4²3n -1),则数列{a n -4²3n -1}是首项为a 1-4²31-1=-5,公比为2的等比数列,故a n -4²3n -1=-5²2n -1,即a n =4²3n -1-5²2n -1.[常用结论——记一番]等差(比)数列的重要结论(1)数列{a n }是等差数列⇔数列{c a n }是等比数列;数列{a n }是等比数列,则数列{log a |a n |}是等差数列.(2){a n },{b n }是等差数列,S n ,T n 分别为它们的前n 项和,若b m ≠0,则a m b m =S 2m -1T 2m -1.(3)首项为正(或为负)递减(或递增)的等差数列前n 项和最大(或最小)问题转化为解不等式⎩⎪⎨⎪⎧a n ≥0,a n +1≤0⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,也可化为二次型函数S n =An 2+Bn 来分析,注意n ∈N *. (4)等差(比)数列中,S m ,S 2m -S m ,S 3m -S 2m ,…(各项均不为0)仍是等差(比)数列.(八)掌握规律 巧妙求和 [速解技法——学一招] 求数列的前n 项和的主要方法(1)公式法:对于等差数列或等比数列可用公式法.(2)裂项相消法:将数列的每一项分解为两项的差,在求和时中间的一些项可以相互抵消,从而累加相消.(3)错位相减法:若{a n }为等差数列,{b n }为等比数列,则对于数列{a n b n }的前n 项和可用错位相减法.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和等于同一个常数,那么求这个数列前n 项和即可用倒序相加法.(5)分组求和法:将原数列分解成可用公式法求和的若干个数列. [例1] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ²2a n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10³92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)令b n =2a n ,由(1)可知a n ²b n =(2n -1)³22n -1,设T n 为数列{a n ²b n }的前n 项和,所以T n =1³21+3³23+5³25+…+(2n -3)³22n -3+(2n -1)³22n -1,①4T n =1³23+3³25+5³27+…+(2n -3)³22n -1+(2n -1)³22n +1,②①-②得:-3T n =2+2³(23+25+…+22n -1)-(2n -1)³22n +1,所以T n =2+2³ 23+25+…+22n -1- 2n -1 ³22n +1-3=2+2³8 1-4n -11-4- 2n -1 ³22n +1-3=-6+2³8 1-4n -1 + 6n -3 ³22n +19=10+ 6n -5 ³22n +19.[例2] 已知数列{a n }满足a 1=12,a n +1=a 2n +a n ,b n =11+a n(n ∈N *),S n =b 1+b 2+…+b n ,P n =b 1b 2²…²b n ,求2P n +S n 的值.[解] 因为a 1=12,a n +1=a 2n +a n ,n ∈N *,所以a n +1>a n >0,a n +1=a n (a n +1),所以b n =11+a n =a 2n a n a n +1=a n +1-a n a n a n +1=1a n -1a n +1.P n =b 1b 2²…²b n =a 1a 2²a 2a 3²…²a n a n +1=12a n +1,S n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=2-1a n +1,故2P n +S n =1a n +1+⎝⎛⎭⎪⎫2-1a n +1=2.[经典好题——练一手]1.(2018届高三²湖南十校联考)数列112,314,518,7116,…的前n 项和S n =________.解析:利用分组求和法,可得S n =(1+3+5+…+2n -1)+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n .答案:n 2+1-12n2.(2017²武汉调研)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前9项和为________. 解析:设数列{a n }的公差为d ,由S n ≤S 5,得⎩⎪⎨⎪⎧a 5≥0,a 6≤0,即⎩⎪⎨⎪⎧a 1+4d ≥0,a 1+5d ≤0,得-94≤d ≤-95,又a 2为整数,∴d =-2,a n =a 1+(n -1)³d =11-2n , 故1a n a n +1=1d ⎝⎛⎭⎪⎫1a n-1a n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和 T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝⎛⎭⎪⎫1a 1-1a n +1,∴T 9=-12³⎣⎢⎡⎦⎥⎤19-⎝ ⎛⎭⎪⎫-19=-19.答案:-193.(2018届高三²安徽名校阶段性测试)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n +1²log 12a n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.因此a 2+a 4=20,即有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32,又数列{a n }单调递增,则⎩⎪⎨⎪⎧q =2,a 1=2,故a n =2n.(2)∵b n =2n +1²log 122n =-n ²2n +1,∴-S n =1³22+2³23+3³24+…+n ³2n +1,①-2S n =1³23+2³24+3³25+…+(n -1)³2n +1+n ³2n +2.②①-②,得S n =22+23+24+…+2n +1-n ²2n +2=4 1-2n1-2-n ²2n +2=(1-n )2n +2-4.4.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 3+a 8-(a 2+a 7)=2d =-6. ∴d =-3,∴a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =qn -1,即-3n +2+b n =qn -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q 2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -1 2+1-q n1-q.[常用结论——记一番]常用裂项公式。

相关文档
最新文档