反比例函数巩固学案
九年级反比例函数复习导学案
y
k (x>0)的图象与边 BC 交于点 F. x
(1)若△OAE、△OCF 的而积分别为 S1、S2.且 S1+S2=2,求 k 的值. (2)若 OA=2,OC=4,当四边形 AOFE 的面积最大时,求点 E、F 的坐标.
四、课堂小结: 五、当堂测试
1、(2009·中考)反比例函数 y 值的增大,y 值( A.增大 C.不变
1 x 3
(B) y
3 x2
(C) y
1 3x
(D) y x 3 )
2、 已知, 三角形的面积一定时, 则它底边a上的高h与底边 a 之间的函数关系图象大致是 ( h h h
O
a
O
a
O
a
O
a
A B 6 C D 3、在反比例函数 y 的图象上有三点 (3, y1 ),(1, y2 ),(2, y3 ), 则函数值 y1、y2、y3 大小关系
1 (x>0)的图象如图 3 x
所示,随着 x
) B.减小 D.先减小后增大
2.(2008·河北)点 P(2m-3,1)在反比例函数 y 则m = .
1 x
图象上,
3. (2006·河北)在一个可以改变容积的密 定质量 m 的某种气体,当改变容积 V 时,气
(kg/m3 )
闭容器内,装有一 体的密度 也随
九年级反比例函数复习导学案
课 题 学习目标
一、知识扫描: 1、形如 成 2、反比例函数 y 反比例函数复习 1、进一步巩固反比例函数的知识 2、通过典例分析,学会解题方法 的函数称为反比例函数。也可以写 的形式。 。当 k>0 时,双曲线在 ;当 k<0 时,双曲线在 。 象限, 象限,且在
反比例函数 复习学案
反比例函数 复习学案【一、学习目标】:1.系统复习《反比例函数》并应用;2.在复习过程中,渗透待定系数法、分类、数形结合等数学思想方法. 【二、学习重点与难点】:重点:反比例函数知识的应用; 难点:反比例函数知识的综合运用【三、教学过程设计与内容】:一、 反比例函数的解析式 基础知识回顾一般地,形如 ______________( )的函数称为反比例函数.(其中,自变量x 的取值范围为___________________________ )反比例函数解析式还可以表示为_____________和_________________考点突破:1.下列函数中哪些是反比例函数?① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3y 2x= .2.若函数是反比例函数,则n=______. 变式:若函数 是反比例函数,则n=______.3.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________. 变式:已知y 与x+2成反比例,当x=1时,y=-3,则 y 与x 的关系式为_______.4.k 为何值时,函数y=322)(--+k k xk k 是反比例函数?5.若双曲线y =-6/x 经过点A (m ,-2m ),则m 的值为______.6.一个反比例函数图像过点P ( 5 ,1)和Q (-1 ,2m )那么m=______ 二、 反比例函数的图象以及性质基础知识回顾反比例函数的图象是 .7.若双曲线经过点(-3 ,2),则其解析式是______.8.函数 的图象在第______象限,当x<0时,y 随x 的增大而______ .12n y x -=221n y n x -=-()x y 5=9.函数 的图象在二、四象限内,则m 的取值范围是______ .10.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数的图象上,则y 1与y 2的大小关系(从大到小)为 .变式:已知点A(-2,y 1),B(-1,y 2),C(4,y 3)都在反比例函数的图象上,则y 1 、y 2 、y 3 的大小关系(从大到小)为 .三、反比例函数中的面积问题11.如图1,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB 的面积为___________.变式:如图2,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,连接PO,则S △PAO 为_____.归纳:点P 是反比例函数 (k ≠0)图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB(如图1)的面积为_______,S △PAO (如图2)为_____. 12.如图1,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,PB ⊥y 轴于B, 四边形PAOB 的面积为12,则这个反比例函数的关系式是________ . 变式:如图2,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,连接PO,若S △PAO =8,则这个反比例函数的关系式是________ .四、反比例函数与一次函数的综合运用13.(2010东莞.中考)如图,一次函数 的图象和反比例函数 的图象交于A 、B 两点,其中A 点坐标为(2,1)(1)试确定k 、m 的值; (2)连接AO,求△AOP 的面积;(3)连接BO,若B 的横坐标为-1,求△AOB 的面积x m y 2-=)0(<=k xky )0(>=k xky xy 2-=图1 图2xy k =xy 2-=1y kx =-my x =变式:如图,一次函数 的图象与反比例函数 的图象交于M(2,m)、N(-1,-4)两点.(1)求反比例函数和一次函数的解析式;(2)当x 为何值时,反比例函数的函数值大于一次函数的函数值?五、反比例函数在实际问题中的应用:14.为了预防“非典”,燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物5分钟燃毕, 此时室内空气中每立方米的含药量为10毫克.请根据题中所提供的信息,解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为: ________ 。
反比例函数的图象和性质学案
汇报人:XXX
汇报时间:2024-01-22
目录
• 反比例函数基本概念 • 反比例函数图象绘制 • 反比例函数性质探讨 • 反比例函数在实际问题中应用举例
目录
• 典型例题解析与思路点拨 • 课堂小结与课后作业布置
01
反比例函数基本概念
定义与表达式
01
反比例函数定义
对称性及其证明过程
对称性
反比例函数的图象关于原点对称。即,如果点$(x, y)$在反比 例函数的图象上,那么点$(-x, -y)$也在图象上。
证明过程
设反比例函数为$y = frac{k}{x}$($k neq 0$),对于任意 点$(x, y)$,有$y = frac{k}{x}$。则对于点$(-x, -y)$,有$-y = -frac{k}{x} = frac{k}{-x}$,即点$(-x, -y)$也满足反比例函 数的定义,因此图象关于原点对称。
在某些工程问题中,力与距离之间可能存在反比关系。例如,在弹性力
学中,弹簧的伸长量与所受的力成反比。因此,可以利用反比例函数建
立力与距离之间的关系模型进行求解。
05
典型例题解析与思路点拨
典型例题选讲及思路分析
01
例题1
已知反比例函数 $y = frac{k}{x}$($k neq 0$),当 $x = 2$ 时,$y = 3$,求该反
图象关于原点对称。
03
反比例函数性质探讨
增减性与单调性判断
增减性
反比例函数在其定义域内不具备单调性。当$x$从负无穷大增加到0,函数值从负 无穷大增加到正无穷大;当$x$从0增加到正无穷大,函数值从正无穷大减小到0 。
单调性判断
反比例函数的图像和性质全章学案
17.1.2 反比例函数的图象与性质(第1课时)【学习目标】1.了解反比例函数图象的意义 2.能用描点的方法画出反比例函数的图象 【教学过程】(一)自主学习,完成练习1.复习:画函数图象的一般步骤有哪些?应注意什么? 、 、2.反比例函数图象是 例2 画出反比例函数xy 6=和x y 6-=的图象.解:列表表示几组x 与y 的对应值(填表)注意:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴。
(四)巩固练习 1、画出反比例函数4y x =和4y x=-的图象总结反比例函数的图像与性质: 的取值范围的增大而增大 5.已知y 与x+2成反比例函数,当x=4时,y=1.(1)求这个函数的解析式;(2)当x=0时,求y 的值。
(五)课堂小结描点连线:17.1.2 反比例函数的图象与性质(第2课时)【学习目标】通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 【教学过程】(一)自主学习,完成练习1、复习:正比例函数y =kx (k ≠0)的图象是什么?其性质有哪些?一次函数呢?2、归纳(1)反比例函数xky =(k 为常数,0≠k )的图像是 ; (2)当0>k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 ; (3)当0<k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 。
x3、函数30y x =-的图象在第________象限,在每一象限内,y 随x 的增大而_________.4、函数y xπ=,当x>0时,图象在第________象限,y 随x 的增大而_________.5、已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限。
八上数学9.1反比例函数 学案
9.1反比例函数班级姓名学号学习目标1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别反比例函数.2.能根据已知条件确定反比例函数的表达式.学习重点:1.理解反比例函数的意义.2. 确定反比例函数的表达式学习难点:1.反比例函数表达式的确定.2. 根据已知条件确定反比例函数的表达式.教学过程一、自主探究:1.什么是函数?2.什么是一次函数?什么是正比例函数?它们的一般形式是怎样的?3.我们还记得,在小学里学过,什么叫成反比例关系吗?4.如果路程s一定,那么速度v和时间t成什么关系?二、自主合作:1.尝试:汽车从南京出发开往上海(全程约300km),全程所用时间t(h),随速度v(km/的变化而变化.(1)你能用含v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?(3)时间t是速度v的函数吗?为什么?(4)时间t是速度v的一次函数吗?是正比例函数吗?为什么?2.思考:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m 3,向池内注水,注满水所需时间t (h)随注水速度v (m 3/h)的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化. 3.讨论交流.函数关系式a = 6400b 、y = 20x 、t = 5000v 、m =-200n 具有什么共同特征?你还能举出类似的实例吗? 4.概括总结.一般地,形如y = kx (k 为常数,k ≠0)的函数叫做反比例函数.其中x 是自变量,y 是x 的函数,k 是比例系数.5.概念巩固:下列关系式中的y 是 x 的反比例函数吗?如果是,比例系数k 是多少? (1)y = 4x ; (2)y = -12x ; (3)y = 1-x;(4) xy = 1; (5)y = x2 ; (6)y = ( 2 -3)x -1反比例函数通常有三种表达式:y = kx ,y = kx -1 , xy = k (上述三个式子中k 均为常数且k ≠0). 三、自主展示:例1:判断下列函数表达式中,表示反比例函数的是哪几个?(1)y = x 4; (2)y =34x; (3)-xy = 3; (4)-3x y + 2 = 0 ; (5)y = 1x2; (6)y = 2x+ 1 .例2 (1)已知y 是x 的反比例函数,当 x = 3时,y = 2 ,求y 与x 的函数关系式.(2)y = (1+k)x ︱k ︱-2中,y 是x 的反比例函数,求k 的值.四、自主拓展:1.下列关系式中,是反比例函数的是 ( )A. y = kxB. y =2x+1C. y = -13xD. y =4x-32.下列各选项中所列举的两个变量之间的关系,是反比例函数关系的是()A. 斜边长为5的直角三角形中,两直角边之间的关系.B.等腰三角形中,顶角与底角之间的关系.C.圆的面积s与它的直径d之间的关系.D. 面积20cm2的菱形,其中一条对角线长y与另一条对角线长x的关系.3.已知y与x成反比例函数的关系,且当x = - 2时,y=3,(1)求该函数的解析式(2)当x = 4时,求y的值(3)当y = 2时,求x的值.归纳总结:反比例函数的五种不同的表现形式:形式1:y是x 反比例函数形式2:y = kx(k为常数,k≠0)形式3:y = kx-1(k为常数,k≠0)形式4:xy = k(k为常数,k≠0)形式5:变量y 与x 成反比例,比例系数为k(k≠0)【课后作业】班级 姓名 学号1.函数y = (k )叫做反比例函数,确定了 就可以确定一个反比例函数,自变量的取值范围是 . 2.反比例函数y =2 -12x中的k 值为 . 3.当m 时,y = m+3x 是反比例函数,任取一个m 值写出这个反比例函数4.近视眼镜的度数y 度与镜片焦距x 米成反比例,已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 度与镜片焦距x 之间的函数关系式是 .5. 下列各题中:(1)三角形的面积S 一定时,它的底a 与这个底边上的高h 的关系;(2)多边形的内角和与边数的关系;(3)正三角形的面积与边长之间的关系;是反比例函数关系的是: (只填序号)※6.y 与x 成反比例,x 与z 成正比例,则y 与z 成 比例. 7.下列函数中是反比例函数的是 ( ) A. x(y -1) = 1 B. y = x -1 C. y = -1x+1 D. y = 1x -38.甲地与乙地相距5千米,某人以平均速度v (km/h )从甲地向乙地行走,设他全程所需时间为t(h),则变量t 是v 的 ( ) A. 正比例函数 B.反比例函数 C.一次函数 D.以上都不对9.计划修建铁路s (km ),铺轨天数a(天),每日铺轨长度b(km/天),则下列三个结论正确的是 ( ) ①当s 一定时,a 是b 的反比例函数; ②当a 一定时,s 是b 的反比例函数; ③当b 一定时,a 是s 的反比例函数;A. ①B. ②C. ③D. ①②③ 10. 已知y 与x+2成反比例,且当x=2时,y=3, 求(1)y 关于x 的函数解析式;(2)当x=-2时的y 值.11. 一定质量的二氧化碳,当它的体积时,它的密度(1)求与V的函数关系式;(2)求当时二氧化碳的密度.※12.已知函数y = y1+y2,y1与x成正比例,y2与x成反比例,且当x =1时,y = 6,当x = 2时,y = 5,求y与x的函数关系式.【励志故事】愚钝的力量大科学家爱因斯坦曾做过一个实验:他从村子里找了两个人,一个愚钝且软弱,一个聪明且强壮。
反比例函数复习课教案
反比例函数复习课教案一、教学目标1、知识与技能目标:巩固反比例函数的概念和性质,能用所学知识解决实际问题。
2、过程与方法目标:学会复习函数的方法,渗透数形结合的数学思想。
3、情感态度与价值观目标:培养学生良好的学习习惯,激发学生的兴趣,增强学生小组合作的意识。
二、教学重点与难点1、重点:巩固反比例函数的概念和性质。
2、难点:体会学习函数的方法和数形结合的数学思想。
三、教学准备:编写学案,制作PPT。
四、学情分析:九年级的学生已经学习了一次函数、二次函数及反比例函数,掌握了函数的基本知识和学习方法,知道用数形结合的方法解决函数问题。
学生是农村校的学生,基础相对薄弱,学习习惯不好。
故本节课以类型题的方法进行复习,提高学生的学习兴趣。
五、教学设计【活动一】挑战“记忆”1、反比例函数的概念:形如(k是常数,且)的函数称为反比例函数。
请你写出一个反比例函数的解析式2、自变量x的取值范围是3、反比例函数的等价形式为4、反比例函数的图像和性质k <0图像 (草图) 位置增减性5、|k|的几何意义:如图,点P 为反比例函数y=xk上一点, PA ⊥x 轴,PB ⊥y 轴,则矩形OAPB 的面积= , △AOP 的面积= ,△BOP 的面积= 【活动二】精讲精练 题型一:概念题例:若为反比例函数,求m 的值 变式1:若 为反比例函数,则m =______ . 变式2:若反比例函数的图象过点(-2,3),则其解析式为 ,点(1,-6) (填“在”或“不在”)该函数图像上。
变式3:如图,点P 是反比例函数图象上的一点,过点P 分别 向x 轴、y 轴作垂线,若阴影部分面积为12,则这个反比例函 数的关系式是 题型二:反比例函数的性质题 例:函数y=x21-的图象位于第 象限, 在每一象限内,y 随x 的增大而 , 当x >0时,y 0,这部分图象位于第 象限.变式1:函数y=xm 2-的图象在一、三象限内,m 的取值范围是______ 变式2:已知反比例函数ky x=(k 是常数,k ≠0),如果在其图象所在的每一个象限内,y的值随x 的值的增大而增大,那么这个反比例函数的解析式是________(只需写一个) 变式3:已知反比例函数y=x16,当2<x<4时,y 的取值范围是( ) A 0<x<8 B 2<x<4 C 0<y<16 D 4<x<8 题型三:比较大小题例:已知点A(-2,1y ),B(-1,2y ) C(4,3y )都在反比例函数y=x2的图象上,则1y 、2y 与3y 的大小关系(从大到小)为____________ .12-=m xy 2)1(--=m xm y y xP B OA变式1:已知点A(1x ,1y ),B(2x ,2y )且1x <0<2x 都在反比例函数y=xk(k ﹤0)的图象上,则1y 与2y 的大小关系(从大到小)为 . 变式2:反比例函数y=x2图象上的两点为(1x ,1y ),(2x ,2y ),且1x <2x ,则下列关系成立的是( )A .1y >2yB .1y <2yC .1y =2yD .不能确定 题型四:面积问题例:点P 是反比例函数y =-x2上一点,PD ⊥x 轴于点D , 则△POD 的面积为 . 变式1:如图,A ,B 两点在双曲线4y x=上,分别经过A ,B 两点 向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2的值为( ) A .3 B .4 C .5 D .6 变式2:如图,点A 是反比例函数6y x=的图象上一点,过点A 作AB ⊥x 轴,垂足为点B ,线段AB 交反比例函数2y x=的图象于点C ,则△OAC 的面积为________. 变式3:如下图是三个反比例函数, 在x 轴上方的图像,由此观察得到的1k ,2k ,3k 大小关系为( )题型五:求取值范围题例:根据图象写出反比例函数的值大于一次函数的值的x . 变式1::如图,已知一次函数y =ax +b 的图象和反比例函数ky x=的图象相交于点,则不等式kax b x+>的解集为( ) A .x <-3 B .-3<x <0或x >1 C .x <-3或x >1 D .-3<x <1x k y 1=x k y 2=xk y 3= O yxxk y 1=xk y 2=xk y 3=yx2-1N (-1,-4)M (2,m )变式2:如图,已知A (-4,2)、B (2,-4)是一次函数y=kx+b 的图象与反比例函数my x=的图象的两个交点.根据图象写出使 一次函数的值小于反比例函数的值的x 的取值范围 【活动三】课堂小结:本节课我要注意的是 【活动四】当堂检测——点击中考 1、(2014年9题)已知反比例函数xy 10=,当1<x <2时,y 的取值范围是( ) (A )0<y <5 (B )1<y <2 (C )5<y <10 (D )y>102、(2014年14题)已知反比例函数xky =(k 为常数,0≠k )的图象位于第一、第三象限,写出一个符合条件的k 的值为 3、(2013年)已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点23A ( ),. (Ⅰ)求这个函数的解析式;(Ⅱ)判断点16B (- ),,32C ( ),是否在这个函数的图象上,并说明理由; (Ⅲ)当31x -<<-时,求y 的取值范围. 六、课后反思本节课的教学设计分为以下几个环节:挑战记忆——精讲精练——课堂小结——当堂检测(点击中考),目的是通过第一个环节“挑战记忆”,让学生对反比例函数这一章的内容有一个整体的理解,理清本章的知识脉络;第二个环节“精讲精练”,以类型题的方法让学生对本章的考点有所了解,通过每个类型题的例题和变式练习,让学生深入的掌握考点;第三个环节“课堂小结”,总结归纳本节课的易错点和关键点,知道中考的基本题型;第四个环节“当堂检测(挑战中考)”让学生见识中考考题,不断的增强信心。
第十七章 反比例函数 复习学案
向 x 轴、y 轴作垂线段,与两条坐标轴围成的矩形面积分别为 S1、 S2则 S1 与 S2有何关系? 质 1 、 反 比 例 函 数 本 身 是 2、在同一个坐标系中, y = 也 关 于 图 形 。
k k 和 y = - 的图象关于 x x
对 称
对称, 。
3、 反比例函数 y =
k1 与一次函数 y 2 = x+1 的一个交点坐标为 (a, x
复习重点:反比例函数的图象及性质; 复习难点:能综合运用反比例函数知识解决实际问题。 复习过程:
一、知识梳理
(一)回顾: 1、反比例函数的意义?现实生活中有哪些反比例函数的实例,请举出!
2、说出反比例函数的图象及性质?
(二)填表:
函数 请写出反比例函数一般形式: 表达式
K > 0
画出草图: 图 画出草图:
庆云县学案--------新人教版初中数学八年级下册 课题 单位 第十七章 反比例函数 课型 主备人
复习课
东辛店中学 学习过程
王金涛
学生学习感 (教师个性修订)
复习目标:
1、巩固反比例函数的概念,会求反比例函数表达式并能画出图象; 2、巩固反比例函数图象的变化其及性质并能运用解决某些实际问题; 3、 学会用数学语言与同伴交流, 能阐述自己的观点。 力争使自己由 “会做” “会 向 讲”转变。
k (k 0) 的图像上有两点 A( x1 , y 1 ),B( x2 , y 2 ),且 x
( C.非正数 D.不能确定 )
x1 x 2 ,则 y1 y 2 的值是
A.正数 B.负数
3.已知,点 A 在第二象限内,且为双曲线 y 为 C,且 S△AOC=2. ⑴求该反比例函数解析式;
第十七章 反比例函数 复习教学案
第十七章 反比例函数 一、知识点与方法(一)反比例函数的意义(1)一般地,形如 的函数称为反比例函数,其中,自变量x 的取值范围是 。
(2)反比例函数的特点是:① ② ③ (3)反比例函数除了一般形式外, 它的表达形式还有 、 。
【练习】1、下列哪个等式中的y 是x 的反比例函数? ① y = 4x ② y = -2x -1 ③ y = 6x + 1 ④ xy = 123 ⑤ x y = 3 ⑥xy 2-= ⑦ 25+=x y ⑧ x y 23-= ⑨ 31+=x y ⑩ 28xy = (11) x ay = 2、已知点(1,-2)在反比例函数y =kx的图象上,则k=_______3、(2010·凉山)已知函数52)2(--=mx m y 是反比例函数,求m 的值?4、已知y 是x 的反比例函数,当x =2时,y =8,写出y 与x 的关系式,并求当y =-4时,x 的值。
5、y 与x 成正比例,x 与z 成反比例,那么y 与z 成什么函数?写出推理过程。
(二)反比例函数的图象和性质(1)反比例函数y =kx (k 为常数,且0k ≠)的图象是 。
(2)反比例函数y =x6的两个分支关于 对称;在同一直角坐标系中,反比例函数y =x 6与y =—x6的图象关于 对称。
(3)完成表格说明:表格中划线的内容还可以说成 。
【练习】4、反比例函数4y x =-的图象大致是( )5、如果函数y=kx-2(k ≠0)的图象不经过第一象限,那么函数ky x=的图象一定在( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限6、函数)1(+=x k y 和xky -=(k ≠0)在同一坐标系中的大致图象是(• )A B C D7、函数y kx =-与y k x=(k ≠0)的图象的交点个数是( )A 、0B 、1C 、2D 、不确定8、已知反比例函数()0ky k x=<的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <则12y y -的值是( )A 、正数B 、负数C 、非正数D 、不能确定 9、正比例函数y = k 1x (k ≠0)和反比例函数y =xk 2(k ≠0)的的一个交点坐标为(1,—3),则另一个交点坐标为 。
反比例函数复习学案徐辉
《反比例函数》复习(需2课时)宁阳二十一中徐辉学习目标:1、系统复习反比例函数并应用;2、在复习过程中,渗透待定系数法、分类、数形结合等数学思想方法。
重、难点:反比例函数知识的综合运用一、知识梳理:(一)概念:1、什么叫反比例函数?2、反比例函数有哪些等价形式?(二)反比例函数的图象和性质:函数反比例函数解析式图象形状位置K>0增减性位置K<0增减性反比例函数的图象是轴对称图形,有两条对称轴: .(三)与面积有关的问题:1、设P(m,n)是双曲线y= (k≠0)上任意一点,过P作x垂线,垂足为A,则:面积性质(一):2、过P分别作x轴、y的垂线,垂足分别为A、B如图一,则:面积性质(二):3、设P(m,n)关于原点的对称点是,过P作x轴的垂线与过作 y轴的垂线交于点A如图二。
则:面积性质(三):4、渗透的数学思想方法有:二、例题指导:已知一次函数与反比例函数的图象交于点(21)P -,和(1)Q m ,. (1)求反比例函数和一次函数的关系式;(2)若点M(x 1,y 1), N(x 2,y 2)是反比例函数图像上的点, 且满足x 1<x 2<0,则y 1,y 2的大小关系为(3)若点A 是双曲线上的任意一点,过点A 作 AB ⊥X 轴于点B ,连接OB 则△AOB 的面积为(4)求Q 点的坐标;(5)连结OP 、OQ ,求△POQ 的面积(6)直接写出当x 为何值时,一次函数的值大于反比例函数的值?三、对应训练:考点一:反比例函数的概念问题1、在下列函数中,是反比例函数的有 .(1)y=3x ; (2)y=x 2; (3)y=4x+5; (4)xy=2016; (5)y=2x -1;2、已知反比例函数 ,求a 的值和表达式。
3、下列的数表中分别给出了变量y 与x 之间的对应关系,其中是反比例函数关系的是( ).考点二:求反比例函数的解析式1、已知y 与 x 成反比例, 并且当 x = 5 时 y = -3,(1)求 y 与 x 的函数关系式; (2)当x =-15时,求y 的值;(3)当y=6时,求x 的值。
反比例函数全章学案及测试题
反比例函数学案(一)——1.1反比例函数一、温故知新:1、在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y 都有 ,则称x 为 ,y 叫x 的 。
2、一次函数的解析式是: ;当 时,称为正比例函数。
3、一条直线经过点(2,3)、(4,7),则该直线的解析式是 。
以上这种求函数解析式的方法叫: 。
二、学习新知:1、反比例函数: 。
反比例函数的表达式还可以表示为: 。
2、列举几个反比例函数的例子: 。
3、例题分析:例1、已知y 是x 的反比例函数,当x=2时,y =6。
(1)写出y 与x 之间的函数解析式;(2)求当x=4时y 的值。
三、释疑提高:1、下列等式中哪些变量之间的关系是反比例函数?(1)3x y =;(2)y = (3)xy =21; (4)y =52x +;(5)y = -32x;(6)y =13x +;(7)y =x -42、已知函数1m m y x-=是关于x 的反比例函数,则m 的值是 。
3、当n 取 时,y =(n 2+2n )21n n x +-是反比例函数。
4、已知y 是x 的反比例函数,当x =3时,y =7,(1)写出y 与x 的函数关系式;(2)求x =7时y 的值。
5、反比例函数k y x =的图象经过点(32-,5)、(a ,-3)及(10,b ),则k = ,a = ,b = 。
6、已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1是,y =4,x =2时,y =5,(1)求y 与x 的函数关系式;(2)当x = -2时,求函数y 的值。
四、归纳小结:反比例函数学案(二)——1.2反比例函数的图象和性质(一)一、温故知新1、反比例函数: ,反比例函数又可表示为: 、 。
2、过点(2,5)的反比例函数的解析式是: 。
3、一次函数y =kx +b 的图象是: ,它经过点: 、直线y =kx 经过点: 。
反比例函数的图像和性质 (28张PPT)学案
6.2.1 反比例函数的图象和性质导学案班级姓名学习目标:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.2.逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质.3.经历实验操作、探究思考、观察分析的过程中,培养学生探究、归纳及概括的能力.4.在通过画图探究反比例函数的性质过程中,发展合作交流意识,增强求知欲望.学习重点:画反比例函数的图象,并从函数图象中获取信息学习难点:反比例函数的图象特点一.课前预学画出一次函数y=3x的图象思考:画一次函数图像的步骤是什么?_______________________________________________________________________________________ __________________________________________那么反比例函数6y=x的图象是什么形状呢?你能用“描点”的方法画出函数的图象吗?二、课中导学1.根据下列步骤,在直角坐标系中画出反比例函数6y=x的图像(1)列表.根据下表中x的取值,求出对应的y值,填入下表内。
(2)以表中各组对应值为点的坐标,在直角坐标系中描出相应的点。
(3)先在第一象限内,按自变量由小到大的顺序,将点用光滑曲线连结,得到图像的一个分支;再在第三象限内画出图像的另一个分支。
想一想:你会画反比例函数的图像了吗?画反比例函数图象的方法:___________________________【知识拓展】2.如下图,在图像的任一个分支上任意取一些点,如(3,2),(-6,-1),然后在直角坐标系中分别作出它们关于原点的对称点,你发现了什么?你认为反比例函数的图像具有怎样的对称性?3.在同一直角坐标系中画出反比例函数-6y=x的图像(1)列表.(2)描点. (3)连线.比较-6y=x与6y=x的图像,概括出反比例函数ky=x的图像在位置和对称性方面的性质。
反比例函数复习学案
反比例函数复习学案班级 姓名 等级【考点透视】1.能根据已知条件利用待定系数法确定反比例函数的表达式;2.能正确画出反比例函数的图象,结合图象或表达式说出其性质,并能运用其性质解决简单的实际问题;3.能结合反比例函数图象计算简单图形的面积。
【知识梳理】1.反比例函数的解析式: 或xy = k2.反比例函数的图象与性质:双曲线 (注意:自变量的取值范围是除0以外的一切实数)3.待定系数法求解析式:根据两变量之间的反比例关系,设xk y = 由已知条件求出K 的值,从而确定函数关系式。
4.反比例函数y=k x(k ≠0)中的比例系数K 的几何意义:过双曲线y=k x(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为 .所得三角形面积为 。
【考题例析】一、 反比例函数图像与性质例1.(2012青海) 函数y=kx+1与函数y=k x在同一坐标系中的大致图象是( )例2.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 增大而减小,则k 的取值范围是 _ 。
例3. (2012•常德)对于函数xy 6=,下列说法错误..的是 ( ) A . 它的图像分布在一、三象限 B . 它的图像既是轴对称图形又是中心对称图形 C. 当x>0时,y 的值随x 的增大而增大 D. 当x<0时,y 的值随x 的增大而减小 例4. 在函数y=6x的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3( x 3.y 3),已知x 1<x 2<0<x 3,则下列各式中,正确的是( )A.y 1<0<y 3B.y 3<0<y 1;C.y 2<y 1<y 3D.y 3<y 1<y 2 二、反比例函数关系式例5.(2011潍坊市)点P 在反比例函数)0(≠=k x k y 的图像上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 。
《反比例函数》复习学案
《反比例函数》复习学案《《反比例函数》复习学案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【温馨提示】今天将再次记录你的自信、沉着、智慧和收获,请相信自己的实力,祝你成功!【学习目标】1.理解反比例函数的概念,会用待定系数法确定反比例函数的解析式.2.能根据反比例函数的图象或解析式说出其性质.3.能结合反比例函数的图象计算简单图形的面积.【学习重点、难点】1.反比例函数的图象与性质.2.反比例函数解析式的确定.【考情分析】1.考查内容:从近几年山西省中考试卷可以看出,反比例函数解析式的确定,反比例函数的图象和性质以及反比例与一次函数的综合题是中考考查的重点.2.题型赋分:选择题、填空题2—3分,解答题一般在7分左右.3.能力层次:以中、低难度为主.【复习指南】预测2014年中考命题仍延续这一特点,既要重视反比例函数的基本概念和性质,也要重视反比例函数、一次函数与几何问题的综合题.【学习过程】一、考点透视与考题研究★考点一:反比例函数的概念1.内容复习:形如(k为常数且)的函数叫做反比例函数.其中自变量的取值范围是.反比例函数的关系式还可以表示为或(k≠0)2.考题研究:①已知函数是y关于x的反比例函数,则m=②下列函数:(1) (2) (3) (4) (5) (6) 其中y是x的反比例函数的是特别提醒:★考点二:反比例函数的图象与性质OO 1.内容复习:①形状②位置③发展趋势④增减性⑤对称性2.考题研究:①已知反比例函数的图象位于第二、四象限.则m的取值范围是②已知一次函数的图象经过第一、二、四象限,则反比例函数的图象位于第象限.③在反比例函数(k<0)的图象上有两点(-1, ),( , ),则的值是()A.负数B.正数C.非负数D.不能确定已知点(-1,)(2,)(3,)在反比例函数(k为常数) 的图象上,则、、的大小关系是.④函数与 ( )在同一直角坐标系中的图象可能是()ABCD特别提醒:★考点三:反比例函数中的几何意义与解析式确定1.内容复习:如图点P(a、b)、点Q在双曲线上,则ab的值等于;S矩形PAOB=;SRt△QOC=;若SR t△QOC面积为2,那么双曲线的解析式为.2.考题研究:①如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数的图象上,若菱形OABC的面积为4,则的值为.②如图,点A在双曲线上,点B在双曲线上,且AB//轴,C、D在轴上,若四边形ABCD为矩形,且面积为2,则的解析式是.③如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与轴平行,点P(3a,a)是反比例函数( >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为.①题图②题图③题图特别提醒:确定反比例函数解析式的两种方法二、山西考场①(2009年9题).若反比例函数的表达式为,则当 <-1时,的取值范围是.②(2009年12题).反比例函数的图象经过点(-2,3),那么k的值是().A. B. C.- 6D. 6③(2010年15题).如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABC 的面积为2,则这个反比例函数的解析式为.④(2012年10题).已知直线 (a0)与双曲线( ≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(-2,6)B. (-6,-2)C.(-2,-6)D. (6,2)⑤(2013年16题,2分).如图,矩形ABCD在第一象限,AB在x轴正半轴上.AB=3,BC=1,直线经过点C交x轴于点E,双曲线经过点D,则k的值为.⑥(2011年20题,7分).如图,一次函数的图象分别交于x轴,y轴于A、 B两点,与反比例函数的图象交于 C、D两点,DE⊥x轴于点E,已知C(6,-1),DE=3(1)求反比例函数与一次函数的解析式.(2)根据图象直接直接回答,当x为何值时,一次函数的值大于反比例函数的值?三、课堂小结1.本节课你有什么收获?2.本节课你还有什么问题?《反比例函数》复习学案这篇文章共4567字。
反比例函数的图象和性质(学案)
反比例函数的图象和性质(学案)班级姓名座号一、学习目标1.理解反比例函数,能从实际问题抽象出反比例关系的函数解析式;2.会画反比例函数图象,并结合图象分析总结出反比例函数的性质;3.初步运用待定系数法确定反比例函数的解析式。
三、学习过程(一)从实际问题出发:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同点?(1)食堂每天需用煤5吨,经过若干天后的总用煤量y(吨)随烧煤时间x(天)的变化而变化.(2)学校到张湾某地约6km,乘汽车所用时间t(分钟)随汽车速度v(km/分)变化而变化.(3)秀水村的耕地面积是106(m2 ),人均占有耕地面积s(m2)随村人口数n 变化而变化.(二)反比例函数的概念问题1 上述三个中函数中,哪个是我们比较熟悉且深入研究过的函数?哪个是陌生有待进一步学习研究的?函数(1)叫函数,回顾它的图象和性质:问题2函数表达式(2)、(3)与以前学过的(1)相同吗?①y=k/x中k/x是式,x0;y=kx是kx是式,x可取实数。
②y=k/x写成乘积式应为y=kx-1 ,x的指数是;y=kx ,x指数是。
问题3 小学学过的反比例关系,与今天所见的函数(2)、(3)有什么联系?(三)画反比例函数的图象 例1 画反比例函数xy 6=的图象。
(和老师一块来画) 问题4 怎样画反比例函数的图象呢?它的图象还是直线吗?画函数图象的关键问题是什么?选值时,你认为要注意什么问题?怎样连线?问题5 你会画反比例函数x y 6-=的图象吗?试试看。
解:列表描点、连线(四)归纳反比例函数的特征问题6 上述两个反比例函数图象有那些共同的特点?有那些不同的特点?你能用类似如一次函数特征的语言表达反比例函数的图象和特征吗?反比例函数的图象和性质:(五)理解应用(和老师一块来做) 例2 如果反比例函数52)1(--=mx m y 图象在二四象限,求m 值。
例3 某函数的图象如图所示,求此函数的解析式。
(完整版)《反比例函数图像与性质》学案
1 / 2平度西关中学学生学习活动案 九年级数学课题: 反比率函数图像与性质( 1) 共第课时课型:新授主备人:刘伟 审查人:韩荣耀班 小组 号姓名 评论等级一、学习目标 1、领会并认识反比率函数的图象的意义 . 2、能描点画出反比率函数的图象 . 3、经过反比率函数的图象的剖析,研究并掌握反比率函数的图象的性质。
二、教课要点和难点: 1、能描点画出反比率函数的图象 . 2、经过反比率函数的图象的剖析,研究并掌握反比率函数的图象的性质。
二、 知识准备 1.反比率函数的观点:函数 y= (k 为常数, k ),叫做反比率函数。
2.理解反比率函数的观点应注意以下几点: (1)表达式中自变量 x 的次数是 次,此中表达式中 k 。
(2)反比率函数的自变量 x 不可以为 。
3. 以下函数中哪些是反比率函数? (1)y=3x-1 (2)y2x 2 (3) y 1 (4) y 2x(5)y=3x (6) y1x3x(7) y 2x 1 (8)y32 x4. 已知函数 y 2x m 1 是反比率函数,则 m=________.5. 作函数图像的一般步骤是 ______ 、 ________ 、 _________.6. 一次函数 y=kx+b(k ≠ 0) 的图像是 ___________________。
三、 新知研究【自主学习】 8 请画出函数 y4的图像6 4x2-8 -6 -4-2 O2 4 6 8-2 -4 -6 -8【合作研究】1. 反比率函数图像是什么形状?2. 你以为做反比率函数图象时应注意哪些问题?【反应练习】1. 小华画的反比率函数 y6的图像以下图,你以为他画的对吗?为何?x8 6 4 2-8 -6 -4-2 O2468-2-4 -6 -82. 画出函数 y4 的图象。
x【合作研究】 察看函数 y4和 y4的图象 ,有什么同样点和不一样点?xx【想想】k的图象在哪两个象限 由什么确立?(1) 反比率函数y,x(2) 反比率函数图像是中心对称图形吗?是轴对称图形吗? (3) 类比正比率函数进行总结。
【精品 教案】北师大版 九年级上册数学 反比例函数全章复习与巩固-教室版(提高)
反比例函数全章复习与巩固【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式()0ky k x=≠,能判断一个给定函数是否为反比例函数;2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3.能根据图象数形结合地分析并掌握反比例函数()0ky k x=≠的性质,能利用这些性质分析和解决一些简单的实际问题. 【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】 要点一、反比例函数的概念一般地,形如ky x= (k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点诠释:在k y x =中,自变量x 的取值范围是,ky x = ()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.要点三、反比例函数的图象和性质 1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 要点诠释:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k ≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=, 当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图 像 直线 有两个分支组成的曲线(双曲线)位 置0k >,一、三象限; 0k <,二、四象限0k >,一、三象限 0k <,二、四象限增减性k >,y随x 的增大而增大k<,y随x的增大而减小k>,在每个象限,y随x的增大而减小k<,在每个象限,y随x的增大而增大(4)反比例函数y=中k的意义①过双曲线xky=(k≠0) 上任意一点作x轴、y轴的垂线,所得矩形的面积为k.②过双曲线xky=(k≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.【典型例题】类型一、确定反比例函数的解析式1、(2015•上城区一模)在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.【思路点拨】根据图象和△ABC的面积求出n的值,根据B(2,1),求出反比例函数的解析式,把n代入解析式求出m即可.【答案与解析】解:∵B(2,1),∴BC=2,∵△ABC 的面积为2, ∴×2×(n ﹣1)=2, 解得:n=3,∵B (2,1),∴k=2, 反比例函数解析式为:y=, ∴n=3时,m=,∴点A 的坐标为(,3).【总结升华】本题考查的是反比例函数系数k 的几何意义,用待定系数法求出k 、根据三角形的面积求出n 的值是解题的关键,解答时,注意数形结合思想的准确运用. 举一反三:【变式】已知反比例函数ky x=与一次函数y ax b =+的图象都经过点P(2,-1),且当1x =时,这两个函数值互为相反数,求这两个函数的关系式.【答案】因为双曲线ky x=经过点P(2,-1),所以2(1)2k xy ==⨯-=-.所以反比例函数的关系式为2y x-=,所以当1x =时,2y =-.当1x =时,由题意知2y ax b =+=,所以直线y ax b =+经过点(2,-1)和(1,2),所以有21,2,a b a b +=-⎧⎨+=⎩ 解得3,5.a b =-⎧⎨=⎩所以一次函数解析式为35y x =-+. 类型二、反比例函数的图象及性质2、已知反比例函数ky x=(k <0)的图象上有两点A(11x y ,),B(22x y ,),且12x x <,则12y y -的值是( ).A .正数B .负数C .非负数D .不能确定【思路点拨】一定要确定了A 点和B 点所在的象限,才能够判定12y y -的值. 【答案】D ;【解析】分三种情形作图求解.(1)若120x x <<,如图①,有12y y <,12y y -<0,即12y y -是负数; (2)若120x x <<,如图②,有12y y >,12y y ->0,即12y y -是正数;(3)若120x x <<,如图③,有12y y <,12y y -<0,即12y y -是负数.所以12y y -的值不确定,故选D 项.【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论. 举一反三:【变式】已知0a b ⋅<,点P (a b ,)在反比例函数xay =的图象上,则直线b ax y +=不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C ;提示:由0a b ⋅<,点P (a b ,)在反比例函数xay =的图象上,知反比例函数经过二、四象限,所以00a b <>,,直线b ax y +=经过一、二、四象限.3、(2016•淄博)反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论: ①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )A .0B .1C .2D .3【思路点拨】①由反比例系数的几何意义可得答案;②由四边形OAMB 的面积=矩形OCMD 面积﹣(三角形ODB 面积+面积三角形OCA ),解答可知;③连接OM ,点A 是MC 的中点可得△OAM 和△OAC 的面积相等,根据△ODM 的面积=△OCM 的面积、△ODB 与△OCA 的面积相等解答可得. 【答案】D .【解析】解:①由于A 、B 在同一反比例函数y=图象上,则△ODB 与△OCA 的面积相等,都为×2=1,正确;②由于矩形OCMD 、三角形ODB 、三角形OCA 为定值,则四边形MAOB 的面积不会发生变化,正确;③连接OM ,点A 是MC 的中点,则△OAM 和△OAC 的面积相等,∵△ODM 的面积=△OCM 的面积=,△ODB 与△OCA 的面积相等, ∴△OBM 与△OAM 的面积相等, ∴△OBD 和△OBM 面积相等, ∴点B 一定是MD 的中点.正确; 故选:D .【总结升华】本题考查了反比例函数y=(k ≠0)中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4、反比例函数xmy =与一次函数)0(≠-=m m mx y 在同一平面直角坐标系中的图象可能是( )【答案】C ;【解析】一次函数()1y mx m m x =-=-是经过定点(1,0),排除掉B 、D 答案;选项A 中m 的符号自相矛盾,选项C 符合要求.【总结升华】还可以按照m >0,m <0分别画出函数图象,看哪一个选项符合要求. 举一反三:【变式】已知>b a ,且,0,0,0≠+≠≠b a b a 则函数b ax y +=与xba y +=在同一坐标系中的图象不可能是( ) .【答案】B ;提示:因为从B的图像上分析,对于直线来说是<0,0a b<,则0a b+<,对于反比例函数来说,0a b+>,所以相互之间是矛盾的,不可能存在这样的图形.类型三、反比例函数与一次函数综合5、如图所示,在平面直角坐标系中,一次函数y kx b=+(k≠0)的图象与反比例函数myx=(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.【答案与解析】解:(1)由图象可知:点A的坐标为(2,12),点B的坐标为(-1,-1).∵反比例函数(0)my mx=≠的图象经过点A(2,12),∴m=1.∴反比例函数的解析式为:1yx=.∵一次函数y kx b=+的图象经过点A12,2⎛⎫⎪⎝⎭,点B(-1,-1),∴12,21,k bk b⎧+=⎪⎨⎪-+=-⎩解得:1,21.2kb⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的解析式为1122y x=-.(2)由图象可知:当x>2或-l<x<0时一次函数值大于反比例函数值.【总结升华】一次函数值大于反比例函数值从图象上看就是一次函数的图象在反比例函数的图象上方的部分,这部分图象的横坐标的范围为所求.举一反三:【变式】如图所示,一次函数3y kx =+的图象与反比例函数(0)my x x=>的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且27DBP S =△,12OC CA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值? 【答案】解:(1)由一次函数3y kx =+可知:D(0,3)(2)设P(a ,b ),则OA =a ,13OC a =,得1,03C a ⎛⎫⎪⎝⎭.由点C 在直线3y kx =+上,得1303ka +=,ka =-9,DB =3-b =3-(ka +3)=-ka =9,BP =a .由1192722DBP S DB BP a ===g g g g △,∴ a =6,∴ 32k =-,b =-6,m =-36.∴ 一次函数的表达式为332y x =-+,反比例函数的表达式为36y x=-.(3)根据图象可知:当x >6时,一次函数的值小于反比例函数的值. 类型四、反比例函数的实际应用6、制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为()min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【思路点拨】(1)首先根据题意,材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y =15代入300y x=中,进一步求解可得答案. 【答案与解析】解:依题意知两函数图象的交点为(5,60) (1)设材料加热时,函数解析式为y kx b =+.有15956015b k k b b ==⎧⎧⎨⎨+==⎩⎩ ∴915y x =+(0≤x ≤5). 设进行制作时函数解析式为1k y x=. 则1300k =,∴300y x= (x ≥5). (2)依题意知300x=15,x =20. ∴从开始加热到停止操作共经历了20min .【总结升华】把握住图象的关键点,根据反比例函数与一次函数的定义,用待定系数法求解析式,并利用解析式解决实际问题.【巩固练习】 一.选择题1. 已知函数25(1)m y m x -=+的反比例函数,且图象在第二、四象限内,则m 的值是( ).A .2B .-2C .±2D .12-2. 如图是三个反比例函数x k y 1=、x k y 2=、xk y 3=在x 轴上方的图象,由此观察得到123k k k ,,的大小关系( ).A .123k k k >>B .321k k k >>C .231k k k >>D .312k k k >>3. 如图,等腰直角三角形ABC 位于第一象限,AB =AC =2,直角顶点A 在直y x =上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x= (k ≠0)与ABC ∆有交点,则k 的取值范围是( )A .12k <<B .13k ≤≤C .14k ≤≤D .14k ≤<4.(2015•眉山)如图,A 、B 是双曲线y=上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .43 B .83C .3D .4 5. (2016•宜昌)函数y=的图象可能是( )A. B. C. D.6. 如图所示,在同一直角坐标系中,函数1y kx=+和函数kyx=(k是常数且k≠0)的图象只可能是( ).7. 如图所示,反比例函数4yx=-的图象与直线13y x=-的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则△ABC的面积为().A.8 B.6 C.4 D.28. 如图,反比例函数kyx=的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是()A. y>1B.0<y<1C. y>2D.0<y<2二.填空题9.直线()0y kx k =>与双曲线4y x=交于A (11x y ,),B (22x y ,)两点,则122127x y x y - =___________.10.已知1y 与x 成正比例(比例系数为1k ),2y 与x 成反比例(比例系数为2k ),若函数12y y y =+的图象经过点(1,2),(2,12),则1285k k +的值为________.11. 在函数xk y 22--=(k 为常数)的图象上有三个点(-2,1y ),(-1,2y ),(21,3y ),函数值1y ,2y ,3y 的大小为_________.12.已知点A(a ,5),B(2,b )关于x 轴对称,若反比例函数的图象经过点C(a ,b ),则这个反比例函数的表达式为____________.13.已知(11x y ,),(22x y ,),(33x y ,)是反比例函数2y x=-的图象上的三个点,并且1230y y y >>>,则123x x x ,,的大小关系是 .14.设有反比例函数1k y x+=,(1x ,1y ),(2x ,2y )为其图象上两点,若120x x <<,12y y >,则k 的取值范围是_______.15.(2015•齐齐哈尔)如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C 、D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的解析式为 .16.如图所示是一次函数1y kx b =+和反比例函数2my x=的图象,观察图象写出当12y y > 时,x 的取值范围为________.三.解答题17. (2016•吉林)如图,在平面直径坐标系中,反比例函数y=(x >0)的图象上有一点A (m ,4),过点A 作AB ⊥x 轴于点B ,将点B 向右平移2个单位长度得到点C ,过点C 作y 轴的平行线交反比例函数的图象于点D ,CD=(1)点D 的横坐标为 (用含m 的式子表示); (2)求反比例函数的解析式.18.如图所示,已知双曲线(0)ky k x=>,经过Rt △OAB 斜边OB 的中点D ,与直角边AB 交于点C ,DE ⊥OA ,3OBC S =△,求反比例函数的解析式.19. 如图所示,一次函数y x b =+的图象经过点B(-1,0),且与反比例函数ky x=(k 为不等于0的常数)的图象在第一象限交于点A(1,n ).求:(1)一次函数和反比例函数的解析式;(2)当1≤x ≤6时,反比例函数y 的取值范围.20.(2015•绵阳)如图,反比例函数y=(k >0)与正比例函数y=ax 相交于A (1,k ),B (﹣k ,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.【答案与解析】一.选择题1.【答案】B;【解析】由题意可知251,10.mm⎧-=-⎨+<⎩解得m=-2.2.【答案】B;3.【答案】C;【解析】双曲线经过点A和BC的中点,此时1k=或4k=,当14k≤≤时,双曲线kyx=与ABC∆有交点.4.【答案】B;【解析】过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得y=,∴k=x•=y=.故选B.5.【答案】C.【解析】函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C.6.【答案】B;【解析】可用排除法确定选项.由函数1y kx=+的解析式可知,其图象应过点(0,1),所以可排除C 、D 两项;A 项中,函数ky x=的图象可知k <0,而由函数1y kx =+的图象可知k >0,这是一个矛盾,可排除A 项. 7.【答案】A ;【解析】设点B 的坐标为(a b ,),由对称性知点A 的坐标为()a b --,.∴ 112(2)222ABC S BC AC a b ab ==⨯⨯-=-g △. ∵ 点B(a b ,)在双曲线4y x=-上,∴ 4b a =-.∴ 4ab =-.∴ 2(4)8ABC S =-⨯-=△. 8.【答案】D ;【解析】在第一象限,y 随x 的增大而减小,且y >0,所以当x >1时,0<y <2 .二.填空题9. 【答案】20;【解析】由题意1212x x y y =-=-,,所以122111112727x y x y x y x y -=-+1155420x y ==⨯=. 10.【答案】9;【解析】由题意122121222k k k k =+⎧⎪⎨=+⎪⎩,解得113k =-,273k =,12859k k +=. 11.【答案】312y y y <<;【解析】因为220k --<,图象在二、四象限,因为-2<-1,所以120y y <<,而30y <. 12.【答案】10y x=-; 【解析】由题意,25a b ==-,,设反比例函数为ky x=,∴10k ab ==-, ∴10y x=-. 13.【答案】321x x x <<;【解析】在第二象限,反比例函数的y 值随着x 的增大而增大.14.【答案】1k >-;【解析】由题意可判断函数图象在一、三象限,所以10k +>,得1k >-. 15.【答案】y=﹣;【解析】过A 点向x 轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD 的面积为3,即|k|=3, 又∵函数图象在二、四象限, ∴k=﹣3,即函数解析式为:y=﹣.16.【答案】20x -<<或3x >;【解析】由图象观察12y y >,找图象中一次函数图象在反比例函数上方的部分. 三.解答题 17.【解析】解:(1)∵A (m ,4),AB ⊥x 轴于点B , ∴B 的坐标为(m ,0),∵将点B 向右平移2个单位长度得到点C , ∴点C 的坐标为:(m+2,0), ∵CD ∥y 轴,∴点D 的横坐标为:m+2; 故答案为:m+2;(2)∵CD ∥y 轴,CD=, ∴点D 的坐标为:(m+2,),∵A ,D 在反比例函数y=(x >0)的图象上, ∴4m=(m+2),解得:m=1,∴点a 的横坐标为(1,4), ∴k=4m=4,∴反比例函数的解析式为:y=.18.【解析】解:过点D 作DM ⊥AB 于点M .∴ DM ∥OA ,∴ ∠BDM =∠BOA . 在△BDM 和△EOD 中90DMB OED BDM BOAOD DB ∠=∠=⎧⎪∠=∠⎨⎪=⎩° ∴ △BDM ≌△DOE(AAS),∴ 12DM OE OA ==,12BM DE AB ==.设D(a b ,),则B(2a b ,2).∵ 12ODE AOC S S ab ==△△,∴ 3OBC ABDE S S ==△梯形.即(2)32b b a 1+=g ,解得:2ab =. ∴ 反比例函数的解析式为2y x=.19.【解析】解:(1)将点B(-1,0)代入y x b =+得:0=-1+b ,∴ b =1.∴ 一次函数的解析式是1y x =+.∴ 点A(1,n )在一次函数1y x =+的图象上, 将点A(1,n )代入1y x =+得:n =2. 即点A 的坐标为(1,2),代入k y x =得:21k=,解得:k =2. ∴ 反比例函数的解析式是2y x=. (2)对于反比例函数2y x=,当x >0时,y 随x 的增大而减少, 而当x =l 时,y =2;当x =6时,13y =,∴ 当1≤x ≤6时,反比例函数y 的取值范围是123y ≤≤.20.【解析】解:(1)据题意得:点A (1,k )与点B (﹣k ,﹣1)关于原点对称,∴k=1,∴A (1,1),B (﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为y=,y=x ; (2)∵一次函数y=x+b 的图象过点(x 1,y 1)、(x 2,y 2), ∴,②﹣①得,y2﹣y1=x2﹣x1,∵|x1﹣x2|•|y1﹣y2|=5,∴|x1﹣x2|=|y1﹣y2|=,由得x2+bx﹣1=0,解得,x1=,x2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数
适用学科初中数学适用年级九年级适用区域广东省课时时长(分钟)60 知识点反比例基本概念,图像,性质
学习目标理解反比例函数的图像性质,概念及应用
学习重点反比例函数性质
学习难点反比例函数综合应用
学习过程
一、复习预习
1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。
x k y =还可以写成kx y =1-
2. 反比例函数解析式的特征:
⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像
⑴图像的画法:描点法
① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)
② 描点(有小到大的顺序)
③ 连线(从左到右光滑的曲线)
⑵反比例函数的图像是双曲线,x
k y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线x
k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
4.反比例函数性质如下表: k 的取值 图像所在象限
函数的增减性 o k > 一、三象限
在每个象限内,y 值随x 的增大而减小 o k <
二、四象限 在每个象限内,y 值随x 的增大而增大 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k )
6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数x
k y =
中的两个变量必成反比例关系。
二、知识讲解
考点1反比例函数的定义 一般地,形如x k
y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:
⑴x 是自变量,y 是x 的反比例函数;
⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠;
⑶比例系数0k ≠是反比例函数定义的一个重要组成部分;
⑷反比例函数有三种表达式: ①x k
y =(0k ≠),
②1kx y -=(0k ≠),
③k y x =⋅(定值)(0k ≠); ⑸函数x k
y =(0k ≠)与y k
x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
考点2 用待定系数法求反比例函数的解析式 由于反比例函数x
k y =
(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
考点3反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:
⑴列表;⑵描点;⑶连线。
考点4反比例函数的性质
关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数 x k
y =(0k ≠)
k 的符号 0k > 0k <
图像
性质 ①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
①x 的取值范围是0x ≠,y 的取值范围是
0y ≠
②当0k <时,函数图像的两个分支分别
在第二、第四象限,在每个象限内,y 随
x 的增大而增大。
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
反比例函数图像的位置和函数的增减性,是有反比例函数系数k 的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。
如
x k y =
在第一、第三象限,则可知0k >。
☆反比例函数x
k y =(0k ≠)中比例系数k 的绝对值k 的几何意义。
如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,
E 、
F 分别为垂足,则O EPF S PE PF y x xy 矩形=⋅=⋅==k
1,反比例函数x k y =(0k ≠)中,k 越大,双曲线x k y =越远离坐标原点;k 越小,双曲线x
k y =越靠近坐标原点。
2,双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x 。
三、例题精析
考点1 反比例函数系数k的几何意义
例1如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.
【规范解答】解:根据题意可知:S△ABO=|k|=3,
由于反比例函数的图象位于第一象限,k>0,
则k=6.
故答案为:6.
【总结与反思】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
考点2 反比例函数图象上点的坐标特征
例2若反比例函数的图象经过点(5,﹣1).则实数k的值是()
A.﹣5 B.﹣C.D.5
【规范解答】解:∵反比例函数的图象经过点(5,﹣1),
∴k=xy=5×(﹣1)=﹣5,即k的值是﹣5.
故选A
【总结与反思】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.
考点3反比例函数图象上点的坐标特征
例3下列函数中,图象经过点(1,﹣1)的反比例函数关系式是()A.B.C.D.
【规范解答】解:设经过点(1,﹣1)的反比例函数关系式是y=(k≠0),则﹣1=,
解得,k=﹣1,
所以,所求的函数关系式是y=﹣或.
故选A.
【总结与反思】本题主要考查反比例函数图象上点的坐标特征.所有反比例函数图象上点的坐标都满足该函数解析式.
考点4反比例函数与一次函数的交点问题
例4如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()
A.2B.4C.6D.8
【规范解答】解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,
∴S△AOC=S△ODB=|k|=2,
又∵OC=OD,AC=BD,
∴S△AOC=S△ODA=S△ODB=S△OBC=2,
∴四边形ABCD的面积为:S△AOC+S△ODA+S△ODB+S△OB C=4×2=8.
故选D.
【总结与反思】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;同时考查了反比例函数图象的对称性.
考点5:反比例函数系数k 的几何意义
例5如图,点B 在反比例函数x
y 2 (x >0)的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( )
A . 1
B . 2
C . 3 D
. 4
【规范解答】解:∵点B 在反比例函数x y 2=
(x >0)的图象上,过点B 分别向x 轴,y 轴作垂线,垂足分别为A ,C , ∴故矩形OABC 的面积S=|k|=2.
故选B .
【总结与反思】主要考查了反比例函数x
y 2=(k≠0)中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义
课程小结。