课后练习8 一元二次方程及其应用

合集下载

一元二次方程概念及解法(教师版)

一元二次方程概念及解法(教师版)

一元二次方程概念与解法课首小测解下列方程:(1)2x-3=4 (2)3x+6=11 (3)242532-=-=+y x y x (4)1831552-=+=+y x y x参考答案:(1)x=3.5 (2)x=53(3) {11==X Y (4){12547=-=x y1知识梳理 1、一元二次方程的概念只含有 个未知数,并且未知数的最高次数是 ,这样的 方程叫一元二次方程。

一元二次方程的一般形式是20ax bx c ++=(a 、b 、c 是已知数且a ≠0),其中ax 2叫做 ,bx 叫做 ,a 叫做 系数,b 叫做 系数,c 叫做 。

2、一元二次方程的常用解法(1) 形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,可用 方法. (2) 配方法:用配方法解一元二次方程的一般步骤:①化二次项系数为1;②移项,使方程左边..为二次项和一次项,右边..为常数项; ③方程两边都加上一次项系数一半.......的平方..;④把原方程变为2()x m n +=的形式;⑤如果方程右边是非负数,就可以直接用开平方法求出方程的解. (3)公式法:求根公式为=x ( ≥0) (4)因式分解法:因式分解法的步骤: ①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。

3、根的判别式:一元二次方程02=++c bx ax )0(≠a 根的情况(ac b 42-=∆)(1)当Δ>0时,方程有 实数根; (2)当 时,方程有两个相等的实数根; (3)当Δ<0时,方程 .※※易错知识辨析(1般形式中0≠a(2(3(4)用直接开平方的方法时要记得取正、负.2经典例题例题1:(1)关于x 的方程5)3(72=---x x m m是一元二次方程,则m =__-3______.(2)将方程(x+1)2+(x -2)(x+2)= 1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.参考答案:04222=-+x x , 22x , 2, 2x, -4【变式练习】1、方程化为一般形式为 011732=-+x x ,它的二次项系数是 3 ,一次项系数是 17 ,常数项是 -1 。

8.3实际问题与二元一次方程组课后练习2020-2021学年 人教版七年级下册

8.3实际问题与二元一次方程组课后练习2020-2021学年 人教版七年级下册

2020-2021学年初中数学人教版七年级下册第八章二元一次方程组8.3实际问题与二元一次方程组课后练习一、单选题1.我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A. {x +y =510x +3y =30B. {x +y =53x +10y =30C. {x +y =30x 10+y 3=5D. {x +y =30x 3+y 10=5 2.《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x 元,一亩坏田为y 元,根据题意列方程组得( )A. {x +y =100300x +7500y =10000B. {x +y =100300x +5007y =10000C. {x +y =1007500x +300y =10000D. {x +y =1005007x +300y =10000 3.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人,设全班有学生 x 人,分成 y 个小组,则可得到方程组为( )A. {7x +4=y 8x −3=yB. {7y =x +48x +3=xC. {7y =x −48y =x +3D. {7y =x +4,8y =x +34.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案A. 4B. 3C. 2D. 15.李老师一次购买单价分别为5元/瓶、8元/瓶的消毒液共用了90元,购买两种(两种都买)消毒液的数量和最多是( )A. 18瓶B. 17瓶C. 16瓶D. 15瓶6.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是( )A. 甲B. 乙C. 丙D. 丁7.在平面直角坐标系中,我们把横纵坐标均为整数的点称为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.例如:图中 △ABC 的与四边形 DEFG 均为格点多边形.格点多边形的面积记为 S ,其内部的格点数记为 N ,边界上的格点记为 L ,已知格点多边形的面积可表示为 S =N +aL +b ( a , b 为常数),若某格点多边形对应的 N =14 , L =7 ,则 S = ( )A. 16.5B. 17C. 17.5D. 188.已知关于x ,y 的方程组 {x +3y =4−a x −y =3a,其中 −3≤a ≤1 ,给出下列结论: ① {x =5y =−1是方程组的解; ②当 a =−2 时,x ,y 的值互为相反数;③当 a =1 时,方程组的解也是方程 x +y =4−a 的解;其中正确的是( )A. ①②B. ①③C. ②③D. 无法确定9.小明、小颖、小亮玩飞镖游戏,他们每人投靶 5 次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分 21 分,小亮得分 17 分,则小颖得分为( )A. 19 分B. 20 分C. 21 分D. 22 分10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”这一章里,二元一次方程组是由算筹(算筹是中国古代用来记数、列式和进行演算的一种工具)来记录的.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示两位数时,个位用立式,十位用卧式.如图(1),从左到右列出的算筹数分别表示 x 、 y 的系数与相应的常数项,根据图(1)可列出方程组 {3x +y =177x +4y =23,则根据图(2)列出的方程组是( )A. {x +5y =32x +2y =14B. {x +5y =112x +4y =9C. {x +5y =212x +2y =9D. {x +5y =12x +2y =911.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()个球.A. 5B. 6C. 7D. 812.根据图中提供的信息,可知每个杯子的价格是()A. 51元B. 35元C. 8元D. 7.5元二、填空题13.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为________.14.两根铁棒直立于桶底水平的木桶中,在木桶中加入水后,一根露出水面的长度是它的总长度的13,另一根露出水面的长度是它的总长度的15,两根铁棒长度之和为220cm,此时木桶中水的深度是________ cm.15.关于x,y的方程组{3x−5y=2a2x+7y=a−18,有下列三种说法:其中说法正确的有________.(填序号)①当a=8时,x,y互为相反数;②x,y都是负整数的解只有1组;③ {x=21y=−3是该方程组的解.16.声音在空气中的传播速度v(m/s)随温度t(℃)的变化而变化,且v=at+b(a,b是常数).若当t=10时,v=336;当t=20时,v=342.则当v=324时,t=________.17.“众志成城,抗击疫情”,帅童到药店购买了两种物品,分别是单价为20元一盒的医用口罩和单价为10元一瓶的75%酒精,共花50元,则帅童购买的口罩盒数是________18.小慧带着妈妈给的现金去蛋糕店买蛋糕。

(名师整理)最新数学中考《一元二次方程的解法》专题复习精讲精练

(名师整理)最新数学中考《一元二次方程的解法》专题复习精讲精练

例题解析
练习 已知关于x的一元二次方程(a﹣1) x2﹣2x+a2﹣1=0有一个根为x=0,则a的值为 () A.0 B.±1 C.1 D.﹣1 【解答】解:∵关于x的一元二次方程(a﹣1) x2﹣2x+a2﹣1=0有一个根为x=0, ∴a2﹣1=0,a﹣1≠0, 则a的值为:a=﹣1. 故选:D.
③令每个因式等于0,得到两个一元一次方程,然后解这个一 元一次方程,求这个方程的解
课前热身
1 解下列方程 (1)2x2=8; (2)x2﹣x﹣6=0.
【考点】解一元二次方程﹣直接开平方法;解一元二次方程 ﹣因式分解法. 【解答】解:(1)x2=4, x=±2, 所以x1=2,x2=﹣2; (2)(x﹣3)(x+2)=0, x﹣3=0或x+2=0, 所以x1=3,x2=﹣2.
知识点点解读
3 公式法
用求根公式解一元二次方程的方法,它是解一元二次方程的一
般方法
- b b2 - 4ac
一元二次方程ax²+bx+c=0的求根公式2a :x=
公式法的一般步骤
①指出方程中a,b,c的值
②求出b²-4ac的值
③若b²-4ac≥0.则用求根公式求解,若b²-4ac<0,则方程无解
4 因式分解法 一般步骤:①使方程的右边化为0 ②使方程左边化为两个一次 因式的积
【解答】A.
课前热身
4.方程(m-1)x2+mx+1=0为关于x的一元二次方程则m的值 为( ) A 任何实数 B m≠0 C m≠1 D m≠0 且m≠1 答案 C
课前热身
5.关于x的方程中一定是一元二次方程的是 ( ) A ax2+bx+c=0 B mx2+x-m2=0 C (m+1)x2=(m+1)2 D (m2+1) x2-m2=0 答案 D

北师大版数学初三上册利用一元二次方程解决几何问题同步课时练习题及解析

北师大版数学初三上册利用一元二次方程解决几何问题同步课时练习题及解析

北师大版数学初三上册22.6.1 利用一元二次方程解决几何问题同步课时练习题1. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一边长为x米,则依照题意可列出关于x的方程为( ) A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=62. 公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长.设原正方形空地的边长为x m,则可列方程为( )A.(x+1)(x+2)=18 B.x2-3x+16=0C.(x-1)(x-2)=18 D.x2+3x+16=03. 如图,AB⊥BC,AB=10 cm,BC=8 cm,一只蝉从C沿CB的方向以每秒1 cm的速度爬行,蝉开始爬行的同时,一只螳螂由A点沿AB方向以每秒2 cm的速度爬行,当螳螂和蝉爬行x秒后,它们分别到达了M,N的位置,现在△MNB的面积恰好为24 cm2,由题意可列方程( ) A.2x·x=24 B.(10-2x)(8-x)=24C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=484. 小明把一张边长为10 cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(如图).假如那个无盖的长方体底面积为81 cm2,那么剪去的正方形边长为( )A.2 cm B.1 cm C.0.5 cm D.0.5 cm或9.5 cm5. 一块矩形菜地的面积是120 cm2,假如它的长减少2 cm,那么菜地就变成正方形,则原菜地的长是____cm.6. 已知小明与小亮两人在同一地点,若小明向北直走160 m,再向东直走80 m,可到购物中心,则小亮向西直走____m后,他与购物中心的距离为340 m.7. 现有一块长80 cm,宽60 cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1 500 cm2的无盖的长方体盒子,依照题意列方程,化简可得______________________________.8. 如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P 从A点开始沿AB边向点B以1 cm/s的速度移动,点Q从B点开始沿BC 边向点C以2 cm/s的速度移动,则点P,Q分别从点A,B同时动身,通过_______秒钟,使△PBQ的面积等于8 cm2.9. 已知菱形的周长为40,两对角线之比为3∶4,则两对角线的长分别为________________.10. 如图,用两段等长的铁丝恰好能够分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17)cm,正六边形的边长为(x2+2x)c m(其中x>0).求这两段铁丝的总长.11. 为响应市委市政府提出的建设“绿色都市”的号召,我市某单位预备将院内一块长30 m,宽20 m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地点种植花草.如图所示,要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)12. 如图,两艘船同时从A点动身,一艘船以15海里/时的速度向东北方向航行,另一艘船以20海里/时的速度向东南方向航行,那么几小时后两船正好相距100海里?13. 如图,要建筑一个四边形花圃ABCD,要求AD边靠墙,CD⊥AD,AD∥BC,AB∶CD=5∶4,且三边的总长为20 m.设AB的长为5x m.(1)要求AD的长;(用含字母x的式子表示)(2)若该花圃的面积为50 m2,且周长不大于30 m,求AB的长.14. 要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.小亮设计的方案如图①所示,甬路宽度均为x m,剩余的四块绿地面积共2300 m2.小颖设计的方案如图②所示,BC=HE=x,AB∥CD,HG∥EF,AB ⊥EF,∠1=60°.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)15. 某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(如图所示).由于地势限制,三级污水处理池的长、宽都不能超过1 6米.假如池的外围墙的建筑单价为每米400元,中间两条隔墙的建筑单价为每米300元,池底的建筑单价为每平方米80元(墙的厚度忽略不计).当三级污水处理池的总造价为47 200元时,求池长x.16. 小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道摸索题,进行了认真地探究.【摸索题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,假如梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将小明对“摸索题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,得方程___________________,解方程,得x1=____,x2=_________ _____,∴点B将向外移动____米.(2)解完“摸索题”后,小聪提出了如下两个问题:【问题一】在“摸索题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?什么缘故?【问题二】在“摸索题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?什么缘故?请你解答小聪提出的这两个问题.参考答案:1---4 BCDC5. 126. 2207. x2-70x +825=08. 2或49. 12和1610. 解:∵用两段等长的铁丝恰好能够分别围成一个正五边形和一个正六边形,∴5(x2+17)=6(x2+2x),整理,得x2+12x -85=0,(x +6)2=121,解得x1=5,x2=-17(不合题意,舍去).5×(52+17)×2=420(c m).答:这两段铁丝的总长为420 cm11. 解:设小道进出口的宽度为x 米,依题意得(30-2x)(20-x)=532.整理,得x2-35x +34=0.解得x1=1,x2=34.∴34>30(不合题意,舍去),∴x =1.答:小道进出口的宽度应为1米12. 解:设x 小时后两船相距100海里,依照题意,得(15x)2+(20x)2=1002,解得x1=4,x2=-4(舍去).答:4小时后两船相距100海里13. (1)作BH ⊥AD 于点H ,则AH =3x ,由BC =DH =20-9x 得AD =20-6x(2)由2(20-9x)+3x +9x ≤30得x ≥53,由12[(20-9x)+(20-6x)]×4x =50得3x2-8x +5=0,∴x1=53,x2=1(舍去),∴5x =253.答:AB 的长为253m14. (1)依照小亮的设计方案列方程得(52-x)(48-x)=2 300,解得x1=2,x2=98(舍去),∴小亮设计方案中甬路的宽度为2 m(2)易证四边形ADCB 为平行四边形,由(1)得x =2,∴BC =HE =2=A D ,过点A 作AI ⊥CD 于点I ,则ID =12AD =1,∴AI =3,∴小颖设计方案中四块绿地的总面积=52×48-52×2-48×2+(3)2=2 299(m2)15. (2x +200x ×2)·400+200x ×2×300+200×80=47 200,整理得x2-39x +350=0,解得x1=25(舍去),x2=1416. (1) (x +0.7)2+22=2.52 0.8 -2.2(舍去) 0.8(2) 【问题一】可不能是0.9米.若AA1=BB1=0.9,则A1C =2.4-0.9=1.5,B1C =0.7+0.9=1.6, 1.52+1.62=4.81,2.52=6.25,∵A1C2+B1C2≠A1B12,∴该题的答案可不能是0.9米 【问题二】有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有(x+0.7)2+(2.4-x) 2=2.52,解得x=1.7或x=0(舍去).∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等。

初中数学重点梳理:一元二次方程

初中数学重点梳理:一元二次方程

一元二次方程知识定位一元二次方程是数学竞赛中经常出现的一些特殊形式的方程中的一种。

要熟练掌握一元二次方程的定义及定理以及解法和根的判别。

同时一元二次方程的实际应用题,本节我们通过一些实例的求解,旨在介绍数学竞赛中一元二次方程相关问题的常见题型及其求解方法。

本讲将通过例题来说明这些方法的运用。

知识梳理1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。

2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法)①2(0)x a a =≥ 解为:x a =②2()(0)x a b b +=≥ 解为:x a b +=③2()(0)ax b c c +=≥ 解为:ax b c +=±④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0ax bx a b x ax b +=≠⇔+=此类方程适合用提供因此,而且其中一个根为0290(3)(3)0x x x -=⇔+-= 230(3)0x x x x -=⇔-= 3(21)5(21)0(35)(21)0x x x x x ---=⇔--=22694(3)4x x x -+=⇔-= 2241290(23)0x x x -+=⇔-=24120(6)(2)0x x x x --=⇔-+= 225120(23)(4)0x x x x +-=⇔-+=(3)配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+= 示例:22233310()()1022x x x -+=⇔--+=②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:22220 (0)()0 ()()022b b bax bx c a a x x c a x a c a a a++=≠++=⇒-⇒++= 222224()()2424b b b b aca x c x a a a a -⇒+=-⇒+=示例:22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-= (4)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b acx a a -+=①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,24b b acx -±-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=- ③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根。

一元二次方程及答案

一元二次方程及答案

22.1 一元二次方程(1)班级 姓名 座号 月 日主要内容:一元二次方程有关概念及一元二次方程一般式一、课堂练习:1.在下列方程中,一元二次方程的个数是( )①2370x +=, ②20ax bx c ++=, ③2(2)(5)1x x x -+=-, ④2530x x-=. A.1个 B.2个 C.3个 D.4个2.(课本32页)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项:(1)2514x x -= (2)2481x =(3)4(2)25x x += (4)(32)(1)83x x x -+=-3.(课本32页)根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个矩形的长比宽多2,面积是100,求矩形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ;(4)一个直角三角形的斜边长10,两条直角边相差2,求较长的直角边长x .二、课后作业:1.2230px x p q -+-=是关于x 的一元二次方程,则( )A.p =1B.p >0C.p ≠0D.p 为任意实数2.(课本34页)将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数及常数项:(1)2316x x += (2)24581x x +=(3)(5)0x x += (4)(22)(1)0x x --=(5)(5)510x x x +=- (6)(32)(1)(21)x x x x -+=-3.(课本34页)根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.282m ,求半径.( 3.14π≈) (2)一个直角三角形的两条直角边相差3cm ,面积是92cm ,求较长的直角边的长.(3)一个矩形的长比宽多1cm ,对角线长5 cm ,矩形的长和宽各是多少? (4)有一根1m 长的铁丝,怎样用它围成一个面积为0.062m 的矩形?(5)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?三、新课预习:1.下列各数中,是方程(1)2x x -=根的有 .-4, -3, -2, -1, 0, 1, 2, 3.2.写一个以-2为根的一元二次方程: .3.方程2810x -=的两个根是1x = ,2x = .参考答案一、课堂练习:1.在下列方程中,一元二次方程的个数是( A )①2370x +=, ②20ax bx c ++=, ③2(2)(5)1x x x -+=-, ④2530x x-=. A.1个 B.2个 C.3个 D.4个2.(课本32页)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项:(1)2514x x -= (2)2481x =解:移项,得一元二次方程的一般形式 25410x x --= 其中二次项系数为5,一次项系数为-4, 常数项为-1 解:移项,得一元二次方程的一般形式24810x -=其中二次项系数为4,一次项系数为0, 常数项为-81(3)4(2)25x x += (4)(32)(1)83x x x -+=-解:去括号,得24825x x += 移项,得一元二次方程的一般形式 248250x x +-= 其中二次项系数为4,一次项系数为8, 常数项为-25 解:去括号,得2332283x x x x +--=-. 移项,合并同类项,得一元二次方程的 一般形式 23710x x -+=其中二次项系数为3,一次项系数为-7, 常数项为13.(课本32页)根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个矩形的长比宽多2,面积是100,求矩形的长x ;解:列方程,得2425x =移项,得一元二次方程的一般形式 24250x -= 解:列方程,得(2)100x x -= 去括号,得22100x x -=移项,得一元二次方程的一般形式221000x x --=(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ; 解:列方程,得21(1)x x ⨯=- 去括号,得212x x x =-+ 移项,合并同类项,得一元二次方程的 一般形式2310x x -+= (4)一个直角三角形的斜边长10,两条直角边相差2,求较长的直角边长x .解:列方程,得22(2)100x x +-=去括号,得2244100x x x +-+= 移项,合并同类项,得224960x x --= 化简,得一元二次方程的一般形式22480x x --=二、课后作业:1.2230px x p q -+-=是关于x 的一元二次方程,则( C )A.p =1B.p >0C.p ≠0D.p 为任意实数2.(课本34页)将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数及常数项:(1)2316x x += (2)24581x x +=解:移项,得一元二次方程的一般形式 23610x x -+= 其中二次项系数为3,一次项系数为-6, 常数项为1 解:移项,得一元二次方程的一般形式 245810x x +-=其中二次项系数为4,一次项系数为5, 常数项为-81(3)(5)0x x += (4)(22)(1)0x x --=解:去括号,得一元二次方程的一般形式 250x x += 其中二次项系数为1,一次项系数为5, 常数项为0 解:化简,得一元二次方程的一般形式 2210x x -+=其中二次项系数为1,一次项系数为-2, 常数项为1(5)(5)510x x x +=- (6)(32)(1)(21)x x x x -+=-解:去括号,得25510x x x +=- 移项,合并同类项,得一元二次方程的 一般形式2100x += 其中二次项系数为1,一次项系数为0, 常数项为10 解:去括号,得2233222x x x x x +--=- 移项,合并同类项,得一元二次方程的一般形式2220x x +-=其中二次项系数为1,一次项系数为2, 常数项为-23.(课本34页)根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.282m ,求半径.( 3.14π≈) (2)一个直角三角形的两条直角边相差3cm ,面积是92cm ,求较长的直角边的长. 解:设圆的半径为x m ,由题意,得 23.14 6.28x = 化简,得一元二次方程的一般形式220x -=解:设较长的直角边的长为xcm ,由题意,得 1(3)92x x -= 化简,得一元二次方程的一般形式 23180x x --=(3)一个矩形的长比宽多1cm ,对角线长5 cm ,矩形的长和宽各是多少? (4)有一根1m 长的铁丝,怎样用它围成一个面积为0.062m 的矩形?解:设矩形的宽为x cm ,由题意,得 222(1)5x x ++=化简,得一元二次方程的一般形式2120x x +-=解:设矩形的长为x m ,由题意,得(0.5)0.06x x -= 化简,得一元二次方程的一般形式 20.50.060x x -+= (5)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?解:设有x 人参加聚会,由题意,得1(1)102x x -= 化简,得一元二次方程的一般形式2200x x --=三、新课预习:1.下列各数中,是方程(1)2x x -=根的有 -1,2 .-4, -3, -2, -1, 0, 1, 2, 3.2.写一个以-2为根的一元二次方程:220x x +-= (答案不唯一).3.方程2810x -=的两个根是1x = 9 ,2x = -9 .。

一元二次方程的解法综合练习题及答案

一元二次方程的解法综合练习题及答案
一元二次方程阶段复习
一元二次方程之概念
.在下列方程中,一元二次方程的个数是( ). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 A.1 个 B.2 个 C.3 个 D.4 个
一元二次方程之根的判别
一、选择题 1.一元二次方程 x2-ax+1=0 的两实数根相等,则 a 的值为( ). A.a=0 B.a=2 或 a=-2 C.a=2 D.a=2 或 a=0 2.已知 k≠1,一元二次方程(k-1)x2+kx+1=0 有根,则 k 的取值范围是( ). A.k≠2 B.k>2 C.k<2 且 k≠1 D.k 为一切实数
A、 1 -x2+5=0 x
B、x(x+1)=x2-3 C、3x2+y-1=0
3x 1 5
10、方程 x2-8x+5=0 的左边配成完全平方式后所得的方程是( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

中考数学复习之一元二次方程与应用题,概念与应用练习题

中考数学复习之一元二次方程与应用题,概念与应用练习题

9. 一元二次方程知识过关1. 一元二次方程的概念及一般形式:只含有一个未知数,未知数的高最次数是2的___方程.一元二次方程的一般开式是_______________2. 一元二次方程的解的概念:使一元二次方程左右两边相等的未知数的值是一元二次方程的根.3. 一元二次方程的解法:(1)直接开平方法:c b ax a x =+=22)(、(2)配方法:(3)公式法:aac b b x 2422,1-±-= (4)因式分解法:4.一元二次方程根的判别式:__________叫做一元二次方程02=++c bx ax 的根的判别式,用“∆”表示.(1))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(2))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(3))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(4))0(00≠=++⇔>∆a c bx ax 有两个________实数根.5.列一元二次方程解应用题的一般步骤审题—设_____列出一元二次方程—解一元二次方程—检验—写出答案6. 应用题中常见的数量关系(1) 平均增长率、降低率问题若基数为a ,平均增长率为x ,则一次增长后的值为a (1+x ),两次增长后的值为a (1+x )2(2) 利润问题利润=售价-______;利润率=%100⨯-进价进价售价 打折后的价格=原价⨯打折数×101 (3) 利息问题利息=本金利率期数本息和=本金+利息=本金(1+利率⨯期数)利息税=利息⨯____贷款利息=贷款数额⨯____⨯期数(4) 面积问题、传染病问题、握手问题、面积问题等.考点分类考点1 一元二次方程的相关概念例1 (1)下列方程中是关于x 的一元二次方程是( )A. 0122=+xx B.02=++c bx ax C.1)2)(1(=+-x x D.052322=--y xy x(2) 关于x 的一元二次方程01||)1(2=-++-a x x a 的一个根为0,则实数a 的值为( )A. -1B.0C.1D.-1或1考点2 一元二次方程的解法例2 (1)方程1)2)(1(+=-+x x x 的解是( )A.2B.3C.-1,2D.-1,3(2)解方程:0142=+-x x考点3 一元二次方程的判别式例3 已知关于x 的一元二次方程012)1(2=+--x x a 有两个不相等的实数根,则a 的取值范围是( )A. a <2B.a >2C.a <2且a ≠1D.a <-2考点4 一元二次方程的应用例4 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建立力度,2018年市政府共投资了2亿人民币建设了廉租房8万平方米,预计到2020年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2020年底共建设了多少万平方米的廉租房.真题演练1.设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣60402.有两个人患了流感,每轮传染中平均一个人传染了x个人,则两轮传染后患流感的人数共有()A.x(x+2)人B.(x+1)2人C.(x+2)2人D.2(x+1)2人3.若m,n是方程2x2﹣4x﹣3=0的两个根,则2m2﹣5m﹣n的值为()A.9B.1C.﹣1D.54.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4 5.如果关于x的方程x2﹣x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m≥−14B.m<−14C.m>−14D.m≤−146.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③7.若一个等腰三角形的一边为4,另外两边为x2﹣12x+m=0的两根,则m的值为()A.32B.36C.32或36D.不存在8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3569.某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x 元,可列方程为 .10.如图,在△ABC 中,AB =3cm ,BC =6cm ,AC =5cm ,蚂蚁甲从点A 出发,以2.5cm /s 的速度沿着三角形的边按A →B →C →A 的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm /s 的速度沿着三角形的边按A →C →B →A 的方向行走,那么甲出发 s 后,甲乙第一次相距2.5cm .10. 由于新冠疫情的影响,口罩需求量急剧上升,但在有关部门大力调控下,口罩价格没有上涨.经调查发现,某社区药店把口罩定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.如果该药店想一天获得315元口罩销售额,并且尽可能让顾客获得更大的优惠,应该降价多少元?课后作业1.下列一元二次方程中,两实数根之和为2的是( )A .x 2+2x +1=0B .x 2﹣2=0C .﹣x 2+2x ﹣3=0D .12x 2﹣x −32=02.设a ,b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2022B .2018C .﹣2018D .20223.关于x的一元二次方程x2﹣4x+1=2k有两个不相等的实数根,则k的取值范围为()A.k>32B.k>1C.k<1D.k>−324.方程x(x﹣1)=x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=1 5.如图,在一个长为60m,宽为40m的矩形场地内修筑两条等宽的道路,剩余部分为绿化用地,如果绿化用地的面积为2204m2,那么道路的宽为m.6.某水果店以相同的进价购进两批车厘子,第一批80千克,每斤16元出售;第二批60千克,每斤18运出售,两批车厘子全部售完,店主共获利960元.(1)求车厘子的进价是每千克多少元?(2)该水果店一相同的进价购进第三批车厘子若干,第一天将车厘子涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批车厘子,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时车厘子售完,店主销售第三批车厘子获得的利润为850元,求第二天车厘子的售价是每千克多少元?7.已知k为实数,关于x的方程为x2﹣kx=3(k+3).(1)请证明不论k取何值,这个方程总有两个实数根;(2)若方程的两个根分别记为x1,x2,且满足x12+x22=9,求k值.冲击A+已知,在菱形ABCD中,∠BCD=60°,将边CD绕点C顺时针旋转α(0<α<120°),得到线段CE,连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1,若α=20°,直接写出∠E与∠CFE的度数;(2)如图2,若60°<α<120°.求证:EF﹣DF=CF;(3)如图3,若AB=6,点G为AF的中点,连接BG,则DC旋转过程中,BG的最大值为.。

【人教版】九上数学:《一元二次方程》课文练习及答案

【人教版】九上数学:《一元二次方程》课文练习及答案

第二十一章一元二次方程21.1一元二次方程1.下列方程中是关于x的一元二次方程的是()A.x2+1x2=1 B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=02.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2C.m=-2 D.m≠±23.将方程3x(x-1)=5(x+2)化为一元二次方程的一般式,正确的是()A.4x2-4x+5=0 B.3x2-8x-10=0C.4x2+4x-5=0 D.3x2+8x+10=04.若关于x的一元二次方程(m-3)x2+2x+m2-9=0的常数项为0,则m的值为() A.3 B.-3 C.±3 D.±95.已知关于x的方程x2+3mx+m2=0的一个根是x=1,那么m2+3m=______.6.方程(k2-1)x2+(k-1)x+2k-1=0,(1)当k______时,方程为一元二次方程;(2)当k______时,方程为一元一次方程.7.写出下列一元二次方程的二次项系数、一次项系数及常数项.一元二次方程二次项系数一次项系数常数项x2-3x+4=04x2+3x-2=03x2-5=06x2-x=08.设未知数列出方程,将方程化成一般形式后,指出二次项系数,一次项系数和常数项:一个矩形的面积是50平方厘米,长比宽多5厘米,求这个矩形的长和宽.9.已知关于x的方程x2-mx+1=0的一个根为1,求m2-6m+9+1-2m+m2的值.10.已知a 是方程x 2-2011x +1=0的一个根,求a 2-2010a +2011a 2+1的值.21.2 解一元二次方程 第1课时 配方法、公式法1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( ) A .4,13 B .-4,19 C .-4,13 D .4,193.方程x 2-x -2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程: (1)x 2+5x -1=0; (2)2x 2-4x -1=0; (3)2x 2+1=3x .7.用公式法解下列方程:(1)x2-6x-2=0;(2)4y2+4y-1=-10-8y.8.阅读下面的材料并解答后面的问题:小力:能求出x2+4x+3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x2+4x+3=x2+4x+4-4+3=(x2+4x+4)+(-4+3)=(x+2)2-1,而(x+2)2≥0,所以x2+4x+3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x2-8x+5的最小值?如果能,写出你的求解过程.9.已知关于x的一元二次方程x2-mx-2=0.(1)若x=-1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.10.已知关于x的方程x2-2x-2n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n<5,且方程的两个实数根都是整数,求n的值.第2课时因式分解法1.方程x2+2x=0的根是()A.x=0 B.x=-2C.x1=0,x2=-2 C.x1=x2=-22.一元二次方程(x-3)(x-5)=0的两根分别为()A.3,-5 B.-3,-5C.-3,5 D.3,53.用因式分解法把方程5y(y-3)=3-y分解成两个一次方程,正确的是() A.y-3=0,5y-1=0B.5y=0,y-3=0C.5y+1=0,y-3=0D.3-y=0,5y=04.解一元二次方程x2-x-12=0,正确的是()A.x1=-4,x2=3B.x1=4,x2=-3C.x1=-4,x2=-3D.x1=4,x2=35.(2011年四川南充)方程(x+1)(x-2)=x+1的解是()A.2 B.3C.-1,2 D.-1,36.用因式分解法解方程3x(x-1)=2-2x时,可把方程分解成______________.7.已知[(m+n)2-1][(m+n)2+3]=0,则m+n=___________.8.(2012年广东珠海)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.9.关于x 的一元二次方程x 2+bx +c =0的两根为x 1=1,x 2=2,则x 2+bx +c 分解因式的结果为________.10.用换元法解分式方程x -1x -3x x -1+1=0时,如果设x -1x =y ,将原方程化为关于y的整式方程,那么这个整式方程是( )A .y 2+y -3=0B .y 2-3y +1=0C .3y 2-y +1=0D .3y 2-y -1=011.阅读题例,解答下题: 例:解方程x 2-|x -1|-1=0.解:(1)当x -1≥0,即x ≥1时,x 2-(x -1)-1=x 2-x =0. 解得x 1=0(不合题设,舍去),x 2=1.(2)当x -1<0,即x <1时,x 2+(x -1)-1=x 2+x -2=0. 解得x 1=1(不合题设,舍去),x 2=-2. 综上所述,原方程的解是x =1或x =-2. 依照上例解法,解方程x 2+2|x +2|-4=0. *第3课时 一元二次方程的根与系数的关系1.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1+x 2的值是( ) A .1 B .5 C .-5 D .62.设方程x 2-4x -1=0的两个根为x 1与x 2,则x 1x 2的值是( ) A .-4 B .-1 C .1 D .0 3.两个实数根的和为2的一元二次方程可能是( ) A .x 2+2x -3=0 B .2x 2-2x +3=0 C .x 2+2x +3=0 D .x 2-2x -3=04.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为______.5.已知一元二次方程x 2-6x -5=0的两根为a ,b ,则1a +1b的值是________.6.求下列方程两根的和与两根的积: (1)3x 2-x =3; (2)3x 2-2x =x +3.7.已知一元二次方程x 2-2x +m =0. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且x 1+3x 2=3,求m 的值.8.点(α,β)在反比例函数y =kx的图象上,其中α,β是方程x 2-2x -8=0的两根,则k=__________9.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________.10.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.21.3 实际问题与一元二次方程1.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的( )A .8.5%B .9%C .9.5%D .10% 2.用13 m 的铁丝网围成一个长边靠墙面积为20 m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程( )A .x (13-x )=20B .x ·13-x2=20C .x (13-12x )=20 D .x ·13-2x 2=203.(2012年广东湛江)湛江市2009年平均房价为每平方米4000元,连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .5500(1+x )2=4000B .5500(1-x )2=4000C .4000(1-x )2=5500D .4000(1+x )2=55004.将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货( )A .400个B .200个C .400个或200个D .600个5.三个连续正偶数,其中两个较小的数的平方和等于第三个数的平方,则这三个数是( )A .-2,0,2B .6,8,10C .2,4,6D .3,4,56.读诗词解题(通过列方程,算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流人物. 而立之年督东吴,早逝英才两位数. 十位恰小个位三,个位平方与寿符. 哪位学子算得快,多少年华属周瑜. 周瑜去世时 ________岁.7.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000 kg,2009年平均每公顷产9680 kg ,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x . (1)用含x 的代数式表示:①2008年种的水稻平均每公顷的产量为__________________; ②2009年种的水稻平均每公顷的产量为__________________; (2)根据题意,列出相应方程________________; (3)解这个方程,得________________;(4)检验:_________________________________________________________________; (5)答:该村水稻每公顷产量的年平均增长率为____________%.8.如图21-3-2,有一长方形的地,长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的面积为3200平方米,试求x的值.图21-3-29.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润增加2元,但一天产量减少4件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.10.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?第二十一章 一元二次方程 21.1 一元二次方程 【课后巩固提升】 1.C 2.B 3.B4.B 解析:m 2-9=0,且m -3≠0,解得m =-3. 5.-1 6.(1)≠±1 (2)=-1 解析:当所给方程为一元二次方程时,k 2-1≠0,即k ≠±1;当所给方程为一元一次方程时,需满足k 2-1=0且k -1≠0,即k =-1.7.解:8.所列方程为x (x -5)=50.整理后,得一般形式:x 2-5x -50=0.二次项系数为1,一次项系数为-5,常数项为-50. 解法二:设宽为x 厘米,则长为(x +5)厘米, 所列方程为x (x +5)=50.整理后,得一般形式:x 2+5x -50=0.二次项系数为1,一次项系数为5,常数项为-50.9.解:把x =1代入方程x 2-mx +1=0中,得1-m +1=0,所以m =2,故m 2-6m +9+1-2m +m 2=(m -3)2+(1-m )2=|2-3|+|1-2|=2.10.解:a 是方程x 2-2011x +1=0的一个根, 则a 2-2011a +1=0,所以a 2+1=2011a ,a 2=2011a -1.a 2-2010a +2011a 2+1=2011a -1-2010a +20112011a=a -1+1a =a 2-a +1a =2011a -aa =2010.21.2 解一元二次方程第1课时 配方法、公式法 【课后巩固提升】 1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292.∴x 1=29-52,x 2=-29-52.(2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12.配方,得x 2-2x +1=32,(x -1)2=32.∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2, ∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0. ∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32.8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11, ∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根, 所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2. 所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0, a =1,b =-2,c =-2n , ∴Δ=b 2-4ac =4+8n >0.解得n >-12.(2)由原方程,得(x -1)2=2n +1. ∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5, ∴0<2n +1<11,且2n +1是完全平方形式. ∴2n +1=1,2n +1=4或2n +1=9. 解得,n =0,n =1.5或n =4. 第2课时 因式分解法 【课后巩固提升】 1.C 2.D 3.C 4.B 5.D 6.(x -1)(3x +2)=07.±1 解析:∵[(m +n )2-1][(m +n )2+3]=0,∴(m +n )2=1或(m +n )2=-3.又∵(m +n )2≥0,∴(m +n )2=1,即m +n =±1.8.解:(1)当m =3时,b 2-4ac =22-4×1×3=-8<0,∴原方程没有实数根.(2)当m =-3时,x 2+2x -3=0,(x +3)(x -1)=0.∴x 1=-3,x 2=1.9.(x -1)(x -2)10.A 解析:由题意可将方程化为y -3y+1=0,两边同乘以y ,得y 2+y -3=0. 11.解:①当x +2≥0,即x ≥-2时,x 2+2(x +2)-4=0,x 2+2x =0,解得x 1=0,x 2=-2;②当x +2<0,即x <-2时,x 2-2(x +2)-4=0,x 2-2x -8=0,解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去).综上所述,原方程的解是x =0或x =-2.*第3课时 一元二次方程的根与系数的关系【课后巩固提升】1.B 2.B 3.D 4.25.-65解析:∵a ,b 是一元二次方程的两根, ∴a +b =6,ab =-5.1a +1b =a +b ab =-65. 6.解:(1)原方程化为一般形式为3x 2-x -3=0.所以x 1+x 2=--13=13,x 1x 2=-33=-1. (2)原方程化为一般形式为3x 2-3x -3=0,即x 2-x -1=0.所以x 1+x 2=--11=1,x 1x 2=-11=-1. 7.解:(1)∵方程x 2-2x +m =0有两个实数根,∴Δ=(-2)2-4m ≥0.解得m ≤1.(2)由两根关系可知,x 1+x 2=2,x 1·x 2=m .解方程组121223 3.x x x x ⎧⎨⎩+=,+=解得123,21.2x x ⎧⎪⎪⎨⎪⎪⎩== ∴m =x 1·x 2=34. 8.-89.10 解析:x 1+x 2=-6,x 1x 2=3, x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=10. 10.解:(1)由方程有两个实数根,可得Δ=b 2-4ac =4(k -1)2-4k 2=4k 2-8k +4-4k 2=-8k +4≥0.解得k ≤12. (2)依据题意,可得x 1+x 2=2(k -1).由(1)可知k ≤12, ∴2(k -1)<0,x 1+x 2<0.∴|x 1+x 2|=-x 1-x 2=x 1·x 2-1.∴-2(k -1)=k 2-1.解得k 1=1(舍去),k 2=-3.∴k 的值是-3.21.3 实际问题与一元二次方程【课后巩固提升】1.D 解析:设每次降低x ,则100(1-x )2=81,解得x =10%.2.B 3.D 4.C 5.B6.36 解析:设周瑜去世时的年龄的个位数字为x ,则十位数字为x -3. 依题意,得x 2=10(x -3)+x ,即x 2-11x +30=0.解得x 1=5,x 2=6.当x =5时,十位数字是2,即是25,与“而立之年督东吴”不符,故舍去; 当x =6时,其年龄为36.即周瑜去世时36岁.7.解:(1)①8000(1+x )②8000(1+x )(1+x )=8000(1+x )2(2)8000(1+x )2=9680(3)x 1=0.1,x 2=-2.1(4)x 1=0.1,x 2=-2.1都是原方程的根,但x 2=-2.1不符合题意,所以只取x =0.1.(5)108.解:根据题意,得(x -120)[120-(x -120)]=3200,即x 2-360x +32 000=0.解得x 1=200,x 2=160.答:x 的值为200或160.9.解:(1)由题意,得y =[10+2(x -1)][76-4(x -1)].整理,得y =-8x 2+128x +640.(2)由题意,得-8x 2+128x +640=1080.x 2-16x +55=0,解得x 1=5,x 2=11(舍去).即当一天的利润为1080元时,生产的是第5档次的产品.10.解:(1)设平均每次下调的百分率为x .5000×(1-x )2=4050.(1-x )2=0.81,解得1-x =0.9或1-x =-0.9(不合题意,舍去).∵1-x =0.9,∴x =0.1=10%.答:平均每次下调的百分率为10%.(2)方案一的总费用为:100×4050×9.810=396 900(元); 方案二的总费用为:100×4050-2×12×1.5×100=401 400(元). ∴方案一优惠.。

一元二次方程课后辅导

一元二次方程课后辅导

一元二次方程课后辅导一、概念:方程定义;根的定义。

例1、当k 为何值时,关于方程()()011122=+-+-x k x k 是二元一次方程;是一元一次方程?例2、已知关于x 的方程02=++a bx x 有一个根是a -(0≠a ),则b a -的值是 。

反思:1、02=++c bx ax 中,0≠a ;2、根满足方程---代入方程---进行转化(用分解因式、整体代入等方法)二、解法1、直接开平方法适用于()为未知数x d cx b ax p p b ax p p x ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+=+≥=+≥=2222)()()0()()0(; 2、配方法适用于所有一元二次方程; 3、公式法适用于所有一元二次方程;4、因式分解法适用于方程右边为0,左边可以因式分解的两个一元一次方程; ▲十字相乘法适用于右边是0,左边是可因式分解的二次三项式的一元二次方程。

一、一元一次方程解法之2、3、4及其▲十字相乘法 例1、用直接开平方法解方程:()27132=-x例2、用配方法解方程 :()04,0022≥-≠=++ac b a c bx ax 例3、用公式法解方程:1222+=-x x x例4、用因式分解法解方程:()()()2221+=+-x x x 例▲ 十字相乘法解方程:0542=--x x反思:记住类型,选择方法----首选考虑直接开平方法和因式分解法,▲也可考虑用十字相乘法。

一、根的判别式三、根的判别式当 042≥-ac b 时,关于x 方程有实数根;反之,也成立。

◆ 即042≥-ac b ⇔关于x 方程有实数根。

当⎩⎨⎧≥-≠0402ac b a 时,一元二次方程有两个实数根;反之,也成立 ◆ 即⎩⎨⎧≥-≠0402ac b a ⇔一元二次方程有两个实数根。

当⎩⎨⎧>-≠0402ac b a 时,一元二次方程有两个不相等的实数根;反之,也成立。

◆ 即⎩⎨⎧>-≠0402ac b a ⇔一元二次方程有两个不相等的实数根。

人教版九年级上册数学课后基础练习:21.1一元二次方程(包含答案)

人教版九年级上册数学课后基础练习:21.1一元二次方程(包含答案)

21.1一元二次方程一、填空题1.(2019·资阳)a 是方程224x x =+的一个根,则代数式242a a -的值是_______.2.关于x 的方程(m-1)x 2+(m+1)x+3m-1=0,当m_________时,是一元一次方程;当m_________时,是一元二次方程.3.(2018·南充)若2n (n≠0)是关于x 的方程x 2﹣2mx+2n=0的根,则m ﹣n 的值为______. 4.一元二次方程290x -=的解是__ .5.(2019·湖南中考模拟)在等腰ABC ∆中,A B C ∠∠∠、、的对边分别为a b c 、、,已知3,a b =和c 是关于x 的方程21202x mx m ++-=的两个实数根,则ABC ∆的周长是__________. 6.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.7.若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,则m 的值是__________.8.已知x =2是关于x 的一元二次方程20x bx c +-=的一个根,则b 与c 的关系是__________.(请用含b 的代数式表示c )9.当m __________时,关于x 的方程()2220m x x -+-=是一元二次方程.二、单选题10.下列方程中,是一元二次方程的是( )A .213x +=B .22x y +=C .2324x x +=D .211x x+= 11.已知关于x 的方程(a 2-1)x 2+(1-a )x+a-2=0,下列结论正确的是( )A .当a≠±1时,原方程是一元二次方程。

B .当a≠1时,原方程是一元二次方程。

C .当a≠-1时,原方程是一元二次方程。

D .原方程是一元二次方程。

12.(2019·遂宁)已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-13.(2019·兰州)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2- B .3- C .4 D .6-14.若关于x 的方程()2230m x mx -+-=是一元二次方程,则m 的取值范围是( )A .2m ≠B .2m =C .2m >D .0m ≠15.已知n 是方程2210x x --=的一个根,则2367n n --=( )A .10-B .7-C .6-D .4-三、解答题16.如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.17.(2019·湖北中考模拟)已知关于x 的方程x 2﹣2kx+k 2﹣k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1﹣3x 2=2,求k 的值.18.关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?19.已知一元二次方程ax 2+bx+c=0(a≠0).(1)若a+b+c=0,则此方程必有一根为 ;(2)若a-b+c=0,则此方程必有一根为 ;(3)若4a-2b+c=0,则此方程必有一根为 .参考答案1.82.=1 ≠13.124.x 1=3,x 2=﹣3.5.375或7 6.3 −2 -47.48.42c b =+9.2≠10.C 11.A 12.D 13.A 14.A 15.D16.917.解(1)△=(﹣2k )2﹣4(k 2﹣k ﹣1)=4k+4>0,∴k >﹣1;(2)∵1212322x x x x k -=⎧⎨+=⎩, ∴1231212k x k x +⎧=⎪⎪⎨-⎪=⎪⎩, ∵x 1•x 2=k 2﹣k ﹣1, ∴14(3k+1)(k ﹣1)=k 2﹣k ﹣1,∴k 1=3,k 2=﹣1,∵k >﹣1,∴k =3.18.解关于x 的方程(2m 2+m )x m+1+3x=6是一元二次方程,理由如下: 21220m m m +=+≠⎧⎨⎩ ,解得m=1,m=1时,关于x 的方程(2m 2+m )x m+1+3x=6是一元二次方程19.解:对于一元二次方程ax 2+bx+c=0(a≠0),(1)当a+b+c=0时,x=1;(2)当a-b-c=0时,x=-1;(3)当4a-2b+c=0时,x=-2.。

2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-握手 贺卡 比赛问题(含答案)

2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-握手 贺卡 比赛问题(含答案)

2020年人教版九年级数学上册课后练习本一元二次方程实际问题-握手贺卡比赛问题一、选择题1.在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x人参加这次聚会,则列出方程正确的是( )A.x(x-1)=10B.x(x-1)=2×10C.x(x+1)=10D. x(x+1)=2×102.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次。

若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253B.x(x-1)=253C.2x(x-1)=253D.x(x-1)=253×23.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x-1)=10B. =10C.x(x+1)=10D. =104.九年级某班在期中考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1190张卡片,设全班有x名学生,根据题意列出方程为( )A.x(x-1)=2×1190B.x(x+1)=2×1190C.x(x+1)=1190D.x(x-1)=11905.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=10356.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出方程是( )A.x(x+1)=182B.x(x-1)=182C.x(x+1)=182×2D.x(x-1)=182×27.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=90二、填空题8.在一次聚会中,每两个参加聚会的人都相互握了一次手,一共握了15次手,则参加本次聚会的共有人.9.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是 .10.一次聚会中每两人都握了一次手,所有人共握手10次,则有____人参加聚会。

初中数学《一元二次方程的解法》十大题型含解析

初中数学《一元二次方程的解法》十大题型含解析

一元二次方程的解法【十大题型】【题型1直接开平方法解一元二次方程】【题型2配方法解一元二次方程】【题型3公式法解一元二次方程】【题型4因式分解法解一元二次方程】【题型5十字相乘法解一元二次方程】【题型6用适当方法解一元二次方程】【题型7用指定方法解一元二次方程】【题型8用换元法解一元二次方程】【题型9解含绝对值的一元二次方程】【题型10配方法的应用】知识点1:直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1直接开平方法解一元二次方程】1(23-24九年级上·广东深圳·期中)将方程(2x-1)2=9的两边同时开平方,得2x-1=,即2x-1=或2x-1=,所以x1=,x2=.【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可【详解】∵(2x-1)2=9∴2x-1=±3∴2x-1=3,2x-1=-3∴x1=2,x2=-1【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键2(23-24九年级上·贵州遵义·阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为()A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A )移项可得x 2=-9,故选项A 无解;(B )-2x 2=0,即x 2=0,故选项B 有解;(C )移项可得x 2=3,故选项C 有解;(D )x -2 2=0,故选项D 有解;故选A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.3(23-24九年级上·陕西渭南·阶段练习)如果关于x 的一元二次方程x -5 2=m -7可以用直接开平方求解,则m 的取值范围是.【答案】m ≥7【分析】根据平方的非负性得出不等式,求出不等式的解集即可.【详解】解:∵方程x -5 2=m -7可以用直接开平方求解,∴m -7≥0,解得:m ≥7,故答案为:m ≥7.【点睛】本题考查了解一元二次方程和解一元一次不等式,能得出关于m 的不程是解此题的关键.4(23-24九年级上·河南南阳·阶段练习)小明在解一元二次方程时,发现有这样一种解法:如:解方程x x +4 =6.解:原方程可变形,得:x +2 -2 x +2 +2 =6.x +2 2-22=6,x +2 2=10.直接开平方并整理,得.x 1=-2+10,x 2=-2-10.我们称小明这种解法为“平均数法”(1)下面是小明用“平均数法”解方程x +5 x +9 =5时写的解题过程.解:原方程可变形,得:x +a -b x +a +b =5.x +a 2-b 2=5,∴x +a 2=5+b 2.直接开平方并整理,得.x 1=c ,x 2=d .上述过程中的a 、b 、c 、d 表示的数分别为______,______,______,______.(2)请用“平均数法”解方程:x -5 x +7 =12.【答案】(1)7,2,-4,-10.(2)x 1=-1+43,x 2=-1-43.【分析】(1)仿照平均数法可把原方程化为x +7 -2 x +7 +2 =5,可得x +7 2=9,再解方程即可;(2)仿照平均数法可把原方程化为x +1 -6 x +1 +6 =12,可得x +1 2=48,再解方程即可;【详解】(1)解:∵x +5 x +9 =5,∴x +7 -2 x +7 +2 =5,∴x +7 2-4=5,∴x +7 2=9,∴x +7=3或x +7=-3,解得:x 1=-4,x 2=-10.∴上述过程中的a 、b 、c 、d 表示的数分别为7,2,-4,-10.(2)∵x -5 x +7 =12,∴x +1 -6 x +1 +6 =12,∴x +1 2-36=12,∴x +1 2=48,∴x +1=43,x +1=-43,解得:x 1=-1+43,x 2=-1-43.【点睛】本题考查的是一元二次方程的解法,新定义运算的含义,理解平均数法结合直接开平方法解一元二次方程是解本题的关键.知识点2配方法解一元二次方程将一元二次方程配成(x +m )2=n 的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】1(23-24九年级上·广东深圳·期中)用配方法解方程,补全解答过程.3x 2-52=12x .解:两边同除以3,得______________________________.移项,得x 2-16x =56.配方,得_________________________________,即x -112 2=121144.两边开平方,得__________________,即x -112=1112,或x -112=-1112.所以x 1=1,x 2=-56.【答案】x 2-56=16x x 2-16x +112 2=56+112 2 x -112=±1112【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】3x 2-52=12x .解:两边同除以3,得x 2-56=16x .移项,得x 2-16x =56.配方,得x2-16x+1122=56+112 2,即x-1 122=121144.两边开平方,得x-112=±1112,即x-112=1112,或x-112=-1112.所以x1=1,x2=-5 6.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.2(23-24九年级下·广西百色·期中)用配方法解方程x2-6x-1=0时,配方结果正确的是()A.x-32=9 B.x-32=10 C.x+32=8 D.x-32=8【答案】B【分析】此题考查了配方法求解一元二次方程,解题的关键是掌握配方法求解一元二次方程的步骤.根据配方法的步骤,求解即可.【详解】解:x2-6x-1=0移项得:x2-6x=1配方得:x2-6x+9=1+9即x-32=10故选:B3(24-25九年级上·全国·假期作业)用配方法解方程:x2+2mx-m2=0.【答案】x1=-m+2m,x2=-m-2m【分析】本题考查了解一元二次方程--配方法.先移项,再进行配方,最后开方即可得.【详解】解:移项得x2+2mx=m2,配方得x2+2mx+m2=m2+m2,即x+m2=2m2,所以原方程的解为:x1=-m+2m,x2=-m-2m.4(2024·贵州黔东南·一模)下面是小明用配方法解一元二次方程2x2+4x-8=0的过程,请认真阅读并完成相应的任务.解:移项,得2x2+4x=8第一步二次项系数化为1,得x2+2x=4第二步配方,得x+22=8第三步由此可得x+2=±22第四步所以,x1=-2+22,x2=-2-22第五步①小明同学的解答过程,从第步开始出现错误;②请写出你认为正确的解答过程.【答案】①第三步;②详见解析【分析】本题主要考查了解一元二次方程,熟练掌握配方法,先将方程2x2+4x-8=0变为x2+2x=4,然后配方为x+12=8,再开平方即可.【详解】解:①小明同学的解答过程,从第三步开始出现错误;②2x2+4x-8=0,移项,得2x2+4x=8,二次项系数化为1,得x2+2x=4,配方,得x+12=5,由此可得x+1=±5,所以,x1=-1+5,x2=-1-5.知识点3公式法解一元二次方程当b2-4ac≥0时,方程ax2+bx+c=0(a≠0)通过配方,其实数根可写为x=-b±b2-4ac2a的形式,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】1(23-24九年级上·山西大同·阶段练习)用公式法解关于x的一元二次方程,得x= -6±62-4×4×12×4,则该一元二次方程是.【答案】4x2+6x+1=0【分析】根据公式法的公式x=-b±b2-4ac2a,可得方程的各项系数,即可解答.【详解】解:∵x=-b±b2-4ac2a=-6±62-4×4×12×4,∴a=4,b=6,c=1,从而得到一元二次方程为4x2+6x+1=0,故答案为:4x2+6x+1=0.【点睛】本题考查了用公式法解一元二次方程,熟记公式是解题的关键.2(23-24九年级上·广东深圳·期中)用公式法解一元二次方程:x-23x-5=0.解:方程化为3x2-11x+10=0.a=3,b=,c=10.Δ=b 2-4ac =-4×3×10=1>0.方程实数根.x ==,即x 1=,x 2=53.【答案】-11(-11)2有两个不相等的--11 ±12×311±162【分析】根据公式法解一元二次方程的解法步骤求解即.【详解】解:方程化为3x 2-11x +10=0.a =3,b =-11,c =10.Δ=b 2-4ac =-11 2-4×3×10=1>0.方程有两个不相等的实数根.x =--11 ±12×3=11±16,即x 1=2,x 2=53.故答案为:-11;(-11)2;有两个不相等的;--11 ±12×3;11±16;2.【点睛】本题考查公式法解一元二次方程,熟练掌握公式法解一元二次方程的解法步骤是解答的关键.3(23-24九年级上·河南三门峡·期中)用公式法解方程-ax 2+bx -c =0 (a ≠0),下列代入公式正确的是()A.x =-b ±b 2-4a ×(-c )2×(-a ) B.x =b ±b 2-4ac2a C.x =b ±b 2-4a ×(-c )2×(-a ) D.x =-b ±b 2-4ac2a【答案】B【分析】先将方程进行化简,然后根据一元二次方程的求根公式,即可做出判断.【详解】解:方程-ax 2+bx -c =0 (a ≠0)可化为ax 2-bx +c =0由求根公式可得:x =-(-b )±(-b )2-4ac 2a =b ±b 2-4ac 2a 故选:B【点睛】本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.4(23-24九年级上·广东深圳·期中)用求根公式法解得某方程ax 2+bx +c =0(a ≠0)的两个根互为相反数,则()A.b =0B.c =0C.b 2-4ac =0D.b +c =0【答案】A【分析】根据求根公式法求得一元二次方程的两个根x 1、x 2,由题意得x 1+x 2=0,可求出b =0.【详解】∵方程ax2+bx+c=0(a≠0)有两根,∴Δ=b2-4ac≥0且a≠0.求根公式得到方程的根为x=-b±b2-4ac2a,两根互为相反数,所以x1+x2=0,即-b+b2-4ac2a+-b-b2-4ac2a=0,解得b=0.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.知识点4因式分解法解一元二次方程当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】1(23-24九年级下·安徽亳州·期中)关于x的一元二次方程x x-2=2-x的根是()A.-1B.0C.1和2D.-1和2【答案】D【分析】本题主要考查了解一元二次方程,先移项,然后利用因式分解法解方程即可得到答案.【详解】解:∵x x-2=2-x,∴x x-2+x-2=0,∴x+1x-2=0,∴x+1=0或x-2=0,解得x=-1或x=2,故选:D.2(23-24九年级上·陕西榆林·阶段练习)以下是某同学解方程x2-3x=-2x+6的过程:解:方程两边因式分解,得x x-3=-2x-3,①方程两边同除以x-3,得x=-2,②∴原方程的解为x=-2.③(1)上面的运算过程第______步出现了错误.(2)请你写出正确的解答过程.【答案】(1)②(2)过程见解析【分析】(1)根据等式的性质作答即可;(2)先移项,然后用因式分解法求解.【详解】(1)解:∵x-3可能为0,∴不能除以x-3,∴第②步出现了错误故答案为②.(2)解:方程两边因式分解,得x x-3=-2x-3,移项,得x x-3+2x-3=0,∴x-3x+2=0,∴x1=3,x2=-2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3(23-24九年级下·安徽安庆·期中)对于实数m,n,定义运算“※”:m※n=m2-2n,例如:2※3=22 -2×3=-2.若x※5x=0,则方程的根为()A.都为10B.都为0C.0或10D.5或-5【答案】C【分析】本题考查的知识点是新定义运算、解一元二次方程,解题关键是理解题意.现根据新定义运算得出一元二次方程,再求解即可.【详解】解:根据定义运算m※n=m2-2n可得,x※5x=0即为x2-5x·2=0,即x x-10=0,∴x1=0,x2=10,则方程的根为0或10.故选:C.4(13-14九年级·浙江·课后作业)利用因式分解求解方程(1)4y2=3y;(2)(2x+3)(2x-3)-x(2x+3)=0.【答案】(1)y1=0,y2=34;(2)x1=-32,x2=3【分析】(1)利用移项、提公因式法因式分解求出方程的根;(2)利用提公因式法分解因式求出方程的根.【详解】(1)4y2=3y;4y2-3y=0y(4y-3)=0y=0或4y-3=0∴y1=0,y2=34,故答案为:y1=0,y2=3 4;(2)(2x+3)(2x-3)-x(2x+3)=0(2x+3)(x-3)=02x+3=0或x-3=0 x1=-32,x2=3,故答案为:x1=-32,x2=3.【点睛】本题考查利用因式分解解方程,关键是防止丢掉方程的根.例如:解方程4y2=3y时,给方程两边同除以y,解得y=34,而丢掉y=0的情况.【题型5十字相乘法解一元二次方程】1(23-24九年级下·广西百色·期中)以下是解一元二次方程ax2+bx+c=0(a≠0)的一种方法:二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2排列为:然后按斜线交叉相乘,再相加,得到a1c2+a2c1,若此时满足a1c2+a2c1=b,那么ax2+bx+c=0(a≠0)就可以因式分解为(a1x +c1)(a2x+c2)=0,这种方法叫做“十字相乘法”.那么6x2-11x-10=0按照“十字相乘法”可因式分解为()A.(x-2)(6x+5)=0B.(2x+2)(3x-5)=0C.(x-5)(6x+2)=0D.(2x-5)(3x+2)=0【答案】D【分析】根据“十字相乘法”分解因式得出6x2-11x-10=(2x-5)(3x+2)即可.【详解】∵∴6x2-11x-10=2x-53x+2=0.故选:D.【点睛】本题主要考查了利用因式分解法解一元二次方程以及十字相乘法分解因式,正确分解常数项是解题关键.2(23-24九年级上·江西上饶·期末)试用十字相乘法解下列方程(1)x2+5x+4=0;(2)x2+3x-10=0.【答案】(1)x1=-4,x2=-1;(2)x1=2,x2=-5.【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案.【详解】(1)解:x2+5x+4=0x+4=0x+1x+4=0或x+1=0∴x1=-4,x2=-1;(2)解:x2+3x-10=0x+5=0x-2x+5=0或x-2=0∴x1=2,x2=-5.3(23-24九年级下·广西梧州·期中)解关于x的方程x2-7mx+12m2=0得()A.x1=-3m,x2=4mB.x1=3m,x2=4mC.x1=-3m,x2=-4mD.x1=3m,x2=-4m【答案】B【分析】本题主要考查了解一元二次方程,掌握运用十字相乘法求解即可.直接运用十字相乘法解一元二次方程即可.【详解】解:x2-7mx+12m2=0,x-3mx-4m=0,x-3m=0或x-4m=0,x1=3m,x2=4m.故选B.4(23-24九年级下·重庆·期中)阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x,y的二次三项式ax2+bxy+cy2,如图1,将x2项系数a=a1⋅a2,作为第一列,y2项系数c=c1⋅c2,作为第二列,若a1c2+a2c1恰好等于xy项的系数b,那么ax2+bxy+cy2可直接分解因式为:ax2+bxy+cy2=a1x+c1ya2x+c2y示例1:分解因式:x2+5xy+6y2解:如图2,其中1=1×1,6=2×3,而5=1×3+1×2;∴x2+5xy+6y2=(x+2y)(x+3y);示例2:分解因式:x2-4xy-12y2.解:如图3,其中1=1×1,-12=-6×2,而-4=1×2+1×(-6);∴x2-4xy-12y2=(x-6y)(x+2y);材料二:关于x,y的二次多项式ax2+bxy+cy2+d x+ey+f也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将a=a1a2作为一列,c=c1c2作为第二列,f=f1f2作为第三列,若a1c2+a2c1=b,a1f2+a2f1=d,c1f2+c2f1=e,即第1、2列,第1、3列和第2、3列都满足十字相乘规则,则原式分解因式的结果为:ax2+bxy+cy2+d x+ey+f=a1x+c1y+f1a2x+c2y+f2;示例3:分解因式:x2-4xy+3y2-2x+8y-3.解:如图5,其中1=1×1,3=(-1)×(-3),-3=(-3)×1;满足-4=1×(-3)+1×(-1),-2=1×(-3)+1×1,8=(-3)×(-3)+(-1)×1;∴x2-4xy+3y2-2x+8y-3=(x-y-3)(x-3y+1)请根据上述材料,完成下列问题:(1)分解因式:x2+3x+2=;x2-5xy+6y2+x+2y-20=;(2)若x,y,m均为整数,且关于x,y的二次多项式x2+xy-6y2-2x+my-120可用“十字相乘法”分解为两个一次式的乘积,求出m的值,并求出关于x,y的方程x2+xy-6y2-2x+my-120=-1的整数解.【答案】(1)(x+1)(x+2),(x-3y+5)(x-2y-4);(2)m=54m=-56,x=-1y=4和x=2y=-4【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【详解】解:(1)①1=1×1,2=1×2,3=1×1+1×2,∴原式=(x+1)(x+2);②1=1×1,6=(-2)×(-3),-20=5×(-4)满足(-5)=1×(-2)+1×(-3),1=1×5+1×(-4),2=(-2)×5+(-3)×(-4)∴原式=(x-3y+5)(x-2y-4);(2)①1-35a1c1f11-2-4a2c2f2{a1c2+a2c1=-5a1f22+a2f1=1c1f2+c2f1=2②1-21013-12{a1c2+a2c1=1a1f2+a2f1=-2c1f2+c2f1=m1-2-121310(x-2y+10)(x+3y-12)=x2+xy-6y2-2x+my-120∴m=54(x-2y-12)(x+3y+10)=x2+xy-6y2-2x+my-120∴m=-56当m=54时,(x-2y+10)(x+3y-12)=-1{x-2y+10=1x+3y-12=-1或{x-2y+10=-1x+3y-12=1,x=-75y=245(舍),{x=-1y=4当m=-56时,(x-2y-12)(x+3y+10)=-1{x-2y-12=1x+3y+10=-1或{x-2y=12=1x+3y+10=1,{x=2y=-4或x=695y=25(舍)综上所述,方程x2+xy-6y2-2x+my-120=-1的整数解有{x=-1y=4和{x=2y=-4;方法二:x2+xy+(-6y2)-2x+my-120=(x+3y)(x-2y)-2x+my-12y =(x+3y+a)(x-2y+b)=(x+3y)(x-2y)+(a+b)x+(3b-2a)y+ab {a+b=-2⇒{a=-123b-2a=m ab=-120 b=10或{a=10⇒m=54b=-12m=-56.【点睛】本题考查了因式分解的方法--十字相乘法,弄清题目中的十字相乘的方法是解题关键.【题型6用适当方法解一元二次方程】1(23-24九年级上·江苏宿迁·期末)用适当的方法解下列方程:(1)x2=4x;(2)x-32-4=0;(3)2x2-4x-5=0;(4)x-1x+2=2x+2.【答案】(1)x1=4,x2=0(2)x1=5,x2=1(3)x1=2+142,x2=2-142(4)x1=-2,x2=3【分析】本题考查了一元二次方程的解法,解一元二次方程-因式分解法,公式法,熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)利用解一元二次方程-因式分解法进行计算,即可解答;(3)利用解一元二次方程-公式法进行计算,即可解答;(4)利用解一元二次方程-因式分解法进行计算,即可解答.【详解】(1)解:x2-4x=0x x-4=0,解得x1=4,x2=0(2)解:x-3-2x-3+2=0x-5x-1=0,解得x1=5,x2=1(3)解:∵a=2,b=-4,c=-5∴b2-4ac=-42-4×2×-5=16--40=56∴x=4±562×2=2±142解得x1=2+142,x2=2-142(4)解:x-1x+2-2x+2=0x+2x-1-2=0,x+2x-3=0,∴x+2=0,x-3=0,解得x1=-2,x2=32(23-24九年级上·山西太原·期中)用适当的方法解下列一元二次方程:(1)x2+4x-2=0;(2)x x+3=5x+15.【答案】(1)x1=6-2,x2=-6-2(2)x1=-3,x2=5【分析】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)利用配方法解方程;(2)先移项,再利用提公因式法解方程.【详解】(1)解:移项,得x2+4x=2,配方,得x2+4x+4=2+4,x+22=6,两边开平方,得x+2=±6,所以,x1=6-2,x2=-6-2;(2)解:原方程可变形为:x x+3=5x+3,x x+3-5x+3=0,x+3x-5=0,x+3=0或x-5=0,所以,x1=-3,x2=53(23-24九年级下·山东泰安·期末)用适当的方法解下列方程(1)3x2=54;(2)x+13x-1=1;(3)4x2x+1=32x+1;(4)x2+6x=10.【答案】(1)x1=32,x2=-32(2)x1=-1+73,x2=-1-73(3)x1=-12,x2=34(4)x1=-3+19,x2=-3-19【分析】(1)方程整理后,利用直接开平方法求解即可;(2)方程整理后,利用求根公式法求解即可;(3)方程利用因式分解法求解即可;(4)方程利用配方法求解即可.【详解】(1)解:方程整理得:x2=18,开方得:x=±32,解得:x1=32,x2=-32;(2)解:方程整理得:3x2+2x-2=0,这里a=3,b=2,c=-2,∵△=22-4×3×(-2)=4+24=28>0,∴x=-2±276=-1±73,解得:x1=-1+73,x2=-1-73;(3)解:方程移项得:4x(2x+1)-3(2x+1)=0,分解因式得:(2x+1)(4x-3)=0,所以2x+1=0或4x-3=0,解得:x1=-12,x2=34;(4)解:配方得:x2+6x+9=19,即(x+3)2=19,开方得:x+3=±19,解得:x1=-3+19,x2=-3-19.【点睛】此题考查了解一元二次方程-因式分解法,公式法,直接开平方法,配方法,熟练掌握根据方程的特征选择恰当的解法是解本题的关键.4(23-24九年级上·海南省直辖县级单位·期末)用适当的方法解下列方程.(1)(x+2)2-25=0;(2)x2+4x-5=0;(3)2x2-3x+1=0.【答案】(1)x1=3,x2=-7(2)x1=1,x2=-5(3)x1=12,x2=1【分析】(1)利用平方差公式,可以解答此方程;(2)利用因式分解法解方程即可;(3)利用因式分解法解方程即可.【详解】(1)解:(x+2)2-25=0,(x+2-5)(x+2+5)=0,∴x-3=0或x+7=0,解得x1=3,x2=-7;(2)解:x2+4x-5=0,x-1x+5=0,∴x-1=0或x+5=0,解得x1=1,x2=-5;(3)解:2x2-3x+1=0,2x-1x-1=0,∴2x-1=0或x-1=0,解得x1=12,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【题型7用指定方法解一元二次方程】1(23-24九年级下·山东日照·期末)用指定的方法解下列方程:(1)4(x-1)2-36=0(直接开方法)(2)x2+2x-3=0(配方法)(3)(x+1)(x-2)=4(公式法)(4)2(x+1)-x(x+1)=0(因式分解法)【答案】(1)x1=4,x2=-2;(2)x1=1,x2=-3;(3)x1=3,x2=-2;(4)x1=-1,x2=2.【分析】(1)直接利用开方法进行求解即可得到答案;(2)直接利用配方法进行求解即可得到答案;(3)直接利用公式法进行求解即可得到答案;(4)直接利用因式分解法进行求解即可得到答案;【详解】解:(1)∵4x-12-36=0∴(x-1)2=9,∴x-1=±3,∴x1=4,x2=-2;(2)∵x2+2x=3,∴x2+2x+1=4,∴(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3;(3)∵x2-x-6=0,∴△=1-4×1×(-6)=25,∴x=1±252=1±52,∴x1=3,x2=-2;(4)∵2x+1-x x+1=0∴(x+1)(2-x)=0,∴x+1=0或2-x=0,∴x1=-1,x2=2.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.2(23-24九年级下·山东烟台·期中)用指定的方法解方程:(1)x2-4x-1=0(用配方法)(2)3x2-11x=-9(用公式法)(3)5x-32=x2-9(用因式分解法)(4)2y2+4y=y+2(用适当的方法)【答案】(1)x1=5+2,x2=-5+2(2)x1=11+136,x2=11-136(3)x1=3,x2=92(4)y1=12,y2=-2【分析】本题考查了解一元二次方程,正确掌握相关性质内容是解题的关键.(1)运用配方法解方程,先移项再配方,然后开方即可作答.(2)先化为一般式,再根据Δ=b2-4ac算出,以及代入x=-b±Δ2a进行化简,即可作答.(3)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.(4)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.【详解】(1)解:x2-4x-1=0移项,得x2-4x=1配方,得x 2-4x +4=1+4,即x -2 2=5∴x -2=±5解得x 1=5+2,x 2=-5+2;(2)解:3x 2-11x =-93x 2-11x +9=0Δ=b 2-4ac =121-4×3×9=121-108=13∴x =11±136解得x 1=11+136,x 2=11-136;(3)解:5x -3 2=x 2-95x -3 2-x 2-9 =05x -3 2-x -3 x +3 =0x -3 5x -3 -x +3 =x -3 4x -18 =0则x -3=0,4x -18=0解得x 1=3,x 2=92;(4)解:2y 2+4y =y +22y 2+4y -y +2 =02y y +2 -y +2 =02y -1 y +2 =0∴2y -1=0,y +2=0解得y 1=12,y 2=-2.3(23-24九年级上·新疆乌鲁木齐·期中)用指定的方法解方程:(1)12x 2-2x -5=0(用配方法)(2)x 2=8x +20(用公式法)(3)x -3 2+4x x -3 =0(用因式分解法)(4)x +2 3x -1 =10(用适当的方法)【答案】(1)x 1=2+14,x 2=2-14(2)x 1=10,x 2=-2(3)x 1=3,x 2=0.6(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.【详解】(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=(-8)2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点睛】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.4(23-24九年级上·河北邯郸·期中)按指定的方法解下列方程:(1)x 2=8x +9(配方法);(2)2y 2+7y +3=0(公式法);(3)x +2 2=3x +6(因式分解法).【答案】(1)x 1=9,x 2=-1.(2)x 1=-3,x 2=-12.(3)x 1=-2,x 2=1.【分析】(1)先把方程化为x 2-8x +16=25,可得x -4 2=25,再利用直接开平方法解方程即可;(2)先计算△=72-4×2×3=49-24=25>0,再利用求根公式解方程即可;(3)先移项,再把方程左边分解因式可得x +2 x -1 =0,再化为两个一次方程,再解一次方程即可.【详解】(1)解:x 2=8x +9,移项得:x 2-8x =9,∴x 2-8x +16=25,配方得:x-42=25,∴x-4=5或x-4=-5,解得:x1=9,x2=-1.(2)解:2y2+7y+3=0,∴△=72-4×2×3=49-24=25>0,∴x=-7±254=-7±54,∴x1=-3,x2=-12.(3)解:x+22=3x+6,移项得:x+22-3x+2=0,∴x+2x-1=0,∴x+2=0或x-1=0,解得:x1=-2,x2=1.【点睛】本题考查的是一元二次方程的解法,掌握“配方法,公式法,因式分解法解一元二次方程”是解本题的关键.【题型8用换元法解一元二次方程】1(23-24九年级下·浙江杭州·期中)已知a2+b2a2+b2+2-15=0,求a2+b2的值.【答案】3【分析】先用换元法令a2+b2=x(x>0),再解关于x的一元二次方程即可.【详解】解:令a2+b2=x(x>0),则原等式可化为:x(x+2)-15=0,解得:x1=3,x2=-5,∵x>0,∴x=3,即a2+b2=3.a2+b2的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意a2+b2为非负数是本题的关键.2(23-24九年级下·安徽合肥·期中)关于x的方程x2+x2+2x2+2x-3=0,则x2+x的值是()A.-3B.1C.-3或1D.3或-1【答案】B【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.设x2+x=t,则此方程可化为t2+2t-3=0,然后用因式分解法求解即可.【详解】解:设x2+x=t,则此方程可化为t2+2t-3=0,∴t-1t+3=0,∴t-1=0或t+3=0,解得t1=1,t2=-3,∴x2+x的值是1或-3.∵x2+x=-3,即x2+x+3=0,Δ=12-4×1×3=-11<0方程无解,故x2+x=-3舍去,∴x2+x的值是1,故选:B.3(23-24九年级上·广东江门·期中)若a+5ba+5b+6=7,则a+5b=.【答案】1或-7【分析】本题主要考查解一元二次方程,设a+5b=x,则原方程可变形为x x+6=7,方程变形后运用因式分解法求出x的值即可得到结论.【详解】解:设a+5b=x,则原方程可变形为x x+6=7,整理得,x2+6x-7=0,x-1x+7=0,x-1=0,x+7=0,∴x=1,x=-7,即a+5b=1或-7,故答案为:1或-7.4(23-24九年级上·山东临沂·期中)利用换元法解下列方程:(1)2x4-3x2-2=0;(2)(x2-x)2-5(x2-x)+4=0.【答案】(1)x1=2,x2=-2(2)x1=1+172,x2=1-172,x3=1+52,x4=1-52【分析】(1)根据换元思想,设y=x2,则y=2或y=-12,由此即可求解;(2)设y=x2-x,则y=4或y=1,由此即可求解.【详解】(1)解:(1)设y=x2,则原方程化为2y2-3y-2=0,∴y=2或y=-12,当y=2时,x2=2,∴x1=2,x2=-2,当y=-12时,x2=-12,此时方程无解,∴原方程的解是x1=2,x2=-2.(2)解:设y=x2-x,则原方程化为y2-5y+4=0,∴y=4或y=1,当y=4时,x2-x=4,∴x1=1+172,x2=1-172,当y=1时,x2-x=1,∴x3=1+52,x4=1-52.∴原方程的解是x1=1+172,x2=1-172,x3=1+52,x4=1-52.【点睛】本题主要考查换元思想解高次方程,掌握我一元二次方程的解法是解题的关键.【题型9解含绝对值的一元二次方程】1(23-24九年级上·陕西榆林·阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2-3|x|-10=0.解:分两种情况:①当x≥0时,原方程化为x2-3x-10=0解得x1=5,x2=-2(舍去);②当x<0时,原方程化为x2+3x-10=0,解得x3=-5,x4=2(舍去).综上所述,原方程的解是x1=5,x2=-5.请参照上述方法解方程x2-|x+1|-1=0.【答案】x1=2,x2=-1【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当x+1≥0,即x≥-1时,原方程化为x2-x+1-1=0,解得x1=2,x2=-1;②当x+1<0,即x<-1时,原方程化为x2+x+1-1=0,解得x3=0(舍去),x4=-1(舍去).综上所述,原方程的解是x1=2,x2=-1.【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.2(23-24九年级上·内蒙古赤峰·期中)解方程x2+2|x+2|-4=0.【答案】x1=0,x2=-2【分析】对x+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合x的取值范围最终确定答案即可.【详解】解:①当x+2≥0,即x≥-2时,方程变形得:x2+2(x+2)-4=0∴x2+2x=0∴x(x+2)=0∴x1=0,x2=-2;②当x+2<0,即x<-2时,方程变形得:x2-2(x+2)-4=0∴x2-2x-8=0∴(x+2)(x-4)=0∴x1=-2(舍去),x2=4(舍去)∴综上所述,原方程的解是x1=0或x2=-2.【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.3(23-24九年级下·安徽滁州·阶段练习)解方程x2-22x+3+9=0.【答案】x1=1,x2=3【分析】分x≥-32与x<-32,化简绝对值得到一元二次方程,解一元二次方程即可求解.【详解】当2x+1≥0,即x≥-32时,原方程可化为:x2-2(2x+3)+9=0整理得:x2-4x+3=0解得:x1=1,x2=3当2x+1<0,即x<-32时,原方程可化为:x2+2(2x+3)+9=0整理得x2+4x+15=0∵Δ=42-4×1×15=-44<0,∴此方程无实数解,综上所述,原方程的解为:x1=1,x2=3【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.4(23-24九年级上·山西太原·阶段练习)解方程x2-|x-5|-2=0【答案】x1=-1+292,x2=-1-292【分析】根据题意分x-5≥0和x-5<0两种情况,分别解方程即可.【详解】解:①当x-5≥0时,即x≥5时,原方程化为x2-x+5-2=0,即x2-x+3=0,a=1,b=-1,c=3,∴Δ=b2-4ac=-12-4×1×3=-11<0,∴原方程无解,②当x-5<0时,即x<5时,原方程化为x2+x-5-2=0,即x2+x-7=0,a=1,b=1,c=-7,∴Δ=b2-4ac=12-4×1×-7=29>0x=-1±292×1解得:x1=-1+292,x2=-1-292.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【题型10配方法的应用】1(23-24九年级上·河北沧州·期中)【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵y+22≥0,∴y+22+4≥4∴当y =-2时,y 2+4y +8的最小值是4.(1)【类比探究】求代数式x 2-6x +12的最小值;(2)【举一反三】若y =-x 2-2x 当x =________时,y 有最________值(填“大”或“小”),这个值是________;(3)【灵活运用】已知x 2-4x +y 2+2y +5=0,则x +y =________;(4)【拓展应用】如图某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为15m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,栅栏的总长度为24m .当BF 为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)3(2)-1;大;1(3)1(4)当BF =4m ,矩形养殖场的总面积最大,最大值为48m 2.【分析】本题主要考查了配方法的应用,熟练掌握配方法是解题的关键:(1)把原式利用配方法变形为x -3 2+3,再仿照题意求解即可;(2)把原式利用配方法变形为-x +1 2+1,再仿照题意求解即可;(3)把原式利用配方法变形为x -2 2+y +1 2=0,再利用非负数的性质求解即可;(4)设BF =xm ,则CF =2BF =2xm ,则BC =3xm ,进而求出AB =24-3x 3m ,则S 矩形ABCD =3x ⋅24-3x 3=-3x -4 2+48,据此可得答案.【详解】(1)解:x 2-6x +12=x 2-6x +9 +3=x -3 2+3,∵x -3 2≥0,∴x -3 2+3≥3,∴当x =3时,x 2-6x +12的最小值为3;(2)解:y =-x 2-2x=-x 2-2x -1+1=-x+12+1,∵x+12≥0,∴-x+12≤0,∴-x+12+1≤1,∴当x=-1时,y=-x2-2x有最大值,最大值为1,故答案为:-1;大;1;(3)解:∵x2-4x+y2+2y+5=0,∴x2-4x+4+y2+2y+1=0,∴x-22+y+12=0,∵x-22≥0,y+12≥0,∴x-22=y+12=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1;(4)解:设BF=xm,则CF=2BF=2xm,∴BC=3xm,∴AB=24-3x3m,∴S矩形ABCD =3x⋅24-3x3=-3x2+24x=-3x-42+48,∵x-42≥0,∴-3x-42≤0,∴-3x-42+48≤48,∵AD=BC=3x≤15,∴0<x≤5,∴当x=4时,S矩形ABCD最大,最大值为48,∴当BF=4m,矩形养殖场的总面积最大,最大值为48m2.2(2023·河北石家庄·一模)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B-A的最大值是0B.B-A的最小值是-1C.当B=2A时,x为正数D.当B=2A时,x为负数【答案】B【分析】利用配方法表示出B-A,以及B=2A时,用含n的式子表示出x,确定x的符号,进行判断即可.【详解】解:∵A=x2+6x+n2,B=2x2+4x+n2,∴B-A=2x2+4x+n2-x2+6x+n2=2x2+4x+n2-x2-6x-n2=x2-2x=x-12-1;∴当x=1时,B-A有最小值-1;当B=2A时,即:2x2+4x+n2=2x2+6x+n2,∴2x2+4x+n2=2x2+12x+2n2,∴-8x=n2≥0,∴x≤0,即x是非正数;故选项A,C,D错误,选项B正确;故选B.【点睛】本题考查整式加减运算,配方法的应用.熟练掌握合并同类项,以及配方法,是解题的关键.3(23-24九年级上·四川攀枝花·期中)已知三角形的三条边为a,b,c,且满足a2-10a+b2-16b+89= 0,则这个三角形的最大边c的取值范围是()A.c>8B.5<c<8C.8<c<13D.5<c<13【答案】C【分析】先利用配方法对含a的式子和含有b的式子配方,再根据偶次方的非负性可得出a和b的值,然后根据三角形的三边关系可得答案.【详解】解:∵a2-10a+b2-16b+89=0,∴(a2-10a+25)+(b2-16b+64)=0,∴(a-5)2+(b-8)2=0,∵(a-5)2≥0,(b-8)2≥0,∴a-5=0,b-8=0,∴a=5,b=8.∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.4(23-24九年级下·浙江宁波·期中)我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例如:已知x可取任何实数,试求二次三项式x2+2x+3的最小值.解:x2+2x+3=x2+2x+1+2=(x+1)2+2;∵无论x取何实数,都有(x+1)2≥0,∴(x+1)2+2≥2,即x2+2x+3的最小值为2.【尝试应用】(1)请直接写出2x2+4x+10的最小值______;【拓展应用】(2)试说明:无论x取何实数,二次根式x2+x+2都有意义;【创新应用】(3)如图,在四边形ABCD中,AC⊥BD,若AC+BD=10,求四边形ABCD的面积最大值.【答案】(1)8;(2)见解析;(3)25 2【分析】(1)利用配方法把2x2+4x+10变形为2(x+1)2+8,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到x2+x+2=x+122+74,则可判断x2+x+2>0,然后根据二次根式有意义的条件可判断无论x取何实数,二次根式x2+x+2都有意义;(3)利用三角形面积公式得到四边形ABCD的面积=12⋅AC⋅BD,由于BD=10-AC,则四边形ABCD的面积=12⋅AC⋅10-AC,利用配方法得到四边形ABCD的面积=-12(AC-5)2+252,然后根据非负数的性质解决问题.【详解】解:(1)2x2+4x+10=2x2+2x+10=2x2+2x+1-1+10=2(x+1)2+8,∵无论x取何实数,都有2(x+1)2≥0,∴(x+1)2+8≥8,即x2+2x+3的最小值为8;故答案为:8;(2)x2+x+2=x+122+74,∵x+122≥0,∴x2+x+2>0,∴无论x取何实数,二次根式x2+x+2都有意义;(3)∵AC⊥BD,。

一元二次方程教案(教案)一元二次方程的解法

一元二次方程教案(教案)一元二次方程的解法

一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。

一、教学目标(一)知识目标1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。

四、知识考点运用配方法解一元二次方程。

五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=&plusmn;&radic;a。

实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。

通过问题吸引学生的注意力,引发学生思考。

问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。

这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=&plusmn;5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。

专题06利用一元二次方程解决实际问题课后训练教师版

专题06利用一元二次方程解决实际问题课后训练教师版

专题06 利用一元二次方程解决实际问题【典型例题】1.(2020·全国初三单元测试)某商场在销售一种糖果时发现,如果以20元/kg 的单价销售,则每天可售出100kg ,如果销售单价每增加0.5元,则第天销售量会减少2kg .该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg ,依题意可列方程为( )A .()()2010021800x x +-=B .()22010018000.5x x ⎛⎫+-= ⎪⎝⎭C .20100218000.5x x -⎛⎫-⨯= ⎪⎝⎭ D .()1002201800x x ⎡⎤--=⎣⎦【答案】C2.(2020·陕西碑林西北工业大学附属中学期末)如图,要在一块长20米、宽15米的矩形地面上,修建了三条宽度相等的道路(其中两条路与宽平行,一条路与长平行).若要使剩余部分的面积为208平方米,则道路的宽为_____米.【答案】23.(2019·哈尔滨市萧红中学初三开学考试)某商场销售一批A 型衬衫,平均每天可售出20件,每件赢利40元,为了增加盈利并尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天赢利1200元,每件衬衫应降价多少元?(2)在(1)的定价情况下,衬衫的成本是100元,为了更快的盈利和清理库存,商店选择一种领带与A 型衬衫成套出售,领带按照标价的8折出售,领带标价是其进价的2倍,要使每套的利润率不低于40%,则选择的领带的成本至少多少钱?【答案】(1)设每件衬衫应降价x元,则每天多销售2x件,由题意,得(40﹣x)(20+2x)=1200,解得:x1=20,x2=10,∵要增加盈利并尽快减少库存,∴每件衬衫应降价20元;(2)设选择的领带的成本为y元,由题意,得(40﹣20)+(0.8×2y﹣y)≥(100+y)×40%,解得y≥100.答:选择的领带的成本至少100元.【专题训练】一、选择题1.(2020·长沙市长郡梅溪湖中学期末)某县开展关于精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.3620(1﹣x)2=4850B.3620(1+x)=4850C.3620(1+2x)=4850D.3620(1+x)2=4850【答案】D2.(2020·山东泗水初三期中)如图,在一幅长80cm,宽50cm的长方形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x2+130x-1400=0B.x2-65x-350=0C.x2-130x-1400=0D.x2+65x-350=0 【答案】D3.(2020·全国初三课时练习)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是( ) A .6 B .8 C .10 D .12 【答案】A4.(2020·贵州印江初三期末)某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价( )A .12元B .10元C .11元D .9元 【答案】B5.(2020·全国初三课时练习)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( )A .(3+x )(4-0.5x )=15B .(x +3)(4+0.5x )=15C .(x +4)(3-0.5x )=15D .(x +1)(4-0.5x )=15 【答案】A6.(2020·全国初三课时练习)学校组织一次乒乓球赛,要求每两队之间都要赛一场.若共赛了28场,则有几个球队参赛?设有x 个球队参赛,则x 满足的关系式为( )A .1(1)282x x +=B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -= 【答案】B 7.(2020·广西南宁三美学校初三学业考试)新华商场销售某种冰箱,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,设每台冰箱的定价为x 元,则x 满足的关系式为( ) A .(x −2500)(8+4×x 50)=5000 B .(2900−x −2500)(8+4×x 50)=5000 C .(x −2500)(8+4×290050x -)=5000 D .(2900−x )(8+4×290050x -)=5000 【答案】C二、填空题8.(2020·青浦区实验中学期中)原价800元的商品,经过两次降价,且每次降价的百分率相同,现售价为578元,则每次降价的百分率为_________%.【答案】159.(2020·全国初三课时练习)有一台电脑中了病毒,经过两轮传染后共有400台电脑中了病毒,那么每轮传染中平均每台传染给_____台电脑.【答案】19.10.(2020·青浦区实验中学期中)乒乓球赛上,男子单打实行单循环比赛(即每个运动员都互相交手一次),共运行45场,设参加比赛的运动员共有x人,可列方程为__________.【答案】(1)45 2x x-=11.(2020·全国初三课时练习)某商场销售一批衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价______元.【答案】2012.(2020·全国初三课时练习)一个两位数,它的数值等于它的个位上的数字的平方的3倍,它的十位数字比个位数字大2.若设个位数字为x,列出求该两位数的方程式为__________.【答案】10(x+2)+x=3x2.13.(2020·全国初三单元测试)如图,EF是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,则AB的长为________米.【答案】1214.(2020·全国初三课时练习)今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有_____人. 【答案】1015.(2020·温州育英国际实验学校月考)如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm 和30cm ,且折成的长方体盒子表面积是950cm 2,此时长方体盒子的体积为_____cm 3.【答案】1500三、解答题16.(2020·四川阿坝初三期末)如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).(1)每个生态园的面积为48平方米,求每个生态园的边长;(2)每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣,解得:1=4x 、2=8x (不合题意,舍去), ∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米. (2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-< ∴原方程无实数根∴每个生态园的面积不能达到108平方米. 故答案为:不能.17.(2020·东北师大附中明珠学校期末)小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?【答案】解:(1)设每月盈利的平均增长率为x ,依题意,得:6000(1+x )2=7260,解得:x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.18.(2020·广东斗门初三一模)某高校有300台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染. (1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,_________轮感染后机房内所有电脑都被感染.【答案】解:(1)每轮感染中平均一台电脑会感染台电脑,第一轮传播过后感染的电脑数为:(1+x )台,第二轮传播过后感染的电脑数为:(1+x )+x (1+x )=(x +1)²台,2x解得x=3或x=-5,其中x=-5舍去,答:每轮感染中平均一台电脑会感染3台电脑;+=(1)16(2) ∵由(1)可知,n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=4时,44=256,n=5时,45=1024,∵256<301<1024,故经过5轮后所有电脑都被感染,答:5轮感染后机房内所有电脑都被感染.19.(2020·山东东平期末)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元. 20.(2020·湖南天心长郡中学期末)甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?【答案】解:(1)设这种商品平均降价率是x,依题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);答:这个降价率为10%;(2)设降价y元,则多销售y÷0.2×10=50y件,根据题意得(40﹣20﹣y)(500+50y)=10000,解得:y=0(舍去)或y=10,答:该商品在原售价的基础上,再降低10元.21.(2020·重庆永川初三三模)每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了52m%,这样一天的利润达到了20000元,求m的值.【答案】(1)设降价x元,依题意,得:(1000×0.8-x)≥600×(1+20%),解得:x≤80.答:最多降价80元,才能使利润率不低于20%.(2)设m%=a,依题意,得:[1000(1+2a)-2400a-600]•50(1+52a)=20000,整理,得:5a2-3a=0,解得:a1=0(舍去),a2=35,∴m%=35,∴m=60.答:m的值为60.。

一元二次方程的应用2B(学生版)

一元二次方程的应用2B(学生版)

学科教师辅导讲义
2.已知三个连续偶数的平方为200,求这三个连续偶数.
【例4】如图,将一块长50厘米,宽40厘米的铁皮剪去四个正方形的角,就可以折成一个长方形的无盖盒子,如果盒子的底面积为600平方厘米,求盒子的高度.
【借题发挥】
如图3-9-5,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使剩下的长方框四周的宽度一样,并且小长方形的面积是原来铁片面积的一半,求这个宽度.
11.某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270
元时,恰好全部租出,在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且未租出
一套设备每月需要支出费用(维护费、管理费等)20元.
(1)设每套设备的月租金为x(元),用含x的代数式表示未租出的设备数(套)以及所有未租设备(套)的支
出费用.
(2)租赁公司的月收益能否达到11040元?此时应该出租多少套机械设备?每套月租金是多少元?请简要说明理由.
(3)租赁公司的月收益能否在11040基础上再提高?为什么?
12.为了迎接2010年的世博会,让上海城市更美化,通过拆迁旧房,植草,
栽树、修建公同等措施,使城市绿地面积不断增加(如图17 -4-4所示)
(1)根据图中所提供的信息,回答下列问题:2007年底的绿地面积为
___________公顷,比2006年底增加了__________公顷;
(2)为满足城市发展的需要,计划到2009年底使城市绿地总面积达到
72.6公顷,试求今明两年绿地面积的年平均增长率.。

2022-2023上海八年级数学上册期末专题复习04 一元二次方程的应用(学生版)

2022-2023上海八年级数学上册期末专题复习04 一元二次方程的应用(学生版)

专题04 一元二次方程的应用【考点剖析】【典例分析】【考点1】二次三项式的分解1、在实数范围内因式分解:2223x xy y --= .2、分解因式:2243x x --= .3.在实数范围内分解因式:=--232x x . 【考点2】增长率问题1.枣庄购物中心某商品两次价格下调后,单价从6元变为4.86元,则两次平均下调的百分率为( ) A .10% B .15% C .5% D .20%2.某企业2020年盈利2000万元,2022年盈利2420万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程______.3.新冠肺炎疫情让餐饮业的外卖变得更加火热,某餐饮店今年元月份外卖赢利3000元,三月份外卖赢利是3630元,若从元月到三月,每月赢利的平均增长率都相同.求每月赢利的平均增长率.【考点3】面积问题1.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?意思是:矩形面积为864平方步,宽比长少12步,问宽和长各几步?设长为x 步,可列方程为( ) A .()12864x x -= B .()12864x x += C .()2212864x x ++= D .()2212864x x +-=2.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.如果设小路宽为m x ,根据题意,所列方程正确的是( )A .(32)(20)540x x ++=B .(32)(20)540x x --=C .(32)(20)540x x +-=D .(32)(20)54x x -+=3.如图某小区要建一个长方形的花园,花园的一边靠墙(墙长18m ),另三边用木栏围成,并留出一个1m 宽的入口,木栏长35m .花园的面积能达到2154m 吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点4】营销问题1.文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话. 小张:该工艺品的进价是每个20元;小李:当销售价为每个36元时,每天可售出150个;当销售价降低3元时,平均每天将能多售出90个. 经理:为了实现平均每天3600元的销售利润,这种工艺品的销售价应降低多少元? 设这种工艺品的销售价每个应降低x 元,由题意可列方程为( ) A .(36)1509036003x x ⎛⎫-+⨯= ⎪⎝⎭B .(3620)(15090)3600x x --+=C .(3620)1509036003x x ⎛⎫--+⨯= ⎪⎝⎭D .(3620)(150390)3600x x --+⨯=2.某水果商场经销一种高档水果,原价每千克50元.若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?3.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过30人,人均旅游费用为200元;如果超过30人,每增加1人,人均旅游费用降低2元,但人均旅游费用不低于100元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社8400元.求该单位这次共有多少人参加旅游?【考点5】传播、握手问题1.某校举行一次羽毛球比赛,每一个球队都和其他球队进行一场比赛,共进行了28场比赛,如果设有x 个球队,根据题意列出方程可以为( ) A .()128x x +=B .()128x x -=C .()1282x x -=⨯D .()2128x x +=2.秋冬季节是流感高发期,有1人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x 个人,则可列方程为( ) A .1121x += B .()21121x+=C .21121x x ++=D .()11121x x x +++=【考点6】其他问题1.某学校组织初三学生到该市某旅游景点举行秋游活动.下面是该校领队与旅行社导游就收费标准的一段对话.领队:学校组团到该景点秋游每人收费是多少?导游:如果正常成年人的人均费用为300元,学生票打八折;而且人数超过100人,还有优惠. 领队:超过100人怎样优惠呢?导游:如果超过100人,每增加10人,人均秋游费用降低6元,但旅行社规定:人均秋游费用不得低于150元.该学校按旅行社的收费标准组团去该景点秋游活动结束后,共支付给旅行社36000元(随队的领队、教师费用除外且人均秋游费用没有达最低费用).请你根据上述信息,求学校这次到该景点参加秋游活动的学生有多少人?2.从盛满30升纯药液的容器中,倒出x 升药液后,用水加满;混合后,第二次又倒出x 升的混合药液,再用水加满,此时容器内的药液浓度为25%,则根据题意所得的方程正确的是( ) A .3023025%x -=⨯B .23013025%30x ⎛⎫-=⨯ ⎪⎝⎭C .303025%30xx --=⨯ D .()23013025%x -=⨯【课后练习】1.在实数范围内分解因式:242x x -+= .2.在实数范围内分解因式:231x x --= .3.在实数范围内因式分解:2x 2﹣2xy ﹣y 2= .4.某区7月份工业生产值达120亿元,7月、8月、9月三个月总产值为450亿元,求8月、9月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程( ) A .()21201450x +=B .()12013450x +=C.()()212011201450x x+++=D.()()212012011201450x x++++=5.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,若设每次倒出液体为Lx,则可列方程为()A.2(1)2863x-=B.2(63)2863x-=C.228(1)63x-=D.228(63)63x-=6.为防控疫情,我们应该做到有“礼”有“距”,于是用“碰肘礼”代替“握手”的问候方式逐渐流行.某次会议上,每两个参会者都相互行了一次“碰肘礼”,经统计共碰肘28次,若设有x人参加这次会议,则可列方程为___________7.某化肥厂5月份生产某种化肥600吨,6月份因部分设备检修,产量比5月份减少了10%.从7月份起产量逐月上升,8月份达到653.4吨.该厂7,8两个月产量的平均月增长率是多少?8.2019年年底以来,湖北省武汉市发现一种新型冠状病毒引起的急性呼吸道传染疾病。

2021-2022学年人教版九年级上册数学《实际问题与一元二次方程》课后练习

2021-2022学年人教版九年级上册数学《实际问题与一元二次方程》课后练习

21.3 实际问题与一元二次方程(课后练习)-人教新版九年级上册数学一.选择题(共10小题)1.某一芯片实现国产化后,经过两次降价,每块芯片单价由188元降为108元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.188(1﹣x2)=108B.108(1+x)2=188C.188(1﹣2x)=108D.188(1﹣x)2=1082.在育红学校开展的课外阅读活动中,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x,根据题意,所列方程正确的是()A.100(1+x)2=121B.100×2(1+x)=121C.100(1+2x)=121D.100(1+x)+100(1+x)2=1213.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A.5B.6C.7D.84.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户,设全市5G用户数年平均增长率为x,根据题意可列方程是()A.2(1+x)3=8.72B.2(1+x)2=8.72C.2(1+x)+2(1+x)2=8.72D.2+2(1+x)+2(1+x)2=8.725.如图,学校课外小组的试验园地的形状是长30米宽15米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为392平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.(30+2x)(15+x)=392B.(30﹣2x)(15﹣x)=392C.(30+x)(15+2x)=392D.(30﹣x)(15﹣2x)=3926.受新冠疫情影响,我国2020年国内生产总值(GDP)比2019年增长了2.3%,是全球唯一保持经济正增长的国家,预计今年2021年比2020年增长6%,若这两年年平均增长率为x,则x满足的关系是()A.2.3%+6%=xB.(1+2.3%)(1+6%)=2(1+x)C.2.3%+6%=2xD.(1+2.3%)(1+6%)=(1+x)27.五•一节日到来之际,班级同学之间相互赠送卡片,假设有n个同学,卡片共有1980张,则根据题意可列的方程为()A.B.n(n﹣1)=1980C.D.n(n+1)=19808.如图,在长为54米、宽为38米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为1800平方米,设道路的宽为x米,则可列方程为()A.(54﹣x)(38﹣x)=1800B.(54﹣x)(38﹣x)+x2=1800C.54×38﹣54x﹣38x=1800D.54x+38x=18009.某商店今年10月份的销售额是2万元,12月份的销售额是2.88万元,从10月份到12月份,该商店销售额平均每月的增长率为()A.44%B.22%C.20%D.10%10.如图,在一个长方形舞台ABCD中铺上一块正方形的地毯,供演出用.已知长方形舞台的面积为30 m2,若正方形的边长为x m,则下列关于x方程正确的是()A.(1.5+x)(1+x)=30B.(1.5﹣x)(1﹣x)=30C.(3+x)(2+x)=30D.x2+2×3=30二.填空题(共8小题)11.某种家电价格受市场购买力影响,连续两次降价,由原来售价5000元降到3200元,则平均每次降价的百分率为.12.据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程.13.如图所示,在建筑工地上,为了支撑一堵墙,用一根长为5m的木材,顶端撑在墙上,底端撑在地面上,BO=4m,现为了增加支撑效果,底端向前移动 1.5m,问:顶端需上移多少米?在这个问题中,设顶端上移x米,则可列方程为.14.一个两位数,个位数字比十位数字的平方大3,而这个两位数字等于其数字之和的3倍,如果这个两位数的十位数字为x,则方程可列为.15.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为cm,则另一条直角边的长为cm.根据题意列方程,得.整理,得.解方程,得x1=,x2=(不合题意,舍去).答:一条直角边的长为cm,则另一条直角边的长为cm.16.一个数的平方恰好等于这个数的相反数,则这个数为.17.有一张长40厘米、宽30厘米的桌面,桌面正中间铺有一块垫布,垫布的面积是桌面的面积的,而桌面四边露出部分宽度相同,如果设四周宽度为x厘米,则所列一元二次方程是.18.两个连续的奇数的积为195,设较小的奇数为x,则依题意可列方程为.三.解答题(共3小题)19.某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.(1)求该商品每次降价的百分率;(2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?20.在丝绸博览会期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸条带.(1)若丝绸条带的面积为650cm2,求丝绸条带的宽度;(2)已知该工艺品的成本是40元/件,如果以单价为100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元时,当日所获利润为22500元.21.为缅怀革命英烈、传承红色基因,在今年“五一”小长假期间,各地游客纷纷来到重庆歌乐山烈士陵园瞻仰革命遗址.据统计,重庆歌乐山烈士陵园4月30日接待游客1.2万人次,5月2日接待游客2.7万人次.(1)求今年4月30日到5月2日,重庆歌乐山烈士陵园接待游客的日平均增长率;(2)由于暴雨天气,重庆歌乐山烈士陵园5月3日接待游客人次比5月2日减少了,5月4日天气放晴,接待游客人次比5月3日增加了6a%,又因假期即将结束,5月5日接待游客人次比5月4日减少了a%,即使这样,5月5日接待游客人次还是比4月30日增加了50%,求a的值.。

一元二次方程的实际运用(传播,变化率,单双循环,面积)

一元二次方程的实际运用(传播,变化率,单双循环,面积)

一元二次方程的实际运用一、本讲内容的教材地位一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位。

其中一元二次方程的应用是初中数学应用问题的重点内容,同时也是难点。

它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用。

本节是一元二次方程的应用,它是研究现实世界数量关系和变化规律的重要数学模型二、教学目标知识与技能:学会利用一元二次方程的知识解决实际问题,将实际问题转化为数学模型。

过程与方法:经历由实际问题转化为一元二次方程的过程,领悟数学建模思想,体会如何寻找实际问题中等量关系来建立一元二次方程。

情感、态度与价值观:通过合作交流进一步感知方程的应用价值,体会方程是刻画现实世界某些问题的一个有效的数学模型。

同时让学生在学习活动中培养合作精神和克服困难的勇气,从而使学生获得成功的体验,建立自信心。

三、重点:培养学生运用一元二次方程分析和解决实际问题的能力,学习数学建模思想。

难点:将同类题对比探究,培养学习分析、鉴别的能力。

四、课时2小时五、教学环节安排(一)复习旧知,导入新课(二)师生合作,探究新知(三)自编自创,提升自我(四)课堂练习,巩固新知(五)归纳总结,知识升华(六)作业设计,延伸拓展六、教学过程(一)、复习旧知,导入新课俗话说:“好的开端是成功的一半”同样,好的引入能帮助学生复习旧知识,并起到激发兴趣的作用。

因此我们用学生已学的知识提出问题:列方程解应用题的一般步骤有几步?哪几步?(二)、师生合作,探究新知1、传播问题传播问题虽学生常见,但数量关系较为抽象,所以从谚语入手,让学生有感性认识:“一传十、十传百、百传千千万”在此基础上以学案为载体出示一下问题:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?设计意图:让学生计算三轮后患流感的人数,使学生认识到传染病的危害性。

体会数学知识应用的价值,提高学生学习数学的兴趣。

问题:1、开始有一人患了流感,第一轮设他传染了x人,则第一轮后,共有个人患了流感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵方程的根为整数,∴5-2k为完全平方数 当k=1时,5-2k=3,k=2时,5-2k=1.∴k=2.
14.(2013· 北京)已知关于x的一元二次方程x2+2x+ 2k-4=0有两个不相等的实数根. (1)求k的取值范围; (2)若k为正整数,且该方程的根都是整数,求k值. 【答案】(1)Δ=4-4(2k-4)=20-8k.
5 ∴k< . 2
(2)∵k为正整数,
5 ∴0<k< 2 ,即k=1或2,x1、2=-1± 5 2k .
2 4 2×3=-2, =(-2)×5-4×3=-22. 按照这 3 5 个 x 1 2x -1 x 1 2 x 3
规定,计算当x2-4x+4=0时 的值___.
7.观察下面的图形,它们是按一定规律排列的,依 15 个图形共有120个 照此规律,第______ .
8.解方程(1)(2013· 滨州)2x2-3x+1=0; (2)(2012· 荷泽)(x+1)(x-1)+2(x+3)=8
得-≤k<且k≠0.
2 m 11.(2014· 贺州)已知关于x的方程x2+(1-m)x+ 4
= 0 . 0有两个不相等的实数根,则m的最大整数值是___ 12.解方程(x-1)2-5(x-1)+4=0时,我们可以将x -1看成一个整体,设x-1=y,则原方程可化为y2- 5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1, 解得x=2;当y=4时,即x-1=4,解得x=5,所以 原方程的解为:x1=2,x2=5.则利用这种方法求得方 程(2x+5)2-4(2x+5)+3=0的解为 ( D ) A.x1=1,x2=3 B.x1=-2,x2=3 C.x1=-3,x2=-1 D.x1=-1,x2=-2
3.(2013· 达州)若方程3x2-6x+m=0有两个不相等的 实数根,则m的取值范围在数轴上表示正确的是 ( B )
4.(2013· 河南)方程(x-2)(x+3)=0的解是 ( A.x=2 B.x=-3 C.x1=-2,x2=3 D.x1=2,x2=-3
D )
5.(2013· 潍坊)已知关于x的方程kx2+(1-k)x-1=0, 下列说法正确的是 ( C ) A.当k=0时,方程无解 B.当k=1时,方程有一个实数解 C.当k=-1时,方程有两个相等的实数解 D.当k≠0时,方程总有两个不相等的实数解 a b 6.阅读材料:对于任何实数,我们规定符号 c d a b 12 ,其意义是 c d =ad-bc.例如: 3 4 =1×4-
x 1 3x 3 13.(2013· 杭州)当x满足条件 1 时,求 1 ( x 4) ( x 4) 3 2 出方程x2-2x-4=0的根.
【答案】2<x<4. 解方程x2-2x-4=0可得
x1 1 5, x2 1 5, x 1 5.
课后练习8
一元二次方程及其应用
A组
第1课时 一元二次方程 (学用P9页)
1.(2014· 菏泽)已知关于x的一元二次方程x2+ax+b =0有一个非零根-b,则a-b的值为 ( A ) A.1 B.-1 C.0 D.-2 2.(2012· 临沂)用配方法解一元二次方程x2-4x=5 时,此方程可变形为 ( D ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9
.
1 【答案】(1)x1= ,x2=1, 2
(2)x1=1,x2=-3.
B组 9.(2013· 台湾)若一元二次方程式a(x-b)2=7的两根
1 1 为 2 2 5 A. 2
7 ,其中a、b为两数,则a+b之值为
9 B. 2
C.3
( B ) D.5
【解析】a(x-b)2=7,
7 x=± +b, a 1 ∴a=4,b= 2 , 9 ∴a+b= . 2
10.(2012· 襄阳)如果关于x的一元二次方程
kx 2k 1x 1 0
2
有两个不相等的要从三方面综合考虑,一是由 “一元二次方程”知k≠0,二是由二次根式的意义知 2k+1≥0,三是由原方程有两个不相等的实数根知
( 2k 1)2 4k 0,
相关文档
最新文档