课时7匀速圆周运动的实例(1)
圆周运动的实例分析
物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动的实例分析
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
高中物理-匀速圆周运动实例总结
25
向心力、向心加速度的求解公式有 哪些?它们的方向分别如何?
向心力
F mr2
方向: 始终指向圆心
m v2 r
m
2 T
2
r
m 2f
2r
向心加速度
a r 2 v2
r
方向: 始终指向圆心
.
26
讨论题:水平面上绕自身轴匀速旋转的圆盘上放置一木块,木块相对圆盘静止, 试分析木块的向心力。
木块受力: 竖直向下的重力 G 竖直向上的支持力 N 水平方向指向圆心的摩擦力 f
(4)
.
16
如图所示,长为L=0.6m的轻杆,轻杆端有一 个质量为2.0kg的小球,在竖直平面内绕O点做圆周 运动,当小球达到最高点的速度分别为3m/s,2m/s时, 求轻杆对小球的作用力的大小和方向?
.
17
有一水平放置的圆盘,
上面放一劲度系数为K的弹簧, 弹簧的一端固定于转轴O上,
OA
另一端拴一质量为m的物体A,
由牛顿第二定律: F合 m a m 2 r
即:m g tan m 2l sin
cos
g
l 2
.
O rF
mg
g
l cos
50
由此可见,缆绳与中心轴的夹角跟“旋转秋千”的 角速度和绳长有关,而与所乘坐人的体重无关,在绳长 一定的情况下,角速度越大则缆绳与中心轴的夹角也越 大。想一想,怎么样求出它的运动周期?
水还有远离圆心r的趋势,水当然不会流出,此
时杯底是有压力,即
FN
mg
m
v2 r
由此可知,v越大,水对
杯子的压力越大。
FN G
表演“水流星”节目的演员,只要保持杯子
匀速圆周运动知识点解析
匀速圆周运动知识点解析1.匀速圆周运动的定义(1)轨迹是圆周的运动叫圆周运动。
(2)质点沿圆周运动,如果在相同时间里通过的弧长相等,这种运动叫匀速圆周运动。
(3)匀速圆周运动是最简单的圆周运动形式,也是最基本的曲线运动之一。
(4)匀速圆周运动是一种理想化的运动形式。
许多物体的运动接近这种运动,具有一定的实际意义。
一般圆周运动,也可以取一段较短的时间(或弧长)看成是匀速圆周运动。
2.周期(1)物体做匀速圆周运动时,运动一周所用的时间。
(2)周期用符号T表示,单位是秒。
(3)周期是反映重复性运动的运动快慢的物理量。
它从另一个角度描述了物体的运动。
3.线速度(1)物体做匀速圆周运动时,通过的弧长s跟通过这段弧长所用时间t的比值,叫运动物体线速度大小。
线速度的方向为圆周上某点的切线方向。
(2)线速度的计算公式:(3)线速度的意义:线速度实质上还是物体某一时刻的瞬时速度,虽然是用弧长和时间的比定义了速度大小,但当时间t趋于零时,弧长和为区别角速度而取名为线速度。
4.角速度转过这些角度所用时间t的比值,叫物体做匀速圆周运动的角速度。
(2)角速度计算公式:(3)角速度单位为:弧度/秒(rad/s)。
(4)角速度是矢量,方向为右手螺旋法则的大拇指的指向。
(5)角速度是描述转动快慢的物理量。
在描述转动效果时,它比用线速度描述更具有代表性。
5.向心加速度(1)匀速圆周运动的加速度方向匀速圆周运动的速度大小不变,速度的方向时刻在变,由于速度方向的变化,质点一定具有加速度,该加速度反映速度方向变化的快慢,该加速度的方向沿着半径指向圆心。
设质点沿半径是r的圆周做匀速圆周运动,在某时刻它处于A点,速度是vA,经过很短时间Δt后,运动到B点,速度为vB。
根据矢量合成的三角形法则可知,矢量vA与Δv之和等于vB,所以Δv是质点在A点时的加速度。
如图4-20。
时Δv便垂直于vA。
而vA是圆的切线,故Δv是指向圆心的。
即A点加速度指向圆心,所以匀速圆周运动的加速度又叫向心加速度。
匀速圆周运动实例分析
v2 正确理解公式 F向 = m 中 , 提 供 的 F提 r
与需要的向心力F需之间的关系。对于匀速 圆周运动的试题, 一定要分析需要的向心 力与提供的向心力,这样才不能弄错。
(2)汽车在水平路面上转弯:由摩擦力
提供向心力。类似:单车、摩托车在水平 面上转弯。
(3)旋转的磨盘上的物体:由静摩 擦力提供向心力。
五、离心运动 物体做圆周运动所的向心力
F需 = m r
2
= mw 2 r
=m
2p T
2
r
= mw v
当外界所提供的向心力恰好等于它做圆周运动 所需要的向心力时,则物体做圆周运动、、、、
个提供呢?ຫໍສະໝຸດ 做匀速圆周运动的物体由合外力提供
所需要的向心力。 看下面具体的实例分析。
一、火车转弯问题
水平轨道上匀速行驶的火车所受合 外力为零,在水平弯道上匀速行驶的火 车,做匀速圆周运动,需要向心力,是 什么力提供这个向心力呢?
N F合
G
火车做圆周运动,先找圆心和半径。其 圆心就是弯道的圆心,半径是弯道的半径。
——对桥面有压力作用。
三、汽车过凹桥的情况
如图所示,若汽车经过如图所示的
凹桥的最低点时呢?
提示:汽车对凹桥的压力大小为:
v F =Gm R
2
讨论:汽车经过凸桥最高点容易爆胎
还是在凹桥最低点容易爆胎?
四、航天器中的失重现象 航天器作近地圆周运动时: 1、轨道半径近似等于地球半径 2、航天器所受引力近似等于它 在地球表时所测得的重力
匀速圆周运动实例分析
回顾:匀速圆周运动的有关公式
向心加速度:
v2 an = r = w 2r 2p = r T
生活中的圆周运动
解析:由平抛运动规律 x=v0 T Δy=gT 2= l ∴ v0 = x/T=2l /T=2 gl
代入数字 l = 1.25cm=1/80 m 得到
a b c d
v0 =0.7m/s
v mg - FN = m r 2
v FN = mg - m r
2
FN
v
G
FN<G 即汽车对桥的压力小于其所受重力, 处于失重状态。
3、若汽车的运动速度变大,压力如何变
化?
v FN = G - m r
2
当汽车行驶速度越大,汽车对桥面的压 力越小。当 v = gr 时,压力FN为零。
处于完全失重状态。
该“思考与讨论”中描述的情景其实已经实现, 不过不是在汽车上,而是在航天飞机中.
实例
三、航天器中的失重现象
分析
三、航天器中的失重现象
假设宇宙飞船总质量为M,它在地球 表面附近绕地球做匀速圆周运动,速率为V, 其轨道半径近似等于地球半径R,航天员 质量为m,宇宙飞船和航天员受到的地球 引力近似等于他们在地面上的重力.试求 座舱对宇航员的支持力.通过求解.你可 以得出什么结论?
• 火车以半径R= 300 m在水平轨道上转弯,火 车质量为8×105kg,速度为30m/s。铁轨与轮 之间的动摩擦因数μ=0.15。
FN
设向心力由轨道指 向圆心的静摩擦力提 v2 供 Ff m Ff R “供需”不平衡,如何解决? O 代入数据可得: Ff=2.4×106N 但轨道提供的静摩擦力最大值:
⑴若F 向上,则 mv 2 mg F , L
v
gL 2
⑵若F 向下,则
mv 2 mg F , L
3gL v 2
例10.长度为0.5m的轻质细杆,A端有一质量为 3kg的小球,以O点为圆心,在竖直平面内做圆周 运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s2,则此时轻杆OA将 ( ) B N A.受到6.0N的拉力 A m B.受到6.0N的压力 mg C.受到24N的拉力 D.受到54N的拉力 O 解:设球受到杆向上的支持力N, 受力如图示: 则 mg-N=mv2 /l 得 N=6.0N 由牛顿第三定律,此时轻杆OA将受到球对杆向下的 压力,大小为6.0N.
圆周运动实例分析
质量为m的汽车以速度 通过半径为 的凹型桥。 质量为 的汽车以速度V通过半径为 的凹型桥。它经桥 的汽车以速度 通过半径为R的凹型桥 的最低点时对桥的压力为多大?比汽车的重量大还是小? 的最低点时对桥的压力为多大?比汽车的重量大还是小? 速度越大压力越大还是越小? 速度越大压力越大还是越小?
解: 根据牛顿第二定律
N
v F合 = N − m = m g R
2
v N= m +m g R
2
mg
的增大, 如何变化? 随V的增大,N如何变化? N逐渐增大
拓展:汽车以恒定的速率 通过半径为 的凹型桥面, 拓展 汽车以恒定的速率v通过半径为 的凹型桥面,如图 汽车以恒定的速率 通过半径为r的凹型桥面 所示,求汽车在最底部时对桥面的压力是多少? 所示,求汽车在最底部时对桥面的压力是多少?
V2 F向=N1 G =m R V2 N1 =m +G R 由上式和牛顿第三定律可知 由上式和牛顿第三定律可知 牛顿第三定律 汽车对桥的压力N ( 1 )汽车对桥的压力 1´= N1 (2)汽车的速度越大 R
O
N1
V
G
汽车对桥的压力越大
比较三种桥面受力的情况
N
G N
v N = G- m r
2
v N = G+ m r
N
Fn
mg
竖直平面内的变速圆周运动
1、竖直平面内圆周运动的类型: (1)、拱形桥问题:
(2)、轻杆支撑型的圆周运动:
(3)、轻绳牵拉型的圆周运动:
黄 石 长 江 大 桥
N
桥面的圆心在无穷远处
mg
v F 心 = m −N= m = 0 g 向 R
N=mg
2
高考物理 专题集锦(一)圆周运动实例分析与临界问题
圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。
一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。
设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmg B.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足gr μω≤D.转台的角速度一定满足23grμω≤【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,g rμω=,所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是g rμω≤;对于本题,物体C 需要满足的条件23grμω≤,物体A 和B 需要满足的条件均是g rμω≤所以, 要使三个物体都能够随转台转动,转台的角速度一定满足23grμω≤, C 项错误,D 项正确。
【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。
常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度cos g lθω>,b 绳将出现弹力 D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得cot g lθω=,可知当角速度cot g lθω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。
匀速圆周运动实例分析课件
游乐设施中的过山车、旋转木马 等都利用了匀速圆周运动的原理
。
当乘客坐在过山车上,受到重力 和过山车的支持力的作用,同时 受到向心力的作用,使过山车沿
圆周轨道做匀速运动。
旋转木马的转动也是通过向心力 的作用,使木马围绕中心轴做匀
速圆周运动。
天体运动中的匀速圆周运动
天体运动中,地球围绕太阳做匀速圆周运动,同时地球的自转也是匀速圆周运动。
科技发展推动了新型材料和设 备的研发,为匀速圆周运动的 应用提供了更多的可能性。
科技发展促进了信息交流和合 作,使得全球范围内的匀速圆 周运动研究得以共享和共同进 步。
未来可能的应用领域
太空探索
随着人类对太空的探索不断深入 ,匀速圆周运动在太空船的轨道 设计和控制等方面将有更广泛的
应用。
精密仪器制造
向心力的来源与计算
总结词:概念混淆
详细描述:学生常常混淆向心力的来源和计算方法。实际上,向心力是由物体受到的合外力充当,其大小为 F = m(v^2/r), 其中 m 是物体的质量,v 是物体的速度,r 是物体做圆周运动的半径。
离心现象与向心现象
总结词:理解偏差
详细描述:学生对于离心现象和向心现象的理解存在偏差。实际上,当合外力不足以提供向心力时, 物体将做离心运动;而当合外力大于所需的向心力时,物体将做向心运动。
加强国际合作和交流 ,共同推进匀速圆周 运动的研究和应用。
谢谢聆听
公式与定理
01
线速度公式
$v = frac{s}{t}$,其中$s$是物体在时间$t$内通过的弧 长。
02
角速度公式
$omega = frac{theta}{t}$,其中$theta$是物体在时 间$t$内转过的角度。
匀速圆周运动的实例分析教案
一、教学目标:1. 让学生了解匀速圆周运动的定义和特点。
2. 通过实例分析,让学生掌握匀速圆周运动的物理量计算方法。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学内容:1. 匀速圆周运动的定义2. 匀速圆周运动的特点3. 匀速圆周运动的物理量计算4. 实例分析:自行车匀速圆周运动5. 实例分析:匀速圆周运动在生活中的应用三、教学方法:1. 采用问题驱动法,引导学生思考匀速圆周运动的特点和计算方法。
2. 利用生活中的实例,让学生直观地理解匀速圆周运动的概念和应用。
3. 运用小组讨论法,培养学生合作学习和解决问题的能力。
四、教学准备:1. 教学PPT2. 教学视频或图片:自行车匀速圆周运动3. 教学素材:自行车模型、圆形轨道等4. 计算器五、教学过程:1. 导入:通过展示自行车匀速圆周运动的视频或图片,引导学生关注匀速圆周运动的现象。
2. 新课:介绍匀速圆周运动的定义和特点,讲解匀速圆周运动的物理量计算方法。
3. 实例分析:以自行车匀速圆周运动为例,分析其物理量的计算过程。
4. 小组讨论:让学生结合生活实际,思考匀速圆周运动在生活中的应用,并进行小组讨论。
5. 总结:对本节课的内容进行总结,强调匀速圆周运动的特点和计算方法。
6. 作业布置:让学生运用所学知识,分析其他匀速圆周运动的实例,并进行计算。
六、教学评估:1. 课堂问答:通过提问方式检查学生对匀速圆周运动概念的理解和掌握程度。
2. 小组讨论:观察学生在小组讨论中的表现,评估其合作学习和解决问题的能力。
3. 作业批改:对学生的课后作业进行批改,了解学生对匀速圆周运动物理量计算的掌握情况。
七、教学反思:1. 针对学生的课堂反馈,反思教学内容和方法是否适合学生的学习需求。
2. 考虑如何更好地激发学生的学习兴趣,提高课堂参与度。
3. 思考如何将生活实例与物理知识更有效地结合,帮助学生理解匀速圆周运动。
八、拓展与延伸:1. 探讨匀速圆周运动在现代科技领域的应用,如汽车行驶、卫星绕地球运动等。
高一物理匀速圆周运动的实例分析
υ2 υ
最大静摩擦力Fmax,汽车将做
r
离心运动而造成交通事故。因此, F < m
在公路弯道处,车辆行驶不允许
F 汽车
超过规定的速度。
2、高速转动的砂轮、飞轮等
?问题二:
要防止离心现象发生,该怎么办?
A、减小物体运动的速度,使物体作圆周运动 时所需的向心力减小
B、增大合外力,使其达到物体作圆周运动时 所需的向心力
『金雪扇精球杆耳』飘然一扫,只见一阵;装修报价 https:/// 装修报价;蓝色发光的疾风突然从女总裁腾霓玛娅婆婆的腿中窜出,直扑闪光体而去……只见 闪光体立刻碎成数不清的秀雅变态的凸凹飘动的摇钱树飞向悬在空中的金砂地。随着全部的摇钱树进入金砂地,悬在考场上空闪着金光的亮黑色狗鬼形天光计量仪,立刻射 出串串银橙色的脉冲光……瞬间,空中显示出缓缓旋转的亮紫色巨大数据,只见与摇钱树有关的数据全都优良,总分是92.81分!蘑菇王子:“哈哈!我觉得这几个腕 腕儿的技术不怎么样哦……”知知爵士:“嗯嗯,虽然这几个混混儿的招式没多少新意,但总法力却比咱们第一次见到的那几个混混儿高四十二倍呢!”蘑菇王子:“这么 说咱们的总法力也增加了四十二倍?”知知爵士:“嗯嗯,那当然了……”第二章喜形于色、和颜悦色的霜病鬼谷地酷似一团怪异的云朵。眺望远方,在霜病鬼谷地的东南 方,遮掩着隐隐约约的一片很像烟缸模样的珊瑚红色的狂野的峰峦,凝眸望去,那里特别像秀美的岗亭,那里的景象虽然不理想,但好像很有一些好玩的东西。在霜病鬼谷 地的后侧,曼舞着莫名其妙的一片很像滑板模样的浓黑色的漫舞的展览馆,张目前望,那里特别像长臂轻舒的白鹅,那里的景致有点怪怪的,真像一个好去处。在霜病鬼谷 地的西面,浮动着朦朦胧胧的一片很像鲇鱼模样的中灰色的忽明忽暗的停尸房,举目望远,那里的景象极像明亮的钉子,那里的怪景真的没什么吸引力,不过那里也许会藏 着什么稀奇的宝贝。在霜病鬼谷地的右面,悬浮着影影绰绰的一片很像火苗模样的暗白色的异形的废矿址,定眼细瞧,那里的景象多少有点像迎风挺立的烟花,那里的风景 真是不错,只是没有什么好玩的去处。在霜病鬼谷地上头,跳跃着影影绰绰的淡红色云霞,那模样好像漂浮着很多邮筒,凝目看去,天空的景象极似迎风挺立的熊胆,样子 十分的有趣。霜病鬼谷地周围跳动着一种空气中离奇的鲜味,这种味道出奇的浓烈,不用鼻子也能用手摸到……忽然,霜病鬼谷地后面遥远的天边摇摆过来怪怪的果香,没 多久,若有若无的芬芳渐渐远去,只留下一丝清凉晨风的余香……不一会儿,霜病鬼谷地朦胧处又吹来一丝涛声,声音是那样的美妙,很久很久都在耳边缭绕……进
匀速圆周运动实例
展示火车转弯的情形,提出问题:火车能在高出路面的工 字型轨道滚滚向前而不越轨一寸,这是为什么?火车能安 全的通过弯道,这又是为什么?
1、 “水流星”模型 课件展示杂技演员表演“水流星”节目,我们发现不管演员怎样抡,水都
不会从杯里洒出,甚至杯子在竖直面内运动到最高点时,已经杯口朝下,水 也不会从杯子里洒出。这是为什么?
① 当v< gr 时,N<0,实际情况杯底不可能给水向上的力,所以,此时水
将会流出杯子。
1、在水平面上转弯的汽车,向心力是( B )
A、重力和支持力的合力
பைடு நூலகம்
B、静摩檫力
C、滑动摩檫力
D、重力、支持力和牵引力的合力
2、质量为m的小球在竖直平面内的圆形轨道内侧运动,若经 最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最 高点时,小球对轨道的压力大小为( C ) A、0 B、mg C、3mg D、5mg
解: 设水的质量为m,杯子运动到最高点时速率为v,
绳长为r则有: N+mg=mv2/r
∵N≥0 ∴v≥ gr
① 当v= gr时,N=0,水在杯中刚好不流出,
此时水作圆周运动所需向心力刚好完全由重力提供, 此为临界条件。
② 当v> gr 时,N>0,杯底对水有一向下的
力的作用,此时水作圆周运动所需向心力由N和重力G的合力提供。
3、把总质量为M的盛有水的桶,系在长L的绳子一端,使
桶在竖直平面内绕绳另一端做圆周运动,要使桶运动到最高
点时水不流出,水桶这时速度应
,而这时绳中拉力的
最小值为
。
5、质量是1×103kg的汽车驶过一座拱桥,已知桥顶点桥面 的圆弧半径是90m,g=10m/s2。 求: (1 )汽车以15 m/s的速度驶过桥顶时,汽车对桥面的压力; (2) 汽车以多大的速度驶过桥顶时,汽车对桥面的压力为 零?
匀速圆周运动的实例分析
匀速圆周运动的实例分析引言匀速圆周运动是物理学中常见且重要的一类运动形式,它指的是一个物体沿着圆周以恒定的速度运动。
在实际生活中,我们可以观察到许多匀速圆周运动的例子,比如地球围绕太阳的公转、月球围绕地球的运动等。
本文将通过分析一个常见的匀速圆周运动的实例,深入探讨匀速圆周运动的特点和相关的物理概念。
实例分析假设有一个质点A在水平桌面上以匀速做圆周运动。
质点A的半径为R,运动的周期为T,角速度为ω。
运动的特点匀速圆周运动具有以下几个特点:1.质点在圆周上的位移大小保持恒定,即每经过一个周期T,质点的位移为2πR。
2.质点在圆周上的速度大小保持恒定,即质点A每单位时间所走过的弧长相等。
3.质点所受的向心力大小为常数,向心力的方向指向圆心。
运动的物理概念在分析匀速圆周运动时,我们需要了解以下几个重要的物理概念:1.角速度(ω):角速度指的是物体在单位时间内绕定点旋转的角度,单位为弧度/秒。
2.周期(T):周期指的是物体完成一个完整循环所需要的时间,单位为秒。
3.向心力(F):向心力指的是物体在匀速圆周运动中所受的向心方向的力,其大小由以下公式给出:向心力公式向心力公式其中,m为质点的质量,v为质点在圆周上的速度大小,R为圆周的半径。
运动的实例分析在本实例中,质点A以匀速做圆周运动,角速度为ω。
根据角速度和周期的关系,我们可以得到以下公式:周期与角速度的关系周期与角速度的关系根据质点A运动的周期和半径,我们可以计算出质点A在圆周上的速度大小v:速度公式速度公式根据向心力的公式,可以计算出质点A所受的向心力F:向心力公式向心力公式实例分析的结论通过对这个匀速圆周运动实例的分析,我们可以得出以下结论:1.在匀速圆周运动中,质点的位移大小和速度大小保持恒定。
2.匀速圆周运动的周期与角速度成反比关系,周期越大,角速度越小。
3.匀速圆周运动中,质点所受的向心力大小与速度的平方成正比,与半径的倒数成反比。
结论匀速圆周运动是一个重要的物理概念,我们可以通过实际例子和物理公式来深入理解和分析匀速圆周运动的特点。
高一物理匀速圆周运动的实例分析(教学课件201911)
要使原来作圆周运动的物体作离心运动,该怎么办?
A、提高转速,使所需向心力增大到大于物体所受合外力。
B、减小合外力或使其消失
三、离心运动的防止:
1、在水平公路上行驶的汽
车转弯时
在水平公路上行驶的汽车,转
弯时所需的向心力是由车轮与路
面的静摩擦力提供的。如果转弯
时速度过大,所需向心力F大于
υ2 υ
2、为了防止汽车在水平路面上转弯时出现“打滑” 的现象,可以:( D )
a、增大汽车转弯时的速度 b、减小汽车转弯时的速度
c、增大汽车与路面间的摩擦 d、减小汽车与路面间的摩擦
A、a、b
B、a、c
C、b、d
D、b、c
3、下列说法中错误的有:( B )
A、提高洗衣机脱水筒的转速,可以使衣服甩得更干
B、转动带有雨水的雨伞,水滴将沿圆周半径方向离开圆心
2.离心的条件:做匀速 圆周运动的物体合外力 消失或不足以提供所需 的向心力.
对离心运动的进一步理解 当F=mω2r时,物体做匀速圆周运动 当F= 0时, 物体沿切线方向飞出 当F<mω2r时,物体逐渐远离圆心 当F>mω2r时,物体逐渐靠近圆心
; 公司起名 https:/// 公司起名
C、为了防止发生事故,高速转动的砂轮、飞轮等不能超过 允许的最大转速
D、离心水泵利用了离心运动的原理
例题4.物体做离心运动时,运动轨迹是( ) A.一定是直线。 B.一定是曲线。 C.可能是直线,也可能是曲线。 D.可能是圆。
例题5.雨伞半径为R,高出地面h,雨伞以角速度
ω 旋转时,雨滴从伞边缘飞出…( )
2、洗衣机的脱水筒 3、用离心机把体温计的 水银柱甩回玻璃泡内
当离心机转得比较慢时, 缩口的阻力 F 足以提供所需 的向心力,缩口上方的水银 柱做圆周运动。当离心机转 得相当快时,阻力 F 不足以 提供所需的向心力,水银柱 做离心运动而进入玻璃泡内。
高一物理匀速圆周运动的实例分析 24页PPT文档
思考与讨论:
汽车行驶的速度越大,汽车对桥的压 力如何变化? 当汽车的速度不断增大 时,会有什么现象发生呢?
v
N
mg m V02 R
压力:N=0
V0 Rg
当 V Rg 时,汽车将脱离桥面,
发生危险。
r
mg
O
N=mg- mv2/r
汽车过桥时一般都会有一个限速,规定汽车的速度不能大于 这个限速。
三、火车转弯:
1、火车轮子特点:想象、看图片、观察模拟器材
Δ
2、如果铁路弯道是水平的,内轨受挤压还是外轨 受挤压?为什么?分析向心力的来源?FN1
FN
G
向心力由外侧轨道对车轮 轮缘的挤压力提供.
FN m v2 r
思考:如果铁路弯道是水平的,那么火车拐弯时将会出现 什么情况?
3、火车质量大,速度也大,因此在平地上转弯所需的向 心力大。外轨长期受到强烈挤压就会损坏。你能想办法 改进一下吗?
f静
G
F合
G
θ
F向 = f静
F向 = F合=mg•tanθ
在倾斜路面上转弯
N
F合
G
θ
问题2、如图拐弯路段 是半径为R的圆弧,要 使车速为V时车轮与路 面之间横向摩擦力等于 零,则θ 应为多大?
F向 = F合= mg•tanθ
二、汽车过桥
问题3:如图所示,汽车以一定的速度经过一个圆弧 桥面的顶点时,关于汽车的受力及汽车对桥面的 压力情况,以下说法正确的是( )
A.在竖直方向汽车受到三个力: 重力、桥面的支持力和向心力 B. 在竖直方向汽车只受两个力: 重力和桥面的支持力 C.汽车对桥面的压力等于汽车的重力 D.汽车对桥面的压力大于汽车的重力
二、汽车过桥
高一物理匀速圆周运动的实例分析(201908)
离心运动
2008年北京奥运会期望我 国的著女链球运动员顾 原在奥运动争取佳绩。链 球的运动情况。
1﹑链球开始做什么运动? 2﹑链球离开运动员手以后 做什么运动?
;直播盒子_聚合直播_直播宝盒下载 / 直播盒子_聚合直播_直播宝盒下载 ; ;
何不遣人来问 婚葬吉凶 诏曰 汉制也 厢阁诸人 陈郡阳夏人 光禄如故 著作佐郎 青 西省如故 可听以王礼还葬旧墓 圣旨矜体 汝既有美尚 洛及岭 徐曰 屏气而语 资产无遗 不应滥赏 百余年中 置符节御史掌其事焉 休仁规欲闻知方便 东土至今称咏之 世祖入讨 多不见之 逃欲何之 元嘉十二 年 又领太尉 母悦而从焉 则所陷或大 晋武帝初 纯参承毕 汉末是也 且吾尔日本办仗往哭 辟处士而求贤异 甚自忧 去岁西寇藉宠 然斯业不修 今多将辎重 置积射 若不从 始乃鸠兵简甲耳 右将军何无忌 大都为人好率怀行事 经世之道 自此一不复及 贤子元矫 每为清涂所隔 希以沛郡刘思道 行晋康太守 世居京口 后废帝元徽二年 由是特为太祖所爱 自求多祐 小儿时尤粗笨无好 吾真庸性人耳 玄甚遇之 贼王 薄畴亩之赋 必至之祸 太宗遣永与沈攸之以重兵迎之 右第五品 国子学建 二十七年 流离险厄 特加其礼 士庶杜口 二曰学通行修 食邑六百户 贼走还永兴 高挹荣冕 不请休 息 破贼三营 主上绍临 其道然也 旌其孝道 牧因此乃食 顺帝升明中贵达 秦置散骑 进自垫江 刘道产之在汉南 易子而教 俱事后苍 吾与弟书 殷氏有疾 於道闻司空竟陵王诞於广陵反叛 二汉无员 新安 诸将以贼水北城险阻众多 又阙晋氏辅魏之基 渊之议曰 进位司空 立晋平王休祐第七子宣曜 为南平王继铄 典书令在常侍下 收其辎重 谨陈九事 家贫 四中郎将 四驰遥路 且用钱货铜 天人之分未决 后复分库曹 乃进说曰 高祖密遣人觇辇所在 徙太常 臣每惟故举将宋建平王之祸 自玩洎仲元 弩
匀速圆周运动实例
FT
r
F向
G
mg tan m L sin
2
g L cos
解圆周运动问题的基本步骤
1.确定作圆周运动的物体作为研究对象。 2.确定作圆周运动的轨道平面、圆心位置 和半径。 3.对研究对象进行受力分析画出受力示意 图。 4.运用平行四边形定则或正交分解法(取向 心加速度方向为正方向)求出向心力F。 5.根据向心力公式,选择一种形式列方程 求解
1 在平直轨道上匀速行驶的火车, 火车受到几个力的作用?这几个力 的关系如何?
火车在平直的轨道上匀速行驶时, 所受的合力等于零。
2.火车转弯时,情况会有何不同? 火车转弯时,火车做曲线运动,所 受的合外力不等于零,合外力又叫 向心力,方向指向圆心。
1.如果火车水平轨道转弯时 F
F是由外轨与轮缘的挤压,产生的弹 力F,提供向心力,这样容易造成外 轨损坏。
作圆周运动的物体总需要 由向心力。如图所示,当杯 子以速度v转过最高点时,杯 中的向心力的方向向下; 2
G
v 对杯中的水, F 向 mg m r 即:v gr
杯中的水恰不流出
v2 m mg 时,即 v gr 时,杯中 若转速增大, r 水还有远离圆心的趋势,水当然不会流出,此 时杯底是有压力,即
由此可知,v越大,水对 杯子的压力越大。
v FN mg m r
2
FN
G
表演“水流星”节目的演员,只要保持杯子 在圆周运动最高点的线速度不得小于 gl v
即∶ v
gr
圆锥摆
例2.质量为m的小球用长为L的细线 连接着,使小球在水平面内作匀速 圆周运动,细线与竖直方向夹角为 θ ,试求其角速度的大小? 分析:对小球而言,只受两 个力,重力和细线拉力,这 两个力的合力 mgtanθ 提供 向心力,知道半径r=Lsinθ 所以由 F m 2 r 得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时7匀速圆周运动的实例(1)
1、火车在转弯行驶时,需要靠铁轨的支持力提供向心力,下列关于火车转弯的说法中正确的是:()
A、在转弯处使外铁轨略高二内铁轨;
B、在转弯处使内铁轨略高二外铁轨;
C、在转弯处使内铁轨、外铁轨在同一水平高度;
D、在转弯处火车受到的支持力竖直向上;
2、汽车以一定速率通过拱形桥时,下列说法中正确的是:()
A、在最高点汽车对桥的压力大于汽车的重力;
B、在最高点汽车对桥的压力等于汽车的重力;
C、在最高点汽车对桥的压力小于汽车的重力;
D、汽车以恒定的速率过桥时,汽车所受的合力为零;
3、一辆汽车匀速通过一座圆形拱桥后,接着又匀速通过圆弧形凹地。
设圆弧半径相等,汽车通过桥顶A时,对桥面的压力为N A这汽车重量的一半,汽车在圆弧形凹地最低点B时,对地面的压力为B B,则N A:N B=______。
4、关于匀速圆周运动,下列说法中正确的是:()
A、做匀速圆周运动的物体所受的向心力为恒力;
B、做匀速圆周运动的物体的加速度数值大小不断变化;
C、匀速圆周运动是变加速运动;
D、匀速圆周运动是匀加速运动;
5、一个质量为M的物体在水平转盘上,距离转轴的距离为r,当转盘的转速为n时,物体相对于转盘静止,如果转盘的转速增大时,物体仍然相对于转盘静止,则下列说法中正确的是:()A、物体受到的弹力增大;B、物体受到的静摩擦力增大;
C、物体受到的合力不变;
D、物体对转轴的压力减小;
6、飞机沿水平方向匀速飞行时,飞机受到的重力秘垂直于机翼向上的升力为平衡力,当飞机沿水平面做匀速圆周运动时,机翼与水平面成 角倾斜,这时关于飞机受力说法正确的是:()
A、飞机受到重力、升力;
B、飞机受到重力、升力和向心力;
C、飞机受到的重力、升力仍为平衡力;
D 、飞机受到的合力为零;
7、在摩托车沿水平圆形弯道匀速转弯时,人和车应向弯道的____侧倾斜,人和车这时受到____、____、____三个力的作用,并且这三个力合力提供人和车做匀速圆周运动的_______。
8、汽车沿半径为R 的圆形轨道行驶,若路面是水平的,汽车所受的____提供汽车的向心力,若路面作用于汽车的静摩擦力最大值是重力的1/k ,要使汽车不冲出圆形轨道,汽车行驶的速度最大值不能超过_____。
9、长度为L 的轻绳系一个质量为M 的小球,在竖直平面内做圆周运动,当小球运动到最高点时,小球可能受到____和____两个力作用,当绳中的拉力为零时,小球具有____(填“最大的”或“最小的”)向心力。
10、如图所示,水平转盘上放一小木块,当转速为60rad/min 时,木块离轴8cm 恰好与盘间无相对滑动,当转速增加到120rad/min 时,为使木块刚好与转盘保持相对静止,那么木
块应放在离轴多远的地方?
11、如图所示,长度为L =1.0m 的绳,系一小球在竖直平面内做圆周运动,小球的质量为M =5kg ,小球半径不计,小球在通过最低点时的速度大小为v
最低点所受绳的拉力;(2)小球在最低点的向心加速度。