互斥事件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题一
例1 今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封中,每个信封一封信,试求至少有两封信与信封标号一致的概率.
分析:至少有两封信与信封的标号配对,包含了下面两种类型:两封信与信封标号配对;3封信与信封标号配对;4封信与信封标号配对,注意:4封信配对与5封信配对是同一类型.现在我们把上述三种类型依次记为事件321A A A 、、,可以看出321A A A 、、两两互斥,记“至
少有两封信与信封标号配对”为事件A ,事件A 发生相当于321A A A 、、有一个发生,所以用公式)()()()(321A P A P A P A P ++=可以计算)(A P . 解:设至少有两封信配对为事件A ,恰好有两封信配对为事件1A ,恰有3封信配对为事件2A ,恰有4封信(也就是5封信)配对为事件
3A ,则事件A 等于事件321A A A ++,且321A A A 、、事件为两两互斥事件,
所以)()()()(321A P A P A P A P ++=.
5封信放入5个不同信封的所有放法种数为55A ,
其中正好有2封信配对的不同结果总数为.225⨯C
正好有3封信配对的不同结果总数为.35C
正好有4封信(5封信)全配对的不同结果总数为1, 而且出现各种结果的可能性相同,
.12031)()()()( ,120
1)(,12
1)(,61)2()( 32135535255251=
++=∴==÷==
÷⨯=∴A p A P A P A P A P A C A P A C A P 说明:至少有两封信与信封配对的反面是全不配对和恰好有1封信配对,但是配对越少,计算该结果的所有方法总数越困难,即计算该事件的概率越不方便.现在把问题改为计算“至多两封信与信封标号配对”的概率是多少?我们转化为求其对立事件的概率就简单得多,它的对立事件为“3封信配对或4封信(即5封)配对”,得到其结果的概率为120
109)1(1555535=÷+÷A A C ,在计算事件的概率时有时采用“正难则反”的逆向思维方法,直接计算事件的概率比较难,而计算其对立事件的概率比较容易时可采用这种方法.
典型例题七
例7 射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为24.0,28.0,19.0,16.0,13.0.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
分析:“射中10环”,“射中9环”,…“射中7环以下”是彼此互
斥事件,可运用“事件的和”的概率公式求解.
解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A、B、C、D、E,则
(1)52
P
+B
A
+
=
A
P,
=
B
P
+
.0
.0
28
.0
)
24
)
(
(=
)
(
所以射中10环或9环的概率为52
.0.
(2) )
+
P+
+
(D
A
C
B
P
B
A
+
=
+
C
P+
P
)
P
)
(
(
)
)
(D
(
.0=
24
+
=,
+
.0
+
.0
87
16
.0
.0
19
28
所以至少射中7环的概率为87
.0.
(3) 29
+E
P
+
=
=
P,
+
D
E
P
D
(
16
.0
13
.0
(=
.0
)
)
(
)
所以射中环数不足8环的概率为29
.0.
说明:公式)
A
B
=
+只有在A、B两事件互斥时才使用,
(
P
P+
)
(
)
(B
P
A
如果A、B两事件不互斥,就不能应用这一公式,一定要注意B
P
A
A
=
P+
+这一公式应用的前提是A、B两个事件互斥.(
(
)
)
)
(B
P
典型例题三
例3有4个红球,3个黄球,3个白球装在袋中,小球的形状、大小相同,从中任取两个小球,求取出两个同色球的概率是多少?
分析:与倒2中取球方式不同的是,从中取出两球是不放回的取出.处理上,例2是分步取球,先取哪个后取哪个是有区别地对待,而本例中,只要搞清是取的什么球,直接用组合数列式.取出两个同色球可以分成下面几个类型:两个红球;两个黄球;两个白球.
解:从10个小球中取出两个小球的不同取法数为,210
C “从中取出两个红球”的不同取法数为,其概率为,210
24C C ÷ “从中取出两个黄球”的不同取法数为,其概率为,210
23C C ÷ “从中取出两个白球”的不同取法数为,其概率为,210
23C C ÷ 所以取出两个同色球的概率为:.15
4210232102321024=÷+÷+÷C C C C C C 说明:本题求取出两个同色球的概率,对结果比较容易分类,如果换上“取出3个球,至少两个同颜色”,这样的问题分类相对就比较复杂,在此我们不一一列出,但考虑其反面,对立事件为“取出3个球,颜色全不相同”,对立事件的概率比较容易算出.取出3个球,颜色全不相同的所有不同取法数为36334=⨯⨯(种),对立事件的概率为45
3636210=÷C ,所以“取出3个球,至少两个同颜色”的概率为:.2.045
361=- 典型例题九
例9 小明的袋中放有3个伍分硬币、3个贰分硬币和4个壹分硬币,从中任取3个,求总数超过8分的概率.
分析1:视其为互斥事件,进而求概率.
解法1:(1)记“总数超过8分”为事件A ,它包括下列四种情况:①“取到3个伍分硬币”记为事件1B ;②“取到2个伍分硬币和1个
贰分硬币”为事件2B ;③“取到2个伍分硬币和1个壹分硬币”为事
件3B ;④“取到1个伍分硬币和2个贰分硬币”为事件4B .
1201)(310331==C C B P ,1209)(310
13232==C C C B P , 12012)(31014233==C C C B P ,120
9)(31023134==C C C B P . 根据题意,1B 、2B 、3B 、4B 彼此互斥,故所求概率
)()(4321B B B B P A P +++=
)()()()(4321B P B P B P B P +++=
120
31=. 分析2:视其为等可能事件,进而求概率.
解法2:从10个硬币中取3个,共有310C 种不同方法.“总数超过
8分”的共有以下四种情况:①取3个伍分硬币,共有33C 种方法;②
取2个伍分硬币和1个贰分硬币,共有1323C C 种方法;③取2个伍分硬
币和1个壹分硬币,共有1423C C 种方法;④取1个伍分硬币和2个贰分
硬币,共有2313
C C 种不同方法,所以“总数超过8分”共有3123131423132333=+++C C C C C C C 种方法.∴总数超过8分的概率为120
31. 说明:复杂的等可能事件的概率可化为彼此互斥的简单事件来求,要注意分类的不重、不漏.
典型例题二
例2 袋中装有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:
(1) 3只全是红球的概率,(2) 3只颜色全相同的概率,
(3) 3只颜色不全相同的概率,(4) 3只颜色全不相同的概率.
分析:有放回地抽3次的所有不同结果总数为33,3只全是红球是其中的1种结果,同样3只颜色全相同是其中3种结果,全红、全黄、全白,用求等可能事件的概率方式可以求它们的概率.“3种颜色不全相同”包含的类型较多,而其对立事件为“三种颜色全相同”却比较简单,所以用对立事件的概率方式求解.3只颜色全不相同,由于是一只一只地按步取出,相当于三种颜色的一个全排列,其所有不同结果的总数为33A ,用等可能事件的概率公式求解.
解:有放回地抽取3次,所有不同的抽取结果总数为:
3只全是红球的概率为
,27
1 3只颜色全相同的概率为.91273= “3只颜色不全相同”的对立事件为“三只颜色全相同”.
故“3只颜色不全相同”的概率为,9
8
9
11=- “3只颜色全不相同”的概率为.2763333=÷A 说明:如果3种小球的数目不是各1个,而是红球3个,黄球和白球各两个,其结果又分别如何?首先抽3次的所有不同结果总数为37,全是红球的结果总数为33,所以全是红球的概率为343
277333=÷,同样全是黄球的概率为
3438,全是白球的概率也是343
8,所以3只球颜色全相同的概率为上述三个事件的概率之和,243432438243824327=++,“三种颜色不全相同”为“三种颜色全相同”的对立事件,其概率为.243
200243431=- “3只小球颜色全不相同”可以理解为三种颜色的小球各取一只,然后再将它们排成一列,得到抽取的一种结果,其所有不同结果总数为7222333=⨯⨯A (种),所以“3只小球颜色全不相同”的
72
概率为.
243
典型例题五
例5 判断下列各对事件是否是互斥事件,并说明道理.
某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中
(1)恰有1名男生和恰有2名男生;
(2)至少有一名男生和至少有一名女生;
(3)至少有一名男生和全是男生;
(4)至少有1名男生和全是女生.
分析:判断两个事物是否为互斥事件,就是考察它们能否同时发生,如果不能同时发生,则是五斥事件,不然就不是互斥事件.解:(1)是互斥事件
道理是:在所选的2名同学中,“恰有1名男生”实质是选出的是“一名男生和一名女生”,它与“恰有两名男生”,不可能同时发生,所以是一对互斥事件.
(2)不可能是互斥事件
道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果.“至少有1名女生”包括“1名女生、1名男性”和“两名都是女生”两种结果,它们可同时发生.
(3)不可能是互斥事件
道理是:“至少有一名男生”包括“一名男生、一名女生”和“两名都是男性”,这与“全是男生”,可同时发生.
(4)是互斥事件
道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果,它和“全是女生”不可能同时发生. 小结:互斥事件是概率知识中重要概念,必须正确理解.
(1)互斥事件是对两个事件而言的.若有A 、B 两个事件,当事件A 发生时,事件B 就不发生;当事件B 发生时,事件A 就不发生(即事件A 、B 不可能同时发生),我们就把这种不可能同时发生的两个事件叫做互斥事件.否则就不是互斥事件.
(2)对互斥事件的理解,也可以从集合的角度去加以认识. 如果A 、B 是两个互斥事件,反映在集合上,是表示A 、B 这两个事件所含结果组成的集合彼此互不相交.
如果事件n A A A ,,,21 中的任何两个都是互斥事件,那么称事件
n A A A ,,,21 彼此互斥,反映在集合上,表现为由各个事件所含的结果
组成的集合彼此互不相交.
典型例题八
例8 玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,求从中取1球:(1)红或黑的概率;(2)红或黑或白的概率. 分析1:视其为等可能事件,进而求概率.
解法1:(1)从12只球中任取1球得红球有5种取法,得黑球有4
种取法,得红球或黑球共有945=+种不同取法,任取一球有12种取法, ∴任取1球得红球或黑球的概率得4
31291==P . (2)从12只球中任取1球得红球有5种取法,得黑球有4种方法,得白球有2种取法,从而得红或黑或白球的概率为12
11122452=++=P . 分析2:视其为互斥事件,进而求概率.
解法2:记事件1A :从12只球中任取1球得红球;2A :从中任取
1球得黑球;3A :从中任取1球得白球;4A :从中任取1球得绿球,

125)(1=A P ,124)(2=A P ,122)(3=A P ,121)(4=A P . 根据题意,1A 、2A 、3A 、4A 彼此互斥,由互斥事件概率得.
(1)取出红球或黑球的概率为
4
3124125)()()(2121=+=+=+A P A P A A P ; (2)取出红或黑或白球的概率为
12
11122124125)()()()(321321=++=++=++A P A P A P A A A P . 分析3:应用对立事件求概率.
解法3:(1)由思路2,取出红球或黑球的对立事件为取出白球或绿球,即21A A +的对立事件为43A A +,
∴取出红球或黑球的概率为
)()(1)(1)(434321A P A P A A P A A P --=+-=+4
31291211221==--=. (2)321A A A ++的对立事件为4A .
12
111211)(1)(4321=-=-=++A P A A A P 即为所求. 说明:(1)“互斥”和“对立”事件容易搞混.互斥事件是指指事
件不能同时发生,对立事件是指互斥的两事件中必有一个发生.(2)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先去求对立事件的概率,进而再求所求事件的概率.
典型例题六
例 6 判断下列给出的每对事件,(1)是否为互斥事件,(2)是否为对立事件,并说明道理.
从扑克40张(红桃、黑桃、方块、梅花点数从1—10各10张)中,任取一张.
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色色牌”;
(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
解:(1)是互斥事件,不是对立事件.
道理是:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件,同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立事件.
(2)既是互斥事件,又是对立事件.
道理是:从40张扑克牌中,任意抽取1张.“抽出红色牌”与“抽出黑色色牌”,两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.
(3)不是互斥事件,当然不可能是对立事件
道理是:从40张扑克牌中任意抽取1张.“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得10,因此,二者不是互斥事件,当然不可能是对立事件.
说明:“互斥事件”和“对立事件”都是就两个事件而言的,互斥事件是不可同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件.因此,对立事件必须是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥事件”是“对立事件”的必要但不充分的条件.“对立事件”是“互斥事件”的充分不必要条件.
典型例题十
例10 同时抛掷两枚骰子,求至少有一个5点或6点的概率. 分析1:视其为等可能事件,进而求概率.
解法1:同时投掷两枚骰子,可能结果如下表:
共有36个不同的结果,其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率为9
53620==
P . 分析2:利用对立事件求概率.
解法2:至少有一个5点或6点的对立事件是没有5点或6点.如
上表,没有5点或6点的结果共有16个,没有5点或6点的概率为9
43616==P . 至少有一个5点或6点的概率为9
5941=-.
下面再给出一种解法(此解法可在下一节学完后,再学习) 分析3:利用公式)()()()(B A P B P A P B A P ⋅-+=+.
解法3:记事件A :含有点数为5的.
事件B :含有点数为6的.显然A 、B 不是互斥事件
3611)(=A P ,3611)(=B P ,362)(=⋅B A P ∴至少有一个5点或6点的概率为
)()()()(B A P B P A P B A P ⋅-+=+
9
53620362362236236113611==-=-+=. 说明:(1)本题常出现的错误有两类:一类是不符合题意的臆想,含5的有6个,含6的有6个,∴至少有一个5或6的有12个,从而所求概率为
3
136123666==+;另一类是没有搞清楚A 、B 是否为互斥事件,直接利用公式3622)()()(=+=+B P A P B A P . (2)解题时,将所有基本事件全部列出是避免重复和遗漏的有效方法;对于用直接法难于解决的问题,可求其对立事件的概率,进而求得概率,以降低难度.
典型例题十一
例11 一批产品共100件,其中5件是废品,任抽10件进行检查,求下列事件的概率.。

相关文档
最新文档