初三数学复习题
初三数学精选试题及答案
初三数学精选试题及答案一、选择题1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 如果一个三角形的两边长分别为3和4,那么第三边长x的取值范围是?A. 1 < x < 7B. 0 < x < 7C. 1 < x < 7 或 x > 7D. 0 < x < 7 或 x > 7答案:A3. 一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A二、填空题4. 计算:(2x - 3)(x + 4) = _______。
答案:2x² + 5x - 125. 一个圆的直径是14cm,那么它的半径是 _______ cm。
答案:7三、解答题6. 已知一个二次函数的图像经过点(1, 2)和(-1, 10),求这个二次函数的解析式。
答案:设二次函数的解析式为y = ax² + bx + c。
将点(1, 2)和(-1, 10)代入得到方程组:\[\begin{cases}a +b +c = 2 \\a -b +c = 10\end{cases}\]解得a = 4, b = -3, c = 1。
因此,二次函数的解析式为y = 4x² - 3x + 1。
7. 一个长方体的长、宽、高分别为a、b、c,已知长方体的体积为V,求长方体的表面积S。
答案:长方体的体积V = abc,表面积S = 2(ab + bc + ac)。
四、证明题8. 证明:勾股定理。
答案:在直角三角形ABC中,∠C为直角,设a、b为直角边,c为斜边。
根据勾股定理,有a² + b² = c²。
可以通过构造一个边长为a+b的正方形,将其划分为两个直角三角形和一个边长为c的正方形,从而证明a² + b² = c²。
五、应用题9. 一个水池的长、宽、高分别为4m、3m、2m,现在要将水池装满水,需要多少立方米的水?答案:水池的体积V = 长× 宽× 高= 4m × 3m × 2m = 24立方米。
初3数学期中复习题
初3数学期中复习题一、选择题(每题2分,共10分)1. 下列哪个选项是无理数?A. 0.33333(无限循环)B. πC. √2D. 12. 一个直角三角形的两个直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 如果a > 0,b < 0,那么a + b > 0 还是 a + b < 0?A. a + b > 0B. a + b < 0C. a + b = 0D. 无法确定4. 以下哪个代数式是二次的?A. x^2 + 3x + 2B. 2x + 1C. x^3 - 5D. x - 45. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是________。
7. 如果一个角的度数是30°,那么它的余角是________。
8. 一个正方体的棱长为a,那么它的表面积是________。
9. 一个二次方程ax^2 + bx + c = 0的判别式是________。
10. 一个数列的前n项和为S_n,如果S_5 = 15,那么这个数列的第5项a_5是________。
三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 14。
12. 已知一个等差数列的首项a_1 = 2,公差d = 3,求前10项的和。
13. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
四、应用题(每题15分,共30分)14. 某工厂生产一批产品,每个产品的成本是30元,售价是50元。
如果工厂希望获得的利润是总成本的20%,那么工厂需要生产多少件产品?15. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果班级要组织一次春游,需要租用一辆大巴车,每辆车可以坐50人,那么至少需要租用几辆车?五、附加题(10分)16. 一个圆内接正六边形的边长与圆的半径相等,求这个正六边形的面积。
初三数学考试题讲解及答案
初三数学考试题讲解及答案【试题一】题目:已知函数f(x) = 2x^2 + 3x - 5,求f(x)的顶点坐标。
解题步骤:1. 将二次函数f(x) = 2x^2 + 3x - 5写成顶点式的形式。
2. 利用顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
3. 将给定的函数与顶点式进行比较,得到h和k的值。
答案解析:f(x) = 2(x^2 + 3/2x) - 5= 2(x^2 + 3/2x + 9/16 - 9/16) - 5= 2((x + 3/4)^2 - 9/16) - 5= 2(x + 3/4)^2 - 9/8 - 5= 2(x + 3/4)^2 - 49/8所以,顶点坐标为(-3/4, -49/8)。
【试题二】题目:若a、b、c为实数,且a + b + c = 6,a^2 + b^2 + c^2 = 12,求a^3 + b^3 + c^3的值。
解题步骤:1. 利用已知条件a + b + c = 6,a^2 + b^2 + c^2 = 12。
2. 根据立方和公式(a^3 + b^3 + c^3) = (a + b + c)(a^2 + b^2 +c^2 - ab - bc - ca) + 3abc。
3. 利用已知条件求出ab + bc + ca的值。
4. 代入立方和公式求出a^3 + b^3 + c^3的值。
答案解析:已知a + b + c = 6,(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) = 36。
所以,ab + bc + ca = 36 - 12 = 24。
将ab + bc + ca的值代入立方和公式:a^3 + b^3 + c^3 = (6)(12 - 24) + 3abc = -72 + 3abc。
由于题目没有给出abc的具体值,我们无法求出a^3 + b^3 + c^3的确切值。
【试题三】题目:在直角三角形ABC中,∠C = 90°,AC = 6,BC = 8,求斜边AB的长度。
九年级中考数学专题复习:二次函数综合题(线段周长问题)含答案
3.如图,在平面直角坐标系中,抛物线 交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.
(1)求抛物线的解析式;
(2)将线段OE绕着点O沿顺时针方向旋转得到线段 ,旋转角为α(0°<α<90°),连接 ,求 的最小值;
②是否存在点P使 为等腰三角形?若存在,请直接写出m的值;若不存在,请说明理由.
6.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.
4.二次函数 的图像与 轴交于点 ,与 轴交于点 、 .
(1)求 、 的值;
(2) 是二次函数图像在第一象限部分上一点,且 ,求 点坐标;
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.
(1)求抛物线的解析式;
(2)求点C的坐标;
(3) 为线段AB上一点, ,作 轴交抛物线于点M,求PM的最大值与最小值.
11.综合与探究:如图,在平面直角坐标系中,直线y=x﹣4分别与x轴,y轴交于点A和点C,抛物线y=ax2﹣3x+c经过A,C两点,并且与x轴交于另一点B.点D为第四象限抛物线上一动点(不与点A,C重合),过点D作DF⊥x轴,垂足为F,交直线AC于点E,连接BE.设点D的横坐标为m.
初三数学复习试卷
初三数学复习试卷一.选择题1. 若两圆的半径分别是4cm 和5cm ,圆心距为9cm ,则这两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离2. 若关于x 的一元二次方程22(1)10a x x a -++-=有一个根为0,则a 的值等于( ) A. -1 B.0 C.1 D. 1或者-13. 某汽车销售公司2007年盈利1500万元,2009年盈利2160万元,从2007年到2009年,每年盈利的年增长率相同,设每年盈利的年增长率为x ,根据题意列方程正确的是( ) A. 2160)1(15002=+x B. 2160150015002=+x x C .216015002=xD. 2160)1(1500)1(15002=+++x x4.从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有( )A、1张 B、2张 C、3张 D、4张5 )ABCD6.如图所示,PA 、PB 切O e 于点A 、B ,70P ∠= , 则ACB ∠=( )A.15 B.40 C.75 D.55 7.式子x 21x -++有意义的条件是( )A 、2x 1≤≤B 、12-≤≤-xC 、2x 1≤≤-D 、1x -≤8、同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是( )A .16B .19C .112D .11369.如图,AB 是⊙O 的直径,以AB 为一边作等边ABC ∆,AC 、BC 边分别交⊙O 于点E 、F ,连接 AF ,若2=AB ,则图中阴影部分的面积为( ) A. 4334-π B. 2332-π C.233-πD.433-π10.一元二次方程( 1 – k )x 2 – 2 x – 1 = 0有两个不相等的实数根,则k 的取值范围是( )A 、k > 2B 、k < 2C 、k < 2且k ≠1 D、k > 2且k ≠1 二.填空题11、16= ,方程x 2=25的根是12、某药品原来售价96元,连续两次降价后的售价为54元,则平均每次降价的百分率是 。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
初中数学中考计算题复习(最全)-含答案
一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.24.先化简代数式再求值,其中a=﹣2.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3. 30.化简并求值:•,其中x=21. . 2。
初中数学复习题目及答案
初中数学复习题目及答案一、选择题(每题2分,共20分)1. 下列哪个数不是整数?A. -3B. 0C. 5.5D. 20232. 如果一个角是直角的一半,那么这个角的度数是多少?A. 15°B. 30°C. 45°D. 90°3. 一个数的平方根是它本身,这个数是?A. 1B. -1C. 0D. 44. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么它的体积是多少立方厘米?A. 60B. 120C. 180D. 2405. 一个圆的半径是7cm,那么它的周长是多少厘米?(π取3.14)A. 43.96B. 56.52C. 70.68D. 85.246. 以下哪个是二次根式?A. √3B. 3√2C. √12D. √647. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 都不是8. 一个等腰三角形的两个底角相等,如果顶角是30°,那么底角是多少度?A. 75°B. 60°C. 120°D. 90°9. 一个数列的前三项是2, 4, 6,这个数列是?A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定10. 如果一个多项式的最高次项系数是-1,那么这个多项式是?A. 一次多项式B. 二次多项式C. 三次多项式D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。
12. 一个直角三角形的两条直角边分别是3和4,斜边的长度是________。
13. 一个数的立方等于8,这个数是________。
14. 如果一个分数的分子是7,分母是14,那么这个分数化简后是________。
15. 一个圆的直径是14cm,那么它的半径是________cm。
16. 一个数的平方是36,这个数是________。
17. 一个数的绝对值是10,这个数可以是________或________。
初中数学复习题及答案
初中数学复习题及答案一、选择题1. 下列哪个数是无理数?A. -3B. 0.5C. πD. √4答案:C2. 如果一个数的平方等于16,那么这个数是什么?A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 一个三角形的内角和是多少度?A. 180°B. 360°C. 90°D. 120°答案:A二、填空题1. 一个数的绝对值是它到______的距离。
答案:原点2. 一个圆的半径为5,它的面积是______。
答案:25π3. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是______。
答案:24cm³三、计算题1. 计算下列表达式的值:(1) √(9) + √(16)(2) (-2)³ + √(81)答案:(1) √(9) + √(16) = 3 + 4 = 7(2) (-2)³ + √(81) = -8 + 9 = 12. 解下列方程:(1) 2x - 5 = 3x + 1(2) 3x + 4 = 2x + 8答案:(1) 2x - 3x = 1 + 5-x = 6x = -6(2) 3x - 2x = 8 - 4x = 4四、解答题1. 某工厂生产一批零件,第一天生产了总数的1/4,第二天生产了总数的1/3,第三天生产了剩余的1/2。
如果这批零件总数为120个,求第三天生产了多少个零件?答案:第一天生产了120 * 1/4 = 30个零件。
第二天生产了120 * 1/3 = 40个零件。
剩余的零件数为120 - 30 - 40 = 50个。
第三天生产了50 * 1/2 = 25个零件。
2. 一个班级有40名学生,其中1/3是男生,1/4是女生,其余是混合性别。
求这个班级有多少男生和女生?答案:班级中有40 * 1/3 = 13.33(取整数为13)名男生。
班级中有40 * 1/4 = 10名女生。
剩余的学生数为40 - 13 - 10 = 17名,这部分学生是混合性别。
初三数学各类试题及答案
初三数学各类试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(0和1无限循环)B. √2C. 22/7D. 0.33333(3无限循环)2. 如果一个数的立方等于它本身,那么这个数是:A. 0B. 1C. -1D. A和B3. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 7B. 10C. 11D. 144. 计算下列表达式的值:(2x - 3)(x + 4) =A. 2x^2 + 5x - 12B. 2x^2 - 5x + 12C. 2x^2 + 5x + 12D. 2x^2 - 5x - 125. 一个圆的直径是10厘米,那么它的面积是:A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^26. 下列哪个选项是方程3x - 5 = 14的解?A. x = 3B. x = 4C. x = 5D. x = 77. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 无法确定8. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是:A. 24 cm^3B. 36 cm^3C. 48 cm^3D. 52 cm^39. 计算下列二次根式的值:√(9 - 4√5) =A. √5 - 2B. 2 - √5C. √5 + 2D. 2 + √510. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是:A. 5B. 7C. √7D. √13二、填空题(每题3分,共30分)1. 如果一个数的平方根是4,那么这个数是______。
2. 一个数的绝对值是5,那么这个数可以是______或______。
3. 一个等差数列的前三项分别是2,5,8,那么它的第四项是______。
4. 一个分数的分子是7,分母是14,化简后是______。
5. 一个二次函数的顶点坐标是(2, -3),那么它的对称轴是______。
初三数学全套试卷及答案
一、选择题(每题4分,共40分)1. 若实数a、b满足a+b=1,则a^2+b^2的最小值为()。
A. 0B. 1C. 2D. 32. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()。
A. 45°B. 60°C. 75°D. 90°3. 下列函数中,在其定义域内单调递增的是()。
A. y=x^2B. y=2^xC. y=x^3D. y=x^44. 若方程x^2-4x+4=0的两个根分别为a和b,则a+b和ab的值分别是()。
A. 4,4B. 4,-4C. 2,4D. 2,-45. 已知数列{an}的通项公式为an=3n-2,则数列的前10项和S10为()。
A. 145B. 150C. 155D. 1606. 在平面直角坐标系中,点P(-2,3)关于原点的对称点为()。
A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)7. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn=()。
A. na1+n(n-1)d/2B. n(a1+an)/2C. n(a1+an)/4D. n(a1+an)/38. 若函数y=f(x)在区间[0,1]上单调递增,且f(0)=1,f(1)=3,则f(0.5)的值在()。
A. 1.5~2之间B. 1~1.5之间C. 0.5~1之间D. 0~0.5之间9. 下列图形中,对称轴为x=1的是()。
A. B. C. D.10. 若等比数列{an}的公比为q,首项为a1,且a1+a2+a3=27,a2+a3+a4=81,则q 的值为()。
A. 2B. 3C. 4D. 5二、填空题(每题4分,共40分)11. 若x=2+√3,则x^2-4x+3的值为______。
12. 在△ABC中,若∠A=30°,∠B=45°,则△ABC的外接圆半径R为______。
13. 函数y=2^x在定义域内是______函数。
中考数学复习题及答案
中考数学复习题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333...C. 1.1010010001...D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 24. 一个多项式P(x) = 2x^3 - 5x^2 + 3x - 1,当x=1时,P(x)的值是多少?A. -1B. 0C. 1D. 25. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 07. 一个正比例函数y = kx,当x=2时,y=6,那么k的值是多少?A. 3B. 4C. 6D. 88. 一个二次函数y = ax^2 + bx + c,当x=0时,y=4,当x=1时,y=3,当x=-1时,y=5,那么a的值是多少?A. 1B. -1C. 2D. -29. 下列哪个是二次方程的根?A. x^2 - 5x + 6 = 0B. x^2 + 5x + 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x - 6 = 010. 如果一个数列的前三项是1, 3, 6,那么这个数列是等差数列还是等比数列?A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定二、填空题(每题3分,共15分)11. 一个数的立方根是它本身,这个数可以是________。
12. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是________。
13. 一个函数f(x) = x^2 - 4x + 4,当x=________时,f(x)取得最小值。
14. 一个圆的周长为44π,那么这个圆的半径是________。
初中数学中考专项复习有理数的运算(填空题)复习习题1-100(含答案解析)
初中数学中考专项复习有理数的运算(填空题)复习习题1-100(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若|x|=4,|y|=5,则x -y 的值为____________.2.若“△”表示一种新运算,规定a △b =a ×b -(a +b ),则2△[(-4)△(-5)]=______. 3.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 4.若0abc >,化简a cb abcab c abc+++结果是________. 5.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.6.截止今年4月2日,华为官方应用市场“学习强国”APP 下载量约为88300000次.将数88300000科学记数法表示为_______.7.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.8.若|a|=5,b=﹣2,且ab >0,则a+b=_____. 9.已知,|a|=﹣a ,b b=﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.10.若|3b-1|+(a+3)2=0,则a-b 的倒数是______.11.已知a ,b 为整数,且4ab =,则a b -=________. 12.计算:6﹣(3﹣5)=_____.13.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________. 14.计算111111111111111111(1)()(1)()234523456234562345----++++------+++的结果是____.15.定义新运算:a ※b=a 2+b ,例如3※2=32+2=11,已知4※x=20,则x=_____. 16.已知|a|=2,|b|=3,且ab <0,则a+b 的值为_____.17.|﹣7﹣3|=_____.18.计算:23-+=__________.19.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=____.20.如果a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式a2015+2016b+c2017的值为21.若1m+与2-互为相反数,则m的值为_______.22.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.23.按图中程序运算,如果输入−1,则输出的结果是________.24.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________25.计算(−1.5)3×(−23)2−123×0.62=___________.26.若(2x﹣3)x+5=1,则x的值为________.27.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是______ kg.28.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2018的点与圆周上表示数字______的点重合.29.当n 为正整数时,(﹣1)2n+1+(﹣1)2n 的值是_________.30.对于正数x 规定1()1f x x =+,例如:11(3)=134f =+,115()=15615f =+,,则f (2019)+f (2018)+……+f (2)+f (1)+1111()+()++()()2320182019f f f f +L =___________. 31.计算111112612209900++++⋯+的值为__________________. 32.若定义一种新的运算,规定a c b d =ab-cd,则14 23-=_____.33.有一数值转换器,原理如图所示,如果开始输入x 的值是4,则第一次输出的结果是5,第二次输出的结果是8,……,那么第2019次输出的结果是______.34.已知x ,y 都是实数,且y+4,则y x =________.35.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则1(2)?()3a b a b ++- 的值为_____.36.已知a 与b 互为倒数,m 与n 互为相反数,x 的绝对值等于1, 则2014(m+n )﹣2015x 2+2016ab 的值为______.37.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.38.已知4x =,12y =,且0xy <,则x y 的值等于_________.39.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.40.在数1、2、3、4、…、2009、2010的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:________. 41.如图为洪涛同学的小测卷,他的得分应是_____分.42.按如图程序输入一个数x ,若输入的数x=﹣1,则输出结果为_________.43.若312m x y +-与432n x y +是同类项,则2017()m n +=______. 44.如图,按下列程序进行计算,经过三次输入,最后输出的数是12,则最初输入的数是 ________.45.已知:|m ﹣n|=n ﹣m ,|m|=4,|n|=3,则 m ﹣n =_______46.如图所示的运算程序中,若开始输入的x 值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2019次输出的结果为_____.47.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b=____________。
中考数学专题复习之尺规作图精选训练题
中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案
中考数学专题复习:二次函数综合题(特殊三角形问题)1.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到111A O C △,点A 、O 、C 的对应点分别是点1A 、1O 、1C 、若111A O C △的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点1A 的横坐标.2.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ⊥BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得⊥BCO +2⊥PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .3.如图,抛物线2y ax bx =+过()4,0A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)求ABC 的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,当CMN △为等腰直角三角形时,点N 的坐标为______.4.如图,已知二次函数的图象经过点()3,3A 、()4,0B 和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为(),0D m ,并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当0m >时,探索是否存在点P ,使得PCO △为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得⊥ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得⊥P AB 为直角三角形,请求出点P 的坐标.6.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =++与x 轴交于点()2,0A -和点()6,0B ,与y 轴交于点C ,顶点为D ,连接BC 交抛物线的对称轴l 于点E .(1)求抛物线的表达式;(2)连接CD 、BD ,点P 是射线DE 上的一点,如果PDB CDB S S =△△,求点P 的坐标;(3)点M 是线段BE 上的一点,点N 是对称轴l 右侧抛物线上的一点,如果EMN 是以EM 为腰的等腰直角三角形,求点M 的坐标.7.已知抛物线经过A (-1,0)、B (0、3)、 C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F(1)求抛物线的表达式;(2)求证:⊥BOF =⊥BDF :(3)是否存在点M 使⊥MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长8.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式;(2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.9.已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠=.(1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan⊥CDA 的值;(3)点C 是否存在其他的位置,使得tan⊥CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.10.如图1,抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于C 点,D 是抛物线上的动点,已知A 的坐标为(-3,0),C 的坐标为(0,3).(1)求该抛物线的函数表达式以及B 点的坐标;(2)在第二象限内是否存在点D 使得⊥ACD 是直角三角形且⊥ADC=90°,若存在请求出D 点的坐标,若不存在请说明理由;(3)如图2,连接AC ,BC ,当⊥ACD=⊥BCO ,求D 点的坐标.11.如图,在平面直角坐标系中,抛物线C 1:y =ax 2+bx ﹣1经过点A (﹣1,﹣2)和点B (﹣2,1),抛物线C 2:y =3x 2+3x +1,动直线x =t 与抛物线C 1交于点N ,与抛物线C 2交于点M .(1)求抛物线C 1的表达式;(2)求线段MN 的长(用含t 的代数式表达);(3)当⊥BMN 是以MN 为直角边的等腰直角三角形时,求t 的值.12.如图,二次函数23y ax bx =++的图象经过点A (-1,0),B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)第一象限内的二次函数23y ax bx =++图象上有一动点P ,x 轴正半轴上有一点D ,且OD =2,当S △PCD =3时,求出点P 的坐标;(3)若点M 在第一象限内二次函数图象上,是否存在以CD 为直角边的Rt MCD ,若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线23y ax bx =+-与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)求抛物线的解析式;(2)若点P 是抛物线上的点,点P 的横坐标为()0m m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.14.如图,抛物线23y ax bx =+-与x 轴交于()30A -,,()1,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段AC 上一动点,过点E 的直线EF 平行于y 轴并交抛物线于点F ,当线段EF 取得最大值时,在x 轴上是否存在这样的点P ,使得以点E 、B 、P 为顶点的三角形是以EB 为腰的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.15.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .⊥求S 与m 之间的函数关系式,并写出自变量m 的取值范围;⊥当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.18.如图,已知抛物线212y x bx c =++经过点B (4,0)和点C (0,-2),与x 轴的另一个交点为点A ,其对称轴l 与x 轴交于点E ,过点C 且平行x 轴的直线交抛物线于点D ,连接AD .(1)求该抛物线的解析式;(2)判断⊥ABD 的形状,并说明理由;(3)P 为线段AD 上一点,连接PE ,若△APE 是直角三角形,求点P 的坐标;(4)抛物线的对称轴上是否存在一点P ,使△APD 是直角三角形,若存在,求出P 点坐标;若不存在,请说明理由.19.如图,抛物线22y ax x c =-+与x 轴相交于A ,B 两点,与y 轴相交于点C ,点A 在点B 的左侧,()1,0A -,()0,3C -,点E 是抛物线的顶点,P 是抛物线对称轴上的点.(1)求抛物线的函数表达式;(2)当点P 关于直线BC 的对称点Q 落在抛物线上时,求点Q 的横坐标;(3)若点D 是抛物线上的动点,是否存在以点B ,C ,P ,D 为顶点的四边形是平行四边形.若存在,直接写出点D 的坐标__________;若不存在,请说明理由;(4)直线CE 交x 轴于点F ,若点G 是线段EF 上的一个动点,是否存在以点O ,F ,G 为顶点的三角形与ABC 相似,若存在,请直接写出点G 的坐标__________;若不存在,请说明理由.20.如图1,抛物线23y ax bx =++与x 轴交于点()3,0A 、()1,0B -,与y 轴交于点C ,点P 为x 轴上方抛物线上的动点,点F 为y 轴上的动点,连接PA ,PF ,AF .(1)求该抛物线所对应的函数解析式;(2)如图1,当点F 的坐标为()0,4-,求出此时AFP 面积的最大值;(3)如图2,是否存在点F ,使得AFP 是以AP 为腰的等腰直角三角形?若存在,求出所有点F 的坐标;若不存在,请说明理由.参考答案:1.(1)213222y x x =-++ (2)存在,Q (3,2)或Q (-1,0)(3)两个“和谐点”,1A 的横坐标是1或122.(1)222433y x x =-++ (2)22655PN m m =-+ (3)存在,741253.(1)24y x x =-+(2)3(3)(2,0)或(﹣4,0)或(﹣2,0)或(4,0).4.(1)y =-x 2+4x (2)94(3)存在,点P 的坐标为(3+或(3-或(5,-5)或(4,0)5.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(12--+,,(12--, 6.(1)21262y x x =-++ (2)()2,2(3)()4,2或(27.(1)2y x 2x 3=-++(2)见解析(3)存在,2或28.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)()3,4-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭9.(1)211342y x x =-++(2)1(3)()2,1-,()32,(12--10.(1)y =-x 2-2x +3,B (1,0)(2)存在,D (-2,3) (3)D (-52,74)或(-4,-5)11.(1)y =2x 2+3x ﹣1(2)t 2+2(3)t =012.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M13.(1)y =14x 2−x −3 (2)(3,−154)或(0,−3) (3)(0,−133)或(0,9)14.(1)223y x x =+-(2)()4,-0,或10⎛⎫ ⎪ ⎪⎝⎭,或10⎛⎫ ⎪ ⎪⎝⎭15.(1)2y x 2x 3=-++ (2)⊥213(04)42S m m m =-+<≤;⊥S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(6-+-或(42-+16.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).17.(2)()11,-(3)()14-,或()25-,或⎝⎭或⎝⎭18.(1)213222y x x =-- (2)直角三角形,见解析(3)(1,-1)或(32,-54)(4)存在,( 32,-1+2 ),( 32,-1- 2,( 32,5),( 32,-5) 19.(1)223y x x =-- (2)11(3)存在,()2,3-或()4,5或()2,5-(4)存在,39,44⎛⎫-- ⎪⎝⎭或()1,2--20.(1)2y x 2x 3=-++ (2)323(3)存在,12(0,3),(0,1)F F --,32)F。
初三数学整套试卷
一、选择题(每题5分,共30分)1. 已知实数a、b满足a + b = 3,ab = 2,则a^2 + b^2的值为:A. 5B. 7C. 9D. 112. 下列函数中,定义域为实数集R的是:A. y = 1/xB. y = √(x - 1)C. y = |x|D. y = √(-x)3. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为:A. 75°B. 90°C. 105°D. 120°4. 下列等式中,正确的是:A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^25. 下列命题中,正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则a^2 < b^2C. 若a > b,则|a| > |b|D. 若a > b,则|a| < |b|二、填空题(每题5分,共20分)6. 已知x + y = 5,xy = 6,则x^2 + y^2的值为______。
7. 函数y = -2x + 3的图像与x轴、y轴分别交于点A、B,则OA + OB的值为______。
8. 在△ABC中,AB = AC,则∠ABC的度数为______。
9. 已知二次方程x^2 - 4x + 3 = 0的解为x1、x2,则x1 + x2的值为______。
10. 下列数列:2, 5, 10, 17, ... 的第n项an为______。
三、解答题(每题10分,共40分)11. 解下列方程:(1) 2x^2 - 5x - 3 = 0(2) 3x^2 + 2x - 5 = 012. 已知函数y = 2x - 3,求函数的图像与x轴、y轴的交点坐标。
初中数学总复习题及答案
初中数学总复习题及答案一、选择题1. 下列哪个选项不是有理数?A. -3B. 0C. πD. √2答案:C2. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 5 × 0D. 4 ÷ 4答案:C二、填空题1. 一个数的立方等于它本身,这个数可以是______。
答案:-1,0,12. 一个直角三角形的两个直角边分别为3和4,斜边的长度是______。
答案:53. 如果一个圆的半径为r,则圆的面积是______。
答案:πr²三、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求长方体的体积。
解:长方体的体积V = a × b × c2. 某工厂生产一批零件,合格率为95%,如果生产了200个零件,求不合格的零件数。
解:不合格的零件数= 200 × (1 - 95%) = 200 × 0.05 = 103. 一个数列的前三项为1,2,3,从第四项开始,每一项都是前三项的和。
求第10项的值。
解:第4项 = 1 + 2 + 3 = 6第5项 = 2 + 3 + 6 = 11以此类推,可以发现这是一个斐波那契数列,但起始值不同。
通过计算可得第10项的值为55。
四、应用题1. 某班级有40名学生,其中男生和女生的比例为3:2。
求班级中男生和女生各有多少人。
解:设男生人数为3x,女生人数为2x,根据题意有 3x + 2x = 40,解得 x = 8。
所以,男生人数为3 × 8 = 24,女生人数为2 × 8 = 16。
2. 某商店购进一批商品,进价为每件50元,标价为每件100元。
商店决定进行促销,顾客购买满200元可以享受8折优惠。
如果一位顾客购买了4件商品,求他需要支付的金额。
解:首先计算4件商品的原价:100 × 4 = 400元。
数学初三必考试题及答案
数学初三必考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(每两个1之间0的个数依次增加)B. 22/7C. πD. √2答案:C2. 若等腰三角形的两边长分别为3和4,则其周长为:A. 10B. 11C. 12D. 13答案:C3. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的平方根是2和-2,这个数是:A. 4B. -4C. 2D. -2答案:A5. 以下哪个图形不是轴对称图形?A. 圆B. 正方形C. 等边三角形D. 菱形答案:D6. 一个角的补角比它的余角大:A. 30°B. 45°C. 60°D. 90°答案:D7. 一个数的立方根是-2,则这个数是:A. 8B. -8C. 2D. -2答案:B8. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个数的相反数是-3,则这个数是:A. 3B. -3C. 0D. 无法确定答案:A10. 以下哪个选项是二次根式?A. √9B. √(-1)C. √(2x+3)D. √(x²)答案:C二、填空题(每题4分,共20分)11. 一个角的度数是45°,它的补角是______。
答案:135°12. 一个数的绝对值是4,这个数可以是______。
答案:±413. 一个数的立方是-27,则这个数是______。
答案:-314. 函数y=3x-2与x轴的交点坐标是______。
答案:(2/3, 0)15. 一个等腰三角形的顶角是100°,则它的底角是______。
答案:40°三、解答题(每题10分,共50分)16. 已知一个直角三角形的两条直角边长分别为6和8,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(6²+8²)=√(36+64)=√100=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1题.计算的结果是()A.B.C.D.答案:C第5题.二次根式的值是()A.B.或C.D.答案:D第6题.计算:.答案:解:原式.第26题.在实数范围内定义运算“”,其法则为:,求方程(43)的解.答案:解:∵,∴.∴.∴.∴.第8题.已知实数在数轴上的位置如图所示,则化简的结果为()A.1 B.C.D.答案:A第15题.若,则.答案:1第1题.关于的方程(a−6)x2−5x+6=0有实数根,则整数的最大值是()A. 8 B.7 C.6 D.5答案:D第16题.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.答案:(1)设家庭轿车拥有量的年平均增长率为,则:,解得:%,(不合题意,舍去),.答:该小区到2009年底家庭轿车将达到125辆.(2)设该小区可建室内车位个,露天车位个,则:由①得:=150-5代入②得:,是正整数,=20或21,当时,当时.方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.第18题.如图,在中,,,将绕所在的直线旋转一周得到一个旋转体,则该旋转体的侧面积为()A.B.C.D.第7题.如图,AB、CD是半径为5的⊙O的两条弦,AB = 8,CD = 6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.答案:第16题.如图,⊙P内含于⊙,⊙的弦切⊙P于点,且.若阴影部分的面积为,则弦的长为()A.3 B.4C.6 D.9答案:C第17题.如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于,两点.若点的坐标是(),则点的坐标是()A. B. C. D.答案:A第1题. 如图,为外一点,则°.答案:40°第16题.如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线;(2)设D是弧AC的中点,连结BD交AC 于G,过D作DE⊥AB于E,交AC于F.求证:FD=FG.(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.答案:证明(1):∵AB是直径∴∠ACB=90º,∴∠CAB+∠ABC=90º∵∠MAC=∠ABC∴∠MAC+∠CAB=90º,即MA⊥AB∴M N是半圆的切线.(2)证法1:∵D是弧AC的中点,∴∠DBC=∠2∵AB是直径,∴∠CBG+∠CGB=90º∵DE⊥AB,∴∠FDG+∠2=90º∵∠DBC=∠2,∴∠FDG=∠CGB=∠FGD∴FD=FG证法2:连结AD,则∠1=∠2∵AB是直径,∴∠ADB=90º∴∠1+∠DGF=90º又∵DE⊥AB∴∠2+∠FDG=90º∴∠FDG=∠FGD,∴FD=FG(3)解法1:过点F作FH⊥DG于H,又∵DF=FG∴S△FGH=S△DFG=×4.5=∵AB是直径,FH⊥DG∴∠C=∠FHG=90º∵∠HGF=∠CGB,∴△FGH∽△BGC∴∴S△BCG=解法2:∵∠ADB=90º,DE⊥AB,∴∠3=∠2∵∠1=∠2,∴∠1=∠3∴AF=DF=FG∴S△ADG=2S△DFG=9∵∠ADG=∠BCG,∠DGA=∠CGB∴△ADG∽△BCG∴∴S△BCG=解法3:连结AD,过点F作FH⊥DG于H,∵S△FDG=DG×FH=×3FH=4.5∴FH=3∵H是DG的中点,FH∥AD∴AD=2FH=6∴S△ADG=第26题.已知:如图,为的直径,交于点,交于点.(1)求的度数;(2)求证:.答案:(1)解:是的直径,.又,.又,..第2题. 如图,是上的三点,以为一边,作,过上一点,作交于点.若,则点到弦的距离为.答案:第3题. 如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB的取值范围是()A.B.C.D.答案:C第7题.已知和相切,的直径为9C m,的直径为4cm.则的长是()A.5cm或13cm B.2.5cmC.6.5cm D.2.5cm或6.5cm答案:D第14题.下列命题中,不正确的是()A.边形的内角和等于B.边长分别为的三角形是直角三角形C.垂直于弦的直径平分弦所对的两条弧D.两圆相切时,圆心距等于两圆半径之和答案:D第21题.如图,是的直径,交的中点于,于,连接,则下列结论正确的个数是()④是的切线A.1个B.2个C.3个D.4个答案:D第34题. 如图,射线是相切于点,射线与相交于、两点,连接,若上,则的度数等于()A.B.C.D.答案:B第36题.已知:如图,为的直径,,交于,于.(1)请判断与的位置关系,并证明;(2)连结,若的半径为,,求的长.答案:解:(1)DE与⊙O相切.证明:连结OD.∵OB=OD∴∠B=∠1∵AB=AC∴∠B=∠C∴∠C=∠1∴OD∥AC(同位角相等,两直线平行)∵DE⊥AC∴∠DEC=90°∴∠ODE=∠DEC=90°(两直线平行,内错角相等)∴OD⊥DE∵OD为⊙O半径∴DE是⊙O的切线(过半径外端且垂直于半径的直线是圆的切线)(2)∵AB为⊙O直径∴∠ADB=90°∴在Rt△BDA中,∠ADB=90°∴BD=4∵AB=AC∴BD=CD=4∵DE⊥AC∴S△ADC =S△ADC=∴=∴∴DE=第7题.如图所示,圆是的外接圆,与的平分线相交于点,延长交圆于点,连结.(1)求证:;(2)若圆的半径为10cm,,求的面积.答案:(1)证明:平分平分,又为等腰三角形(2)解:当时,为钝角三角形,圆心在外,连结,,,为正三角形.又知,答:的面积为cm2.第8题. 中,为锐角,为边上的高,为的内切圆圆心,则的度数是()A.B.C.D.答案:C第20题.如图,为的内接三角形,则的内接正方形的面积为()A.2 B.4 C.8 D.16答案:A第16题.如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;答案:解:(1)连接OC,并延长BO交AE于点H,∵AB是小圆的切线,C是切点,∴OC⊥AB,∴C是AB的中点.∵AD是大圆的直径,∴O是AD的中点.∴OC是△ABD的中位线.∴BD=2OC=10.(2)连接AE,由(1)知C是AB的中点.同理F是BE的中点.由切线长定理得BC=BF.∴BA=BE.∴∠BAE=∠E.∵∠E=∠D,∴∠ABE+2∠D=∠ABE+∠E+∠BAE=180º.第19题.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为(结果保留).答案:第13题.在⊙O中,AB为⊙O的直径,AC是弦,,.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当时,求动点M所经过的弧长.答案:解:(1)∵在△ACO中,,OC OA∴△ACO是等边三角形∴∠AOC60°(2)∵CP与⊙O相切,OC是半径.∴CP⊥OC∴∠P90°-∠AOC30°∴PO2CO8(3)如图11,(每找出一点并求出弧长得1分)①作点关于直径的对称点,连结,OM1 .易得,∴∴当点运动到时,,此时点经过的弧长为.②过点作∥交⊙O于点,连结,,易得.∴∴或∴当点运动到时,,此时点经过的弧长为.③过点作∥交⊙O于点,连结,,易得∴,∴或∴当点运动到时,,此时点经过的弧长为.④当点运动到时,M与C重合,,此时点经过的弧长为或.第4题.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是.答案:第1题. 在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点AB.点BC.点CD.点D答案:B第12题.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天答案:D第3题.有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的(1)写出为负数的概率;(2)求一次函数的图象经过二、三、四象限的概率.(用树状图或列表法求解)答案:解:(1)为负数的概率是(2)画树状图或用列表法:,),()()(),共有6种情况,其中满足一次函数经过第二、三、四象限,即的情况有2种所以一次函数经过第二、三、四象限的概率为第12题. “五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?答案:解:(1)30;20.(2).(3)可能出现的所有结果列表如下:共有16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),∴小张获得车票的概率为;则小李获得车票的概率为.∴这个规则对小张、小李双方不公平.。