黄冈市2017年度秋季高三学年期末考试数学试题(理科)
黄冈市2017年秋季高三年级期末考试数学试题(理科) (1)
黄冈市2017年秋季高三年级期末考试数 学 试 题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟.第I 卷(选择题 共60分)一、选择题(本题包括12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.设z= i+1i-1 ,f(x)=x 2-x+1,则f(z)= ( )A.iB.-iC.-1+iD.-1-i 2.已知集合M={y|y=log 12(x+1) ,x ≥3},N={x|x 2+2x-3≤0},则M ∩N= ( )A.[-3,1]B.[-2,1]C.[-3,-2]D.[-2,3] 3.设等差数列{a n }的前n 项的和为S n ,且S 13=52,则a 4+a 8+a 9= ( ) A.8 B.12 C.16 D.204.设双曲线x 2a 2 - y 2b 2 = 1 (a >0,b >0)的渐近线与圆x 2+(y-2)2= 3相切,则双曲线的离心率为( )A.4 3 3 B.2 3 3C. 3D.2 3 5.从图中所示的矩形OABC 区域内任取一点M(x,y),则点M 取自阴影部分的概率为 ( )A.13B.12C.14D.236.函数y= x 2+xe x 的大致图象是 ()7.已知函数f (x )=a sin(π2 x +α)+b cos(π2 x +β),且f (8)=m,设从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为t ,s ,共可得到lg t -lg s 的不同值的个数是m,则f (2 018)的值为( ) A.-15B.-16C.-17D.-188.一个几何体的三视图及尺寸如图所示,则该几何体的体积为( ) A.23 B.43C.73D.839.若a >b >1,-1<c <0, 则( )A.ab c <ba cB.a c >b cC.log a |c| <log b |c|D.blog a |c| >alog b |c|10.执行右面的程序框图,如果输入的x ∈[-1,4],则输出的y 属于 ( )A.[-2,5]B.[-2,3)C.[-3,5)D.[-3,5]11.已知抛物线y 2=2px(p >0)的焦点为F,其准线与双曲线y 23-x 2=1相交于M,N 两点,若△MNF 为直角三角形,其中F 为直角顶点,则p= ( )A.2 3B. 3C.3 3D.612.若函数f(x)= - 56 x- 112 cos2x+m(sinx-cosx)在(-∞,+∞)上单调递减,则m 的取值范围是( )A.[-12 ,12 ]B.[- 2 3 , 2 3 ]C.[- 3 3 , 3 3 ]D.[- 2 2 , 22 ]第Ⅱ卷(非选择题 共90分)(本卷包括必考题和选考题两部分。
湖北省黄冈市2017届高三上学期期末考试数学(文)试题 含答案
黄冈市2017年元月高三年级调研考试文科数学2017年元月9日第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设集合{}{}|04,|13A x x B x N x =≤<=∈≤≤,则A B =IA. {}|13x x ≤≤B. {}|04x x ≤≤C. {}1,2,3D.{}0,1,2,32.关于x 的方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于 A. 22i - B.22i + C. 22i -+ D.22i --3.已知等比数列,则1"0"a >是2017"0"a >的A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件4.下列说法正确的是A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C. “若tan 3α≠3πα≠”是真命题 D.()0,0x ∃∈-∞使得0034x x <成立5.在正方体1111ABCD A B C D -中,异面直线1A B 与1AD 所成角的大小为A. 30oB. 45oC. 60oD.90o6.已知实数0.30.120.31.7,0.9,log 5,log 1.8a b c d ====,那么它们的大小关系是A. c a b d >>>B. a b c d >>>C. c b a d >>>D. c a d b >>>7.函数()()()2f x x ax b =-+为偶函数,且在()0,+∞上单调递增,则()20f x ->的解集为A. {}|04x x x <>或B. {}|04x x <<C. {}|22x x x <->或 D. {}|22x x -<<8.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:()1232100,3sin 1004y t y t πππ⎛⎫==- ⎪⎝⎭,则这两个声波合成后(即12y y y =+)的声波的振幅为 A. 62332+329.下列四个图中,可能是函数ln 11x y x +=+的图象是是 10.已知()()cos 23,cos67,2cos68,2cos 22AB BC ==o o o o u u u r u u u r ,则ABC ∆的面积为 2211.如图,网格纸上正方形小格的边长为1,图中粗线画的是某几何体的三视图,则该几何体的表面积为S 为()S R r l π=+(注:圆台侧面积公式为)A. 17317ππ+B. 2017ππ+C.22πD. 17517ππ+12.已知a R ∈,若()x a f x x e x ⎛⎫=+⎪⎝⎭在区间()0,1上有且只有一个极值点,则a 的取值范围是A. 0a >B. 1a ≤C. 1a >D. 0a ≤第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题5分,共20分.13.已知223cos ,2322πππαα⎛⎫⎛⎫+=∈⎪ ⎪⎝⎭⎝⎭,则tan α= . 14.已知向量,a b r r 的夹角为45o ,且1,210a a b =-=r r r ,则b =r . 15.设实数,x y 满足22,20,2,y x x y x ≤+⎧⎪+-≥⎨⎪≤⎩则13y x -+的取值范围是 .16. “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c ,已知7,7sin 3.a b B A ==+=(1)求角A 的大小;(2)求ABC ∆的面积.18.(本题满分12分)某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.(1)用十位数为茎,在答题卡中画出原始数据的茎叶图;(2)用分层抽样的方法在乙运动员得分十位数为2,3,4的比赛中抽取一个容量为5的样本,从该样本中随机抽取2场,求其中恰有1场得分大于40分的概率.19.(本题满分12分)已知数列{}n a 的各项均为正数,观察程序框图,若5,10k k ==时,分别有510,.1121S S == (1)试求数列{}n a 的通项公式;(2)令3n n n b a =⋅,求数列{}n b 的前n 项和n T .20.(本题满分12分)如图,在直角梯形ABCD 中,90ADC BAD ∠=∠=o ,1,2,AB AD CD ===平面SAD ⊥平面ABCD ,平面SDC ⊥平面ABCD ,3SD =在线段SA 上取一点E (不含端点)使EC=AC,截面CDE 交SB 于点F.(1)求证:EF//CD;(2)求三棱锥S-DEF 的体积.21.(本题满分12分)已知函数()()21, 1.f x x g x a x =-=- (1)若关于x 的方程()()f x g x =只有一个实数解,求实数a 的取值范围;(2)若当x R ∈时,不等式()()f x g x ≥恒成立,求实数a 的取值范围.22.(本题满分12分)已知a R ∈,函数()ln 1.f x x ax =-+(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个不同的零点()1212,x x x x <,求实数a 的取值范围;(3)在(2)的条件下,求证:12 2.x x +>一、二、13. 14.15.16. 13417.解:(Ⅰ)锐角△ABC 中,由条件利用正弦定理可得=,∴sinB=3sinA,再根据sinB+sinA=2,求得sinA=,∴角A=.…………………(5分)(Ⅱ)锐角△ABC 中,由条件利用余弦定理可得a2=7=c2+9﹣6c•cos,解得c=1 或c=2.当c=1时,cosB==﹣<0,故B为钝角,这与已知△ABC为锐角三角形相矛盾,故不满足条件.当c=2时,△ABC 的面积为bc•sinA=•3•2•=.(10分)18.解:(Ⅰ)由题意得茎叶图如图:…………………………………………(5分)(Ⅱ)用分层抽样的方法在乙运动员得分十位数为2、3、4的比赛中抽取一个容量为5的样本,则得分十位数为2、3、别应该抽取1,3,1场,所抽取的赛场记为A,B1,B2,B3,C,从中随机抽取2场的基本事件有:(A,B1),(A,B2),(A,B3),(A,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,C)共10个,记“其中恰有1场的得分大于4”为事件A,则事件A中包含的基本事件有:(A,C),(B1,C),(B2,C),(B3,C)共4个,∴…………………………………………………………(12分)答:其中恰有1场的得分大于4的概率为.19.解:解得:或(舍去),则..................6分(2)则...............12分20. 证明:(1)CD//AB CD //平面SAB又平面CDEF∩平面SAB=EF CD//EF……………………(6分)(2)CD AD,平面SAD平面ABCDCD平面SADCD SD,同理AD SD由(1)知EF//CDEF平面SADEC=AC,,ED=AD在中AD=1,SD=又ED=AD=1E为SA中点,的面积为三棱锥S-DEF的体积……………………(12分)21.解:(Ⅰ)方程|f(x)|=g(x),即|x2﹣1|=a|x﹣1|,变形得|x﹣1|(|x+1|﹣a)=0,显然,x=1已是该方程的根,从而欲使原方程只有一解,即要求方程|x+1|=a有且仅有一个等于1的解或无解,∴a<0.…………6分(Ⅱ)当x∈R时,不等式f(x)≥g(x)恒成立,即(x2﹣1)≥a|x﹣1|(*)对x∈R恒成立,①当x=1时,(*)显然成立,此时a∈R;②当x≠1时,(*)可变形为a≤,令φ(x)==因为当x>1时,φ(x)>2,当x<1时,φ(x)>﹣2,所以φ(x)>﹣2,故此时a≤﹣2.综合①②,得所求实数a的取值范围是a≤﹣2.…………12分22.解:(Ⅰ)f(x)的定义域为(0,+∞),其导数f'(x)=﹣a.①当a≤0时,f'(x)>0,函数在(0,+∞)上是增函数;②当a>0时,在区间(0,)上,f'(x)>0;在区间(,+∞)上,f'(x)<0.∴f(x)在(0,)是增函数,在(,+∞)是减函数.………………4分(Ⅱ)由(Ⅰ)知,当a≤0时,函数f(x)在(0,+∞)上是增函数,不可能有两个零点,当a>0时,f(x)在(0,)上是增函数,在(,+∞)上是减函数,此时f()为函数f(x)的最大值,当f()≤0时,f(x)最多有一个零点,∴f()=ln>0,解得0<a<1,此时,<,且f()=﹣1﹣+1=﹣<0,f()=2﹣2lna﹣+1=3﹣2lna﹣(0<a<1),令F(a)=3﹣2lna﹣,则F'(x)=﹣=>0,∴F(a)在(0,1)上单调递增,∴F(a)<F(1)=3﹣e2<0,即f()<0,∴a的取值范围是(0,1).………………8分(Ⅲ)由(Ⅱ)可知函数f(x)在(0,)是增函数,在(,+∞)是减函数.分析:∵0,∴.只要证明:f()>0就可以得出结论.下面给出证明:构造函数:g(x)=f(﹣x)﹣f(x)=ln (﹣x)﹣a(﹣x)﹣(lnx﹣ax)(0<x≤),则g'(x)=+2a=,函数g(x)在区间(0,]上为减函数.0<x1,则g(x1)>g()=0,又f(x1)=0,于是f()=ln()﹣a()+1﹣f(x1)=g(x1)>0.又f(x2)=0,由(1)可知,即.………………12分。
湖北省黄冈市2017届高三3月质量检测 数学理(含答案)word版
黄冈市2017年高三年级3月份质量检测数 学 试 题(理)第I 卷(选择题 共50分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数1i i -的共轭..复数的对应点在 ( )A .第二象限B .第一象限C .第三象限D .第四象限 2.已知全集U=R ,若函数2()32f x x x =-+,集合{|()0}M x f x =≤,{|'(),0}N x f x =,则U M C N =( ) A .3,22⎡⎫⎪⎢⎣⎭ B .3[,2]2 C .3,22⎛⎤ ⎥⎝⎦ D .3(,2)23.执行右边的框图,若输出的结果为12,则输入的实数x 的值是( ) A .14 B .32CD .2 4.如图所示,图中曲线方程为21y x =-,用定积分表达围成封闭图形(阴影部分)的面积是( )A .220|(1)|x dx -⎰B . 220(1)x dx -⎰C .220|1|x dx -⎰D .122201(1)(1)x dx x dx -+-⎰⎰5.F 1,F 2为椭圆22221(0,0)x y a b a b+=>>的焦点,过F 2作垂直于x 轴的直线交椭圆于点P ,且2230PF F ∠=︒,则椭圆的离心率为( )A .3B .2C .12D 6.将5名支教志愿者分配到3所学校,每所学校至少分1人,至多分2人,且其中甲、乙2人不到同一所学校,则不同的分配方法共有( )种 ( )A .78B .36C .60D .727.已知不等式组00(0)x y x y x a a -≥⎧⎪+≥⎨⎪≤>⎩表示平面区域为M ,点(,)P x y 在所给的平面区域M 内,则P 落在M 的内切圆内的概率为( ) A.1)π B.(3π- C.2)π D.12π 8.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,该几何体的体积为 ( )A.3 B.6 C.2 D9.两个非零向量,OA OB 不共线,且,(,0)OP mOA OQ nOB m n ==> ,直线PQ 过OAB ∆的重心,则m ,n 满足( ) A .32m n += B .11,2m n == C .113m n += D .以上全不对10.已知函数23221()1(0)()31,()2(3)1(0)x x f x x x g x x x ⎧-+>⎪=-+=⎨⎪-++≤⎩,则方程[()]0g f x a -=(a 为正实数)的实数根最多有( )个( ) A .6个 B .4个C .7个D .8个 二、填空题(本大题共5小题,共25分)11.已知0,0a b >>,若不等式212m a b a b+≥+总能成立,则m 的最大值是 。
湖北省黄冈市2017届高三上学期期末考试数学(文)试题(word版,附答案)
黄冈市2017年元月高三年级调研考试文科数学2017年元月9日第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设集合{}{}|04,|13A x x B x N x =≤<=∈≤≤,则A B =A. {}|13x x ≤≤B. {}|04x x ≤≤C. {}1,2,3D.{}0,1,2,32.关于x 的方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于A. 22i -B.22i +C. 22i -+D.22i -- 3.已知等比数列,则1"0"a >是2017"0"a >的A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 4.下列说法正确的是A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C. “若tan α≠3πα≠”是真命题D.()0,0x ∃∈-∞使得0034xx<成立5.在正方体1111ABCD A BC D -中,异面直线1A B 与1AD 所成角的大小为 A. 30B. 45C. 60D.906.已知实数0.30.120.31.7,0.9,log 5,log 1.8a b c d ====,那么它们的大小关系是 A. c a b d >>> B. a b c d >>> C. c b a d >>> D. c a d b >>>7.函数()()()2f x x ax b =-+为偶函数,且在()0,+∞上单调递增,则()20f x ->的解集为 A. {}|04x x x <>或 B. {}|04x x << C. {}|22x x x <->或 D. {}|22x x -<< 8.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:()12100,3sin 1004y t y t πππ⎛⎫==- ⎪⎝⎭,则这两个声波合成后(即12y y y =+)的声波的振幅为A. B. 3+9.下列四个图中,可能是函数ln 11x y x +=+的图象是是10.已知()()cos 23,cos 67,2cos 68,2cos 22AB BC ==,则ABC ∆的面积为11.如图,网格纸上正方形小格的边长为1,图中粗线画的是某几何体的三视图,则该几何体的表面积为S 为()S R r l π=+(注:圆台侧面积公式为)A. 17π+B. 20π+C.22πD. 17π+ 12.已知a R ∈,若()xa f x x e x ⎛⎫=+⎪⎝⎭在区间()0,1上有且只有一个极值点,则a 的取值范围是A. 0a >B. 1a ≤C. 1a >D. 0a ≤第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知3cos ,222πππαα⎛⎫⎛⎫+=∈⎪ ⎪⎝⎭⎝⎭,则tan α= .14.已知向量,a b 的夹角为45,且1,2a a b =-= ,则b = .15.设实数,x y 满足22,20,2,y x x y x ≤+⎧⎪+-≥⎨⎪≤⎩则13y x -+的取值范围是 .16. “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分)在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c ,已知sin a b B A =+=(1)求角A 的大小; (2)求ABC ∆的面积.18.(本题满分12分)某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下: 甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39. (1)用十位数为茎,在答题卡中画出原始数据的茎叶图;(2)用分层抽样的方法在乙运动员得分十位数为2,3,4的比赛中抽取一个容量为5的样本,从该样本中随机抽取2场,求其中恰有1场得分大于40分的概率.19.(本题满分12分)已知数列{}n a 的各项均为正数,观察程序框图,若5,10k k ==时,分别有510,.1121S S == (1)试求数列{}n a 的通项公式;(2)令3n n n b a =⋅,求数列{}n b 的前n 项和n T .20.(本题满分12分)如图,在直角梯形ABCD 中,90ADC BAD ∠=∠= ,1,2,AB AD CD ===平面SAD ⊥平面ABCD ,平面SDC ⊥平面ABCD ,SD =在线段SA 上取一点E (不含端点)使EC=AC,截面CDE 交SB 于点F. (1)求证:EF//CD;(2)求三棱锥S-DEF 的体积.21.(本题满分12分)已知函数()()21, 1.f x x g x a x =-=-(1)若关于x 的方程()()f x g x =只有一个实数解,求实数a 的取值范围; (2)若当x R ∈时,不等式()()f x g x ≥恒成立,求实数a 的取值范围.22.(本题满分12分)已知a R ∈,函数()ln 1.f x x ax =-+ (1)讨论函数()f x 的单调性;(2)若函数()f x 有两个不同的零点()1212,x x x x <,求实数a 的取值范围; (3)在(2)的条件下,求证:12 2.x x +>一、二、13.14.15.16. 13417.解:(Ⅰ)锐角△ABC 中,由条件利用正弦定理可得=,∴sinB=3sinA ,再根据sinB+sinA=2,求得sinA=,∴角A=.…………………(5分)(Ⅱ) 锐角△ABC 中,由条件利用余弦定理可得a 2=7=c 2+9﹣6c •cos,解得c=1 或c=2.当c=1时,cosB==﹣<0,故B为钝角,这与已知△ABC为锐角三角形相矛盾,故不满足条件.当c=2时,△ABC 的面积为bc•sinA=•3•2•=.(10分)18.解:(Ⅰ)由题意得茎叶图如图:…………………………………………(5分)(Ⅱ)用分层抽样的方法在乙运动员得分十位数为2、3、4的比赛中抽取一个容量为5的样本,则得分十位数为2、3、别应该抽取1,3,1场,所抽取的赛场记为A,B1,B2,B3,C,从中随机抽取2场的基本事件有:(A,B1),(A,B2),(A,B3),(A,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,C)共10个,记“其中恰有1场的得分大于4”为事件A,则事件A中包含的基本事件有:(A,C),(B1,C),(B2,C),(B3,C)共4个,∴…………………………………………………………(12分)答:其中恰有1场的得分大于4的概率为.19.解:解得:或(舍去),则..................6分(2)则...............12分20. 证明:(1)CD//AB CD//平面SAB又平面CDEF∩平面SAB=EF CD//EF……………………(6分)(2)CD AD,平面SAD平面ABCDCD平面SAD CD SD,同理AD SD由(1)知EF//CD EF平面SADEC=AC,,ED=AD在中AD=1,SD=又ED=AD=1E为SA中点,的面积为三棱锥S-DEF的体积……………………(12分)21.解:(Ⅰ)方程|f(x)|=g(x),即|x2﹣1|=a|x﹣1|,变形得|x﹣1|(|x+1|﹣a)=0,显然,x=1已是该方程的根,从而欲使原方程只有一解,即要求方程|x+1|=a有且仅有一个等于1的解或无解,∴a<0.…………6分(Ⅱ)当x∈R时,不等式f(x)≥g(x)恒成立,即(x2﹣1)≥a|x﹣1|(*)对x∈R恒成立,①当x=1时,(*)显然成立,此时a∈R;②当x≠1时,(*)可变形为a≤,令φ(x)==因为当x>1时,φ(x)>2,当x<1时,φ(x)>﹣2,所以φ(x)>﹣2,故此时a≤﹣2.综合①②,得所求实数a的取值范围是a≤﹣2.…………12分22.解:(Ⅰ)f(x)的定义域为(0,+∞),其导数f'(x)=﹣a.①当a≤0时,f'(x)>0,函数在(0,+∞)上是增函数;②当a>0时,在区间(0,)上,f'(x)>0;在区间(,+∞)上,f'(x)<0.∴f(x)在(0,)是增函数,在(,+∞)是减函数.………………4分(Ⅱ)由(Ⅰ)知,当a≤0时,函数f(x)在(0,+∞)上是增函数,不可能有两个零点,当a>0时,f(x)在(0,)上是增函数,在(,+∞)上是减函数,此时f()为函数f(x)的最大值,当f()≤0时,f(x)最多有一个零点,∴f()=ln>0,解得0<a<1,此时,<,且f()=﹣1﹣+1=﹣<0,f()=2﹣2lna﹣+1=3﹣2lna﹣(0<a<1),令F(a)=3﹣2lna﹣,则F'(x)=﹣=>0,∴F(a)在(0,1)上单调递增,∴F(a)<F(1)=3﹣e2<0,即f()<0,∴a的取值范围是(0,1).………………8分(Ⅲ)由(Ⅱ)可知函数f(x)在(0,)是增函数,在(,+∞)是减函数.分析:∵0,∴.只要证明:f()>0就可以得出结论.下面给出证明:构造函数:g(x)=f(﹣x)﹣f(x)=ln(﹣x)﹣a(﹣x)﹣(lnx﹣ax)(0<x≤),则g'(x)=+2a=,函数g(x)在区间(0,]上为减函数.0<x1,则g(x1)>g()=0,又f(x1)=0,于是f()=ln()﹣a()+1﹣f(x1)=g(x1)>0.又f(x2)=0,由(1)可知,即.………………12分。
2017届湖北省黄冈市黄冈中学高三9月月考数学(理)试题(含解析)
2017届湖北省黄冈市黄冈中学⾼三9⽉⽉考数学(理)试题(含解析)黄冈中学2017届⾼三(上)理科数学九⽉考⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.集合{}{}32,log ,,,M a N a b ==若{}1M N = ,则M ∪N =( )A .{}0,1,2B .{}0,1,3C .{}0,2,3D .{}1,2,3 【答案】D【解析】3log 131a a b =?=?=,选D . 2.“3πα≠”是“1cos 2α≠”的() A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】“3πα≠”是“1cos 2α≠”的什么条件?等价于“1cos 2α=”是“3πα=”的什么条件?易知“1cos 2α=”是“3πα=”的必要不充分条件,选B . 3.已知函数2sin y x =的定义域为[a ,b ],值域为[-2,1],则b a -的值不可能是() A .65π B .πC .67πD .π2【答案】D【解析】值域[-2,1]含最⼩值不含最⼤值,故定义域⼩于⼀个周期,故选D .4.设ABC ?是⾮等腰三⾓形,设(cos ,sin ),(cos ,sin ),(cos ,sin )P A A Q B B R C C ,则PQR ?的形状是()A .锐⾓三⾓形B .钝⾓三⾓形C .直⾓三⾓形D .不确定【答案】B 【解析】易知这三点都在单位圆上,⽽且都在第⼀、⼆象限,由平⾯⼏何知道可知(外⼼在三⾓形的外部),这样的三个点构成的三⾓形必为钝⾓三⾓形.5.如图,ΔABC 中,A ∠= 600, A ∠的平分线交BC 于D ,若AB = 4,且)(41R ∈+=λλ,则AD 的长为()【答案】B【解析】设虚线在AC 、AB 上的交点分别为M 、N ,易知AM =14AC ,:3:4CM AC =,:3:4MD AB ∴=,⽽AB = 4,故MD=AM =3,在AM D ?中,利⽤余弦定理易求出AD =6.已知cos()63πα+=,则sin(2)6πα-的值为()A .13 B .13- C .3 D .3- 【答案】A【解析】由cos()63πα+=得,1cos(2)33πα+=-,所以1sin(2)sin(2)cos(2)63233ππππααα-=+-=-+=. 7.已知锐⾓α的终边上⼀点(sin 40,1cos40),P + 则锐⾓α=()A. 80B .70C .20D .10【答案】B【解析】21cos 402cos 20cos 20tan tan 70sin 402sin 20cos 20sin 20α+====. 8.在△ABC 中, N 是AC 边上⼀点,且12AN NC =,P 是BN上的⼀点,若29AP m AB AC =+,则实数m 的值为( )A .19B .13 C .1D .3【答案】B【解析】2293AP mAB AC mAB AN =+=+,因B 、P 、N 三点共线,所以m +23=1,故选B .9.称(,)d a b a b =- 为两个向量,a b 的距离。
湖北省黄冈市黄冈中学2017届高三上学期周末测试(6)数学(理)试题 Word版含解析
黄冈中学2017届高三(上)理科数学测试(6)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合{5,6}等于( )A .M ∪NB .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N ) 1.D2. 3k >是方程22131x y k k +=--表示双曲线的( )条件. A .充分但不必要 B .充要 C .必要但不充分 D .既不充分也不必要2.A 【解析】330,10k k k >⇒-<->,即方程22131x y k k +=--表示双曲线,但方程22131x y k k +=--表示双曲线(3)(1)031k k k k ⇒--<⇒><或. 3.等差数列{}n a 中,2nna a 是一个与n 无关的常数,则该常数的可能值的集合为( ) A .{}1B .112⎧⎫⎨⎬⎩⎭,C .12⎧⎫⎨⎬⎩⎭D .10,,12⎧⎫⎨⎬⎩⎭3.B 【解析】等差数列{}n a 中,dn a dn a a a n n )12()1(112-+-+=与n 无关的常数,所以d n m ma d n a )12()1(11-+=-+对n 恒成立,所以;21,0;1,0=≠==m d m d4.若,a b 是异面直线,P 是,a b 外的一点,有以下四个命题:①过P 点一定存在直线l 与,a b 都相交; ②过P 点一定存在平面与,a b 都平行; ③过P 点可作直线与,a b 都垂直;④过P 点可作直线与,a b 所成角都等于50.这四个命题中正确命题的序号是( )A .①B .②C .③、④D .①②③4.C 【解析】当直线a 与P 点确定的平面α与b 平行时,过P 点所作的与a 相交的直线都在α内,不可能与b 相交,因此命题①不正确;同样,在这种情况下,过P 点作与b 平行的平面恰是α,α通过a 与a 并不平行,因此命题②也不正确.③④可以考虑与两直线平行在同一平面考虑.5.在函数()y f x =的图象上有点列(,)n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可以为 ( )A .()21f x x =+B .2()4f x x =C .3()log f x x =D . 3()()4xf x =5. D 【解析】对于函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列(x n ,y n ),有y n =3()4n x ,由于{x n }是等差数列,所以x n +1-x n =d ,因此1n ny y +=113()334()()344()4n n n n x x x d x ++-==,这是一个与n 无关的常数,故{y n }是等比数列.故选D. 6.为得到函数sin()3y x π=+的图象,可将函数sin y x =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则||m n -的最小值是( )A .43π B .23π C .3πD .2π 6.B 【解析】由条件可得121252,2(,)33m k n k k k N ππππ=+=+∈,则124|||2()|3m n k k ππ-=--,易知时min 2||3m n π-=7.方程01sin 2=+-x x π所有根的和为( )A .4B .5C .6D .77.B 【解析】作图可知1,sin 2-==x y x y π的图象都关于点(1,0)对称,且共有五个交点,故所有根的和为5.8.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( ) A. 1 B.52C. 5D. 238.【答案】D【解析】由题意,如下图,该几何体为三棱锥ABCD ,最大面的表面为边长为22的等边三角形,故其面积为23(22)234⋅=.9.已知F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,E 是双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B . (1,2)C . (1,3)D .(1,3) 9.【答案】A【解析】由于ABE ∆为等腰三角形,可知只需045AEF ∠<即可,即2||||b AF EF a c a<⇒<+,化简得23012e e e --<⇒<<.10.已知函数()xf x e ax =-有两个零点12x x <,则下列说法错误的是( )A. a e >B.122x x +>C.121x x >D.有极小值点0x ,且1202x x x +< 10.【答案】C【解析】函数()f x 导函数:'()xf x e a =-有极值点ln x a =,而极值(ln )ln 0f a a a a =-<,a e ∴>,A 正确.()f x 有两个零点:110x e ax -=,220x e ax -=,即:11ln ln x a x =+① 22ln ln x a x =+②①-②得:1212ln ln x x x x -=- 根据对数平均值不等式:1212121212ln ln x x x x x x x x +->=>- 122x x ∴+>,而121x x >,121x x ∴< B 正确,C 错误而①+②得:12122ln ln 2ln x x a x x a +=+<,即D 成立. 11.(2013浙江)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BC答案 D解析 设BC 中点为M ,则PB →·PC →=⎝ ⎛⎭⎪⎫PB →+PC →22-⎝ ⎛⎭⎪⎫PB →-PC →22=PM →2-14CB →2同理P 0B →·P 0C →=P 0M →2-14CB →2,∵PB →·PC →≥P 0B →·P 0C →恒成立,∴|PM →|≥|P 0M →|恒成立.即P 0M ⊥AB ,取AB 的中点N ,又P 0B =14AB ,则CN ⊥AB ,∴AC =BC .故选D.12.(2013四川)设函数f (x )=e x +x -a (a ∈R ,e 为自然对数的底数),若曲线y =sin x 上存在点(x 0,y 0)使得f (f (y 0))=y 0,则a 的取值范围是( ) A .[1,e] B .[e -1-1,1] C .[1,e +1] D .[e -1-1,e +1] 答案 A解析 可知0[0,1]y ∈,易知f (x )在定义域内为增函数;由于存在f (f (y 0))=y 0,若f (y 0)>y 0,则有f (f (y 0))>f (y 0),即y 0>f (y 0),矛盾;若f (y 0)<y 0,则有f (f (y 0))<f (y 0),即y 0<f (y 0),矛盾.故 只有f (y 0)=y 0.即f (x )=e x +x -a =x 在[0,1]内有解.整理可得2x a e x x =+- 在[0,1]内有解,'()120xg x e x =+->,()g x 在[0,1]x ∈单调递增,故[0,]a e ∈. 二、填空题:本大题共7小题,考生共需作答4小题,每小题5分,共20分.13.已知tan α,tan β分别是2lg(652)0x x -+=的两个实数根,则tan()αβ+= . 13.1【解析】试题分析:由题意可得,2lg(652)0x x -+=26x 5x 21⇒-+=,∴5tan tan =6αβ+, 1tan tan 6αβ⋅=,∴tan()αβ+5tan tan 6111tan tan 16αβαβ+===--.14.已知函数()f x 满足:()()()f a b f a f b +=⋅,(1)2f =,则2(1)(2)(1)f f f ++ 222(2)(4)(3)(6)(4)(8)(3)(5)(7)f f f f f f f f f +++++= 。
湖北省黄冈市黄冈中学2017届高三上学期周末测试(9)数学(理)试题 含解析
湖北省黄冈中学2017届数学周末练习(9)一、选择题(共 12 小题,每题 5 分,共 60 分)1。
若复数z 满足()3443i z i -=+,则z 的虚部为( )A.45i B 。
45- C 。
45i - D.45【答案】D【解析】由()34435i z i -=+=,得i i i i i z 5453)43)(43()43(5435+=+-+=-=,虚部为45,故选D .2.已知()f x ()2g x x =-,则下列结论正确的是( )A 。
()()()h x f x g x =+是偶函数B 。
()()()h x f x g x =⋅是奇函数C 。
()()()2g x f x h x x ⋅=-是偶函数 D.()()2()f x h xg x =-是奇函数 【答案】D【解析】选项A 中,(2)0h =,(2)4h -=,A 错;选项B 中,(1)h (1)h -=B 错;选项C 中,定义域为[)2,2-,C 错;选项D 中,定义域为[)(]2,00,2-,此时,()2g x x =-,()h x =是奇函数,故选D .3。
已知|a |=1,|b |=2,且()a a b ⊥-,则向量a 与向量b 的夹角为( )A.6πB.4πC.3π D 。
23π【答案】B【解析】由题意得22()01cos ,2||||a b a a b a b a a b a b ⋅⋅-=⇒⋅==⇒<>==⋅,所以a 与b 的夹角为4π,选B. 4。
已知向量(1,2),(2,1)a x b =-=,则“0x >”是“a 与b 夹角为锐角”的( )A 。
充分不必要条件 B.充要条件C 。
必要不充分条件 D.既不充分也不必要条件【答案】C5.执行如图所示的程序,若0.9P =,则输出的n 值是( )A 。
3 B.4C.5 D 。
6 【答案】C【解析】根据流程图可知,该程序的作用是:求满足1110.9242n S =+++≥时1n +值,当3n =时,70.98S =<;当4n =时,150.916S =>, 满足条件,此时15n +=.故选C .6。
湖北省黄冈市2017届高三九月起点考试数学理试题 Word版含答案
黄冈市2017届高三九月起点考试数学试卷(理科)一、选择题1. 已知函数()f x =的定义域为(),ln(1)M g x x =+的定义域为N ,则()R MC N =( )A .{}|1x x <B .{}|1x x ≥C .φD .{}|11x x -<< 2.给定下列三个命题:P 1:∀a ,b ∈R ,a 2-ab +b 2<0; P 2:存在m ∈R,使f(x)=(m-1)是幂函数,且在(0,+∞)上是递减的 则下列命题中的真命题为( )A .p 1∨p 2B .p 2∧p 3C .p 1∨(¬p 3)D .(¬p 2)∧p 33. 设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A .120B .105C .90D .754.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列为真命题的是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥, αβ⊥,则βγ⊥5.设条件甲:2210ax ax ++>的解集是实数集R ;条件乙:01a <<,则命题甲是命题乙成立的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件6.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .3.3+ C .1+.1+7.函数f (x )=(x -1)ln|x |的图象可能为( )8.函数()sin()f x A x ϕ=+(0A >)在π3x =处取得最小值,则( ) (A )π()3f x +是奇函数 (B )π()3f x +是偶函数(C )π()3f x -是奇函数 (D )π()3f x -是偶函数9.在RT ⊿ABC 中,∠BCA=900,AC=BC=6,M 、N 是斜边AB 上的动点,MN=2 2 ,则CM CN 的取值范围为( )A .[]18,24B . []16,24C .(16,36)D . (24,36)10. 设12x <<,则222ln ln ln ,,x x x x x x⎛⎫ ⎪⎝⎭的大小关系是( )A 、222ln ln ln x x xx x x ⎛⎫<< ⎪⎝⎭ B 、222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭C 、222ln ln ln x xx x x x ⎛⎫<< ⎪⎝⎭ D 、222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭11.设1F 、2F 是双曲线2214y x -=的左、右两个焦点,若双曲线右支上存在一点P ,使()22F F 0OP +O ⋅P =(O 为坐标原点)且12FF λP =P ,则λ的值为( )A .2B .12 C .3 D .1312.已知()x f x x e =⋅,又()()()2g x f x t f x =+⋅(R t ∈),若满足()1g x =-的x 有四个,则t 的取值范围为( )A .21,e e ⎛⎫++∞ ⎪⎝⎭B .21,e e ⎛⎫+-∞- ⎪⎝⎭ C .21,2e e ⎛⎫+-- ⎪⎝⎭ D .212,e e ⎛⎫+ ⎪⎝⎭二、填空题13.已知抛物线C :y 2=2px (p >0)上一点A (4,m)到其焦点的距离为,则p 的值是 ..14. 设函数f (x )=若f (a )>f (1),则实数a 的取值范围是15.已知向量,满足||=2,||=1,与的夹角为,则与+2的夹角为 .16.对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列3个命题: ①任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立; ②()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立;③函数()ln(1)y f x x =--在()1,+∞上有3个零点; 则其中所有真命题的序号是 .三、解答题(共6个小题,满分80分)17.(本题满分10分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且c=asinC ﹣ccosA .(1)求A ;(2)若a=1,△ABC 的面积为34 ,求b ,c .18.(本题满分12分)在直角坐标系XOY 中,已知点A (1,1),B (3,3),点C 在第二象限,且ABC 是以BAC ∠为直角的等腰直角三角形。
湖北省黄冈市2017届高三上学期期末考试数学(理)试题(解析版)
第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设复数121,1z i z i =-=+,其中i 是虚数单位,则12z z 的模为 A. 14C. 12D. 1 【答案】D【解析】试题分析:因为错误!未找到引用源。
,所以错误!未找到引用源。
;故选D .考点:复数的概念.2.下列说法正确的是A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C.“若tan α≠3πα≠”是真命题 D.()0,0x ∃∈-∞使得0034x x <成立【答案】C考点:1.四种命题;2.充分条件和必要条件.3.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有堩厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现有程序框图描述,如图所示,则输出结果n =A. 4B. 5C. 2D. 3【答案】A考点:程序框图.4.下列四个图中,函数ln11xyx+=+的图象可能是【答案】C【解析】试题分析:显然,当错误!未找到引用源。
时,错误!未找到引用源。
,即错误!未找到引用源。
,故排除选项A、B,当错误!未找到引用源。
时,错误!未找到引用源。
,即错误!未找到引用源。
,故排除选项D;故选C.考点:函数的图象和性质.5.设实数,x y满足错误!未找到引用源。
,则13yx-+的取值范围是A. 1,5⎛⎤-∞- ⎥⎝⎦B. 1,15⎡⎤-⎢⎥⎣⎦C. 11,53⎛⎤- ⎥⎝⎦D. 1,13⎛⎤ ⎥⎝⎦【答案】B考点:1.不等式组与平面区域;2.非线性规划问题.6.如图,网格纸上正方形小格的边长为1,图中粗线画的是某几何体的三视图,则该几何体的表面积为S 为()S R r l π=+(注:圆台侧面积公式为)A. 17π+B. 20π+C.22πD. 17π+【答案】D【解析】试题分析:由三视图可知,该几何体是由一个半球和一个圆台(上底面与球的大圆面重合)组成,其中半球的半径为2,其曲面面积为错误!未找到引用源。
黄冈市2017年秋季高三理数答案(1)
黄冈市2017年秋季高三年级期末考试数学参考答案(理科)一、选择题 ACBBB CDBDD AB9.D 【解析】本题考查指数函数和对数函数的性质.由-1<c <0得0<|c|<1,又a >b >1,∴log b |c| <log a |c| <0, -log b |c| >-log a |c| >0, a >b >1>0,∴-alog b |c| >-blog a |c| , 即blog a |c| >alog b |c| .故选D.11.A 【解析】本题考查抛物线的定义及抛物线的几何性质.由题设知抛物线y 2=2px 的准线为x=- p 2 ,代入双曲线方程y 23 -x 2=1解得 y=±3+3p 24 ,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN=π4, ∴tan ∠FMN=p3+3p 24=1,∴p 2=3+3p24,即p=2 3 ,故选A.12.B 【解析】本题考查三角函数变换及导数的应用.由f(x)= - 56 x- 112 cos2x+m(sinx-cosx)在(-∞,+∞)上单调递减知,f ′(x)= - 56 + 16 sin2x+m(cosx+sinx)≤0在(-∞,+∞)上恒成立,令t=sinx+cosx,t ∈[- 2 , 2 ].则sin2x=t 2-1,即16 t 2+mt-1≤0对t ∈[- 2 , 2 ]恒成立,构造函数g(t)= 16 t 2+mt-1,则g(t)的图象开口向上,从而函数g(t)在区间[- 2 , 2 ]上的最大值只能为端点值,故只需⎩⎨⎧g(- 2 )= 13- 2 m-1≤0g( 2 )= 13 + 2 m-1≤0. ∴- 2 3 ≤m ≤ 2 3,故选B. 二、填空题13.32 14.2 15.-10 16. 1.5314.2 【解析】本题考查二项式定理的应用及导数的计算.将(1-ax)2018=a 0+a 1x+a 2x 2+…+a 2018x 2018两边同时对x 求导得2018(1-ax)2017(-a)=a 1+2a 2x+3a 3x 2+…+2018a 2018x 2017,令x=1得-2018a(1-a)2017=a 1+2a 2+3a 3+…+2018a 2018=2018a,又a ≠0,所以(1-a)2017=-1,1-a=-1,故a=2.答案:2.15.-10【解析】本题考查等比数列的性质及等差数列求和公式.由于{a n }是正项等比数列,设a n =a 1q n-1,其中a 1是首项,q 是公比.则⎩⎨⎧a 1+a 3=516 a 2+a 4= 58 ⇔⎩⎨⎧a 1+a 1q 2= 516 a 1q+a 1q 3= 58,解得 ⎩⎪⎨⎪⎧a 1=116 q=2.故a n =2n-5,∴log 2(a 1a 2…a n ) =log 2(2(-4)+(-3)+…+(n-5)) =(-4)+(-3)+…+(n-5)= 12 n(n-9)= 12 [(n-92 )2- 814 ],∴当n=4或5时, log 2(a 1a 2…a n ) 取最小值-10.16.1.53 解析:设水深为x 尺,则x 2+62=(x+2)2,解得,x=8 .∴水深为8 尺,芦苇长为10 尺,以AB 所在的直线为x 轴,芦苇所在的直线为y 轴, 建立如图所示的平面直角坐标系,在牵引过程中, P 的轨迹是以O 为圆心,半径为10 的圆弧,其方程为 x 2 +y 2=100(-6≤x ≤6,8≤y ≤10),①E 点的坐标为(- 4,8),∴OE 所在的直线方程为 y=- 2x ,② 设Q 点坐标为(x,y),由①②联立解得 x=-2 5 ,DG=6-2 5 ≈1.53 故点Q 在水面上的投影离水岸边点D 的的距离为1.53. 三、解答题17. 解析:由(13)x 2-x -6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,故A ={x | x ≤-2或x ≥3} .………3分由log 3|(x +a )|≥1,得|x+a |≥3故B ={x |x ≥3-a ,x ≤-3-a }.………………5分由题意,可知B ⊂≠A ,所以—3-a ≤-2, 3-a >3,或—3-a <-2, 3-a ≥3…………………8分 解得-1≤a ≤0.………………………………………………………10分 18.解:(1)由题设知∠BOC=2∠BAC,…………………………………1分 ∴cos ∠BOC=cos2∠BAC=1-2sin 2∠BAC= - 13 …………………3分∴sin 2∠BAC= 23 ,sin ∠BAC= 6 3.………………5分(2)延长AD 至E,使AE=2AD,连接BE,CE,则四边形ABEC 为平行四边形,∴CE=AB.…………6分 在△ACE 中,AE=2AD=11 ,AC= 3 ,∠ACE=π-∠BAC,cos ∠ACE=-cos ∠BAC=- 33.……7分 ∴由余弦定理得,AE 2=AC 2+CE 2-2AC ·CE ·cos ∠ACE,即(11 )2=( 3 )2+CE 2-2× 3 ·CE ×(-3 3), 解得CE=2,∴AB=CE=2, ………………………………………………9分 ∴S △ABC =12 AB ·AC ·sin ∠BAC=12 ×2× 3 × 63= 2 .…………12分19.解:(1)由(a -1)S n =a (a n -1)得,S 1=aa -1(a 1-1)=a 1,所以a 1=a .………………………………………2分 当n ≥2时,a n =S n -S n -1=a a -1(a n -a n -1),整理得a na n -1=a ,………………4分 即数列{a n }是以a 为首项,a 为公比的等比数列.所以a n =a · a n -1=a n .…………………………………………………………6分 (2)由(1)知,b n =aa -1(a n -1)a n +1=(2a -1)a n -a(a -1)a n ,① 由数列{b n }是等比数列,则b 22=b 1·b 3,故⎝⎛⎭⎫2a +1a 2=2·2a 2+a +1a 2,解得a =12,………9分再将a =12 代入①式得b n =2n,故数列{b n }为等比数列,且a =12 .由于1 b n +1 b n +2 =12n +12n+2 >212n ·12n+2 =2×12n +1 = 2·1b n +1,满足条件①;由于1b n =12n ≤12 ,故存在M ≥12满足条件②.故数列⎩⎨⎧⎭⎬⎫1b n 为“欧拉”数列.…………………………………12分20. 解: (1)甲品牌产品寿命小于200小时的频率为20+60300=415,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为415.………………………………………(3分)(2)根据抽样结果,寿命大于200小时的产品有220+210=430个,其中乙品牌产品是210个,所以在样本中,寿命大于200小时的产品是乙品牌的频率为210430=2143,用频率估计概率,所以已使用了200小时的该产品是乙品牌的概率为2143.………………………………(7分)(3)由题意知X 可能取值为0,1,2,3,且P(X=0)=C 040 ·C 340 C 380 = 19158 ,P(X=1)= C 140 ·C 240C 380= 60158 , P(X=2)= C 240 ·C 140 C 380 = 60158 , P(X=3)= C 340 ·C 040 C 380= 19158 .…………………(9分) ∴X 的分布列为故E(X)= 0×19158 +1×60158 +2×60158 +3×19158 = 237158 =32 .……………………………(12分)21. 解:(1)由题设得 2 b=2 2 ,(b >0),∴b=2,又e= c a = 5 3 ,∴c 2=59 a 2=a 2-4,解得a 2=9.因此椭圆C 1的方程为x 29 + y 24 =1.由抛物线C 2的方程为y=-x 2+2,得M(0,2).………(2分)设直线l 的方程为 y=kx+1(k 存在),A(x 1,y 1),B(x 2,y 2).于是.由⎩⎨⎧y=-x 2+2y=kx+1 消去y 得x 2+kx-1=0,∴⎩⎨⎧x 1+x 2=-k x 1x 2=-1,①………………………(3分) ∴ MA →·MB →=(x 1,y 1-2)·(x 2,y 2-2)=x 1x 2+(y 1-2)(y 2-2)=x 1x 2+(kx 1+1-2)(kx 2+1-2) =(1+k 2)x 1x 2-k(x 1+x 2)+1,∴将①代入上式得MA →·MB →=-1-k 2+k 2+1=0(定值).……………………(5分)(2)由(1)知,MA ⊥MB,∴△MAB 和△MDE 均为直角三角形,设直线MA 方程为y=k 1x+2,直线MB 方程为y=k 2x+2,且k 1k 2=-1,由⎩⎨⎧y=k 1x+2y=-x 2+2 解得⎩⎨⎧x=0y=2 或⎩⎨⎧x=-k 1y=-k 12+2,∴A(-k 1,-k 12+2),同理可得B(-k 2,-k 22+2),………(7分) ∴S 1=12 |MA|·|MB|= 12 1+k 12 ·1+k 22|k 1||k 2|.………………………………(8分)由⎩⎪⎨⎪⎧y=k 1x+2x 29 + y 24 =1 解得⎩⎨⎧x=0y=2 或⎩⎨⎧x= -36k 14+9k 12 y= 8-18k 124+9k 12 ,∴D(-36k 14+9k 12 ,8-18k 124+9k 12 ),同理可得E(-36k 24+9k 22 ,8-18k 224+9k 22 ),………………………………………………………(9分)∴S 2=12 |MD|·|ME|= 12 ·361+k 12|k 1|4+9k 12 ·361+k 22|k 2|4+9k 22,………………………(10分) ∴λ2= S 1S 2 = 1362 (4+9k 12)(4+9k 22)= 1362 (16+81k 12k 22+36k 12+36k 22)= 1362 (97+ 36k 12+ 36k 12 )≥132362 ,(当且仅当k 12=1时取等号)又λ>0,∴λ≥1336故λ的取值范围是[1336 ,+∞)………………………………………………………(12分)22.解:(1)∵f(x)=1+lnx 2ax (a ≠0,且a 为常数),∴f ′(x)= -2alnx (2ax)2 = - lnx2ax2 .(x >0)………………(1分) ∴①若a >0时,当 0<x <1, f ′(x)>0;当x >1时, f ′(x)<0.即a >0时,函数f(x)单调递增区间为(0,1),单调递减区间为(1,+∞).………………(3分) ②若a <0时,当 0<x <1, f ′(x)<0;当x >1时, f ′(x)>0.即a <0时,函数f(x)单调递增区间为(1,+∞),单调递减区间为(0,1).………………(5分) (2)由(1)知, f(x)= 1+lnxx在区间(1,+∞)上单调递减,不妨设x 2>x 1>1,则f(x 1)>f(x 2),∴不等式|f(x 1)-f(x 2)|≥k|lnx 1-lnx 2|可化为f(x 1)-f(x 2)≥k(lnx 2-lnx 1).………………………(8分) 即f(x 1)+kx 1≥f(x 2)+kx 2,令F(x)=f(x)+klnx,则F(x)在区间(1,+∞)上存在单调递减区间, ∴F ′(x)= f ′(x)+ k x =-lnx x 2 +k x = -lnx+kxx 2<0有解,即kx <lnx(x >1), ∴k <lnx x 有解,令G(x)= lnx x ,则G ′(x)= 1-lnxx2 ,由G ′(x)=0得x=e,………………………(10分) 当x ∈(1,e)时,G ′(x)>0,G(x)单调递增;当x ∈(e,+∞)时, G ′(x)<0,G(x)单调递减. ∴G(x)max =G(e)= 1e ,故k <1e .……………………………………………………………………(12分)命题人:蕲春一中 宋春雨审题人:黄冈中学 张卫兵 张淑春。
湖北省黄冈市2017届高三质量检测3月份理科数学试卷
湖北省黄冈市2017届高三质量检测3月份理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|log 4}A x x =≤,集合{|||2}B x x =≤,则AB =( ) A.(0,2] B.[0,2] C.[2,2]- D.(2,2)- 2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,若112i z =-,i 是虚数单位,则21z z 的虚部为( ) A.45- B.45 C.35- D.353.下列四个结论:①若0x >,则sin x x >恒成立;②命题“若sin 0x x =-,则0x =”的逆否命题为“若0x ≠,则sin 0x x ≠-”;③“命题p q ∧为真”是“命题p q ∨为真”的充分不必要条件;④命题“x ∀∈R ,ln 0x x ->”的否定是“0x ∃∈R ,00ln 0x x -<”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个4.《孙子算经》中有道算术题:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”意思是有100头鹿,每户分1头还有剩余;再每3户共分1头,正好分完,问共有多少户人家?设计框图如下,则输出的值是( )A.74B.75C.76D.775.某一简单几何体的三视图如图所示,则该几何体的外接球的表面积是( )A.13πB.16πC.25πD.27π6.已知2sin 1cos θθ=-,则tan θ=( ) A.43-或0B.43或0C.43-D.43 7.已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,双曲线的离心率为e ,若双曲线上一点P 使2112sin e sin PF F PF F ∠=∠,则221F P F F 的值为( ) A.3 B.2 C.3- D.2-8.函数22ln ||x x y x =的图像大致是( )A B C D9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB △的最大边是AB ”发生的概率恰好为35,则AD AB=( ) A.15B.25C.35D.45 10.已知201722016201701220162017(12)(1)(1)...(1)(1)x a a x a x a x a x -=+-+-++-+-()x ∈R ,则 123420162017234...20162017a a a a a a -+-+-+=( )A.2 017B.4 034C.4034-D.011.如图,矩形ABCD 中,24AB AD ==,E 为边AB 的中点,将ADE △沿直线DE 翻转成1A DE △,构成四棱锥1A BCDE -,若M 为线段1A C 的中点,在翻转过程中有如下4个命题:①MB ∥平面1A DE ;②存在某个位置,使1DE AC ⊥;③存在某个位置,使1A D CE ⊥;④点1A其中正确的命题个数是( )A.1个B.2个C.3个D.4个12.已知函数221|1|(2)()e (812)(2)x x x f x x x x ---⎧=⎨-+-⎩≤>,如在区间(1,)+∞上存在(2)n n ≥个不同的数1x ,2x ,3x ,...n x ,使得比值1212()()()...n n f x f x f x x x x ===成立,则n 的取值集合是( ) A.{2,3,4,5} B.{2,3} C.{2,3,5} D.{2,3,4}二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知两个平面向量a ,b 满足||1a =,|2|21a b -=,且a 与b 的夹角为120︒,则||b =__________.14.当实数x ,y 满足不等式组:0022x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有3ax y +≤成立,则实数a 的取值范围是__________.15.如图,在ABC △中,1cos 3ABC ∠=,2AB =,点D 在线段AC 上,且2A D D C =,BD =则ABC △的面积为__________.16.设0a <,2(2017)(2016)x a x b ++在(,)a b 上恒成立,则b a -的最大值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.数列{}n a 中,12a =,11()2n n n a a n n *++=∈N . (1)证明数列{}n a n是等比数列,并求数列{}n a 的通项公式;(2)设4n n na b n a =-,若数列{}n b 的前n 项和是n T ,求证:2n T <. 18.在如图所示的几何体中,平面ADNM ⊥平面ABCD ,四边形ABCD 是菱形,ADNM 是矩形,π3DAB ∠=,2AB =,1AM =,E 是AB 中点.(1)求证:平面DEM ⊥平面ABM ;(2)在线段AM 上是否存在点P ,使二面角P EC D --的大小为π4?若存在,求出AP 的长;若不存在,请说明理由.19.已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒DNA 来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA ,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒DNA ,则在另外一组中逐个进行化验. (1)求依据方案乙所需化验恰好为2次的概率.(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?20.如图,圆C 与x 轴相切于点(2,0)T ,与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且||3MN =.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆22184x y +=相交于两点A ,B ,连接AN 、BN ,求证:ANM BNM ∠=∠. 21.已知函数2()ln ()2a f x x x x a =-∈R . (1)若0x >,恒有()f x x ≤成立,求实数a 的取值范围;(2)若函数()()g x f x x =-有两个极值点1x ,2x ,求证:12112e ln ln a x x +>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2cos 4sin 0ρθθ-=,P 点的极坐标为π(3,)2,在平面直角坐标系中,直线l 经过点P (1)写出曲线C 的直角坐标方程和直线l 的参数方程;(2)设直线l 与曲线C 相交于A ,B 两点,求11||||PA PB +的值. 23.已知函数()|2||21|()f x x a x a =-+-∈R .(1)当1a =-时,求()2f x ≤的解集; (2)若()|21|f x x +≤的解集包含集合1[,1]2,求实数a 的取值范围.。
湖北省黄冈市2017届高三上学期期末考试数学(文)试题(解析版)
第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设集合{}{}|04,|13A x x B x N x =≤<=∈≤≤,则A B =A. {}|13x x ≤≤B. {}|04x x ≤≤C. {}1,2,3D.{}0,1,2,3【答案】C【解析】试题分析:因为错误!未找到引用源。
,所以错误!未找到引用源。
;故选C .考点:1.集合的表示法;2.集合的运算.2.关于x 的方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于 A. 22i - B.22i + C. 22i -+ D.22i --【答案】A考点:复数的概念.3.已知等比数列,则1"0"a >是2017"0"a >的A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件【答案】C【解析】试题分析:因为错误!未找到引用源。
,所以错误!未找到引用源。
同号,即“错误!未找到引用源。
”是“错误!未找到引用源。
”的充要条件;故选C .考点:1.等比数列;2.充分条件和必要条件的判定.4.下列说法正确的是A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B.在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C.“若tan α≠,则3πα≠”是真命题 D.()0,0x ∃∈-∞使得0034x x <成立【答案】C考点:1.四种命题;2.充分条件和必要条件.5.在正方体1111ABCD A B C D -中,异面直线1A B 与1AD 所成角的大小为A. 30B. 45C. 60D.90【答案】C【解析】试题分析:连接错误!未找到引用源。
,易证错误!未找到引用源。
湖北省黄冈市黄冈中学2017届高三上学期周末测试(5)数学(理)试题 Word版含解析
侧视图俯视图正视图112黄冈中学2017届高三(上)理科数学周末测试题(5)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1。
已知全集U=R,集合2{|{|7120},A x y B x x x A ===-+≤则(U C B )= A .(2,3)B .(2,4)C .(3, 4]D .(2,4]2.下列说法正确的是A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .若命题2:,210p x R x x ∃∈-->,则命题2:,210p x R x x ⌝∀∈--< C .命题“若x y =,则sin sin x y =”的逆否命题为真命题 D .“1x =-”是“2560x x --=”的必要不充分条件3.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是 A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α4.已知数列{}n a 中, 45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=A. 14n-B. 41n- C. 143n - D. 413n -5.已知某几何体的三视图如下图所示,则该几何体的体积是 ( ) A .π+332 B .π2332+ C .π+32 D .π232+6.若函数2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,则a 的取值范围是A .(0,1) B.(1,)+∞ C .(1, D .(0,1)(1,23)7.αβαββαtan )tan(,0cos 5)2cos(3+=++则的值为A . 4±B .4C .4-D .18.若关于x ,y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是A .4(,)3-∞-B .1(,)3-∞C .2(,)3-∞-D .5(,)3-∞-9.若ABC ∆的外接圆的圆心为O ,半径为4,+220OA AB AC +=,则CA 在CB 方向上的投影为( )A. 4B.C.D. 110.已知F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,点P 在椭圆C 上,线段PF 与圆222()39c b x y -+=相切于点Q ,且2PQ QF =,则椭圆C 的离心率等于( )A.53B.23C.22D.1211.设等差数列{}n a 的前n 项和为n S ,且150S >,160S <,则11S a ,22S a ,…,1515S a 中最大的是 A.1515S a B. 99S a C. 88S a D. 11Sa 12.函数()y f x =是定义域为R 的偶函数,当0x ≥时,21,(02)16()1(),(2)2x x x f x x ⎧≤≤⎪⎪=⎨⎪>⎪⎩,若关于x 的方程[]2()()0f x af x b ++=,,a b R ∈,有且仅有6个不同实数根,则实数a 的取值范围是 A .51,24⎛⎫-- ⎪⎝⎭ B .11,24⎛⎫-- ⎪⎝⎭ C . 1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭D . 11,28⎛⎫-- ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上.) 13.已知225,sin4sin cos 4cos 2R ααααα∈++=,则tan α=______14.函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则(2014)f 的值为________.15.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n a =________. 16. 如图,ABC 是边长为23的正三角形,P 是以C 为圆心,半径为 1的圆上任意一点,则AP BP ⋅的取值范围是_____________ 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(10分)设命题[]21:1,2,ln 0,2p x x x a ∀∈--≥命题2000:,2860q x R x ax a ∃∈+--≤使得,如果命题“p 或q ”是真命题,命题“p 且q ”是假命题,求实数a 的取值范围。
湖北省各地2017届高三最新考试数学理试题分类汇编函数Word版含答案
湖北省各地2017届高三最新考试数学理试题分类汇编函数2017.02一、选择题1、(黄冈市2017届高三上学期期末)下列四个图中,函数ln 11x y x +=+的图象可能是2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)函数2ln y x x =-的图像为A B C D3、(荆门市2017届高三元月调考)函数21(13)43y x x x x =≠≠-+且的值域为A .1[,)3+∞ B .[1,0)(0,)-+∞ C .[1,)-+∞ D .(,1](0,)-∞-+∞4、(荆门市2017届高三元月调考)函数ln 1()xf x e x=+的大致图象为5、(天门、仙桃、潜江市2017届高三上学期期末联合考试)定义在R 上的偶函数()f x 满足:对于任意的12,(,0]x x ∈-∞12()x x ≠,有2121()[()()]0x x f x f x -->,则当n *∈N 时,有A .()(1)(1)f n f n f n -<-<+B .(1)()(1)f n f n f n -<-<+C .(1)()(1)f n f n f n +<-<-D .(1)(1)()f n f n f n +<-<-6、(武汉市2017届高三毕业生二月调研考)下列函数既是奇函数,又在[]1,1-上单调递增是是A. ()sin f x x =B.()2ln 2xf x x-=+ C. ()()12x xf x e e -=- D.())ln f x x =-7、(武汉市武昌区2017届高三1月调研)已知函数()23f x ax a =-+,若()01,1x ∃∈-,()00f x =,则实数a 的取值范围是( )A .()(),31,-∞-+∞ B .(),3-∞- C. ()3,1- D .()1,+∞8、(襄阳市2017届高三1月调研)函数()ln 37f x x x =+-的零点所在的区间是 A. ()0,1 B. ()1,2 C. ()2,3 D. ()3,4 9、(襄阳市优质高中2017届高三1月联考)已知函数()2ln xf x x x=-,则函数()y f x =的大致图象为10、(孝感市七校教学联盟2017届高三上学期期末)下列函数中,既是偶函数又在()0,+∞上单调递减的函数是( )A .32y x = B .1y x =+ C .24y x =-+ D .2xy =11、(湖北省部分重点中学2017届高三上学期第二次联考)设()[)[]21,11,1,2x f x x x ∈-=-∈⎪⎩,则()21f x dx -=⎰的值为A.423π+B. 32π+C. 443π+D. 34π+ 12、(荆州中学2017届高三1月质量检测)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度18()721v t t t=-++ (t 的单位:s ,v 的单位:m/s )行驶至停止,在此期间汽车继续行驶的距离(单位:m )是( )A .48ln2+B .45718ln 42+ C .1018ln6+ D .418ln6+ 13、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知图甲是函数()y f x =的图象,图乙由图甲变换所得,则图乙中的图象对应的函数可能是A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--14、(武汉市武昌区2017届高三1月调研)已知函数()f x 的部分图像如图所示,则()f x 的解析式可以是( )A .()222x f x x -=B .()2cos xf x x = C. ()2cos x f x x =-15、(孝感市七校教学联盟2017届高三上学期期末)下函数xx x f 2)1ln()(-+=的零点所在的大致区间是 ( )A .(3,4)B .(2,e )C .(0,1)D .(1,2)参考答案1、C2、A3、D4、C5、C6、C7、B8、C9、A 10、C 11、A 12、C 13、C 14、D 15、D二、填空、解答题1、(黄冈市2017届高三上学期期末)设函数()2,12,1x x f x x -≥⎧=⎨<⎩,则满足()110xf x -≥的x 取值范围为 .2、(荆州市五县市区2017届高三上学期期末)若函数()()sin x x f x e ae x -=+为奇函数,则a =________.3、(黄冈市2017届高三上学期期末)已知函数()()21, 1.f x x g x a x =-=- (1)若关于x 的方程()()f x g x =只有一个实数解,求实数a 的取值范围; (2)若当x R ∈时,不等式()()f x G X ≥恒成立,求实数a 的取值范围. 参考答案 1、2、13、解:(Ⅰ)方程|f (x )|=g (x ),即|x 2﹣1|=a |x ﹣1|,变形得|x ﹣1|(|x +1|﹣a )=0,显然,x =1已是该方程的根,从而欲使原方程只有一解,即要求方程|x +1|=a 有且仅有一个等于1的解或无解, ∴a <0.…………5分(Ⅱ)当x ∈R 时,不等式f (x )≥g (x )恒成立,即(x 2﹣1)≥a |x ﹣1|(*)对x ∈R 恒成立,①当x =1时,(*)显然成立,此时a ∈R ; ②当x ≠1时,(*)可变形为a≤,令φ(x )==因为当x >1时,φ(x )>2,当x <1时,φ(x )>﹣2,所以φ(x )>﹣2,故此时a ≤﹣2. 综合①②,得所求实数a 的取值范围是a ≤﹣2.…………10分。
湖北省黄冈市黄冈中学2017届高三上学期周末测试(12)数学(理)试题 含解析
2017届高三(上)理科数学周末练习(12)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{(,)|,},{(,)|20},{(,)|0}U x y x y A x y x y m B x y x y n =∈∈=-+>=+-≤R R ,那么点(2,3)()U P A B ∈的充要条件是( )A .1m >-且5n <B .1m <-且5n <C .1m >-且5n >D .1m <-且5n > 答案:A 2.若2{|0,}x x x m m ⊂∅++≤∈≠R ,则m 的取值范围是( )A .1(,]4-∞B .1(,)4-∞C .1[,)4+∞D .1(,)4+∞答案:A3.设函数()y f x =在定义域内的导函数为()y f x '=,若()y f x =的图象如图1所示,则()y f x '=的图象可能为( )答案:D4.已知两不共线向量(cos ,sin ),(cos ,sin )ααββ==a b ,则下列说法不正确的是( )A .||||1==a bB .()()+⊥-a b a bC .a 与b 的夹角等于αβ-D .a 与b 在+a b 方向上的投影相等 答案:C解析:(1)22()()||||0+⋅-=-=a b a b a b .(2)cos ,cos cos sin sin cos()||||αβαβαβ⋅<>==⋅=+=-⋅a b a b a b a b .当[0,]αβπ-∈时,,αβ<>=-a b ;当[0,]αβπ-∉时,,αβ<>≠-a b .(3)22()()||||||||||||⋅+⋅+=⇔+⋅=⋅+⇔=++a a b b a b a a b a b b a b a b a b .5.若平面向量a 、b 、c 两两所成的角相等,且||1,||1,||3===a b c ,则||++=a b c ( )A .2B .5C .2或5D .4或25 答案:C解析:设向量a 、b 、c 两两所成的角为θ,则23πθ=或0.∵2222||||||||++=+++a b c a b c2()⋅+⋅+⋅a b b c c a 222||||||2(||||||||||||)cos 4θ=+++⋅+⋅+⋅⋅=a b c a b b c c a 或25,∴||++=a b c 2或5.6.如图,在四边形ABCD 中,,AB BC AD DC ⊥⊥.若||,||AB a AD b ==,则AC BD =( ) A .22ab - B .22ba - C .22ab + D .ab答案:B解析:设点,B D 在AC 上的射影分别为11,B D .在直角三角形中,由射影定理得222211,AC AB AB a AC AD AD b ====.故(AC BD AC AD =2211)AB AC AD AC AB AC AD AC AB b a -=-=-=-,选择“B ”.7.设p :|21|x a +>,q :1021x x ->-,则使得p 是q 的必要但不充分条件的实数a 的取值范围是( )A .(,0)-∞B .(,2]-∞-C .[2,3]-D .[3,)+∞ 答案:A解析:对于p :当0a <时,x ∈R ;当0a ≥时,11(,)(,)22a a x ---∈-∞+∞.对于q :1(,)(1,)2x ∈-∞+∞.∵p q ⇐,但p 不能推出q ,∴0a <或0,111,1222a a a ≥⎧⎪⎨---≥≤⎪⎩且,得0a <.8.已知A 、B 、C 是锐角△ABC 的三个内角,向量(1sin ,1cos )A A =++p ,(1sin ,B =+q 1cos )B --,则p 与q 的夹角是( )A .锐角B .钝角C .直角D .锐角或零角答案:A解析:在锐角ABC ∆中,∵2A B π+>,∴022A B ππ>>->,∴sin sin()cos 2A B B π>-=,∴1sin 1cos 0A B +>+>.同理可得1sin 1cos 0B A +>+>.两式相乘,得(1sin )(1sin )(1cos )(1cos )0A B A B ⋅=++-++>p q .∵1sin 0,1cos 0A A +>+>,而1sin 0,1cos 0B B +>--<,∴p 与q 不共线,∴p 与q 的夹角为锐角.9.某厂的某种产品的产量去年相对于前年的增长率为1p ,今年相对于去年的增长率为2p ,且12120,0,p pp p p>>+=.如果这种产品的产量在这两年中的平均增长率为x ,则( )A .2p x ≤B .2p x =C .2p x <D .2p x ≥答案:A解析:设这种产品前年的产量为a ,则今年的产量为212(1)(1)(1)a p p a x ++=+,得2222121212(1)(1)(1)(1)(1)[](1)(1)222p p p p px p p +++++=++≤=+=+,∴112px +≤+,∴2px ≤.10.已知不等式|2|1x a x ->-对任意的[0,2]x ∈恒成立,则a 的取值范围为( )A .(,1)(5,)-∞+∞ B .(,2)(5,)-∞+∞ C .(1,5) D .(2,5)答案:B。
湖北省各地2017届高三最新考试数学理试题分类汇编-数列
湖北省各地2017届高三最新考试数学理试题分类汇编数列2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)设数列{}n a 满足122,6a a ==,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则122017201720172017a a a ⎡⎤+++=⎢⎥⎣⎦L . 2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8L ,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,则(Ⅰ)7S =__________; (Ⅱ)若2017a m =,则2015S =__________.(用m 表示) 3、(荆州市五县市区2017届高三上学期期末)已知数列{}n a 的前n 项和为n S ,且满足41n n S a =+*()n ∈N ,设3log ||n n b a =,则数列{}n b 的通项公式为________.4、(襄阳市2017届高三1月调研)在等差数列{}n a 中,已知123249,21a a a a a ++==,数列{}n b 满足()12121211,2n n n n n b b b n N S b b b a a a *+++=-∈=+++L L ,若2n S >,则n 的最小值为A. 5B. 4C. 3D. 25、(襄阳市优质高中2017届高三1月联考)已知121,,,9a a --成等差数列,1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8 B. 8- C. 8± D.98±6、(孝感市七校教学联盟2017届高三上学期期末)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .7、(湖北省部分重点中学2017届高三上学期第二次联考)在等差数列{}n a 中,36954a a a ++=,设数列{}n a 的前n 项和为n S ,则11S =A. 18B. 99C. 198D. 2978、(荆州中学2017届高三1月质量检测)已知数列{}n a 为等差数列,满足32015OA a OB a OC =+u u r u u r u u u r,其中,,A B C 在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2017S 的值为( ) A.20172B. 2017C. 2016D. 201529、(荆州中学2017届高三1月质量检测)对于数列{}n a ,定义na a a Hn nn 12122-+++=Λ为{}n a 的“优值”.现在已知某数列{}n a 的“优值”12+=n Hn ,记数列{}n a kn -的前n 项和为n S ,若6n S S ≤对任意的正整数n 恒成立,则实数k 的取值范围是二、解答题1、(黄冈市2017届高三上学期期末) 已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭,n为正整数.(1)令2nn n b a =,求证:数列{}n b 为等差数列,并求出数列{}n a 的通项公式;(2)令121,n n n n n c a T c c c n+==+++L ,求n T .2、(荆门市2017届高三元月调考)已知数列{}n a 的前n 项和为n S ,11=a ,当2n ≥时,2)1(2-+=n n a n S .(Ⅰ)求2a ,3a 和通项n a ;(Ⅱ)设数列{}n b 满足12-⋅=n n n a b ,求{}n b 的前n 项和n T .3、(荆州市五县市区2017届高三上学期期末)已知等差数列{}n a 的前n 项和为n S ,且623518,3n n S S a a =+=,数列{}n b 满足124n Sn b b b =gg L g . (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)令2log n n c b =,且数列11n n c c +⎧⎫⎨⎬⎩⎭g 的前n 项和为n T ,求2016T .4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知函数()x f x a =的图象过点1(1,)2,且点2(1,)()n a n n n*-∈N 在函数()x f x a =的图象上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,若数列{}n b 的前n 项和为n S ,求证5n S <.5、(武汉市2017届高三毕业生二月调研考) 已知数列{}n a 的前n 项和为n S ,0n a >,且满足()22441,.n n a S n n N *+=++∈(1)求1a 及通项公式n a ;(2)若()1nn n b a =-,求数列{}n b 的前n 项和n T .6、(武汉市武昌区2017届高三1月调研)设等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤ .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:49nT ≤.7、(襄阳市2017届高三1月调研)设各项均为正数的等比数列{}n a 中,132464,72.a a a a =+=(1)求数列{}n a 的通项公式; (2))设21log n nb n a =,n S 是数列{}n b 的前n 项和,不等式()log 2n a S a >-对任意正整数n 恒成立,求实数a 的取值范围.8、(孝感市七校教学联盟2017届高三上学期期末)已知数列{n a }的前n 项和为n s ,且1a =2,n +1n a =2(n+1)n a(1)记=nn a b n,求数列{n b }的通项公式; (2)求通项n a 及前n 项和n s .9、(湖北省部分重点中学2017届高三上学期第二次联考)已知等差数列{}n a 满足()()()()()1223121.n n a a a a a a n n n N *+++++++=+∈L(1)求数列{}n a 的通项公式; (2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S .10、(荆州中学2017届高三1月质量检测)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .参考答案一、选择、填空题1、20162、(Ⅰ)33 (Ⅱ)1m -3、n b n =-4、B5、A6、35 7、C 8、A 9、167[,]73二、解答题1、解:(I)在中,令n=1,可得,即当时,,.又数列是首项和公差均为1的等差数列.于是.……6分(II)由(I)得,所以由①-②得……12分2、(I)11=a ,当2n =时,22222(1)32S a a =+=-,则24a =,当3n =时,24)41(22333-=++=a a S ,则63=a ,………………2分 Θ当2n ≥时,2)1(2-+=n n a n S ,∴当3n ≥时,2211-=--n n na S , ∴当3n ≥时,n n n n n a na a n S S 2)1()(211=-+=---, 即3n ≥时,1)1(-=-n n na a n ,所以11-=-n a n a n n , …………………4分 因为22323==a a ,111=a ,所以11n n a a n n -==-…32232a a ===,因此,当2n ≥时,n a n 2=,故1,(1),2,(2)n n a n n =⎧=⎨⎩≥. ……………6分(Ⅱ)由(I)可知,1,(1),2,(2)n nn b n n =⎧=⎨⋅⎩≥,所以当1=n 时,11==b T n ,…………8分当2n ≥时,12n T b b =++…2312232n b +=+⨯+⨯+…2n n +⋅, 则34222232n T =+⨯+⨯+…1(1)22n n n n ++-⋅+⋅, 作差得:3418(22n T =--++…112)2(1)21n n n n n ++++⋅=-⋅+ 故12)1(1+⋅-=+n n n T ,)(+∈N n . ……………………………………………………12分3、解:(Ⅰ)设数列{}n a 的公差为d ,则[]11116155(2)18(1)(31)3(1)(2)a d a d a n d a n d +=++⎧⎪⎨+-=+-⎪⎩ 由(1)得12590a d -+=, ·················· 2分 由(2)得1a d =,联立得13a d ==, ············· 3分 所以3n a n =. ························· 4分 易知164b =, ························ 5分当2n ≥时11214n S n b b b --=gg L g ,又124n Sn b b b =gg L g , 两式相除得64(2)nn b n =≥, ················· 7分164b =满足上式,所以64n n b =. ··············· 8分(Ⅱ)2log 646nn c n ==,111111()36(1)361n n c c n n n n +==-++g , 10分11(1)361n T n =-+,····················· 11分 因此2016562017T =. ····················· 12分 4、【解析】(Ⅰ)∵函数()x f x a =的图象过点1(1,)2, ∴11,()()22x a f x ==………………………………………………2分又点2(1,)()n an n n*-∈N 在函数()x f x a =的图象上从而2112n n a n -=,即212n n n a -=……………………………………6分(Ⅱ)证明:由22(1)21222n n n n n n n b ++=-= 得23521222n n n S +=+++L ………………………………8分 则231135212122222n nn n n S +-+=++++L 两式相减得, 23113111212()222222n n n n S ++=++++-L ∴2552n nn S +=-…………………………………………11分∴5n S <……………………………………………………12分5、6、解:(Ⅰ)由19a =,2a 为整数可知,等差数列{}n a 的公差d 为整数, 由5n S S ≤,知560,0a a ≥≤, 于是940d +≥ ,950d +≤,d Q 为整数,2d ∴=-.故{}n a 的通项公式为112n a n =-…………6分(Ⅱ)由(Ⅰ),得()()11111111292292112n n a a n n n n +⎛⎫==- ⎪----⎝⎭, 1111111111......27957921122929n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,令192n b n =-,由函数()192f x x=-的图象关于点()4.5,0对称及其单调性,知12340b b b b <<<<,567...0b b b <<<<,41n b b ∴≤=.1141299n T ⎛⎫∴≤-= ⎪⎝⎭………12分 7、(Ⅰ)解:设数列{a n }的公比为q ,则2131()64(1)72a q a q q ⎧=⎨+=⎩ 2分∴q = 2,a 1 = 4∴数列{a n }的通项公式为12n n a +=.4分 (Ⅱ)解:21111log (1)1n n b n a n n n n ===-⨯++ 6分 ∴11111111(1)()()()12233411n S n n n =-+-+-++-=-++L 8分 易知{S n }单调递增,∴S n 的最小值为112S =10分∴要使log (2)n a S a >-对任意正整数n 恒成立,只需1log (2)2a a -≥由a -2 > 0得:a > 2,∴122a a -<,即2540a a -+≤,解得:1≤a ≤4 ∴实数a 的取值范围是(2,4]. 12分 8、解:(1)因为n=2(n+1)所以即…………………………2分所以{}是以为首项,公比q=2的等比数列………………4分所以数列{}的通项…………………………5分(2)由(1)得……………………6分所以……………7分…………8分所以 ………10分所以 …………………………12分9、(1)设等差数列{}n a 的公差为d ,由已知得1212234,()()12,a a a a a a +=⎧⎨+++=⎩ ……2分即12234,8,a a a a +=⎧⎨+=⎩所以1111()4,()(2)8,a a d a d a d ++=⎧⎨+++=⎩解得11,2,a d =⎧⎨=⎩ ……4分所以21n a n =-. ……6分(2)由(1)得,所以122135232112222n n n n n S ----=+++++…,① 23111352321222222n n n n n S ---=+++++……,② ……8分 -①②得:2211112123113222222n n n n n n S --+=+++++-=-… ……10分112122n n n a n ---=所以4662n nn S +=-. ……12分 10、解 :(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=,所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21.当1=n 时,d b -=1121;当2=n 时,d b -=1722,解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T Λ,两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T Λ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T Λ2222)33(21)21(2323+⋅+---⋅+⋅=n n n ,222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市2017年秋季高三年级期末考试数 学 试 题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟.第I 卷(选择题 共60分)一、选择题(本题包括12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.设z= i+1i-1 ,f(x)=x 2-x+1,则f(z)= ( )A.iB.-iC.-1+iD.-1-i2.已知集合M={y|y=log 12(x+1) ,x ≥3},N={x|x 2+2x-3≤0},则M ∩N= ( )A.[-3,1]B.[-2,1]C.[-3,-2]D.[-2,3] 3.设等差数列{a n }的前n 项的和为S n ,且S 13=52,则a 4+a 8+a 9= ( ) A.8 B.12 C.16 D.204.设双曲线x 2a 2 - y 2b 2 = 1 (a >0,b >0)的渐近线与圆x 2+(y-2)2= 3相切,则双曲线的离心率为( )A.43 3 B.2 33C.3 D.235.从图中所示的矩形OABC 区域内任取一点M(x,y),则点M 取自阴影部分的概率为 ( ) A.13 B.12C.14D.236.函数y= x 2+xe x 的大致图象是 ()7.已知函数f (x )=a sin(π2 x +α)+b cos(π2 x +β),且f (8)=m,设从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为t ,s ,共可得到lg t -lg s 的不同值的个数是m,则f (2 018)的值为( ) A.-15B.-16C.-17D.-188.一个几何体的三视图及尺寸如图所示,则该几何体的体积为( ) A.23 B.43C.73D.839.若a >b >1,-1<c <0, 则( )A.ab c <ba cB.a c >b cC.log a |c| <log b |c|D.blog a |c| >alog b |c| 10.执行右面的程序框图,如果输入的x ∈[-1,4],则输出的y 属于 ( )A.[-2,5]B.[-2,3)C.[-3,5)D.[-3,5]11.已知抛物线y 2=2px(p >0)的焦点为F,其准线与双曲线y 23 -x 2=1相交于M,N 两点,若△MNF 为直角三角形,其中F 为直角顶点,则p= ( ) A.23 B.3 C.33 D.612.若函数f(x)= - 56 x- 112 cos2x+m(sinx-cosx)在(-∞,+∞)上单调递减,则m 的取值范围是( )A.[-12 ,12 ]B.[- 2 3 , 2 3 ]C.[- 3 3 , 3 3 ]D.[- 2 2 , 22 ]第Ⅱ卷(非选择题 共90分)(本卷包括必考题和选考题两部分。
第13~21题为必考题,每个试题考生都必须作答。
第22,23 题为选考题,考生根据要求作答)二、填空题(本大题共4小题,每小题5分,共20分。
将答案填在题中的横线上)13.设向量a →=(-1,2),b →=(1,m)(m >0),且(a →+b →)·(a →-b →)=|b →|2-|a →|2,则抛物线y 2=-2mx 的焦点坐标是_____.14.设(1-ax)2018=a 0+a 1x+a 2x 2+…+a 2018x 2018,若a 1+2a 2+3a 3+…+2018a 2018=2018a(a ≠0),则实数a=_________.15.设等比数列{a n }满足a n >0,且a 1+a 3= 516 ,a 2+a 4= 58 ,则log 2(a 1a 2…a n ) 的最小值为________.16.中国古代数学名著《九章算术》中的“引葭赴岸”是一道名题。
根据该问题我们拓展改编一题:今有边长为12 尺的正方形水池的中央生长着芦苇,长出水面的部分为2尺,将芦苇牵引向池岸,恰巧与水岸齐接。
如图,记正方形水池的剖面图为矩形ABCD,芦苇根部O 为池底AB 的中点,顶端为P(注:芦苇与水面垂直),在牵引顶端P 向水岸边点D 的过程中,当芦苇经过DF 的三等分点E (靠近D 点)时,设芦苇的顶端为Q,则点Q 在水面上的投影离水岸边点D 的距离为____尺.(注: 5 ≈2.236,3 ≈1.732,精确到0.01尺)三、解答题(本大题共6小题,共70分。
解答应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分10分) 已知集合A ={ x |(13)x 2-x-6≤1},B ={x |log 3(x +a )≥1},若x ∈A 是x ∈B 的必要不充分条件,求实数a 的取值范围.18.(本题满分12分)如图,在锐角△ABC 中,D 为BC 边的中点,且AC= 3 ,AD=112,0为△ABC 外接圆的圆心,且cos ∠BOC= - 13 .(1)求sin ∠BAC 的值;(2)求△ABC 的面积.19.(本题满分12分)设同时满足条件:①b n +b n +2≥2b n +1;②b n ≤M (n ∈N *,M 是常数)的无穷数列{b n }叫“欧拉”数列.已知数列{a n }的前n 项和S n 满足(a -1)S n =a (a n -1)(a 为常数,且a ≠0,a ≠1).(1)求数列{a n }的通项公式;(2)设b n =S na n +1,若数列{b n }为等比数列,求a 的值,并证明数列⎩⎨⎧⎭⎬⎫1b n 为“欧拉”数列.20.(本题满分12分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示.(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.(3)从这两种品牌产品中,抽取寿命超过300小时的产品3个,设随机变量X 表示抽取的产品是甲品牌的产品个数,求X 的分布列与数学期望值.21.(本题满分12分)如图,椭圆C 1:x 2a 2 + y 2b 2 = 1 (a >b >0)的离心率为 53 ,抛物线C 2:y=-x 2+2截x 轴所得的线段长等于2 b.C 2与y 轴的交点为M ,过点P(0,1)作直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于D 、E. (1)求证:MA →·MB →为定值;(2)设△MAB,△MDE 的面积分别为S 1、S 2,若S 1=λ2S 2(λ>0),求λ的取值范围.22.(本题满分12分)已知f(x)= 1+lnx2ax (a ≠0,且a 为常数).(1)求f(x)的单调区间;(2)若a=12 ,在区间(1,+∞)内,存在x 1,x 2,且x 1≠x 2时,使不等式|f(x 1)-f(x 2)|≥k|lnx 1-lnx 2|成立,求k的取值范围.黄冈市2017年秋季高三年级期末考试数 学 试 题(理科)参考答案一、选择题ACBBB CDBDD AB9.D 【解析】本题考查指数函数和对数函数的性质.由-1<c <0得0<|c|<1,又a >b >1, ∴log b |c| <log a |c| <0, -log b |c| >-log a |c| >0, a >b >1>0,∴-alog b |c| >-blog a |c| , 即blog a |c| >alog b |c| .故选D.11.A 【解析】本题考查抛物线的定义及抛物线的几何性质.由题设知抛物线y 2=2px的准线为x=- p2,代入双曲线方程y 23 -x 2=1解得 y=±3+3p 24 ,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN=π4,∴tan ∠FMN=p3+3p 24=1,∴p 2=3+3p 24 ,即p=2 3 ,故选A.12.B 【解析】本题考查三角函数变换及导数的应用.由f(x)= - 56 x- 112cos2x+m(sinx-cosx)在(-∞,+∞)上单调递减知,f ′(x)= - 56 + 16 sin2x+m(cosx+sinx)≤0在(-∞,+∞)上恒成立,令t=sinx+cosx,t ∈[- 2 ,2 ].则sin2x=t 2-1,即16t 2+mt-1≤0对t ∈[- 2 ,2 ]恒成立,构造函数g(t)= 16 t 2+mt-1,则g(t)的图象开口向上,从而函数g(t)在区间[- 2 ,2 ]上的最大值只能为端点值,故只需⎩⎨⎧g(- 2 )= 13- 2 m-1≤0g( 2 )= 13 +2 m-1≤0.∴- 2 3 ≤m ≤ 2 3,故选B. 二、填空题13.32 14.2 15.-10 16. 1.5314.2 【解析】本题考查二项式定理的应用及导数的计算.将(1-ax)2018=a 0+a 1x+a 2x 2+…+a 2018x 2018两边同时对x 求导得2018(1-ax)2017(-a)=a 1+2a 2x+3a 3x 2+…+2018a 2018x 2017,令x=1得-2018a(1-a)2017=a 1+2a 2+3a 3+…+2018a 2018=2018a,又a ≠0,所以(1-a)2017=-1,1-a=-1,故a=2.答案:2.15.-10【解析】本题考查等比数列的性质及等差数列求和公式.由于{a n }是正项等比数列,设a n =a 1q n-1,其中a 1是首项,q 是公比.则⎩⎨⎧a 1+a 3= 516 a 2+a 4= 58⇔⎩⎨⎧a 1+a 1q 2=516 a 1q+a 1q 3= 58,解得⎩⎨⎧a 1=116 q=2.故a n =2n-5,∴log 2(a 1a 2…a n )=log 2(2(-4)+(-3)+…+(n-5))=(-4)+(-3)+…+(n-5)= 12 n(n-9)= 12 [(n-92 )2- 814 ],∴当n=4或5时, log 2(a 1a 2…a n ) 取最小值-10.16.1.53 解析:设水深为x 尺,则x 2+62 =(x+2)2,解得,x=8 . ∴水深为8 尺,芦苇长为10 尺,以AB 所在的直线为x 轴,芦苇所在的直线为y 轴, 建立如图所示的平面直角坐标系,在牵引过程中, P 的轨迹是以O 为圆心,半径为10 的圆弧,其方程为 x 2 +y 2=100(-6≤x ≤6,8≤y ≤10),①E 点的坐标为(- 4,8),∴OE 所在的直线方程为 y=- 2x ,② 设Q 点坐标为(x,y),由①②联立解得 x=-25 ,DG=6-25 ≈1.53故点Q 在水面上的投影离水岸边点D 的的距离为1.53. 三、解答题 17. 解析:由(13)x 2-x-6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,故A ={x | x ≤-2或x ≥3} .………3分由log 3(x +a )≥1,得x+a ≥3故B ={x |x ≥3-a }.………………5分 由题意,可知B ≠ A ,所以3-a ≤-2或3-a ≥3,…………………8分 解得a ≥5或a ≤0.………………………………………………………10分 18.解:(1)由题设知∠BOC=2∠BAC,…………………………………1分 ∴cos ∠BOC=cos2∠BAC=1-2sin 2∠BAC= -13…………………3分 ∴sin 2∠BAC=23 ,sin ∠BAC= 6 3.………………5分 (2)延长AD 至E,使AE=2AD,连接BE,CE,则四边形ABEC 为平行四边形,∴CE=AB.…………6分在△ACE 中,AE=2AD=11 ,AC=3 ,∠ACE=π-∠BAC,cos ∠ACE=-cos ∠BAC=- 33.……7分∴由余弦定理得,AE 2=AC 2+CE 2-2AC ·CE ·cos ∠ACE,即(11)2=( 3 )2+CE 2-2×3 ·CE ×(- 33), 解得CE=2,∴AB=CE=2, ………………………………………………9分∴S △ABC =12 AB ·AC ·sin ∠BAC=12 ×2×3 × 63=2 .…………12分19.解:(1)由(a -1)S n =a (a n -1)得,S 1=aa -1(a 1-1)=a 1,所以a 1=a .………………………………………2分 当n ≥2时,a n =S n -S n -1=aa -1(a n -a n -1),整理得a na n -1=a ,………………4分即数列{a n }是以a 为首项,a 为公比的等比数列.所以a n =a · a n -1=a n .…………………………………………………………6分(2)由(1)知,b n =aa -1a n -1a n+1=2a -1a n -aa -1a n,①由数列{b n }是等比数列,则b 22=b 1·b 3,故⎝ ⎛⎭⎪⎫2a +1a 2=2·2a 2+a +1a 2,解得a =12 ,………9分 再将a =12 代入①式得b n =2n ,故数列{b n }为等比数列,且a =12 .由于1 b n +1b n +2=12n +12n+2 >212n ·12n+2 =2×12n +1 = 2·1b n +1,满足条件①;由于1b n =12n ≤12 ,故存在M ≥12 满足条件②.故数列⎩⎨⎧⎭⎬⎫1b n 为“欧拉”数列.…………………………………12分20. 解: (1)甲品牌产品寿命小于200小时的频率为20+60300=415,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为415.………………………………………(3分)(2)根据抽样结果,寿命大于200小时的产品有220+210=430个,其中乙品牌产品是210个,所以在样本中,寿命大于200小时的产品是乙品牌的频率为210430=2143,用频率估计概率,所以已使用了200小时的该产品是乙品牌的概率为2143.………………………………(7分)(3)由题意知X 可能取值为0,1,2,3,且P(X=0)=C 040 ·C 340C 380=19158,P(X=1)=C 140 ·C 240C 380=60158,P(X=2)= C 240 ·C 140C 380 = 60158, P(X=3)= C 340 ·C 040 C 380 = 19158 .…………………(9分) ∴X 的分布列为故E(X)= 0×19158 +1×60158 +2×60158 +3×19158 = 237158.……………………………(12分) 21. 解:(1)由题设得 2 b=2 2 ,(b >0),∴b=2,又e= c a = 5 3 ,∴c 2=59 a 2=a 2-4,解得a 2=9. 因此椭圆C 1和方程为x 29 + y 24=1.由抛物线C 2的方程为y=-x 2+2,得M(0,2).………(2分) 设直线l 的方程为 y=kx+1(k 存在),A(x 1,y 1),B(x 2,y 2).于是.由⎩⎨⎧y=-x 2+2y=kx+1 消去y 得x 2+kx-1=0,∴⎩⎨⎧x 1+x 2=-k x 1x 2=-1 ,①………………………(3分) ∴ MA →·MB →=(x 1,y 1-2)·(x 2,y 2-2)=x 1x 2+(y 1-2)(y 2-2)=x 1x 2+(kx 1+1-2)(kx 2+1-2)=(1+k 2)x 1x 2-k(x 1+x 2)+1,∴将①代入上式得MA →·MB →=-1-k 2+k 2+1=0(定值).……………………(5分)(2)由(1)知,MA ⊥MB,∴△MAB 和△MDE 均为直角三角形,设直线MA 方程为y=k 1x+2,直线MB 方程为y=k 2x+2,且k 1k 2=-1,由⎩⎨⎧y=k 1x+2y=-x 2+2 解得⎩⎨⎧x=0y=2 或⎩⎨⎧x=-k 1y=-k 12+2,∴A(-k 1,-k 12+2),同理可得B(-k 2,-k 22+2),………(7分)∴S 1=12 |MA|·|MB|= 121+k 12 ·1+k 22 |k 1||k 2|.………………………………(8分) 由⎩⎨⎧y=k 1x+2x 29 + y 24 =1 解得⎩⎨⎧x=0y=2 或⎩⎨⎧x= -36k 14+9k 12 y= 8-18k 124+9k 12,∴D(-36k 14+9k 12 ,8-18k 124+9k 12 ),同理可得E(-36k 24+9k 22 ,8-18k 224+9k 22),………………………………………………………(9分) ∴S 2=12 |MD|·|ME|= 12 ·361+k 12 |k 1|4+9k 12 ·361+k 22 |k 2|4+9k 22,………………………(10分) ∴λ2= S 1S 2 = 1362 (4+9k 12)(4+9k 22)= 1362 (16+81k 12k 22+36k 12+36k 22) = 1362 (97+ 36k 12+ 36k 12 )≥132362 ,又λ>0,∴λ≥1336故λ的取值范围是[1336,+∞)………………………………………………………(12分) 22.解:(1)∵f(x)= 1+lnx 2ax (a ≠0,且a 为常数),∴f ′(x)= -2alnx (2ax)2 = - lnx 2ax 2.………………(1分) ∴①若a >0时,当 0<x <1, f ′(x)>0;当x >1时, f ′(x)<0.即a >0时,函数f(x)单调递增区间为(0,1),单调递减区间为(1,+∞).………………(3分)②若a <0时,当 0<x <1, f ′(x)<0;当x >1时, f ′(x)>0.即a <0时,函数f(x)单调递增区间为(1,+∞),单调递减区间为(0,1).………………(5分)(2)由(1)知, f(x)= 1+lnx x在区间(1,+∞)上单调递减,不妨设x 2>x 1>1,则f(x 1)>f(x 2), ∴不等式|f(x 1)-f(x 2)|≥k|lnx 1-lnx 2|可化为f(x 1)-f(x 2)≥k(lnx 2-lnx 1).………………………(8分) 即f(x 1)+kx 1≥f(x 2)+kx 2,令F(x)=f(x)+klnx,则F(x)在区间(1,+∞)上存在单调递减区间,∴F ′(x)= f ′(x)+ k x =-lnx x 2 +k x = -lnx+kx x 2<0有解,即kx <lnx(x >1), ∴k <lnx x 有解,令G(x)= lnx x ,则G ′(x)= 1-lnx x 2,由G ′(x)=0得x=e,………………………(10分) 当x ∈(1,e)时,G ′(x)>0,G(x)单调递增;当x ∈(e,+∞)时, G ′(x)<0,G(x)单调递减.∴G(x)max =G(e)= 1e ,故k <1e.……………………………………………………………………(12分)。