2018-2019年高三理科数学(新课标)二轮复习专题整合高频突破习题专题八 选修4系列 专题训练23 及答案

合集下载

【高考数学】2018-2019学年高三高考数学二轮复习专题训练+08+Word版含答案

【高考数学】2018-2019学年高三高考数学二轮复习专题训练+08+Word版含答案
三角函数02
7、已知函数 , 。
(1)求函数 的最小正周期;
(2)求函数 在区间 上的最小值和最大值。
解:(1) ,
因此,函数 的最小正周期为 。
(2)因为 在区间 上为增函数,在区间 上为减函数,又 , , ,
故函数 在区间 上的最大值为 ,最小值为 。
8、已知 , 。
求 和 的值。
解:由 得 ,解得 或 ,

(2) , ,
且 , ,即实数 的取值范围是 。
12、已知函数 。
(1)求 的最小正周期和最小值;
(2)已知 , ,求证: 。
解析:(1)∵

∴ 的最小正周期是 ,当 ,
即 时,函数取得最小值-2。
(2) , ,





所以,结论成立。
解析:(1)由 ,根据正弦定理得 ,所以 ,
由 为锐角三角形得 。
(2)根据余弦定理,得 。所以, 。
(3)

由 为锐角三角形知, , , ,
所以 ,由此有 ,所以 的取值范围为 。
11、已知函数 , 。
(1)求 的最大值和最小值;
(2)若不等式 在 上恒成立,求实数 的取值范围。
解:(1) 。
又 , ,即 ,
由已知 ,故舍去 ,得 。
因此,
那么 且

9、在 中, , , 。
(1)求 的值;
(2)求 的值。
解:(1)由余弦定理,
那么,
(2)解:由 ,且 得
由正弦定理, ,解得 ,所以 ,
由倍角公式得 ,且 ,
故 。
10、设锐角 的内角 的对边分别为 , 。
(1)求 的大小;

2018-2019年最新高考总复习数学(理)第二次复习效果检测试题及答案解析

2018-2019年最新高考总复习数学(理)第二次复习效果检测试题及答案解析

2018-2019学年下期三年级第二次素质检测数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷共150分。

考试时间为120分钟。

第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在下列每个小题给出的四个选项中,只有一个选项是符合题目要求的。

) 1.已知集合},4|{},,1|1||{Z x x x B R x x x A ∈≤=∈≤-=,则=⋂B A ( ) A.[0, 2]B.(0, 2)C.{0, 2}D.{0, 1, 2}2.已知命题P 1:平面向量b a ,共线的充要条件是a 与b 方向相同;P 2:函数x x y --=22在R上为增函数,则在命题:213212211)(:,:,:P P q P P q P P q ∨⌝∧∨和)(214:P Pq ⌝∧中,真命题是( ) A.q 1, q 3 B.q 2, q 3 C.q 1,q 4D.q 2,q 43.已知),0(,2cos sin πααα∈=+,则)3tan(πα-=( )A.32-B. 32--C. 32+-D. 32+4.已知}{n a 是等差数列,a 10=10,其前10项和S 10=70,则其公差d=( ) A.32-B.31-C. 31D. 325.某校安排四个班到三个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有( )A.24B.36C.48D.606.已知直线m 和平面βα,,则下列四个命题中正确的是( ) A.若αββα⊥⊂⊥m m 则,, B. 若βαβα//,//,//m m 则 C. 若βαβα⊥⊥m m 则,,//D. 若βαβα//,//,//则m m7.曲线x e y 21=在点(4,2e )处的切线与坐标轴围成三角形的面积为( ) A.229e B.4 2e C.2 2e D. 2e8.某种种子每粒发芽的概率都为0.85,现播种了10000粒,对于没有发芽的种,每粒需要再补2粒,补种的种子数记为x ,则x 的数学期望为( ) A.1000B.2000C.3000D.40009.设偶函数)(x f 满足)0(8)(3≥-=x x x f ,则=>-}0)1(|{x f x ( ) A.}32|>-<x x x 或{ B. }20|><x x x 或{ C. }30|><x x x 或{ D. }31|>-<x x x 或{10.设F 1,F 2是椭圆E :)0(12222>>=+b a by a x 的左右焦点P 为直线23ax =上一点,12PF F ∆是底角为︒30的等腰三角形,则E 的离心率( ) A.21 B.32C.43D.5411.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥-04001y x y x x ,则2y x的最小值为( ) A.1B.21C.32D.9112.用max(a, b, c)表示a, b, c 三个数中的最大值,设函数)0}(10,2,2max{)(≥-+=x x x x f x ,若)(0x f 是)(x f 的最小值,则x 0在区间内( ) A.(1,2)B.(2,3)C.(0,1)D.(3,4)第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题二+函数与导数+2.3.2

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题二+函数与导数+2.3.2
二、利用导数解不等式及参数的取值范围
-2-
命题热点一
命题热点二
命题热点三
利用导数证明不等式 【思考】 如何利用导数证明不等式? 例1(2017全国Ⅱ,理21)已知函数f(x)=ax2-ax-xln x,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2. 解: (1)f(x)的定义域为(0,+∞).
3 3 2 2 2 f(x1)+f(x2)=������1 +a������1 +bx1+1+������2 +a������2 +bx2+1= 1 (3������1 +2ax1+b)+ 2 (3
记 f(x),f'(x)所有极值之和为 h(a), 因为 f'(x)的极值为 所以 因为 因为
������2 b- 3 . 2������2 b= 9
因为 f'(x)的极值点是 f(x)的零点, 所以 f
������������ − 3 +1=0,又
a>0,故
+ ������.
3
因为 f(x)有极值,故 f'(x)=0 有实根, 从而
������2 b- 3
=
1 3)≤0,即 (27 -a 9������
对点训练1(2017江苏,20)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R) 有极值,且导函数f'(x)的极值点是f(x)的零点.(极值点是指函数取极 值时对应的自变量的值) (1)求b关于a的函数解析式,并写出定义域; (2)证明:b2>3a; 7 (3)若f(x),f'(x)这两个函数的所有极值之和不小于- ,求a的取值范 2 围.

2018年高考数学(理)二轮复习 讲学案:考前专题八 系列4选讲 第2讲 不等式选讲

2018年高考数学(理)二轮复习 讲学案:考前专题八 系列4选讲 第2讲 不等式选讲

第2讲 不等式选讲本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a . (2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届四川省成都市三诊)已知f (x )=|x -a |,a ∈R. (1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围. 解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6,∴x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6,∴x ≥4.综上所述,原不等式的解集为{x |x ≤0或x ≥4}. (2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|, ∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] . ∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5.∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解 (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1, 解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明 1.含有绝对值的不等式的性质 ||a |-|b ||≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ;(2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1,当且仅当x ≤-23或x ≥12时等号成立,所以M =1.(2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1 ≥2⎣⎡⎦⎤a +b +(a +b )22+1=(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号,所以存在实数a =b =-12,c =12满足条件.思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧. 跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数. (1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值. (1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2) =(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2 =(a 2+b 2-2ab )2=(a -b )4. 因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)| =|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)| ≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]| =|(a -b )4+1|≥1. 即f (x )min =1.热点三 柯西不等式的应用 柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a nb n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. 例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求证:2≤at +12+bt ≤4. (1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1. (2)证明 由柯西不等式,有(-3t +12+t )2=(3·-t +4+1·t )2 ≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t ≥12-2t ≥4(0≤t ≤4), 所以-3t +12+t ≥2, 当且仅当t =4时等号成立, 综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明. (2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1]. (1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值. 解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2,又f (x )≤0的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1,解得m =1.(2)由(1) 知a +b +c =1, 由柯西不等式,得(3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18,所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1, 即a =b =c =13时等号成立,所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解 (1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解; 当-1≤x ≤1时,①式化为x 2-x -2≤0, 从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于 当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8, 因此a +b ≤2. 押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R . (1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐. 解 (1)当a =1时,f (x )=|x -2|+|2x +1|. 由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4, 解得x ≥53,所以x ≥2;当-12<x <2时,不等式等价于2-x +2x +1≥4,即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4,解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}. (2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|. 因为∃x 0,使f (x 0)+|x 0-2|<3成立, 所以(f (x )+|x -2|)min <3, 所以|a +4|<3,解得-7<a <-1, 故实数a 的取值范围为(-7,-1). 2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y ≥|a +2|-|a -1|恒成立,求实数a 的取值范围;(2)求证:x 2+2y 2≥323,并指出等号成立的条件.押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值. (1)解 因为x ,y ∈R +,x +y =4, 所以x 4+y4=1.由基本不等式,得 1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12y x ·xy=1, 当且仅当x =y =2时取等号.要使不等式1x +1y ≥|a +2|-|a -1|恒成立,只需不等式|a +2|-|a -1|≤1成立即可. 构造函数f (a )=|a +2|-|a -1|, 则等价于解不等式f (a )≤1. 因为f (a )=⎩⎪⎨⎪⎧-3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0. 所以实数a 的取值范围为(-∞,0]. (2)证明 因为x ,y ∈R +,x +y =4, 所以y =4-x (0<x <4), 于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3. (1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围. 解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于 -(x -2)-(x +4)≥x 2+4x +3, 即x 2+6x +5≤0,解得-5≤x ≤-1, ∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于 -(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7, ∴-4≤x ≤-2+7; ③当x >2时,原不等式等价于 (x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}. (2)∵|x -2|+|x +4|≥|x -2-x -4|=6, 且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6, ∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞). (1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围.解 (1)∵f (x )=|x +3|-m , ∴f (x -3)=|x |-m ≥0. ∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞), ∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式|x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3,即2t 2-3t +1≥0, 解得t ≤12或t ≥1.即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|. (1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值.解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x , 当x ≤-1时,2≥7x ,恒成立, 当-1<x <1时,-2x ≥7x ,即-1<x ≤0; 当x ≥1时,-2≥7x ,即x ∈∅, 综上可知,不等式的解集为{x |x ≤0}. (2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |, ∴2F ≥|x 2-4y +m |+|y 2-2x +n | ≥|(x -1)2+(y -2)2+m +n -5| =|(x -1)2+(y -2)2+2|≥2, ∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪a +12b <34; (2)比较|4ab -1|与2|b -a |的大小,并说明理由. (1)证明 记f (x )=|x +2|-|1-x | =⎩⎪⎨⎪⎧-3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12,则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12,∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14.∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2) =(4a 2-1)(4b 2-1)>0, ∴|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1. (1)证明:|am +bn +cp |≤1; (2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c2≥1.证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |, a 2+b 2+c 2=1,m 2+n 2+p 2=1, 所以|am |+|bn |+|cp | ≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1,即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1, 所以m 4a 2+n 4b 2+p 4c2=⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a ·a +n 2b ·b +p 2c ·c 2=(m 2+n 2+p 2)2=1. 所以m 4a 2+n 4b 2+p 4c2≥1.B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|. (1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc .(1)解 令g (x )=2f (x )-x =2|x -1|-x=⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1, 当x ≥1时,由x -2≥2,得x ≥4, 当x <1时,由-3x +2≥2,得x ≤0, ∴不等式的解集为(-∞,0]∪[4,+∞). (2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc+3abc ≥23abc ·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc . 7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和. 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4, 即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9, ∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43,即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94. 8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a | =|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题八+选修4系列+8.2

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题八+选修4系列+8.2

-11-
命题热点一
命题热点二
命题热点三
命题热点四
对点训练2已知f(x)=|ax+1|(a∈R),不等式f(x)>5的解集为{x|x>2 或x<-3}. (1)求a的值; ������ (2)若不等式f(x)-f 2 ≤k在R上有解,求k的取值范围. 解:(1)由|ax+1|>5,得ax>4或ax<-6. 又f(x)>5的解集为{x|x>2或x<-3},
3 1 3
所以 |f(x)|>1 的解集为 ������ ������ < 或 1 < ������ < 3 或������ > 5 .
3 1
-8-
命题热点一
命题热点二
命题热点三
命题热点四
绝对值不等式的参数范围问题 【思考】 解决绝对值不等式的参数范围问题的常用方法有哪些? 例2已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈ 时,f(x)≤g(x),求a的取值范围.
-5-
命题热点一
命题热点二
命题热点三
命题热点四
题后反思绝对值不等式的求解方法 (1)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法:|ax+b|≤c⇔c≤ax+b≤c,|ax+b|≥c⇔ax+b≥c或ax+b≤-c,然后根据a,b的取值求 解即可. (2)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法: ①利用绝对值不等式的几何意义求解,体现数形结合思想; ②利用“零点分段法”求解,体现分类讨论思想; ③通过构建函数,利用函数图象求解,体现函数与方程思想.

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题四+数列+4.2

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题四+数列+4.2

∴an-an-1=ln 1 + ������ -1 =ln������ -1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=ln
������ ������ -1
1
������ ������
+ln
������
������ -1 ������ -2
+…+ln +ln 2+2
1
������ (������ +1)
,an=1-
1 ������ (������ +1)
.
(3)由 an+1=3an+2,得 an+1+1=3(an+1),
∵a1=1,知 a1+1=2,an+1≠0, ∴
������ ������ +1 +1 ������ ������ +1
=3.∴数列 {an+1}是以 2 为首项 ,
������ 3
3
,∴an=
1 3
2 ������ +1
.
(2)∵Sn= an+ ,①
3
2
∴当 n≥2 时 ,Sn-1=3an-1+3.②
由 ①-②,得 an= an- an-1,即
3 3 2 2 ������ ������ ������ ������ -1
2
1
=-2.
1
∵a1=S1=3a1+3,∴a1=1. ∴{an}是以 1 为首项 ,-2 为公比的等比数列 ,an=(-2)
������ -
2
1

2018-2019学年高三高考数学二轮复习专题训练+18+Word版含答案

2018-2019学年高三高考数学二轮复习专题训练+18+Word版含答案
各式相乘得, ,得 ,
即 , ;
用累乘符号 表示为 。
例4:在数列 中, , ,求数列 的通项公式。
解:由条件等式 得, ,得 。
评注:此题亦可构造特殊的数列,由 得, ,则数列 是以 为首项,以1为公比的等比数列, 得 。
例5:设数列 是首项为1的正项数列,且 , ,则数列
的通项公式是。
解:原递推式可化为: 0
,上式对于 也成立,
所以, 。
例2:在数列 中, , ,求数列 的通项公式。
解:原递推式可化为: ,则 ......,
,逐项相加得: ,故 ;
用求和符号表示为: ,
即 ,上式对于 也成立,所以, , 。
例3:已知数列 满足 , ,求数列 的通项公式。
解: ,
即 , ,上式对于 也成立,所以, , 。
∵ 0, ,则 ……, ,
逐项相乘得: ,即 。
补充练习:
1、若数列 满足 , , ,则数列 通项公式为(D)
A、 B、 C、 D、
2、已知数列 满足 ,求数列 的通项公式。
解:因为 ,所以 ,则 ,故
所以数列 的通项公式为
3、已知数列 满足 ,求数列 的通项公式。
解:因为 ......①
所以 ......②
数列通项公式的求法02
二、累加累乘
1、递推公式满足: 型或 ( )型
思路:利用累加法,将 , = ,......,
= ,各式相加,正负抵消,得 ,即 ;
用求和符号 可以表示为: 。
例1:在数列 中, 且 ,求数列 的通项公式。 可以表示为: ,即
用②—①式得 则 ,故 ;
所以 ......③
由 , ,则 ,又知 ,则 ,代入③得 。

2018-2019年最新高考总复习数学(理)第二次高考调研模拟试题及答案解析

2018-2019年最新高考总复习数学(理)第二次高考调研模拟试题及答案解析

2018学年高考毕业班调研测试高三数学试卷(理科)(考试时间:120分钟,满分150分)一. 填空题 (本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,1-14题每个空格填对得4分)1、若()1i bi +是纯虚数,是虚数单位,则实数b =_______.2、函数21x y =-的定义域是_______.(用区间表示)3、已知△ABC 中,2AB =, 3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠=_______.4、双曲线2241x y -=的一条渐近线与直线10tx y ++=垂直,则t =________.5、已知抛物线24y x =上一点()0,23M x ,则点M 到抛物线焦点的距离为________.6、无穷等比数列首项为1,公比为()0q q >的等比数列前n 项和为n S ,则lim 2n n S →∞=,则q =________.7、在一个水平放置的底面半径为3的圆柱形量杯中装有适量的水,现放入一个半径为R 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升R ,则R =________. 8、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生, 则不同的选法共有________种.9、在平面直角坐标系xOy 中,将点(2,1)A 绕原点O 逆时针旋转4π到点B ,若直线OB 的倾斜角为α,则cos α的值为_______. 10、已知函数()22x x f x a -=-⋅的反函数是()1f x -,()1f x -在定义域上是奇函数,则正实数a =________.11、把极坐标方程sin cos ρθθ=+化成直角坐标标准方程是__________.12、在621x x ⎛⎫++⎪⎝⎭展开式中常数项是_______.(用数值回答)13、在棱长为1的正方体ABCD A B C D ''''-中,若点P 是棱上一点,则满足2PA PC '+=的点P 的个数_______.14、若数列{}n a 前n 项`和n S 满足()2*1212,n n S S n n n N -+=+≥∈,且1a x =,{}n a 单调递增,则x 的取值范围是_______.(第13题)二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15、平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的 角的范围是( ).A .(000,35⎤⎦B .(000,90⎤⎦C .)0035,90⎡⎣D .0035,90⎡⎤⎣⎦16、已知22log ,log ,2x y 成等差数列,则(),M x y 的轨迹表示的图像为( ).A .B .C .D .17、设z z C z z z z z 1212122222402,,,∈-+==||,那么以|z 1|为直径的圆的面积为( ) .A .πB .4πC .8πD .16π18、方程935x x b ++=()b R ∈两个负实数解,则b 的取值范围为( ). A .()3,5 B .()5.25,5-- C .[)5.25,5- D .前三个都不正确三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19、平面ABC 外的一点P ,,,AP AB AC 两两互相垂直,过AC 的中点D 作ED ⊥面ABC ,且1ED =,2PA =,2AC =,连,BP BE ,多面体B PADE -的体积是33. (1)画出面PBE 与面ABC 的交线,说明理由;(2)求面PBE 与面ABC 所成的锐二面角的大小.ADCP E20、已知椭圆:C ()012222>>=+b a by a x 的长轴长是短轴长的两倍,焦距为32.(1)求椭圆C 的标准方程;(2)不过原点O 的直线与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,问:直线是否定向的,请说明理由.21、如图所示,,A B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P .垃圾发电厂P 的选址拟满足以下两个要求(,,A B P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大).现估测得,A B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨. 设50PA x =>.(1)求cos PAB ∠(用x 的表达式表示) ;(2)垃圾发电厂该如何选址才能同时满足上述要求?22、(1)已知120x x <<,求证:112211x x x x +>+; (2)已知()()31lg 1log 2f x x x =+-,求证:()f x 在定义域内是单调递减函B A · · 居民生活区 第21题图 北 P数;(3)在(2)的条件下,求集合(){}221419980,M n f n n n Z=--≥∈的子集个数.23、数列{}n a ,{}n b 满足1111221111122n n n n n na ab b a b ++⎧=+⎪⎪⎨⎪=⋅+⋅⎪⎩,0,011>>b a .(1)求证:{}n n b a ⋅是常数列;(2)若{}n a 是递减数列,求1a 与1b 的关系; (3)设114,1a b ==,当2n ≥时,求n a 的取值范围.高三数学试卷(文科)(考试时间:120分钟,满分150分)一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,1-14题每个空格填对得4分)1、若()1i bi +是纯虚数,是虚数单位,则实数b =_______.2、函数21x y =-的定义域是_______.(用区间表示)3、已知△ABC 中,2AB =, 3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠=_______.4、双曲线2241x y -=的一条渐近线与直线10tx y ++=垂直,则t =________.5、已知抛物线24y x =上一点()0,23M x ,则点M 到抛物线焦点的距离为________.6、无穷等比数列首项为1,公比为()0q q >的等比数列前n 项和为n S ,则lim 2n n S →∞=,则q =________.7、在一个水平放置的底面半径为3的圆柱形量杯中装有适量的水,现放入一个半径为R 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升R ,则R =________. 8、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生, 则不同的选法共有________种.9、在平面直角坐标系xOy 中,将点(2,1)A 绕原点O 逆时针旋转4π到点B ,若直线OB 的倾斜角为α,则cos α的值为_______. 10、已知函数()22x x f x a -=-⋅的反函数是()1f x -,()1f x -在定义域上是奇函数,则正实数a =________.11、已知1,0x y ≥≥,集合{(,)|4}A x y x y =+≤,{(,)|0}B x y x y t =-+=,如果A B φ⋂≠,则的取值范围是_______.12、在412x x ⎛⎫++ ⎪⎝⎭展开式中常数项是_______.(用数值回答)13、如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直 角主视图 左视图三角形的直角边长都为1,那么这个几何体的表面积为_______.14、若数列{}n a 满足142n n a a n ++=+()*1,n n N ≥∈ ,且1a x =,{}n a 单调递增,则x 的取值范围是_______.(第13题)二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15、平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的 角的范围是( ).A .(000,35⎤⎦B .)0035,90⎡⎣C .()000,90D .0035,90⎡⎤⎣⎦16、下列不等式中,与不等式23282<+++x x x 解集相同的是( ). A .()2(8)223x x x +>++ B .)32(282++<+x x xC .823212+<++x x xD .218322>+++x x x 17、若复数z 满足关系z i z z 则,12|4||2|22=-++对应的复平面的点Z 的轨迹是 ( ). A .圆 B .椭圆C.双曲线D.直线18、方程935x x b++=()b R∈有一个正实数解,则b的取值范围为().A.()5,3-B.()5.25,5--C.[)5,5-D.前三个都不正确三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19、平面ABC外的一点P,,,AP AB AC两两互相垂直,过AC的中点D作ED⊥面ABC,且1ED=,2PA=,2AC=,连,BP BE,多面体B PADE-的体积是33.(1)画出面PBE与面ABC的交线,说明理由;(2)求BE与面PADE所成的线面角的大小.A DB CPE20、已知椭圆:C ()012222>>=+b a by a x 的长轴长是短轴长的两倍,焦距为32.(1)求椭圆C 的标准方程;(2)设,A B 是四条直线b y a x ±=±=,所围成的两个顶点,P 是椭圆C上的任意一点,若OP mOA nOB =+,求证:动点(),Q m n 在定圆上运动.21、如图所示,,A B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P .垃圾发电厂P 的选址拟满足以下两个要求(,,A B P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大).现估测得,A B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨. 设50PA x =>.(1)求cos PAB ∠(用x 的表达式表示) ;(2)垃圾发电厂该如何选址才能同时满足上述要求?22、(1)已知120x x <<,求证:112211x x x x +>+; (2)已知()()31lg 1log 2f x x x =+-,求证()f x 在定义域内是单调递减函数;(3)在(2)的条件下,求集合(){}221419980,M n f n n n Z=--≥∈的子集个数.B A · · 居民生活区 第21题图 北 P23、数列{}n a ,{}n b 满足1111221111122n n n n n na ab b a b ++⎧=+⎪⎪⎨⎪=⋅+⋅⎪⎩,0,011>>b a .(1)求证:{}n n b a ⋅是常数列;(2)若{}n a 是递减数列,求1a 与1b 的关系; (3)设114,1a b ==,32log 2n n n a c a +=-,求{}n c 的通项公式.2016年4月奉贤区二模数学参考答案一、填空1、02、[)0,+∞3、56π 4、12±5、46、127、328、34 9、101010、1a = 11、22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 12、581 13、6 14、()2,3二、选择15、D 16、A 17、B 18、B文科参考答案1、02、[)0,+∞3、56π 4、12±5、46、127、32 8、349、101010、1a =11、[]4,2- 12、70 13、332+ 14、()1,3 二、选择15、D 16、B 17、A 18、A三、解答题19、(1)根据条件知:PE 与AD 交点恰好是C1分,C PE C ∈∴∈面PBE ,,C AC C ∈∴∈面ABC 2分B ∈面PBE,B ∈面ABC3分面PBE 与面ABC 的交线BC 5分(2)(理) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯=9分233BA ∴=10分建立空间直角坐标系,设平面的法向量是()1,,n x y z23,0,03B ⎛⎫ ⎪ ⎪⎝⎭ ,()0,2,0C ()0,1,0D ()0,1,1E ()0,0,2P 23,0,23BP ⎛⎫=- ⎪ ⎪⎝⎭,23,1,13BE ⎛⎫=- ⎪ ⎪⎝⎭123203n BP x z ⋅=-+=12303n BE x y z ⋅=-++=()13,1,1n ∴=11分面ABC 的法向量()20,0,1n =1212cos n n n n θ⋅==⋅1555=12分 所以面PBE与面ABC所成的锐二面角大小5arccos513分ADB C P Ez xy注:若作出二面角得2分,计算再3分(2)(文) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯=9分233BA ∴=10分连接AEAE 是BE 在面EDAP 的射影BEA ∠是BE 与面PADE 所成的线面角. 11分计算2AE =,2363tan 32BAE ∠== 12分BEA ∠是BE 与面PADE 所成的线面角6arctan3. 13分20、解:(1)由已知得222222223a b c a b c =⨯⎧⎪=⎨⎪=+⎩3分解得2,1a b == 5分∴椭圆C 的标准方程为2214x y +=. 6分(2)(理)由题意可设直线的方程为:()0y kx m km =+≠,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 并整理, ADBCPE得:()()222144410k x kmx m +++-= 7分计算()2216410k m ∆=-+> 8分此时设()()1122,,,M x y N x y ,则122814kmx x k +=+,()21224114m x x k -=+9分于是()()()2212121212y y kx m kx m k x x km x x m =++=+++ 10分又直线,,OM MN ON 的斜率依次成等比数列, ∴()2212122121212k x x km x x m y y k x x x x +++⋅== 11分∴22222810,0,144k m m m k k -+=≠∴=+ 12分所以是不定向的, 13分方向向量()2,1d =± 13分 (2)文 可得()()2,1,2,1A B -8分 设(),P p P x y ,则2214PP x y += 9分()()2P P x m n y m n ⎧=-⎪⎨=+⎪⎩11分2212m n ∴+=13分21、解:(1)由条件①,得505303PA PB == 1分5,3PA x PB x=∴=,3分 则222(5)16(3)cos 2165x x PAB x+-∠=⨯⨯6分8cos 105x PAB x∠=+8分 (2)28sin 1105x PAB x ⎛⎫∠=-+ ⎪⎝⎭9分所以点P到直线AB的距离sin h PA PAB =∠10分2851()105x h x x=⋅-+11分42117644x x =-+-221(34)2254x =--+ 12分8cos 1,1,28105x PAB x x∠≤∴+≤∴≤≤ 所以当234x =,即34x =时,h 取得最大值15千米. 13分即选址应满足534PA =千米,334PB =千米. 14分22、(1)解:任取210x x <<,则()()()211211222211111x x x x x x x x x x +-++-=++()21221x xx x -=+ 3分 210x x <<,所以()212201x x x x ->+4分∴212111x x x x >++ 5分 (2)∵212111x x x x >++,∴2121lg 11lgx xx x >++.6分12()()f x f x -=)1lg()1lg(21+-+x x -)log (log 212313x x -=11lg21++x x -213log 21x x7分=11lg 21++x x -1119109222log log log x x x x x x >-109log 9log 101101,log log log 10log 9log 10log 9t t t t t t t t t -<<-=-=⋅log 90,log 100,log 9log 100,log 9log 100t t t t t t <<⋅>->log 9log 1001,0log 10log 9t t t t t -<<∴>⋅1110922log log 0x xx x ∴->8分∴>-)()(11x f x f 0∴)(x f 为),0(+∞上的减函数 9分(3)注意到0)9(=f ∴当9>x 时,0)9()(=<f x f ,当90<<x 时,0)9()(=>f x f ,∴0)(=x f 有且仅有一个根9=x . 1由)9()1998214(0)1998214(22f n n f n n f ≥--⇒≥-- ∴⎪⎩⎪⎨⎧>--≤--019982149199821422n n n n13分⇔922310713447,100713447n n n -≤≤⎧⎪⎨>+<-⎪⎩或14分∴223=n 或9-=n ,15分∴}223,9{-=MM的子集的个数是 4.16分 23、(1)12n n n a a b +=+1分112n nn n n a b b a b ++=2分12n n n n n a b b a b +∴=+3分1122n n n n a b b a ++∴=4分1111....b a b a b a n n n n ===∴-- 5分{}n n b a ⋅是常数列;6分(2) {}n a 是递减数列,10n n a a +-<1121111110222b a a a a b a --=+-=< 11a b ∴>7分2232220,2b a a a a b --=<∴>,()2111111112,02a b a b a b a b +>∴->+ 猜想1110,2n n n n n n b aa a ab a b +--=<∴>⇒>恒成立8分()()21121220224k k k kk k k k k k k k k k a b a b a b b a a b a a a b +++++----+-===<+ 9分11a b ∴>时{}n a 是递减数列10分(3)、(理)整理得1142n n n a a a +⎛⎫=+ ⎪⎝⎭11分252a = 12分1230000n a a a a ∴>⇒>⇒>⇒> 13分2n ≥,()2121122022n n n nn a a a a a +-⎛⎫-=+-=> ⎪⎝⎭14分12n a +∴>15分 2144222nn n n nn n na b a a a a a a +----===16分2,n a >10n n a a +∴-<{}n a ∴单调递减,2n a a ∴≤17分52,2n a ⎛⎤∴∈ ⎥⎝⎦18分 (3)(文)11c = 11分 22c = 12分()212122nn na a a +--= 13分()212122n n na a a +++=14分 2112222n n n n a a a a ++⎛⎫--= ⎪++⎝⎭ 15分133122log 2log 22n n n n a a a a ++⎛⎫--= ⎪++⎝⎭16分12n n c c += 17分12n n c -= 18分。

2018-2019学年数学高考(理)二轮复习专题集训:专题八 选修系列8.2-含解析

2018-2019学年数学高考(理)二轮复习专题集训:专题八 选修系列8.2-含解析

A 级1.(2017·兰州市诊断考试)已知函数f (x )=|x +1|+|x -3|-m 的定义域为R.(1)求m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.解析: (1)因为函数f (x )的定义域为R ,所以|x +1|+|x -3|-m ≥0恒成立,设函数g (x )=|x +1|+|x -3|,则m 不大于函数g (x )的最小值,又|x +1|+|x -3|≥|(x +1)-(x -3)|=4,即g (x )的最小值为4.所以m ≤4.故m 的取值范围为(-∞,4].(2)当m 取最大值4时,原不等式等价于|x -3|-2x ≤4,所以⎩⎪⎨⎪⎧ x ≥3,x -3-2x ≤4或⎩⎪⎨⎪⎧x <3,3-x -2x ≤4, 解得x ≥3或-13≤x <3. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-13. 2.(2017·广东省五校协作体第一次诊断考试)已知函数f (x )=|x -a |,其中a >1.(1)当a =3时,求不等式f (x )≥4-|x -4|的解集;(2)若函数h (x )=f (2x +a )-2f (x )的图象与x 轴,y 轴围成的三角形面积大于a +4,求a 的取值范围.解析: (1)当a =3时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +7,x ≤3,1,3<x <4,2x -7,x ≥4.当x ≤3时,由f (x )≥4-|x -4|得,-2x +7≥4,解得x ≤32; 当3<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得,2x -7≥4,解得x ≥112. ∴f (x )≥4-|x -4|的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112.。

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题六+直线、圆、圆锥曲线+6.3

2018届高三理科数学(新课标)二轮复习专题整合高频突破课件:专题六+直线、圆、圆锥曲线+6.3

选 择 题 解 答 题
-3关闭
解:将直线方程与双曲线方程联立消去 y,得(1-4k2)x2-16kx-20=0.① 直线与圆锥曲线的位置关系 当 1【思考】 -4k2≠0 时怎样用代数的方法判断直线与圆锥曲线的位置关系 ,有 Δ=(-16k)2-4(1-4k2)²(-20)=16(5-4k2). ? 例1已知直线l:kx-y+2=0,双曲线C:x2-4y2=4,当k为何值时: 5 5 (1)当 1-4k2≠0,且 Δ<0,即 k<- 2 或 k> 2 时,l 与 C 无公共点.
4-������ k2=
2
������ 2 -1
.
2
4-������ 2 2 k -m +4>0,得 ������ 2 -1
,
1
2 ������ 2 ������ ������
= 3,由已知
3
故椭圆 C 的标准方程为 x + 4 =1. (2)若 m=0,则 P(0,0),由椭圆的对称性得������������ = ������������,即������������ + ������������=0, 所以 m=0 能使������������+������������������=4������������成立. 若 m≠0,由������������+������������������=4������������,得������������ = ������������ + ������������,
12 ������ 2 ������ 2 4(������ 2 -4) ������ 2 +4
2 2
-2������������

2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析

2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析

高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。

2018-2019年最新高考总复习数学(理)第二次高考模拟突破冲刺卷及答案解析

2018-2019年最新高考总复习数学(理)第二次高考模拟突破冲刺卷及答案解析

2018年二模突破冲刺交流试卷(03)高三数学(理)(考试时间:120分钟试卷满分:150分)第I 卷选择题(共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数iz --=12,则在复平面内z i ⋅对应的点坐标为 A .()1,1 B .()1,1- C .()1,1-- D . ()1,1-2. 已知两个集合(){}2ln 2++-==x x y x A ,⎭⎬⎫⎩⎨⎧≤-+=212x e e xB 则=⋂B AA.⎪⎭⎫⎢⎣⎡-2,21 B . ⎥⎦⎤ ⎝⎛--21,1 C .()e ,1- D .()e ,23.随机变量~(0,1)N ξ,则()12P ξ≤≤=A.0.0215 B. 0.1359 C. 0.1574 D. 0.2718(参考数据:()0.6826P μσξμσ-≤≤+=,(22)0.9544P μσξμσ-≤≤+=,(33)0.9974P μσξμσ-≤≤+=)4.从9,8,7,6,5,4,3,2,1中不放回地依次取2个数,事件=A “第一次取到的是奇数” =B “第二次取到的是奇数”,则 ()=A B PA. 51B .103C .52D .215.按下图所示的程序框图运算:若输出k =2,则输入x 的取值范围是( )A .(20,25]B .(30,57]C .(30,32]D .(28,57]6.已知数列{}n a 满足: 当()*11,,p q p q N p q +=∈<时,2p p q a a +=,则{}n a 的前10 项和10S =开始输入xk =0x =2x +1k =k +1 x >115?.结束否是输出kA. 31B. 62C. 170D. 1023 7. 已知函数()f x 的图像如图所示,则()f x 的解析式可能是 ( )()31.21A f x x x =-- ()31.21B f x x x =+- ()31.21C f x x x =-+ ()31.21D f x x x =---8. 如图1,已知正方体ABCD -A 1B 1C l D 1的棱长为a ,动点M 、N 、Q 分别在线段1111,,AD B C C D 上. 当三棱锥Q-BMN 的俯视图如图2所示时, 三棱锥Q-BMN 的正视图面积等于 A.212a B. 214aC. 224aD. 234a9.若正数,a b 满足:121=+ba 则2112-+-b a 的最小值为( )A.2B. 2 C . 22 D . 110.如图,圆O 与x 轴的正半轴的交点为A ,点B ,C 在圆O 上,点B 的坐标为(1,2)-,点C 位于第一象限,AOC α∠=.若5BC =,则23sin cos 3cos 2222ααα+-= 25.5A - 5.5B - 5.5C 25.5D 11. 已知P B A ,,是双曲线12222=-by a x 上的不同三点,且AB 连线经过坐标原点,若直线PB PA ,的斜率乘积32=⋅PB PA k k ,则该双曲线的离心率=eA . 25B . 315 C . 210D . 212.已知函数()()21ln ,2+==x x g e x f x ,对()+∞∈∃∈∀,0,b R a ,使得()()b g a f =,则ab -正视方向图1图2C 1D 1B1A 1CDABMQ N O xyαx y AO CB的最小值为 A . 22ln 1+B . 22ln 1- C . 12-e D .1-e二、填空题:本大题共4小题,每小题5分。

2018版高三新课标版·数学(理)总复习题组层级快练8含解析

2018版高三新课标版·数学(理)总复习题组层级快练8含解析

题组层级快练(八)1.若二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则f(x)的表达式为()A.f(x)=-x2-x-1 B.f(x)=-x2+x-1C.f(x)=x2-x-1 D.f(x)=x2-x+1答案D解析设f(x)=ax2+bx+c(a≠0),由题意得错误!故错误!解得错误!则f(x)=x2-x+1.故选D.2.函数y=x2+8x+12在某区间上是减函数,这区间可以是() A.[-4,0]B.(-∞,0]C.(-∞,-5]D.(-∞,4]答案C3.已知函数f(x)=ax2+x+5的图像恒在x轴上方,则a的取值范围是( )A.(0,错误!)B.(-∞,错误!)C.(错误!,+∞) D.(-错误!,0)答案C解析由题意知错误!即错误!得a〉错误!.故选C.4.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图像大致是( )答案 C5.已知m 〉2,点(m -1,y 1),(m ,y 2),(m +1,y 3)都在二次函数y =x 2-2x 的图像上,则( )A .y 1〈y 2<y 3B .y 3<y 2<y 1C .y 1<y 3〈y 2D .y 2〈y 1<y 3答案 A6.若函数f (x)=ax 2+bx +c 满足f (4)=f (1),则( )A .f (2)〉f (3)B .f(3)>f(2)C .f(3)=f(2)D .f (3)与f (2)的大小关系不确定 答案 C解析 ∵f(4)=f (1),∴对称轴为x =52,∴f(2)=f(3).7.已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是()A.(-∞,-1) B.(-1,2]C.[-1,2] D.[2,5)答案C解析二次函数f(x)=-x2+4x的图像是开口向下的抛物线,最大值为4,且在x=2时取得,而当x=5或-1时,f(x)=-5,结合图像可知m的取值范围是[-1,2].8.(2017·山东济宁模拟)设函数f(x)=错误!若f(-4)=f(0),f (-2)=-2,则关于x的方程f(x)=x的解的个数为( )A.4 B.2C.1 D.3答案D解析由解析式可得f(-4)=16-4b+c=f(0)=c,解得b=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力训练23 不等式选讲(选修4—5)
能力突破训练
1.设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.
2.已知函数f(x)=|x-1|+|x+3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式t2+3t>f(x)在x∈R上有解,求实数t的取值范围.
3.设函数f(x)=+|x-a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.
4.已知关于x的不等式m-|x-2|≥1,其解集为[0,4].
(1)求m的值;
(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.
5.已知函数f(x)=,M为不等式f(x)<2的解集.
(1)求M;
(2)证明:当a,b∈M时,|a+b|<|1+ab|.
6.设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A.
(1)若a=1,求A;
(2)若A=R,求a的取值范围.
7.已知函数f(x)=|2x-1|+|x-a|,a∈R.
(1)当a=3时,解不等式f(x)≤4;
(2)若f(x)=|x-1+a|,求x的取值范围.
思维提升训练
8.已知函数f(x)=g(x)=af(x)-|x-2|,a∈R.
(1)当a=0时,若g(x)≤|x-1|+b对任意x∈(0,+∞)恒成立,求实数b的取值范围;
(2)当a=1时,求函数y=g(x)的最小值.
9.已知函数f(x)=|x-3|-|x-a|.
(1)当a=2时,解不等式f(x)≤-;
(2)若存在实数a,使得不等式f(x)≥a成立,求实数a的取值范围.
10.设函数f(x)=|x-1|+|x-a|.
(1)若a=-1,解不等式f(x)≥3;
(2)如果∀x∈R,f(x)≥2,求a的取值范围.
参考答案
专题能力训练23不等式选讲(选修4—5)
能力突破训练
1.证明因为|x-1|<,|y-2|<,
所以|2x+y-4|=|2(x-1)+(y-2)|
≤2|x-1|+|y-2|<2=a.
2.解(1)原不等式等价于
得-x<-3或-3≤x≤1或1<x,
因此不等式的解集为
(2)∵f(x)=|x-1|+|x+3|≥|x-1-(x+3)|=4,要使t2+3t>f(x)在x∈R上有解,只需t2+3t大于f(x)的最小值,∴t2+3t>[f(x)]min=4⇒t2+3t-4>0⇒t<-4或t>1.
3.(1)证明由a>0,有f(x)=+|x-a|+a≥2.故f(x)≥2.
(2)解f(3)=+|3-a|.当a>3时,f(3)=a+,由f(3)<5,得3<a<
当0<a≤3时,f(3)=6-a+,
由f(3)<5,得<a≤3.
综上,a的取值范围是
4.解(1)不等式m-|x-2|≥1可化为|x-2|≤m-1,
∴1-m≤x-2≤m-1,即3-m≤x≤m+1.
∵其解集为[0,4],m=3.
(2)由(1)知a+b=3.
(方法一:利用基本不等式)
∵(a+b)2=a2+b2+2ab≤(a2+b2)+(a2+b2)=2(a2+b2),∴a2+b2,当且仅当a=b=时取等号,∴a2+b2的最小值为
(方法二:消元法求二次函数的最值)
∵a+b=3,∴b=3-a,
∴a2+b2=a2+(3-a)2=2a2-6a+9=2,∴a2+b2的最小值为
5.(1)解f(x)=
当x≤-时,由f(x)<2得-2x<2,解得x>-1;
当-<x<时,f(x)<2;
当x时,由f(x)<2得2x<2,解得x<1.
所以f(x)<2的解集M={x|-1<x<1}.
(2)证明由(1)知,当a,b∈M时,-1<a<1,-1<b<1,
从而(a+b)2-(1+ab)2=a2+b2-a2b2-1
=(a2-1)(1-b2)<0.
因此|a+b|<|1+ab|.
6.解(1)当x时,2x-1+x+3≥2x+4,解得x≥2.
当-3<x<时,1-2x+x+3≥2x+4,解得-3<x≤0.
当x≤-3时,1-2x-x-3≥2x+4,解得x≤-3.
综上,原不等式的解集A={x|x≤0或x≥2}.
(2)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立.
当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4,即|2x-a|≥x+1, 得x≥a+1或x,
所以a+1≤-2或a+1,得a≤-2.
综上,a的取值范围为a≤-2.
7.解(1)当a=3时,函数f(x)=|2x-1|+|x-3|=
如图,由于直线y=4和函数f(x)的图象交于点(0,4),(2,4),
故不等式f(x)≤4的解集为(0,2).
(2)由f(x)=|x-1+a|,可得|2x-1|+|x-a|=|x-1+a|.
由于|2x-1|+|x-a|≥|(2x-1)-(x-a)|=|x-1+a|,
当且仅当(2x-1)(x-a)≤0时取等号,
故有(2x-1)(x-a)≤0.
当a=时,可得x=,故x的取值范围为;
当a>时,可得x≤a,故x的取值范围为;
当a<时,可得a≤x,故x的取值范围为
思维提升训练
8.解(1)当a=0时,g(x)=-|x-2|(x>0),
g(x)≤|x-1|+b⇔-b≤|x-1|+|x-2|.
|x-1|+|x-2|≥|(x-1)-(x-2)|=1,
当且仅当1≤x≤2时等号成立.
故实数b的取值范围是[-1,+∞).
(2)当a=1时,g(x)=
当0<x<1时,g(x)=+x-2>2-2=0;
当x≥1时,g(x)≥0,当且仅当x=1时等号成立;
故当x=1时,函数y=g(x)取得最小值0.
9.解(1)∵a=2,
∴f(x)=|x-3|-|x-2|=
∴f(x)≤-等价于解得x<3或x≥3,∴不等式的解集为
(2)由不等式性质可知f(x)=|x-3|-|x-a|≤|(x-3)-(x-a)|=|a-3|,
∴若存在实数x,使得不等式f(x)≥a成立,则|a-3|≥a,解得a
∴实数a的取值范围是
10.解(1)当a=-1时,f(x)=|x-1|+|x+1|,
f(x)=
作出函数f(x)=|x-1|+|x+1|的图象.
由图象可知,不等式f(x)≥3的解集为
(2)若a=1,则f(x)=2|x-1|,不满足题设条件;
若a<1,则f(x)=
f(x)的最小值为1-a;
若a>1,则f(x)=
f(x)的最小值为a-1.
故对于∀x∈R,f(x)≥2的充要条件是|a-1|≥2,a的取值范围是(-∞,-1]∪[3,+∞).
- 11 -。

相关文档
最新文档