2017_2018学年八年级数学下册一元二次方程的解法(第4课时)用公式法解一元二次方程习题课件(新版)浙教版
1.2一元二次方程的解法(4)公式法
课题:1.2一元二次方程的解法(4)班级 姓名: 课型:新授课 主备: 审核: 备课时间: 上课时间:1、 学习目标:经历探索求根公式的过程,培养抽象思维能力;2、 熟练地应用求根公式解一元二次方程;3、 在探索和应用求根公式中,进一步认识特殊与一般的关系。
学习重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误学习难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程自学探究问题:1、用配方法解下列方程:(1)x x 10152=+ (2)0311232=+-x x2、用配方解一元二次方程的步骤是什么?你觉得哪一步最重要?探究:问题1:用配方法解关于x 的一元二次方程)0(02≠=++a c bx ax问题2:在研究问题1中,你能得出什么结论?知识点一:用公式法解一元二次方程自学课本第14-15页内容,完成:1、一般的,对于一元二次方程)0(02≠=++a c bx ax(1) 当_____________时,它的根是_________________.这个公式叫一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫公式法。
(2) 当_____________时,方程没有实数根。
2、尝试交流:在一元二次方程)0(02≠=++a c bx ax 中,代数式ac b 42-有什么作用?〖基本题型一〗用公式法解一元二次方程例1 解下列方程()02312=++x x ()()x x 72222=-思考:用公式法解一元二次方程的一般步骤是什么?变式练习:(看谁算得快)解下列方程:(第一组)(1)0432=--x x (2)0122=-+x x()3232=-x x解下列方程:(第二组)()182012+=x x ()()662=-x x()()1143=-x x ()()071542=-+x x课后作业 补充习题课后反思。
八年级数学一元二次方程的解法
2) x2=x 解:x2-x=0
x(x-1)=0 x=0 或 x-1=0
∴ x1=0 x2=1
2) x2=x 解:把方程两边同除x,
得 x=1 大家讨论一下,这样解方程是否
正确?为什么?
答案:不正确 因为方程两边同除x,就把
x=0这个解丢失了.因此,方程 的两边不能除以含有未知数的 整式,否则会失根.
形如 ax2+c=0(a≠0,a,c异号)
ax2=-c
x2=-
c a
(a*c<0)
我们用直接开平方法求解.
当a*c>0时,此时原方程没有
实数解(根).
形如 ax2+bx=0 (a≠0)
x(ax+b)=0
x=0 或 ax+b=0
x1=0
x2=-
b a
作业: P46 5
;/ 杏耀代理 ;
一元二次方程的解法
主 讲
一元二次方程的解法
1) 直接开平方法
2) 配方法
3) 公式法
4) 因式分解法
例 x2-16=0 x2-16=0
解: (x-4)(x+4)=0 我们知道0的一个特性,0与 任何数相乘都等于0. 如果两个数相乘积等于0,那么 这两个数中至少有一个为0.
所以上式可转化为
x-4=0 或 x+4=0
x1=4
x2=-4
因此,我们把方程的左边因式分解,
这样将一元二次方程转化为两个一
元一次方程来求解的方法叫做因式
分解法.
例 x2-5x+6=0
解:把方程的左边因式分解
得 (x-2)(x-3)=0
因此 ,有 x-2=0 或 x-3=0
一元二次方程的解法 公式法
一元二次方程的解法公式法一元二次方程,这可是初中数学里的一个“大明星”!咱们今天就来好好聊聊它的解法——公式法。
在学习公式法之前,咱们先得搞清楚啥是一元二次方程。
比如说,像$ax^2 + bx + c = 0$($a≠0$)这样的式子,就是一元二次方程。
这里面$a$、$b$、$c$可都是有讲究的,$a$叫二次项系数,$b$是一次项系数,$c$是常数项。
那公式法到底是啥呢?其实就是依靠一个超级厉害的公式来求解一元二次方程的根。
这个公式就是$x = \frac{-b ± \sqrt{b^2 - 4ac}}{2a}$。
我记得我之前教过的一个学生,叫小李。
这孩子一开始听到这个公式就头疼,觉得太复杂了,根本记不住。
我就跟他说:“小李啊,你别把它想得那么可怕。
你就把它当成一个能帮你找到宝藏的密码。
”然后我带着他一步一步地推导这个公式,让他明白这个公式是怎么来的。
推导过程其实也不难。
我们先把一元二次方程$ax^2 + bx + c =0$($a≠0$)移项,变成$ax^2 + bx = -c$,然后两边同时除以$a$,得到$x^2 + \frac{b}{a}x = -\frac{c}{a}$。
接下来就是配方啦,在等式两边加上$\left(\frac{b}{2a}\right)^2$,左边就变成了$\left(x +\frac{b}{2a}\right)^2$,右边就是$\frac{b^2 - 4ac}{4a^2}$。
最后开方,就得到了咱们的求解公式$x = \frac{-b ± \sqrt{b^2 - 4ac}}{2a}$。
小李跟着我一步一步推导完之后,恍然大悟,说:“老师,原来这个公式是这么来的啊,感觉也没那么难了!”有了这个公式,咱们就可以求解各种各样的一元二次方程啦。
比如说,方程$x^2 + 2x - 3 = 0$,这里$a = 1$,$b = 2$,$c = -3$,代入公式,$x = \frac{-2 ± \sqrt{2^2 - 4×1×(-3)}}{2×1}$,算一算,就能得到$x_1 =1$,$x_2 = -3$。
公式法解一元二次方程的公式步骤
公式法解一元二次方程的公式步骤在代数学中,一元二次方程是一个常见的方程类型。
解决这种方程可以使用不同的方法,其中一种常见的方法是通过使用公式法。
这个方法基于一元二次方程的通用解法,其基本步骤如下:1. 确定方程的形式首先,我们需要确定方程的标准形式为ax^2 + bx + c = 0,其中a、b和c是已知的常数,且a ≠ 0。
2. 计算判别式我们需要计算方程的判别式∆,其公式为∆ = b^2 - 4ac。
判别式描述了实数根的性质,可以帮助我们确定方程的解的类型。
3. 根据判别式确定解的类型根据计算得到的判别式∆,我们可以确定方程的解的类型: - 如果∆ > 0,则方程有两个不相等的实数解。
- 如果∆ = 0,则方程有两个相等的实数解。
- 如果∆< 0,则方程没有实数解,而是有两个共轭复数解。
4. 根据解的类型计算解根据前面确定的解的类型,我们可以使用以下公式计算方程的解: - 如果方程有两个不相等的实数解,则解可以通过以下公式计算:x = (-b ± √∆) / 2a。
-如果方程有两个相等的实数解,则解可以通过以下公式计算:x = -b / 2a。
- 如果方程没有实数解而是有两个共轭复数解,则解可以通过以下公式计算:x = (-b ± i√(-∆)) / 2a,其中i是虚数单位。
5. 求解实际问题理解了如何使用公式法解决一元二次方程后,我们可以应用这个方法来解决实际的问题。
对于给定的实际问题,我们可以将其转化为一元二次方程,然后使用公式法求解。
以下是一个示例:问题:设某物体从离地面100米高的位置自由下落,在空气阻力忽略不计的情况下,求物体落地所需要的时间。
解答: - 在这个问题中,我们可以使用以下公式来描述物体的高度h(单位: 米)与时间t(单位: 秒)之间的关系:h = 100 - 4.9t^2。
这是一个典型的二次方程。
- 我们希望知道物体落地时的高度h为零。
八年级数学一元二次方程的解法
∴
2) 解:把方程两边同除x, 得 x=1 大家讨论一下,这样解方程是否 正确?为什么?
2 x =x
答案:不正确 因为方程两边同除x,就把 x=0这个解丢失了.因此,方程 的两边不能除以含有未知数的 整式,否则会失根.
形如 ax2+c=0(a≠0,a,c异号) ax2=-c c 2 x =- a (a*c<0) 我们用直接开平方法求解. 当a*c>0时,此时原方程没有 实数解(根).
例 解:把方程的左边因式分解 得 (x-2)(x-3)=0 因此 ,有 x-2=0 或 x-3=0 解得 x1=2 x2=3
2 x -5x+6=0
交流
1) 解:x(x+3)=0 因此有 x=0或 (x+3)=0 解得 x1=0 ,x2=-3
2 x +3x=0
2) 解:x2-x=0 x(x-1)=0 x=0 或 x-1=0 x1=0 x2=1
一元二次方程的解法
主 讲
一元二次方程的解法
1) 2) 3) 4)
直接开平方法 配方法 公式法 因0 解: (x-4)(x+4)=0 我们知道0的一个特性,0与 任何数相乘都等于0. 如果两个数相乘积等于0,那么 这两个数中至少有一个为0.
所以上式可转化为 x-4=0 或 x+4=0 x1=4 x2=-4 因此,我们把方程的左边因式分解, 这样将一元二次方程转化为两个一 元一次方程来求解的方法叫做因式 分解法.
形如
2 ax +bx=0
(a≠0)
x(ax+b)=0 x=0 或 ax+b=0 b x1=0 x2=- a
作业: P46 5
一元二次方程的解法-公式法
抛物线
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
顶点坐标 对称轴
b 2a
,4ac 4a
b2
直线x b 2a
开口方向 增减性ห้องสมุดไป่ตู้
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
最值
当x b 时,最小值为 4ac b2
2a
4a
b 2a
,
4ac 4a
b2
直线x b 2a
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x b 时,最大值为 4ac b2
2a
4a
b b2 4ac x
2a
例 2 解方程: x2 3 2 3 x
解: 化简为一般式:x2 2 3 x 3 0 这里 a 1、 b= - 2 3、 c= 3
49 96 - 47 0
方程没有实数解。
随堂 练习 用公式法解下列方程:
2x2-4x+1=0;
二次函数y= 2x2-4x+1的图像是怎样的?
提示:a=2 b=-4 c=1
基础知识补充
质素:一个只能分解成1与它本身相乘的数 如17只能是1*17,但18可以1*18;2*9;3*6,所以18不是质数
b2 4ac ( 2 3)2 41 3 0
(- 2 3) x
02
3
3
21
2
即 : x1 x2 3
b b2 4ac x
2a
例 3 解方程: x 21 3x 6
解:去括号,化简为一般式:
3x2 7x 8 0
一元二次方程的解法详细解析
一元二次方程的解法详细解析只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。
标准形式:ax²+bx+c=0(a≠0)一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。
下面小编和你具体讲解一元二次方程的四种解法例析。
一元二次方程的解法例析【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。
在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。
根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。
一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。
因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。
下面再讲一元二次方程的解法。
解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。
一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。
配方法二次项系数若不为1,必须先把系数化为1,再进行配方。
公式法≥0时,方程有解;<0时,方程无解。
先化为一般形式再用公式。
因式分解法方程的一边为0,另一边分解成两个一次因式的积。
方程的一边必须是0,另一边可用任何方法分解因式。
【举例解析】例1:已知,解关于的方程。
分析:注意满足的的值将使原方程成为哪一类方程。
解:由得:或,当时,原方程为,即,解得. 当时,原方程为,即,解得,. 说明:由本题可见,只有项系数不为0,且为最高次项时,方程才是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。
通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。
1.2《一元二次方程的解法—公式法》导学案
第4课时一元二次方程的解法一、知识目标1、会用公式法解一元二次方程2、体验用配方法推导一元二次方程求根公式的过程,明确运用公式求根的前提条件是b 2-4ac ≥03、在公式的推导过程中培养学生的符号感重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程难点:求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误二、知识准备1、用配方法解一元二次方程的步骤是什么?2、用配方法解下例方程(1)02722=--x x (2)05422=+-x x三、学习内容如何解一般形式的一元二次方程ax 2+bx +c = 0(a ≠0)?1、阅读下列解方程的过程:因为0a ≠,方程两边都除以a ,得20b c x x a a++= 移项,得2b c x x a a +=- 配方,得 222)2()2(22ab ac a b x a b x +-=+∙∙+ 即2224()24b b ac x a a -+=当240b ac -≥,时,2b x a +=x =。
2、思考:(1)为什么要求240b ac -≥?(2)这个公式说明了什么?(这个公式说明方程的根是由方程的系数a 、b 、c 所确定的,利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解,这种解方程的方法叫做公式法。
)(3)若b 2 – 4ac < 0,方程还有根吗?3、请你利用求根公式解下列方程:⑴ x 2+3x +2 = 0⑵ 2 x 2-7x = 4四、知识梳理1、用公式法解一元二次方程时要注意什么?2、任何一个一元二次方程都能用公式法求解吗?举例说明。
3、若解一个一元二次方程时,b 2-4ac <0,请说明这个方程解的情况。
五、达标检测1、把方程4-x 2=3x 化为ax 2+bx+c=0(a≠0)形式为,b 2-4ac=.2、用公式法解下列方程:(1)x 2-2x-8=0;(2)x 2+2x-4=0;(3)2x 2-3x-2=0;(4)3x(3x-2)+1=0. (5)2260x x +-=(6)242x x +=3、已知等腰三角形的底边长为9,腰是方程210240x x -+=的一个根,求这个三角形。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
(浙教版)八年级数学下册课件:2.2一元二次方程的解法(
C. k 1 D. k 1 且 k 0
5.若关于 x 的一元二次方程
x2 2x k 0
没有实数根,则
是
.
k
的取值范围
6.方程 2x2 nx 1 0 两个根互
为相反数,则 = n .
7.若 x1,x2是一元二次方程
x2 5x 6 0 的两个根,
义务教育教科书(浙教)八年级数学下册
第2章 一元二次方程
配方法
我们通过配成完全平方式的方法,得到了一元二次方 程的根,这种解一元二次方程的方法称为配方法
助手 用配方法解一元二次方程的方法的
:
平方根的意义: 如果x2=a,那么x= a.
完全平方式:式子a2±2ab+b2叫完全平方式,且 a2±2ab+b2 =(a±b)2.
“配方法”解方程的基本步骤:
1.化1: 把二次项系数化为1; 2.移项: 把常数项移到方程的右边; 3.配方: 方程两边同加一次项系数
一半的平方;
4.变形: 化成 ( x + m ) 2 = a
5.开平方,求解
法将从这里诞生
你能用配方法解方程 你能用配方法解方程
2x2-9x+8=0 吗?
ax2 bx c 0 吗?
44
2a
x1
9
4
17
;
x2
9
4
17
.
x1 b
b2 2a
4ac
,
x2
b
b2 4ac 2a
2019/6/20
公式法
浙教版八下一元二次方程的解法(4)公式法
公式法是这样生产的
ax2+bx+c=0(a≠0)吗?
你能用配方法解方程
b c 解 : x x 0. 1.化1:把二次项系数化为1; a a b c 2 x x . 2.移项:把常数项移到方程的右 a a2 2 b b b c边 ; 3.配方:方程两边都加上一次项 2 x x . 系数绝对值一半的平方; a 2a 2 2 2a 4a 右边合并同类; 当b 2 4ac 0时, 5.开方:根据平方根意义, b b 2 4ac 方程两边开平方; x . 2a 2a 6.定解:写出原方程的解. b b 2 4ac 2 x .b 4ac 0.
当 b2-4ac>0时,一元二次 方程有两个不相等的实数根。 当 b2-4ac<0时,一元二次 方程没有实数根。
反过来也是成立的。
四、计算一定要细心,尤其是 计算b2-4ac的值和代入公式时, 符号不要弄错。
1、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条件时,方程的两根 为互为相反数? 2、m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解?
配方法解一元二次方程的基本步骤:
化系数为1:方程的两边同除以二次项系数。 移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程;
用配方法解下列方程: 3 2 1 1 x x 0 4 2 8
心动
2
不如行动
心动
2
不如行动
公式法
ax2+bx+c=0(a≠0)
一元二次方程的基本概念与常见求解方法
一元二次方程的基本概念与常见求解方法知识点睛一元二次方程的定义只含有一个未知数,并且未知数的最高次数是 2,最高次数的项系数不为 0 的整式方程叫做一元二次方程.一元二次方程的一般形式2(0)0ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项.(1)要判断一个方程是否是一元二次方程,必须符合以下四个标准:一元二次方程是整式方程,即方程的两边都是关于未知数的整式.一元二次方程是一元方程,即方程中只含有一个未知数.一元二次方程是二次方程,也就是方程中未知数的最高次数是2.一元二次方程最高次数的项系数不为0.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式2(0)0ax bx c a ++=≠. 要特别注意对于关于 x 的方程2(0)0ax bx c a ++=≠.当0a ≠时,方程是一元二次方程;当00a b =≠且时,方程是一元一次方程. (3)关于x 的一元二次方程2(0)0ax bx c a ++=≠的项与各项的系数.ax 2 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的解法(1)直接开平方法:适用于解形如 (ax +b )2 = ()00a c ≠, 的一元二次方程. (2)配方法:解形如2 )00(ax bx c a ++=≠的一元二次方程,运用配方法解一元二次方程的一般步骤是:① 二次项系数化为1.② 常数项右移.③ 配方 (两边同时加上一次项系数一半的平方).④ 化成 (x +m )2 = n 的形式.⑤ 若0n ≥,直接开平方得出方程的解。
(3)公式法:设一元二次方程为2 )00(ax bx c a ++=≠,其根的判别式为:2124b ac x x ∆=-,, 是方程的两根,则:1. ∆ > 0 ⇔ 方程 2)00(ax bx c a ++=≠有两个不相等的实数根 x = 2. ∆ = 0 ⇔ 方程 2 )00(ax bx c a ++=≠有两个相等的实数根 122b x x a==-; 3. ∆ < 0 ⇔ 方程2 )00(ax bx c a ++=≠ 没有实数根.运用公式法解一元二次方程的一般步骤是:① 把方程化为一般形式.② 确定 a 、b 、c 的值.③ 计算24b ac -的值.④ 若 240b ac -≥,则代入公式求方程的根.⑤ 若240b ac -<,则方程无实数根.(4)因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:① 将方程化为一元二次方程的一般形式;② 把方程的左边分解为两个一次因式的积;③ 令每一个因式分别为零,得到两个一元一次方程;④ 解出这两个一元一次方程得到原方程的解. 一元二次方程解法的灵活运用直接开平方法,公式法,配方法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)直接开平方法:用于缺少一次项以及形如 ax 2 = b 或 (x +a )2 = b (0)b ≥ 或 (ax +b )2 =(cx +d )2 的方程,能利用平方根的意义得到方程的解.(2)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式 ax 2 +bx +c = 0(a 、b 、c 为常数,0a ≠) 转化为它的简单形式 Ax 2 = B ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.(3)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 24b ac -的值.(4)因式分解法:适用于右边为 0(或可化为 0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.【例 1】(1) 若 x 2a +b -3x a-b +1 = 0 是关于 x 的一元二次方程,求 a 、b 的值.(2) 若 n (n ≠0) 是关于 x 的方程 x 2 +mx +2n = 0 的根,则 m +n 的值为 ( )A. 1B. 2C. -1D. -2(3) 已知 43x =,则2421x x x ++的值是 .(4) 当 111552n n x -⎛⎫=- ⎪⎝⎭时,(.n x = ( n 为自然数)【例 2】(1) 用直接开平方法解方程:2269(5) 2x x x -+=-. (2) 用配方法解方程:22310x x ++=.(3) 用分解因式法解方程:2()2136x x -=-. (4) 用公式法解方程:161432)2(2x x x x ⎛⎫++-=+ ⎪⎝⎭例 3】(1) 解关于 x 的方程: 21 213()()0m x m x m -+-+-=. (2) 解关于 x 的方程22656223200x xy y x y --++-=. 【例 4】(1)如果方程 22()2020x px q x qx p p q -+=-+=≠和 有公共根,则该公共根为 .(2)若方程2222100ax ax x ax a +-=--=和有公共根,求a 的值例 5】(1) 解方程:22132(10)|2|x x ---+=.(2) 解方程:221|4|x x +-=.练习2 高次方程和无理方程知识点睛1.特殊高次方程的解法:一般的高次方程没有统一的求解方法. 对于一些特殊的高次方程, 可通过降次, 转化为一元二次方程或一元一次方程求解,转化的方法有因式分解法(因式定理)、换元法、变换主元法等.2. 特殊分式方程的解法:求解分式方程总的原则是通过去分母或换元, 使其转化为整式方程, 然后再求解. 在这个过程中离不开分式的恒等变形, 如通分、约分及降低分子的次数等等, 这就有可能使方程产生增根(或遗根).3. 特殊无理方程的解法:解无理方程的基本思路是把根式转化为有理方程求解. 转化过程中常用的方法有: 乘方、配方、因式分解、等价变换、换元、增元、对偶、利用比例性质等. 如果变形过程是非等价变形(如方程两边平方), 可能产生增根, 因此应注意验根.精讲精练【例 6】(1) 解方程:43225122560x x x x --++=.(2)解关于 x 的方程 ()()322212 0x t x tx t t +--+-=.(3)解方程 321010x x ++++=【例 7】(1)解方程:(8x + 7)2 (4x + 3)(x + 1)= 29 ;(2)解方程: x x x x x x +-=------2221120102910451069. (3)解方程:222234112283912x x x x x x x x ++-+=+-+.【例 8】(1)解方程:()()222323322x x x x x =+-++--. (2)解方程:22252x x x ⎛⎫+= ⎪+⎝⎭. (3)方程()()3232232?47615180x x x x x x x x -+---++-+=全部实根是 .【例 9】(12=.(2)解方程 266 0x x --+=.【例 10】(1)已知 2x =,求.(2)无理方程 221518x x -=-的解是 。
第四课解一元二次方程(公式法)教案
一、教学内容
本节课选自《数学》八年级下册,第四课“解一元二次方程(公式法)”。教学内容主要包括以下两个方面:
1.公式法求解一元二次方程:引导学生回顾一元二次方程的一般形式ax^2+bx+c=0,并介绍求根公式x1,2=(-b±√(b^2-4ac))/(2a),让学生通过实际例题掌握运用公式法求解一元二次方程的方法。
2.提升学生的数学运算能力:让学生在实际操作中,熟练运用求根公式和判别式进行计算,培养其准确、快速进行数学运算的能力。
3.增强学生的数学建模意识:通过将现实生活中的问题抽象为一元二次方程,引导学生运用数学知识建立模型,培养学生运用数学语言表达现实问题的能力,提高其数学建模意识。
三、教学难点与重点
1.教学重点
(1)掌握一元二次方程的求根公式及其应用。
(2)理解判别式Δ的意义,并能根据判别式的值判断方程的根的情况。
(3)能够运用公式法解决实际问题,建立数学模型。
举例:
-重点1:讲解求根公式时,强调a、b、c的系数与根的关系,并通过多个例题演示公式法的应用。
-重点2:通过具体方程实例,解释判别式Δ的求法及其与根的关系,如Δ>0表示有两个不相等的实数根,Δ=0表示有两个相等的实数根,Δ<0表示无实数根。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“解一元二次方程(公式法)”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如:面积和边长、速度和时间等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程的奥秘。
一元二次方程的四种解法
一元二次方程的四种解法
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一元二次方程的四种解法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为一元二次方程的四种解法的全部内容。
龙文教育个性化辅导教案提纲
教师:陈燕玲学生:年级九日期: 星期: 时
三、本次课后作业:
四、学生对于本次课的评价:
○ 特别满意○ 满意○ 一般○ 差
学生签字:
五、教师评定:
1、学生上次作业评价: ○非常好○好○ 一般○ 需要优
化
2、学生本次上课情况评价:○非常好○好○ 一般○ 需要优
化
教师签字:
教务主任签字: ___________
龙文教育教务处。