初一上册数学教案:绝对值与相反数

合集下载

苏科版(2024)七年级上册数学第2章 有理数2.3绝对值与相反数 教案

苏科版(2024)七年级上册数学第2章 有理数2.3绝对值与相反数 教案

苏科版(2024)七年级上册数学第2章有理数2.3绝对值与相反数教案一、教学目标1. 知识与技能:理解并掌握绝对值的概念,能正确计算有理数的绝对值,理解相反数的定义,能找出任何数的相反数。

2. 过程与方法:通过实例引导学生自主探索绝对值和相反数的特性,培养他们的观察、分析和归纳能力。

3. 情感态度与价值观:让学生体验数学的实用性和美感,提高学习数学的兴趣,培养严谨的思维习惯。

二、教学方法和手段1. 直观教学法:利用数轴来解释绝对值和相反数的概念。

例如,可以画一条数轴,让学生理解一个数的绝对值是它在数轴上的距离,而相反数就是与它在数轴上相隔原点等距离的那个数。

2. 实例教学法:通过生活中的实例来解释,比如,温度零上5℃和零下5℃的绝对温差是一样的,这就是绝对值的含义。

同样,向上走5步和向下走5步,步数的绝对值是相等的,可以对应相反数的概念。

3. 互动教学法:设计一些问题让学生自己去探索,比如,"一个数的绝对值总是正的吗?0的绝对值是多少?","如何找到一个数的相反数?"等,通过互动讨论来加深理解。

4. 练习与应用:提供足够的练习题让学生进行操作,通过实际计算来熟练掌握绝对值和相反数的计算方法。

同时,可以设计一些实际问题,让学生用学到的知识去解决,提高他们的应用能力。

5. 多媒体辅助教学:利用多媒体教学软件或者在线教学平台,制作生动的动画或图表,帮助学生更直观地理解抽象的数学概念。

6. 分层教学法:考虑到学生的学习能力和理解程度可能不同,可以设计不同难度的题目,确保每个学生都能在自己的水平上得到提升。

7. 反馈与评价:及时对学生的学习进行反馈和评价,对他们的疑惑进行解答,对他们的进步给予肯定,激发他们的学习积极性。

三、教学重难点1.重点:理解绝对值的概念:绝对值是一个数在数轴上的距离,不考虑正负号,因此任何数的绝对值都是非负的。

掌握绝对值的性质:如|a| = |-a|,绝对值的非负性,以及绝对值与比较大小的关系等。

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案教学目标:1. 理解相反数的概念,能够找出任意一个数的相反数。

2. 理解绝对值的概念,能够计算任意一个数的绝对值。

3. 掌握相反数和绝对值的应用,能够解决相关问题。

教学内容:第一章:相反数的概念和性质1.1 相反数的定义1.2 相反数的性质1.3 找出相反数第二章:绝对值的概念和性质2.1 绝对值的定义2.2 绝对值的性质2.3 计算绝对值第三章:相反数和绝对值的关系3.1 相反数和绝对值的关系3.2 利用相反数和绝对值的关系解决问题第四章:相反数和绝对值的应用4.1 利用相反数和绝对值的概念解决实际问题4.2 相反数和绝对值在不同情境下的应用5.2 练习题教学方法:1. 采用讲解法,引导学生理解相反数和绝对值的概念和性质。

2. 采用案例分析法,让学生通过实际例子理解相反数和绝对值的应用。

3. 采用练习法,让学生通过做题巩固所学知识。

教学评价:1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。

2. 练习题的正确率:检查学生做练习题的正确率,评估学生对知识的掌握程度。

3. 课后作业的完成情况:检查学生课后作业的完成质量,评估学生对知识的理解和应用能力。

教学资源:1. 教案、PPT和相关教学材料。

2. 练习题和案例分析题。

教学步骤:第一章:相反数的概念和性质1.1 相反数的定义1.1.1 引导学生回顾数的概念,引入相反数的概念。

1.1.2 通过例子解释相反数的定义。

1.2 相反数的性质1.2.1 引导学生探讨相反数的性质,如相加等于零等。

1.3 找出相反数1.3.1 给学生提供一些数,让学生找出它们的相反数。

第二章:绝对值的概念和性质2.1 绝对值的定义2.1.1 引导学生回顾数的概念,引入绝对值的概念。

2.1.2 通过例子解释绝对值的定义。

2.2 绝对值的性质2.2.1 引导学生探讨绝对值的性质,如非负性等。

2.3 计算绝对值2.3.1 给学生提供一些数,让学生计算它们的绝对值。

冀教版七年级数学上册《绝对值和相反数》教案及教学反思

冀教版七年级数学上册《绝对值和相反数》教案及教学反思

冀教版七年级数学上册《绝对值和相反数》教案及教学反思一、教学设计1.教学内容本课程教学的是《绝对值和相反数》。

该课程主要包括以下三个部分:•绝对值的定义及性质•相反数的定义及性质•绝对值和相反数的实际应用2.教学目标本课程的教学目标主要包括以下几个方面:•学生能正确理解绝对值和相反数的概念及本质•学生掌握绝对值的计算方法及其基本性质•学生掌握相反数的计算方法及其基本性质•学生能够运用绝对值和相反数解决实际问题3.教学方法本课程采用多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。

4.教学步骤第一步:引入课题引导学生回顾数学知识,引出“绝对值”和“相反数”的概念,探究实际生活中的应用。

第二步:讲授知识讲解绝对值和相反数的概念、性质、计算方法及其在实际问题中的应用。

第三步:练习及巩固通过一些练习来巩固学生对绝对值和相反数的理解和掌握,加深对绝对值和相反数的印象和认识。

第四步:拓展应用引导学生运用所掌握的知识解决实际问题,培养学生的数学思维能力和解决实际问题的能力。

第五步:总结反思对本节课的知识点、难点、疑点以及授课过程中存在的问题、教师的讲授方式、学生的学习情况和反应进行总结和反思,并对后续的教学进行布置和建议。

二、教学反思本节课的教学过程相对比较顺利,学生在课堂上的表现也比较出色。

主要表现在以下几个方面:1.教学运用了多种不同的教学法本课程采用了多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。

这样的方式可以让每个学生都有机会参与到教学当中,提高课程的互动性和探索性。

2.教学中强调了实际生活中的应用本节课在讲解绝对值和相反数的时候,更加注重与实际生活中的应用进行联系,让学生能够更加真实地理解和把握知识点,而不仅仅是停留在抽象的概念上。

3.课堂气氛比较活跃在教学过程中,教师时不时会与学生互动,通过问题、练习等形式来检测学生掌握知识的情况,引导学生探究知识。

这样的方式可以让学生更加活跃地参与到课堂中,培养学生的好奇心和探究精神。

京改版七年级数学上册1.3相反数和绝对值说课稿

京改版七年级数学上册1.3相反数和绝对值说课稿
(2)培养学生积极思考勇于探索的精神;
(3)培养学生团结协作、共同进步的品质。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
1.教学重点:
(1)相反数的定义和性质;
(2)绝对值的定义和性质;
(3)相反数和绝对值在实际问题中的应用。
2.教学难点:
(1)理解相反数的概念,尤其是负数的相反数;
3.练习区:列出典型例题和关键步骤,方便学生模仿和练习。
板书的作用在于辅助讲解,突出重点,帮助学生构建知识结构。为确保板书清晰、简洁,我会:
-使用不同颜色的粉笔区分重点和难点;
-在书写前预演板书结构,确保逻辑性和条理性;
-在教学过程中适时更新板书,避免信息过载。
(二)教学反思
在教学过程中,我预见到以下问题或挑战:
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课所学内容,对自己的学习效果进行自我评价,总结自己的优点和不足。
2.同伴评价:组织学生相互评价,互相提供建议和帮助,促进学生之间的交流与进步。
3.教师反馈:针对学生的表现,给予肯定和鼓励,对学生的错误和不足给予纠正和指导,并提供针对性的建议。
在整个课程体系中,本节课位于有理数章节的第三节,前面学习了有理数的分类、数轴和有理数的加减法,为本节课的学习提供了知识基础。同时,本节课的内容也是后面学习有理数的乘除法、乘方等知识的重要铺垫。
(二)教学目标
1.知识与技能目标:
(1)理解相反数的定义,掌握相反数的性质和运算规律;
(2)理解绝对值的定义,掌握绝对值的性质和应用;
(五)作业布置
课后作业的目的是巩固所学知识,提高学生的应用能力。我将布置以下作业:

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案一、教学目标1. 让学生理解相反数的概念,掌握相反数的性质。

2. 让学生理解绝对值的概念,掌握绝对值的性质。

3. 培养学生运用相反数和绝对值解决问题的能力。

二、教学重点1. 相反数的概念及性质。

2. 绝对值的概念及性质。

三、教学难点1. 相反数的求法。

2. 绝对值在实际问题中的应用。

四、教学准备1. 课件或黑板。

2. 练习题。

五、教学过程1. 引入新课:通过生活中的实例,如温度、高度等,引导学生理解相反数的概念。

2. 讲解相反数:讲解相反数的定义,即一个数的相反数是与它的数值相等,但符号相反的数。

如:5的相反数是-5,-3的相反数是3。

3. 相反数的性质:性质1:一个数的相反数加上它本身等于0。

如:5 + (-5) = 0。

性质2:一个数的相反数的相反数还是它本身。

如:-(-5) = 5。

4. 练习相反数:让学生独立完成一些相反数的题目,如:求-7的相反数,求5和-3的相反数等。

5. 引入绝对值:通过实例,如地图上的距离,引导学生理解绝对值的概念。

6. 讲解绝对值:讲解绝对值的定义,即一个数在数轴上与原点的距离。

如:|5| = 5,|-3| = 3。

7. 绝对值的性质:性质1:一个正数的绝对值是它本身。

如:|5| = 5。

性质2:一个负数的绝对值是它的相反数。

如:|-3| = 3。

性质3:0的绝对值是0。

如:|0| = 0。

8. 练习绝对值:让学生独立完成一些绝对值的题目,如:求-7的绝对值,求5和-3的绝对值等。

10. 布置作业:让学生完成一些有关相反数和绝对值的练习题,巩固所学知识。

六、教学拓展1. 让学生了解相反数和绝对值在实际生活中的应用,如计算温度变化、距离等。

2. 引导学生思考相反数和绝对值与其他数学概念的联系,如平方、立方等。

七、巩固练习1. 编写一些有关相反数和绝对值的练习题,让学生独立完成。

2. 选取一些典型的错题,让学生分析错误原因,加深对相反数和绝对值概念的理解。

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。

通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:一、创设情境,复习导入。

今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。

(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。

在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。

这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。

你还能举出其他类似的例子吗?。

小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案一、教学目标1. 让学生理解相反数的概念,能够找出任何数的相反数。

2. 让学生理解绝对值的概念,能够计算任何数的绝对值。

3. 培养学生运用相反数和绝对值解决问题的能力。

二、教学内容1. 相反数的概念:一个数与它的相反数相加等于零。

2. 绝对值的概念:一个数的绝对值是它与零的距离。

三、教学重点与难点1. 教学重点:相反数和绝对值的概念及运用。

2. 教学难点:相反数和绝对值的计算和应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解相反数和绝对值的概念。

2. 采用案例分析法,让学生通过举例来掌握相反数和绝对值的计算方法。

3. 采用小组合作法,让学生在小组内讨论问题,培养学生的合作能力。

五、教学过程1. 导入:引导学生回顾已学过的有理数加法运算,让学生发现加法的规律。

2. 探究相反数的概念:提问“什么是相反数?”让学生通过观察、思考、交流来理解相反数的概念。

3. 相反数的表示方法:讲解相反数的表示方法,让学生能够正确表示任何数的相反数。

4. 绝对值的概念:提问“什么是绝对值?”让学生通过观察、思考、交流来理解绝对值的概念。

5. 绝对值的表示方法:讲解绝对值的表示方法,让学生能够正确计算任何数的绝对值。

6. 案例分析:让学生举例计算不同数的相反数和绝对值,巩固所学知识。

7. 课堂练习:布置一些有关相反数和绝对值的练习题,让学生独立完成,检测学习效果。

8. 总结:对本节课的内容进行总结,强调相反数和绝对值的概念及运用。

9. 作业布置:布置一些有关相反数和绝对值的家庭作业,巩固所学知识。

10. 课后反思:教师对本节课的教学进行反思,为下一节课的教学做好准备。

六、教学评价1. 评价目标:检查学生对相反数和绝对值概念的理解,以及运用相反数和绝对值解决问题的能力。

2. 评价方法:通过课堂练习、课后作业和小组讨论等方式进行评价。

3. 评价内容:a. 学生能否正确找出任何数的相反数;b. 学生能否正确计算任何数的绝对值;c. 学生能否运用相反数和绝对值解决实际问题。

相反数与绝对值教案

相反数与绝对值教案

相反数与绝对值教案一、教学目标:知识与技能:1. 学生能够理解相反数的概念,能够求出一个数的相反数。

2. 学生能够理解绝对值的概念,能够求出一个数的绝对值。

3. 学生能够运用相反数和绝对值的概念解决一些简单的实际问题。

过程与方法:1. 通过实例引导学生理解相反数和绝对值的概念,培养学生观察、思考的能力。

2. 通过练习题,让学生巩固相反数和绝对值的求法,提高学生的计算能力。

情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。

2. 培养学生合作学习的精神,培养学生的团队意识。

二、教学重点与难点:重点:1. 相反数的概念及求法。

2. 绝对值的概念及求法。

难点:1. 相反数的求法。

2. 绝对值的求法。

三、教学准备:教师准备:1. 相反数和绝对值的定义。

2. 相反数和绝对值的例题。

3. 练习题。

学生准备:1. 预习相反数和绝对值的概念。

2. 准备好笔记本,记录重点知识。

四、教学过程:1. 引入新课:教师通过生活中的实例,如温度、方向等,引导学生思考相反数的概念。

2. 讲解相反数:教师给出相反数的定义,并通过示例讲解相反数的求法。

3. 讲解绝对值:教师给出绝对值的定义,并通过示例讲解绝对值的求法。

4. 练习求相反数和绝对值:教师给出一些数的相反数和绝对值,让学生进行练习。

5. 总结:教师引导学生总结相反数和绝对值的概念及求法。

五、课后作业:1. 完成练习题。

2. 找一些生活中的实例,运用相反数和绝对值的概念,与同学交流分享。

六、教学评估:教师应通过课堂观察、练习题和学生作业来评估学生对相反数和绝对值的理解程度。

重点关注学生是否能正确求出一个数的相反数和绝对值,是否能运用这些概念解决实际问题。

七、教学反馈与调整:八、拓展活动:教师可以设计一些拓展活动,如数学小游戏、数学日记等,让学生在轻松愉快的氛围中进一步巩固相反数和绝对值的知识。

例如,设计一个游戏,让学生通过卡片游戏找出配对的相反数或绝对值相等的数。

七年级数学绝对值与相反数教案

七年级数学绝对值与相反数教案

七年级数学绝对值与相反数教案一、教学目标1.学生能够了解绝对值的概念,并能运用绝对值计算带有正负号的数的绝对值。

2.学生能够掌握相反数的概念,并能通过加法和减法运算计算相反数。

二、教学重点和难点重点1.理解绝对值的概念,掌握绝对值的计算方法。

2.掌握相反数的概念及计算方法。

难点1.理解绝对值的概念在实际问题中的应用。

2.将相反数的概念与运算方法相结合。

三、教学过程1. 导入新知识教师通过举例子的方式,向学生介绍绝对值和相反数的概念,让学生知道何为绝对值和相反数。

2. 绝对值的概念1.让学生了解绝对值的概念是对数的大小不考虑正负的一种表示方法。

2.通过举例子的方式让学生掌握绝对值的计算方法。

a. |-3| = 3b. |4| = 4c. |-5| = 53. 相反数的概念1.让学生了解相反数的概念是两个数中,绝对值相等但符号相反的数。

2.让学生通过举例子的方式掌握相反数的计算方法。

a. 5 和 -5 是互为相反数。

b. -3 和 3 是互为相反数。

4. 绝对值与相反数的应用1.通过多种实际问题的例子,让学生掌握应用绝对值和相反数的方法。

2.通过讲解方法和实例,让学生明白如何在解决问题中应用绝对值和相反数。

5. 练习题1.让学生通过练习题运用所学的知识和掌握的方法。

2.让学生在老师的指导下,讲解自己的解题思路。

四、教学反思本次课主要以绝对值和相反数为教学内容,从导入新知识、概念解释、应用实例和练习题四个方面来展开教学。

在导入新知识时,通过生动的实例将概念阐述的非常明确,让学生能够理解并且初步感受这两个概念。

在教学过程中,尤其要注意对于绝对值的计算方法,因为绝对值在后续的数学课程中还会出现,所以需要让学生对其运算有基本的掌握。

相反数的概念相对来说比较简单,但是由于这个概念在以后的数学学习中经常涉及到,所以相反数也需要在这个阶段得到较为详细的介绍和训练。

在学生对其有一定了解后,应通过许多实例来让学生进一步认识其应用场景,这样可以让学生更好的吸收这些概念和方法。

人教版七年级上册 教案 1.2绝对值和相反数

人教版七年级上册 教案  1.2绝对值和相反数

1.2绝对值和相反数【学习目标】1、借助于数轴,初步理解绝对值的概念,能求一个数的绝对值;2、通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。

【主体知识归纳】1、知识回顾(1)规定了 、 、 的 叫做数轴。

(2)3到原点的距离是 ,-5到原点的距离是 ,到原点的距离是6的数有 。

(3)2的相反数是 ,-3的相反数是 ,a 的相反数是 ,a-b 的相反数是 。

2、问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。

若规定向东为正,则A处记做________,B处记做__________。

(1)请同学们画出数轴,并在数轴上标出A 、B 的位置;(2)这两辆出租车在行驶的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(3)在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34 和34的点呢?归纳:一般地,在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作: 如:4的绝对值记作( ),它表示在 上 与 的距离,所以| 4|= 。

—6的绝对值记作(),它表示在上与的距离,所以| —6|=3、问题2、试一试:你能从中发现什么规律?(1)|+2|= ,1-=,|+8.2|= ;(2)|0|=||5(3)|-3|= ,|-0.2|= ,|-8.2|=4.①在一个数的前面添个“-”号,就表示那个数的相反数如:-(+4)=-4 -(-4)=4 -(+5.5)=-5.5②在一个数的前面添个“+”号,就表示那个数的本身如:+(-4)=-4 +(+12)=12两个符号的化简:负负得正,正正得正,正负得负,负正得负。

即:同号得正,异号得负(1)-[-(+10)] (2)+[-(-0.15)]5.有理数大小的比较(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用已有的方法比较;(3) 两个负数,绝对值大的反而小.【同步练习】1. 如图所示的图形为四位同学画的数轴,其中正确的是()2. 下列说法正确的是()A. 有原点、正方向的直线是数轴B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来D. 任何一个有理数都可以用数轴上的点表示3. 下列各组数中,大小关系正确的是( )A. -<-<-752B. ->->752C. -<-<-725D. ->->-2754. 数轴上原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非负数D. 非正数5. 数轴上点M 到原点的距离是5,则点M 表示的数是( )A. 5B. -5C. 5或-5D. 不能确定6. 在数轴上表示-206315,,,.的点中,在原点右边的点有( ) A. 0个 B. 1个 C. 2个D. 3个 7.如果一个数的相反数是负数,那么这个数一定是( )A. 正数B. 负数C. 零D. 正数、负数或零8. __________的相反数是它本身。

数轴相反数与绝对值课堂教案

数轴相反数与绝对值课堂教案

数轴相反数与绝对值课堂教案数轴相反数与绝对值课堂教案「篇一」数学绝对值与相反数教案教学目标1、知识与技能:初步理解绝对值的概念,理解绝对值的几何意义,会通过画数轴的方法求一个数的绝对值。

2、过程与方法:经历将实际问题数学化的过程,感受数学与生活的关系。

3、情感、态度与价值观:经历将实际问题数学化的过程,感受数学与生活的联系。

进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。

教学重点:绝对值的概念.通过画数轴的方法求一个数的绝对值。

教学难点:理解绝对值的几何意义。

教学过程:1.课间预习小明的家在学校西边3km处,小丽的家在学校东边2km处,如下图,我们可以把学校门前的大街想象为数轴,把学校定为原点,把小明、小丽两家看成数轴上的两点A、B。

-2-121A-3B`思考:1、A、B两点离原点的距离各是多少? 2、A、B两点离原点的距离与它们表示的数是正数还是负数有没有关系? 3、在数轴上分别描出下列数所对应的点,并指出它们到原点的距离:2.自主探究我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

(absolutevalue) 例如上图,表示-3的点A到原点的距离是3,所以-3的绝对值是3。

问:表示-2点到原点的距离是,所以-2的绝对值是。

表示2点到原点的距离是,所以2的绝对值是。

表示0到原点的距离是,所以0的绝对值是。

重点也也是难点注意:绝对值为正数的数有两个。

例如:绝对值为5的数是+5和-5你做对了吗+2.3和-2.3的绝对值都为2.3提问;绝对值为0的数是『小试牛刀』1、数轴上与原点的距离为3.5的点有个。

它们分别表示有理数和。

2、绝对值等于6的数是。

12345-1-2-3-4-5●●●●●ABCDE例1、说出数轴上A、B、C、D、E各点所表示的数的绝对值。

例2、求4、0与-3.5的绝对值。

分析:解此题应画数轴,在数轴上画出表示4、0、-3.5的点,求出表示4、0、-3.5的点到原点的距离,即是它们的绝对值。

七年级数学教案-七年级数学上册绝对值与相反数教学案

七年级数学教案-七年级数学上册绝对值与相反数教学案

七年级数学上册:绝对值与相反数教学案
【学习目标】1.使学生能说出相反数的意义2.使学生能
求出已知数的相反数3.使学生能根据相反数的意思进行化简【学习过程】【情景创设】回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。

点a,点b即是小明到达的位置。

观察a,b两点位置及
共到原点的距离,你有什么发现吗?
观察下列各对数,你有什么发现?\5与5,\6.1与6.1,
\34 与+34
相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)规定0的相反数是0想一想:你能举出互为相反数的例子吗?【例题精讲】例1 例2 试一试:化简D[D(+3.2)]想一想: 请同学们仔细观察这五个等式,它们的符号变化有什么规律? 把一个数的多重符号化成单一符号时,若该数前面有奇数个“D”号,则化简的结果是负;若该数前面有偶数个“D”号,则化简的结果是正. 练一练:填空(1)-2的相反数是, 3.75
与互为相反
数,相反数是其本身的数是 ;(2)-(+7)= ,-(-
7)= ,-[+(-
7)]= ,-[-(-7)]= ;
(3)判断下列语句,正确的
是 . ① D5 是相反。

1.2.2相反数与绝对值-湘教版七年级数学上册教案

1.2.2相反数与绝对值-湘教版七年级数学上册教案

1.2.2相反数与绝对值-湘教版七年级数学上册教案
一、知识点简介
相反数是两个数字中符号不同,而数值相等的一对数,如1和-1,2和-2等等。

绝对值是一个数字与0之间的距离,无论这个数字是正数还是负数。

在本节课中,我们将学习相反数和绝对值的概念、性质以及相关的计算方法。

二、教学目标
1.了解相反数和绝对值的定义以及性质;
2.掌握相反数和绝对值的计算方法;
3.能够灵活运用相反数和绝对值解决实际问题。

三、教学重点
1.相反数和绝对值的定义和性质;
2.相反数和绝对值的计算方法。

四、教学难点
1.实例分析解决问题。

五、教学步骤
5.1 知识讲解
1.让学生复习数轴和正数、负数的概念;
2.引入相反数和绝对值,并具体讲解其定义和性质。

5.2 计算方法讲解
1.相反数的运算方法;
2.绝对值的运算方法。

5.3 实例分析
1.使用实例让学生掌握相反数和绝对值的实际应用;
2.引导学生分析并解决实际问题,巩固所学知识。

六、教学方法
1.讲解法;
2.举例法。

七、教学工具
1.黑板、粉笔;
2.教材、PPT。

八、教学反思
通过本节课的教学,学生已经掌握了相反数和绝对值的定义和性质,并且能够熟练使用相反数和绝对值的计算方法解决实际问题。

在教学上,我注重了实例分析,让学生更好的理解和掌握了所学知识。

在今后的教学中,我还将多注重学生的实践操作和巩固练习,以进一步提高学生的数学素养和实际应用能力。

七年级上册相反数与绝对值教案

七年级上册相反数与绝对值教案

一、教学目标1. 知识与技能:(1)理解相反数的含义,掌握求一个数的相反数的方法。

(2)理解绝对值的概念,掌握求一个数的绝对值的方法。

(3)能够运用相反数和绝对值的概念解决实际问题。

2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现相反数和绝对值之间的关系,提高学生的逻辑思维能力。

3. 情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的团队协作精神。

二、教学重点与难点1. 教学重点:(1)相反数的含义及其求法。

(2)绝对值的概念及其求法。

(3)运用相反数和绝对值解决实际问题。

2. 教学难点:(1)相反数和绝对值之间的联系。

(2)如何运用相反数和绝对值解决实际问题。

三、教学准备1. 教师准备:(1)相反数和绝对值的教材、PPT等教学资源。

(2)相反数和绝对值的练习题。

2. 学生准备:(1)预习相反数和绝对值的相关知识。

(2)准备笔记本,记录重点知识点。

四、教学过程1. 导入新课:(1)引导学生回顾已学的有理数知识,复习正数和负数的概念。

(2)提问:如果有理数a,a的相反数是什么?2. 自主探究:(1)学生分组讨论,总结相反数的定义和求法。

(2)各组汇报讨论成果,教师点评并总结。

3. 知识拓展:(1)引导学生观察相反数和绝对值之间的关系。

(2)学生举例说明,教师点评。

4. 课堂练习:(1)学生独立完成练习题,检测自己对相反数和绝对值的理解。

(2)教师批改练习题,及时反馈纠正学生的错误。

5. 应用拓展:(1)出示实际问题,引导学生运用相反数和绝对值知识解决问题。

(2)学生分组讨论,展示解题过程和答案,教师点评。

五、课后作业1. 完成课后练习题,巩固相反数和绝对值的知识。

2. 搜集生活中的实例,运用相反数和绝对值知识进行解释。

3. 预习下一节课内容,做好学习准备。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况、小组合作表现等,了解学生的学习状态。

相反数绝对值教案

相反数绝对值教案

相反数绝对值教案教案标题:相反数与绝对值教学目标:1. 理解相反数的概念,并能够找出一个数的相反数。

2. 理解绝对值的概念,并能够计算一个数的绝对值。

3. 能够在实际问题中应用相反数和绝对值的概念。

教学准备:1. 教师准备黑板、白板、彩色粉笔或白板笔。

2. 学生准备纸和铅笔。

教学过程:引入活动:1. 教师将两个数写在黑板上,一个为正数,一个为负数,例如:-5和5。

2. 提问学生这两个数之间有什么关系。

3. 引导学生发现这两个数互为相反数,即它们的和为0。

讲解相反数的概念:1. 教师向学生解释相反数的概念,即两个数互为相反数当且仅当它们的和为0。

2. 举例说明相反数的概念,例如:-3和3、-8和8等。

3. 强调相反数的特点:符号相反,绝对值相等。

练习相反数的寻找:1. 教师出示一些数,要求学生找出它们的相反数,并在纸上写出来。

2. 学生互相核对答案,并与教师一起讨论。

引入绝对值的概念:1. 教师向学生解释绝对值的概念,即一个数的绝对值是它到0的距离。

2. 举例说明绝对值的概念,例如:|-5|=5、|3|=3等。

3. 强调绝对值的特点:总是非负的。

练习计算绝对值:1. 教师出示一些数,要求学生计算它们的绝对值,并在纸上写出来。

2. 学生互相核对答案,并与教师一起讨论。

应用相反数和绝对值:1. 教师给学生提供一些实际问题,要求他们运用相反数和绝对值的概念解决问题。

2. 学生独立或小组合作解决问题,并将答案写在纸上。

3. 学生展示他们的解决方法和答案,并与教师和其他同学进行讨论。

总结:1. 教师对相反数和绝对值的概念进行总结,并强调它们在数学中的重要性。

2. 学生回顾所学内容,并提出问题或疑惑。

拓展活动:1. 学生自主寻找更多的相反数和计算绝对值的例子,并与同学分享。

2. 学生可以通过数学游戏或练习题进一步巩固对相反数和绝对值的理解。

评估:教师可以通过观察学生的参与程度、练习题的完成情况以及对实际问题的解决能力来评估学生对相反数和绝对值的掌握程度。

七年级数学上册《相反数与绝对值》教案、教学设计

七年级数学上册《相反数与绝对值》教案、教学设计
-例如,教师可以设计一个“绝对值挑战”游戏,学生需要在数轴上找到给定数的绝对值,既能活跃课堂气氛,又能加深理解。
3.创设生活情境,将相反数和绝对值与学生的日常生活联系起来。
-例如,通过讨论银行存款和欠款的相反意义,或者温度的正负表示,帮助学生理解数学与生活的紧密联系。
4.分层次设计练习题,满足不同学生的学习需求。
4.学生在小学阶段的学习中,更多的是依赖记忆和模仿,而初中数学要求他们转向理解和运用。因此,教学中应注重培养学生的逻辑思维和问题解决能力。
5.学生之间的个体差异较大,有的学生可能对新知识接受较快,有的则需要更多的时间和帮助。教师应关注每一个学生的学习进度,提供个性化的指导和支持。
三、教学重难点和教学设想
七年级数学上册《相反数与绝对值》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相反数的定义,掌握求一个数的相反数的方法,并能在实际问题中灵活运用。
-学生能够通过观察和思考,发现相反数的性质,例如:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0。
-学会通过数学符号表示相反数,例如:若a是一个数,则其相反数为-a。
-解答这些问题,并解释相反数和绝对值在问题解决过程中的作用。
3.拓展提升题:
-在数轴上表示出以下数对的相反数:(-3, 5)、(0, 4)、(7, -7)。讨论这些数对的性质和规律。
-分析绝对值在数的大小比较中的应用,例如:比较|-5|和|4|的大小,并说明理由。
4.小组合作题:
-小组合作完成课本第21页的探究题,要求组内讨论,共同解决问题。
4.最后,教师明确本节课的学习目标:“今天我们将要学习相反数和绝对值,这些概念将帮助我们在数学和生活中更好地理解和解决问题。”

绝对值与相反数苏教版数学初一上册教案

绝对值与相反数苏教版数学初一上册教案

绝对值与相反数苏教版数学初一上册教案教案一: 绝对值的计算目标:学习绝对值的概念和计算方法。

一、引入向学生提出以下问题:如果你要计算|-3|,你会怎么做?请思考一下。

二、探究1.让学生使用数轴说出|-3|、|3|的位置,并解释它们所代表的意义。

2.通过观察,学生会发现,无论一个数是正数还是负数,它的绝对值都是该数到零点的距离。

3.让学生复习数轴上两个点的距离的计算方法,并推广到任意两个点的距离计算。

三、总结1.引导学生总结绝对值的定义和计算方法。

2.让学生通过一些例题来巩固理解。

四、练习1.布置一些练习题,让学生巩固绝对值的计算方法。

2.提供实际问题,让学生应用绝对值解决问题。

教案二: 相反数的计算目标:学习相反数的概念和计算方法。

一、引入向学生提出以下问题:如果一个数是5的相反数,你能说出这个数是多少吗?请思考一下。

二、探究1.让学生观察并比较一些数及其相反数的特点。

2.通过观察,学生会发现一个数与其相反数的和等于0,即a + (-a) = 0。

3.结合数轴,学生判断相反数的位置及其特点。

三、总结1.引导学生总结相反数的定义和计算方法。

2.让学生通过一些例题来巩固理解。

四、练习1.布置一些练习题,让学生巩固相反数的计算方法。

2.提供实际问题,让学生应用相反数解决问题。

教案三: 绝对值与相反数的应用目标:学习如何应用绝对值和相反数解决实际问题。

一、引入给学生提供一些实际问题,让他们思考如何使用绝对值和相反数来解决。

二、探究通过例题的讲解和解题过程的引导,学生将学会如何运用绝对值和相反数来解决实际问题。

三、总结1.引导学生总结绝对值和相反数的应用方法。

2.让学生通过一些例题来巩固和巩固理解。

四、练习1.布置一些练习题,让学生巩固应用绝对值和相反数解决实际问题的方法。

2.提供一些拓展题,让学生发散思维,应用绝对值和相反数解决更复杂的问题。

七年级数学绝对值教案【三篇】

七年级数学绝对值教案【三篇】

⼩编整理了七年级数学绝对值教案【三篇】,希望对你有帮助!绝对值教案1●教学内容七年级上册课本11----12页1.2.4绝对值●教学⽬标1.知识与能⼒⽬标:借助于数轴,初步理解绝对值的概念,能求⼀个数的绝对值,初步学会求绝对值等于某⼀个正数的有理数。

2.过程与⽅法⽬标:通过从数形两个侧⾯理解绝对值的意义,初步了解数形结合的思想⽅法。

通过应⽤绝对值解决实际问题,体会绝对值的意义。

3.情感态度与价值观:通过应⽤绝对值解决实际问题,培养学⽣浓厚的学习兴趣,使学⽣能积极参与数学学习活动,对数学有好奇⼼与求知欲。

●教学重点与难点教学重点:绝对值的⼏何意义和代数意义,以及求⼀个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某⼀个正数的有理数。

●教学准备多媒体课件●教学过程⼀、创设问题情境1、两只⼩狗从同⼀点O出发,在⼀条笔直的街上跑,⼀只向右跑10⽶到达A点,另⼀只向左跑10⽶到达B点。

若规定向右为正,则A处记作__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(⽤⽣动有趣的引例吸引学⽣,即复习了数轴和相反数,⼜为下⽂作准备)。

2、这两只⼩狗在跑的过程中,有没有共同的地⽅?在数轴上的A、B两点⼜有什么特征?(从形和数两个⾓度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表⽰-和的点呢?⼩结:在实际⽣活中,有时存在这样的情况,⽆需考虑数的正负性质,⽐如:在计算⼩狗所跑的路程中,与⼩狗跑的⽅向⽆关,这时所⾛的路程只需⽤正数,这样就必须引进⼀个新的概念———绝对值。

⼆、建⽴数学模型1、绝对值的概念(借助于数轴这⼀⼯具,师⽣共同讨论,引出绝对值的概念)绝对值的⼏何定义:⼀个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

⽐如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上册数学教案:绝对值与相反数
教案在今天推行素质教育、实施新课程改革中重要性日益突出,在教师的教学活动中起着非常关键的作用。

下面是一篇初一上册数学教案,欢迎各位老师和学生参考!
学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
1、
2、
-5的相反数是______,-10.5的相反数是______,的相反数是______;
3、|0|=______,0的相反数是______。

二、探索感悟
1、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三.例题精讲
例1. 求下列各数的绝对值:
+9,-16,-0.2,0.
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:
这节课你有何收获?
四.练习
1. 填空:
⑴的符号是,绝对值是;
⑵10.5的符号是,绝对值是
⑶符号是+号,绝对值是的数是
⑷符号是-号,绝对值是9的数是;
⑸符号是-号,绝对值是0.37的数是.
2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).
请指出哪个足球质量最好,为什么?
第1个第2个第3个第4个第5个第6个
-25-10+20+30+15-40
3.比较下面有理数的大小
(1)-0.7与-1.7 (2) (3) (4)-5与0
五、布置作业:
P25 习题2.3 5
家庭作业:《评价手册》《补充习题》
六、学后记/教后记
这篇初一上册数学教案就为大家分享到这里了。

希望对大家有所帮助!
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的
教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

相关文档
最新文档