浙江省乐清市2017-2018学年七年级数学下学期期中试题(实验班)
2017-2018学年度第二学期期中考试七年级数学试题
2017-2018学年度第二学期期中考试七年级数学试题(总分150分,考试时间120分钟)一、选择题(本大题共10小题,共30分)1. 下列调查中,适宜采用全面调查方式的是()A. 了解全国中学生的视力情况B. 调查某批次日光灯的使用寿命C. 调查市场上矿泉水的质量情况D. 调查机场乘坐飞机的旅客是否携带了违禁物品2.4的平方根是()A. ±2B. -2C. 2D.3.在平面直角坐标系中,点A(0,-2)在()A. x轴的负半轴上B. y轴的负半轴上C. x轴的正半轴上D. y轴的正半轴上4. 估计+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间5.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na26.下列各数:,-π,-,0.,…(两个1之间依次多一个0),-中无理数的个数为()A. 2个B. 3个C. 4个D. 5个7.使不等式x-5>4x-1成立的值中的最大整数是()A. 2B. -1C. -2D. 08.方程5x+3y=54共有()组正整数解.A. 2B. 3C. 4D. 59.初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A. 14B. 13C. 12D. 1510.在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A-B-C-D-A…循环爬行,其中A点坐标为(1,-1),B的坐标为(-1,-1),C的坐标为(-1,3),D的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为()A.(1,1)B.(1,0)C.(0,1)D.(1,-1)二、填空题(本大题共8小题,共24分)11.写出一个以为解的二元一次方程组是______ .12.已知点P(x,y)在第三象限,且|x|=,|y-2|=3,则点P的坐标为______ .13.已知方程2x-y=3,用含x的代数式表示y是______ .14.已知点A(1,2),AC∥x轴,AC=5,则点C的坐标是______ .15.已知x2=64,则=______.⎪⎩⎪⎨⎧=---=+1213343144y x y x 16.已知方程组的解满足x+y=2,则k 的值为______ . 17.若不等式ax-2>0的解集为x <-2,则关于y 的方程ay+3=0的解为_________.18.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-2,2)放入其中,得到实数m ,再将实数对(m ,-6)放入其中,得到实数是______ .三、解答题(本大题共10小题,共96分)19.计算(本题6分):(1); ?(2). 20.(本题10分)⑴解方程组: ⑵解关于x 的不等式组 , 并求出不等式组的非负整数解. 21. (本题10分)在解关于x ,y 的方程组 时,老师告诉同学们正确的解是 ,粗心的小勇由于看错了系数c ,因而得到的解为 ,求的平方根.22.(本题8分)已知2a-3x+1=0,3b-2x-16=0,且a ≤4<b ,求整数x 的值.23.(本题8分)在平面直角坐标系中,有点A (-2,a+3),B (b ,b-3).(1)当点A 在第二象限的角平分线上时,求a 的值;(2)当点B 到x 轴的距离是它到y 轴的距离2倍时,求点B 的坐标.24. (本题10分)已知关于x ,y 的二元一次方程组 的解为 ,求关 于m ,n 的二元一次方程组 的解.25.(本题10分)某校就“遇见老人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查(每个被调查的学生必须选择而且只能在4种方式中选择一项),图1和图2是整理数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)该校随机抽查了______ 名学生;(2)将图1补充完整,在图2中,“视情况而定”部分所占的圆心角是______ 度;(3)估计该校2800名学生中采取“马上救助”的方式的人数.c b a ++26.(本题8分)若关于x 的不等式组 <恰有3个整数解,则a 的取值范围 27.(本题12分)某工厂计划生产A 、B 两种产品共10件,其生产成本和利润如表:(1)若工厂计划获利14万元,问A 、B 两种产品应分别生产多少件? (2)(2)若工厂计划投入资金不多于44万元,且获利多于20万元,问工厂有哪几种生产方案?(3)(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.28.(本题14分)已知点A (a ,0)、B (b ,0),且 +|b-2|=0.(1)求a 、b 的值.(2)在y 轴上找一点C ,使得三角形ABC 的面积是15,求出点C 的坐标.(3)过(2)中的点C 作直线MN ∥x 轴,在直线MN 上是否存在点D ,使得三角形ACD 的面积是三角形ABC 面积的 ?若存在,求出点D 的坐标;若不存在,请说明理由. 2017-2018学年度第二学期期中考试七年级数学试题答案一、 选择题1.D2.A3.B4.C5.C6.B7.C8.B9.C 10.B二、 填空题11、答案不唯一 12、( ) 13、14、( )或( ) 15、 16、2 17、 18、18三、 解答题19. (1) -------------------3分(2) -----------------3分20.(1)-------------5分(2) , -----------3分非负整数解为0,1,2 -----------2分5±21.c=-2,-----------------2分a=4,b=5,----------4分-------------4分22. , -----------3分-2<x ≤3 -------------4 分整数解为-1,0,1,2,3 ---------1分23. (1) ------------3分(2)B ( )或( )------------5分24.----------------10分25.(1)400 ---------2分(2)80人,图略。
2017-2018学年浙教版七年级数学第二学期期中试题及答案
2017-2018学年第二学期期中检测七年级数学试卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间为90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、姓名、学号。
3.所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
一、仔细选一选(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.如图,直线AB∥CD,AF 交CD 于点E ,∠CE A =45º,则∠A 等于(▲) A .35ºB .45ºC .50ºD .135º2.下列各式是二元一次方程的是(▲) A .x y 21+B .023=-+y yx C .12+=yx D .02=+y x 3.下列各组数中,是二元一次方程25=-y x 的一个解的是(▲) A .31x y =⎧⎨=⎩ B .02x y =⎧⎨=⎩ C .20x y =⎧⎨=⎩ D .13x y =⎧⎨=⎩4.下列结论错误的是(▲)A .垂直于同一直线的两条直线互相平行B .两直线平行,同旁内角互补C .过直线外一点有且只有一条直线与这条直线平行D .同一平面内,不相交的两条直线叫做平行线 5.下列计算中,正确的是(▲) A .2a a ⋅=2a B .32)(x =5xC .23)2(x =36xD .2a +3a =5a6.将一副三角板如图放置,使点A 在DE 上,BC∥DE,则∠ACE 的度数为(▲) A .10ºB .20ºC .15ºD .30º7.若3=x a ,2=y a ,则y x a +2等于(▲)A .6B .7C .8D .18 8.若)(2q px x ++)2(-x 展开后不含x 的一次项,则p 与q 的关系是(▲)七年级数学试题卷(第1页,共4页)A .q p 2=B .p q 2=C .02=+q pD .02=+p q 9.已知关于x ,y 的方程组⎩⎨⎧-=-=-52253a y x ay x ,则下列结论中正确的是(▲)①当a =5时,方程组的解是⎩⎨⎧==2010y x ; ②当x ,y 的值互为相反数时,a =20;③当y x 22⋅=16时,a =18; ④不存在一个实数a 使得x =y . A .①②④B .①②③C .②③④D .②③10.已知x 1,x 2,……,x 2016均为正数,且满足M =(x 1+x 2+…+x 2015)(x 2+x 3+…+x 2016), N =(x 1+x 2+…+x 2016)(x 2+x 3+…+x 2015),则M ,N 的大小关系是(▲) A .M >NB .M <NC .M =ND .M ≥N二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.把二元一次方程13=-y x 变形成用x 的代数式表示y ,则y = ▲ . 12.如图,∠1=80º,∠2=100º,∠3=76º,则∠4的度数为 ▲ 度.13.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是 ▲ .图① 图② 第12题图 第13题图 14.已知∠A 的两边与∠B 的两边分别平行,若∠A=50º,则∠B= ▲ .15.小明用8个一样大的长方形(长a cm ,宽b cm)拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是2cm 的正方形小洞.则代数式(a -b )2+2a b 的值为 ▲ .16.如图a 是长方形纸带,∠DEF=26º,将纸带沿EF 折叠成图b ,则∠FGD 的度数是 ▲ 度,再沿BF 折叠成图c ,则图c 中的∠DHF 的度数是 ▲ .七年级数学试题卷(第2页,共4页)三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本题8分)用适当方法解下列方程组:(1)2310y x x y =⎧⎨+=⎩(2)⎪⎩⎪⎨⎧=--=+20)1(23334y x y x▲18.(本题8分)计算: (1)3242)(2a a a +⋅(2)2(3)(2)(1)x x x -+-+▲19.(本题8分)如图,直线AB∥CD,直线EF 分别交AB 、CD 于点M 、N ,∠EMB=50º,MG 平分∠BMF,MG 交CD 于G ,求∠1的度数.▲20.(本题8分)已知2)(b a +=5,2)(b a -=3,求下列式子的值: (1)22b a +; (2)ab 6.▲21.(本题10分)如图,∠BAP+∠APD=180º,∠1=∠2.判定∠E 与∠F 是否相等,说明理由.▲22.(本题12分)阅读下列材料,解答下面的问题:我们知道方程1232=+y x 有无数个解,但在实际问题中往往只需求出其正整数解.例:由1232=+y x ,得:x x y 3243212-=-=(x 、y 为正整数).要使x y 324-=为正整数,则x 32为正整数,可知:x 为3的倍数,从而3=x ,代入2324=-=x y .所以1232=+y x 的正整数解为⎩⎨⎧==23y x .问题:(1)请你直接写出方程y x 23+=8的正整数解 ▲ . (2)若36-x 为自然数,则满足条件的正整数x 的值有(▲) A .3个 B .4个 C .5个D .6个(3)关于x ,y 的二元一次方程组⎩⎨⎧=+=+10292ky x y x 的解是正整数,求整数k 的值.▲23.(本题12分)在一次汽车展上,甲展位对A 型车和B 型车两种车型购买的客户进行优惠:A 、B 型车都购买3辆及以上时,A 型车每辆优惠0.5万元,B 型车每辆优惠1万元.一家公司准备买9辆车,按优惠后的价格计算结果如下表:(1) 计算两种型号的车原价分别是多少元?(2)乙展位对该公司同时购买9辆车很感兴趣,给出同时购买9辆车且每种车型分别购买3辆及以上时两种车型均实行6%的优惠措施,且该公司要求尽可能多地购买B 型车.请你通过计算说明该公司应该在哪个展位定车(两展位这两款车原价都相同).▲数 学 答 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)二、认真填一填(本题有6个小题,每小题4分,共24分) 11. 12. 13. 14. 15.16.三、全面答一答(本题有7个小题,共66分) 17.(本题8分)用适当方法解下列方程组: (1)2310y xx y =⎧⎨+=⎩(2)⎪⎩⎪⎨⎧=--=+20)1(23334y x y x18.(本题8分)计算: (1)3242)(2a a a +⋅(2)2(3)(2)(1)x x x -+-+19.(本题8分)20.(本题8分) 21. (本题10分)22. (本题12分)(1) (2)(3)23. (本题12分)参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分) 1—5 B B D A D 6—10 C D B C A二、认真填一填(本题有6个小题,每小题4分,共24分)11.3x -1 12.76 13.(a +b)(a -b)=a 2-b 214.50º或130º 15.136 16.52º,78º 三、全面答一答(本题有7个小题,共66分) 17.(1) ⎩⎨⎧==42y x …4分 (2)⎩⎨⎧==38y x …4分18.(1)63a …4分 (2)-3x -7 …4分19.65º20.(1)4 …5分 (2)3 …5分21.∠E =∠F…2分 说明:略 …8分22.(1) ⎩⎨⎧==12y x …3分(2) B…4分(3)⎩⎨⎧⋅⋅⋅=+⋅⋅⋅⋅⋅=+②①10292ky x y x ①*2-②:(4-k)y =8,k y -=48…2分因x ,y 是正整数,k 是整数,所以4-k =1,2,4,8. K =3,2,0,-4 …2分 但k =3时,x 不是正整数,故k =2,0,-4…1分23.(1)设A 型车优惠后的价格为每辆x 万元 ,B 型车优惠后的价格为每辆y 万元 …1分 则⎩⎨⎧=+=+1244512854y x y x …4分 解得⎩⎨⎧==1612y x …2分A 型车原价:12+0.5=12.5B 型车原价:16+1=17 答: 1分 (2)由题意该公司购A 型车3辆,购B 型车6辆甲展位:12×3+16×6=132万乙展位:(12.5×3+17×6)×94%=131.13万 所以该公司应该在乙展位定车. …4分。
2017-2018学年度七年级(下)期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。
2017-2018学年度七年级下学期数学期中试卷含答案
)
A. C.
x+y=30 30x+15y=195 x+y=8 30x+15y=195
2 3 2016
B. D.
x+y=195 30x+15y=8 x+y=15 30x+15y=195
2 3 2016
12.为了求 1+2+2 +2 +…+2 2S=2+2 +2 +2 +…+2
2 3 4 2017
的值,可令 S=1+2+2 +2 +…+2
2
6 0 y
D. 3 x 6 y x
3.下列式子从左到右的变形是因式分解的是( A. (x+2) (x–2)=x -4
2
B..x -4+3x=(x+2) (x–2)+3x D.x +2x-3=(x+1) -4
2 2
C.x -3x-4=(x-4) (x+1)
2
4.因式分解 x 2 y 4 y 的正确结果是( A. y ( x 2)( x 2) A. x 2 y
2018 2017
………… 5 分 ………… 6 分 ………… 3 分 ………… 4 分
2 2016 ...... 2 2 2 1)
………… 6 分 ………… 7 分
7
1
2017-2018 学年度人教版七年级第一学期期中数学试卷及答案 26.(1)设工厂从 A 地购买了 x 吨原料,制成运往 B 地的产品 y 吨.……… 1 分
13.多项式 a 2 4 因式分解的结果是 14.计算 ( x 2 y 3 ) 3 ( x 2 y 2 ) 的结果是 15.已知 a、b 满足方程组 16. 2a-b=2, a+2b=6,
浙江省乐清市2017-2018学年七年级数学上学期期中试题(实验A班)(word版含答案)
浙江省乐清市2017-2018学年七年级数学上学期期中试题(实验A 班)(满分:120分,考试时间:90分钟)一、选择题(每小题4分,共40分)1.设是最小的自然数,是最大的负整数,是绝对值最小的整数,则的值为( )A .-1B .0C .1D .32.判断下列语句,①一根拉紧的细线就是直线; ②点A 一定在直线AB 上;③过三点可以画三条直线;④ 两点之间,线段最短。
正确的有几个( ) A .1 B .2 C .3 D .43.已知,.则的值是( )A .3B .2C .1D .04.如图,点E 在AC 的延长线上,下列条件中能判断BD ∥AE 的是( ) A .∠1=∠2 B.∠2=∠3 C.∠A=∠DCE D.∠3=∠45.下列判断正确的个数有( )①不带根号的数一定是有理数;②若无数个;④两个无理数的和一定是无理数;⑤若a >b>0A 、1个B 、2个C 、3个D 、4个6.如果是方程2x +y =0的一个解(m ≠0),那么( )A .m ≠0,n =0B .m ,n 异号C .m ,n 同号D .m ,n 可能同号,也可能异号7.线段AB =5cm ,BC =4cm ,那么A 、C 两点间的距离是( )A .1cmB .9cmC .1cm 或9cmD .以上结果都不对8.某品牌的ipad 机成本价是每台500元,10月份的销售价为每台625元。
经市场预测,该商品销售价在12月份将降低20%,而后在2018年2月份再提高8%,那么在2018年2月份销售该品牌的ipad 机预计可获利( )A .25%B .20%C .8%D .12%9.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,Ba b c c b a ++26a bc +=227b bc -=-22543a b bc +-22a b a b >,则>⎩⎨⎧==n y mx处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( ) A .A 点处B .线段的中点处C .线段上,距A 点米处 D .线段上,距A 点400米处10.已知:,,且 ,那么 的值( ) A .是正数 B .是零 C .是负数 D .不能确定二、填空题(每小题4分,共32分)11、由四舍五入得到的近似数精确到 位. 12.若关于的方程是一元一次方程,则方程的解是。
浙江省乐清市七年级数学下学期期中试题(普通班)
浙江省乐清市2017-2018学年七年级数学下学期期中试题(普通班)温馨提示:本卷满分100分,考试时间90分钟. 请细心答题,相信你一定会有出色的表现!一、精心选一选(每题3分,共30分)1、据悉,世界上最小的开花结果的植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数是()A、 B、 C、 D、2、下列各式由左边到右边的变形中,属于因式分解的是()A、 B、C、 D、3、下列代数式中属于分式的是()A、 B、 C、 D、4、若是关于x,y的方程2x-y+2a=0的一个解,则常数a为()A、1B、2C、3D、45、下列运算正确的是()A、 B、C、 D、6、若,则的是()A、9B、13C、11D、87、如图,下列条件中,不能判断的是()A、∠2=∠4B、∠3=∠5C、∠2+∠3=180°D、∠3=∠18、若要使的值为0,则x的值是()A、 B、 C、 D、9、若,那么的值分别为()A、2,-8B、-2,-8C、-2, 8D、2,810、如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个长方形的边长(x>y),观察图案,则下列关系式错误的是()A、 B、C、 D、二、耐心填一填(每题3分,共24分)11、若使分式有意义,则x的取值范围是 .12、因式分解: .13、计算: .14、已知一幅三角板按如图方式摆放,其中AB∥DE,那么∠CDF= 度.15、若m=1008,n=1007,那么代数式的值是 .16、如图,面积为16的正方形ABCD,沿BD方向平移至正方形DEFG的位置,则图中梯形ABFG的面积为 .17、如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入射到а上,经两次反射后的反射光线平行于а,则∠θ= 度.18、某班级购买多肉布置教室,已知A、B、C三种多肉每盆销售价格为2元、4元、10元,每种多肉至少购买一盆,共买16盆,恰好用了50元,则购买A种多肉的盆数是 .三、用心答一答(共46分)19、计算(6分)(1)(2)20、解方程组(4分)21、(6分)先化简,再求值:,其中a=1,b=.22、(8分)阅读理解并填空:(1)为了求代数式x2+2x+4的值,我们必须知道x的值,若x=1,则这个代数式的值为;若x=2,则这个代数式的值为,……可见,这个代数式的值因x的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)把一个多项式进行部分因式分解可以来解决代数式值的最大(或最小)值问题,例如:x2+2x+4=x2+2x+1+3=(x+1)2+3,因为(x+1)2是非负数,所以,这个代数式x2+2x+4的最小值为_______. 尝试探究并解答:(3)求代数式x2﹣10x+30的最小值,并写出相应x的值.23、(10分)联华超市为促销,对A、B两种商品实行打折销售(折扣相同)。
2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。
2017-2018学年湘教版七年级数学下册下期中试卷含答案
2017-2018学年湘教版七年级数学下册下期中试卷含答案2017-2018学年七年级(下)期中数学试卷一、选择题1.下列方程中,是二元一次方程的是()A.3x+2y=4 B.xy=5C.x2﹣y=3 D.8x﹣2x=12.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b23.计算(﹣a+b)(a﹣b)等于()A.a2﹣b2B.﹣a2+b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b24.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.25.如果3a7xby+7和﹣7a2﹣4yb2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣26.若方程组A.4的解x与y相等.则a的值即是()B.10C.11D.127.若a﹣b=1,ab=2,则(a+b)2的值为()A.﹣9B.98.C.±9D.3的解,则a﹣b的值为()是二元一次方程组C.2D.3A.﹣1B.19.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.10.把多项式m2(a﹣2)+m(2﹣a)分解因式即是()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)二、填空题(本大题共10小题,每小题4分,共40分)第1页(共15页)D.m(a﹣2)(m+1)11.方程2x+y﹣4=0,用含x的代数式透露表现y为:y=.12.若方程3xm+2﹣5y3﹣n=0是关于x、y的二元一次方程,则m+n=.13.是方程2x+ay=5的解,则a=.14.计算:a•a3•a5=;(b3)4=;(x2y)3=.15.0.•=1.16.计算(2x+1)(2x﹣1)=.17.若x2+mx+4是完整平体式格局,则m=.18.计算:(﹣2x3y2)•(3x2y)=.19.a+=3,则a2+的值是.20.已知|4x+3y﹣5|与|x﹣3y﹣4|互为相反数,则x+y=.三、解答题(共70分)21.解方程组:(1)(2).22.(1)因式分解:2x2﹣8(2)计算:﹣2013×4028+.23.解方程:(x﹣1)(1+x)﹣(x+2)(x﹣3)=2x﹣5.24.利用因式分解计算:.25.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.26.文化乐园门票价格如下表所示:购票人数每人门票价格1人﹣﹣50人13元51人﹣﹣100人11元100人以上9元某校七年级甲、乙两个班共101人去乐园春游,其中甲班人数较少,不到50人,乙班人数较多,有50多人,经估算如果两个班都以班为单位分别购票,则一共应该付1203元.(1)请计较两个班各有几何逻辑学生?(2)你以为他们若何购票比较合算?并计较比以班为单位划分购票体式格局可节省几何第2页(共15页)元?参考答案与试题解析1、挑选题1.以下方程中,是二元一次方程的是()A.3x+2y=4 B.xy=5C.x2﹣y=3 D.8x﹣2x=1【考点】二元一次方程的定义.【分析】按照二元一次方程的定义:含有两个未知数,而且含有未知数的项的次数都是1,像如许的方程叫做二元一次方程可得答案.【解答】解:只有3x+2y=4是二元一次方程。
浙江省乐清市校2017--2018学年七年级第二学期期中科学试卷(实验班)
浙江省乐清市校2017-2018学年七年级科学下学期期中试题(实验班) 亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。
答题时,请注意以下几点:1.全卷共6页,有四大题,31小题,全卷满分120分,考试时间120分钟;2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效;3.答题前,认真阅读答题纸上的《注意事项》,按规定答题;祝你成功! 卷 I一、选择题(本题有20小题,每小题3分,共60分,每小题只有一个选项是正确的, 不选、多选、错选均不给分)1.中国的跨流域南水北调可以影响水循环的环节是(▲ )A .1B .2C .3D .42.图是电解水的示意图,关于电解水的下列说法中,不正确的是(▲ )A .电解水时,理论上得到氧分子和氢分子的个数比为1︰2B .理论上若得到8mL 的氧气,可同时得到16mL 氢气C .理论上若得到4g 氢气,可同时得到32g 氧气D .与电源负极连接的试管内产生的气体能使带火星的木条复燃3.按溶解、过滤、蒸发的操作顺序,可将下列物质分离的一组是(▲ )A .铜粉和炭粉B .食盐和泥沙C .水和酒精D .水和牛奶4.小明浸到浴缸里洗澡,有100牛的水从浴缸里溢出,则关于小明在浴缸中受到水的浮力 的说法正确的是(▲ )A .一定是100B .可能是90牛C .可能是150牛D .一定大于100牛5.将一方形木块(体积为V 木)放于水中,再将一方形冰块(体积为V 冰)放于木块上,(第4题)静止时水面正好和木、冰交界面共面(如图),已知:水、冰、木密度之比为10:9:8,则V冰:V木为(说明:图中冰块、木块大小不具暗示意义)( ▲ )A.9:8 B.8:9C.1:8 D.2:96.某温度下,a克溶质溶解在a克水中恰好饱和,此溶质在该温度下的溶解度是( ▲) A. 50克 B.100克 C.a克 D.2a克7.用隔板将玻璃容器均分为两部分,隔板中有一小孔用薄橡皮膜封闭(如图)。
2017-2018学年度第二学期七年级期中联考数学试卷
2017-2018学年度第二学期七年级期中联考数学科试卷满分:150分;考试时间:120 分钟一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A .B .C .D .2、方程组的解为( ) A .B .C .D .3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是()A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个.(1) ; (2); (3) ; (4) . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离;︒=∠+∠180BCD B 21∠=∠43∠=∠5∠=∠B 54D3E21CB A图1②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个B .3个C .4个D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′=( )A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( ) A.42 B.96 C.84 D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是 ,的平方根是,如果=3,那么a= ,的绝对值是 ,的小数部分是_______12、命题“对顶角相等”的题设,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为2图4图5A _______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样点A 2014的坐标为__________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分) (一)计算:(1)322769----)( (2))13(28323-++-(3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16.(2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区 地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB、CD、EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,EFAB ,求∠DOF和∠FOC的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分) 17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=......2 =0 ........................3 = (3)(3)2(2-2)+3(3+13).解:原式= (2)= (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)2232223-++-233-13222++-222+x=±,......3 x ═6或x=2 (3)(求出一根给2分) (3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分 19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°.……8 22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h ) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠ C =∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。
2017-2018第二学期七年级数学期中考试卷(附参考答案)
为
.
20.阅读下面文字,回答问题 大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部 地写出来,但是由于 1< <2,所以 的整数部分为 1,将 减去其整数部分 1,所得 的差就是其小数部分 ﹣1.请你根据以上知识,解答下列问题: (1) 的整数部分是 ,小数部分是 ; (2) ﹣1 的整数部分是 ,小数部分是 ; (3)设 的小数部分是 x,1+ 的小数部分是 y,求|x+y﹣ |的值.
即 CG 平分 OCD (2)结论:当 O=60 时
法一:当 O=60 时
,.C…D…平…分……OC…F….……………………………
∵DE//OB,
∴ ∠DCO=∠O=60 .
∴ ∠ACD=120 .
又 ∵CF 平分 ACD
∴ ∠D CF=60 ,
∴ DCO DCF
即 CD 平分 法二:若 CD 平分
6. 数轴上表示 1, 的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C 所表示 的数是( )
A. ﹣1 B.1﹣
C.2﹣
D. ﹣2
二、填空题(本大题共 6 小题,每小题 3 分,共 18分)
7.在数轴上与原点的距离是 的点所表示的实数是
.
8.命题“等角的余角相等”的题设是
,结论
OOCCFF.…………
∴ DCO DCF
∵ ACF FDC ∴ ACF FDC ∵ AOC 180 ∴ DCO 60
∵DE//OB
DCO
∴ O DOC
∴ O 60
F
D
G
C
O
A E
B
四、解答题(本大题共 3 小题,每小题 8 分,共 24分) 18.解:(1)∵22=4,52=25,62=36,
2017-2018学年七年级数学下册期中检测试卷参考答案及评分标准
2017—2018学年度第二学期期中检测七年级数学试题参考答案及评分标准一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案DDBCACBCAC二、填空题: 11.2 ; ±32;8 12.(-3,-2) ; (-3,2) 13. >,= ,< 14.(-6,3)或(4,3) 15.(1,1) 16.5217.计算 解:原式=221131+--+- …………4分= 213- …………6分18.解.()1221211213=-=--=--=-x x x x19.解 (1)如图(2)体育场:(-4,3)。
医 院: (-2,-2)。
火车站: (0,0)。
宾 馆: (2,2)。
市 场: (4,3)20、解:∵a b ∥,∴∠CBD=∠2=59°,…………3′ 又∵AB ⊥BC ,∴∠ABC=90°,…………5′∴∠1=180°-90°-59°=31°,…………6′ 21、(1)在图中画出平移后的△A 1B 1C 1; (2)直接写出△A 1B 1C 1各顶点的坐标.(3分) 1A (4,-2) ;1B (1,-4) ;1C (2,-1) ; (3)求出△ABC 的面积(2分)32211221312133⨯⨯-⨯⨯-⨯⨯-⨯=∆ABC S =27-3 -2 -1 0 1 2 3j超市医院火车站宾馆文化宫市场体育场D ACBba 12(3分)22、解:另一正方体的体积:64416=⨯cm 3另一个正方体的边长4643=-另一个正方体的表面积为:4*4*6=96平方厘米23.【解析】因为2<<3,所以5+的整数部分是7,5-的整数部分是2,故6-a=5+-7=-2,b=5--2=3-,所以a+b=-2+3-=1, 所以(a+b)2017=12017=1.24、(每填对一个给1分)∴∠DBC=21∠ABC ,∠ECB=21∠ACB (角平分线定义) ∵∠ABC=∠ACB (已知) ∴∠_DBC_=∠_ECB_ . ∵∠DBF _ =∠_F_ (已知) ∴∠F=∠_ECB_(等量代换 ) ∴EC ∥DF ( 同位角相等,两直线平行)25.(1)证明:BF 与DE 的位置关系是:BF//DE 理由:ABC AGF =∠ GF BC //∴31∠=∠ 又︒=∠+∠18021 ︒=∠+∠∴18032DE BF //∴ (2)︒=∠+∠18021 ,︒=∠1502 ︒=∠∴301AC BF ⊥ ︒=∠∴90BFA 190∠-︒=∠AFG︒=∠∴60AFG。
中学17—18学年下学期七年级期中考试数学试题(附答案)
2017-2018学年度第二学期七年级期中考试数学试卷考试时间:100分钟考试分数:120 分命题人:张殿林一、选择题(每题3分,共24分)1.以下列各组数据为边长,能构成三角形的是( )A. 4, 4, 9B. 4, 5, 9C. 3, 10, 4D. 3, 6, 52.在以下现象中,属于平移的是( )①在荡秋千的小朋友②电梯上升过程③宇宙中行星的运动④生产过程中传送带上的电视机的移动过程A. ①②B. ③④C. ②③D. ②④3. 下列运算正确的是()A. a3•a2=a6B. (a2)2=a4C. (﹣3a)3=﹣9a3D. a4+a5=a94.下列各式能用平方差公式计算的( )A. (-3a + b) (-3a-b)B. (-3a + b) (3a-b)C. (3a+b) (-3a - b)D. (3a + b) (a-b)5. 代数式3x2﹣4x的值为3,则x2﹣+6的值为()A.7 B.18 C.12 D.96.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120°C. 130°D. 140°(第6题图) (第7题图)7.如图,a // b,c 与a ,b都相交,∠1=50°,则∠2=( )A. 40°B. 100°C. 50°D. 130°8. 已知13xx-=,则221xx+的值( )A. 9B. 11C. 7D.不能确定 二、填空题(每题3分,共30分)9.内角和与外角和相等的多边形是 .边形.10.在△ABC 中,∠B 、∠C 的平分线相交于点O ,若∠A=40°,则∠BOC=11.(﹣8)2018×0.1252018= . .12.若2m =2. 2n =16,则2m+n = . .13.当x 2+kx+25是一个完全平方式,则k 的值是 . .14.蚕丝是最细的天然纤维,其中桑蚕丝的截面可以近似地看成圆,直径约为0.00000016米.用科学记数法表示为 . 米.15.分解多项式2ab 2﹣48a 2b 时,提出的公因式是 .16. 若13a b -=,2239a b -=,则2()a b += . . 17.如果(x+2)(x+p)的乘积不含一次项,那么p= .18. 阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式: (2x+3)x+2018=1成立的x 的值为 . 三、解答题:(8 题,共66 分) 19. 计算题 (4分×2=8分)(1)4﹣(﹣2)2﹣3﹣2÷(3.14﹣3.1)0 (2)5a 2b. (﹣2ab 2)20. 分解因式:(4分×2=8分)(1)x 2﹣2x+1 (2)a 2(x ﹣y )﹣b 2(x ﹣y )21. (本题8分)(1)先化简,再求值:(2a+b )2+5a (a+b )﹣(3a ﹣b )2,其中a=3, b=2-322.(本题8分)将一副三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F . (1)求证:CF ∥AB ; (2)求∠DFC 的度数.23. (本题8分) 如图,在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′, 图中标出了点C 的对应点C ′.(利用网格点和三角板画图) (1)画出平移后的△A ′B ′C ′. (2)画出AB 边上的高线CD ; (3)画出BC 边上的中线AE ; (4)若连接BB ′、CC ′,则这两条 线段之间的关系是 .24.(本题8分)如图,已知∠1=∠2,∠3=∠4,试说明AB ∥CD .25. 如图,△ABC 在方格纸内 (1)画出AB 边上的高线CD ; (2)图中△ABC 的面积是26. ( 10分)你能求999897(1)(1)x x x x x -+++++…的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值. ①2(1)(1)1x x x -+=- ②23(1)(1)1x x x x -++=- ③324(1)(1)1x x x x x -+++=- ……由此我们可以得到:999897(1)(1)x x x x x -+++++=… (3分)请你利用上面的结论,再完成下面两题的计算: (1) 250+249+248+…+22+2+1(3分)(2)若3210x x x +++=,求x 2020的值(4分)2017-2018学年度第二学期七年级期中考试数学(学科)参考答案一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9. 4 10. 110011. 1 12. 32 13. 5 、-5 14. 1.6×10-715. 2ab 16. 917. -2 18. -1、-2、-2018三、解答题:(8 题,共66 分)19. 计算题(4分×2=8分)(1)4﹣(﹣2)2﹣3-2÷(3.14﹣3.1)0 (2)5a2b. (﹣2ab2)=-1/9 =-10a3b320. 分解因式:(4分×2=8分)(1)x2﹣2x+1 (2)a2(x﹣y)﹣b2(x﹣y)=(x-1)2 =(a+b)(a-b)(x-y)21. 化简得15ab(5分)代入求值得=﹣30(3分)22(1).略(2)105°23.(4)平行且相等24. 略25.(2)8 26.x100 ﹣1; 251﹣1 ; X2020=1。
2017-2018学年七年级数学下册(浙教版)期中测试题含答案
⎧⎨⎩x =1y =-12017-2018学年第二学期七年级数学学科期中测试卷一、选择题(本题共有10个小题,每小题3分,共30分) 1.下列生活中的现象,属于平移的是 ( )A 、抽屉的拉开B 、汽车刮雨器的运动C 、坐在秋千上人的运动D 、投影片的文字经投影变换到屏幕 2. 下列计算中正确的是( )A. a ×a 3 =a 3B.(a 2) 3=a 5C. (a +b)3=a 3+b 3D. a 6÷a 2=a 43.如图,下列条件中,不能判断直线l 1∥l 2的是( )A .∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°4. 计算下列各式,其结果是4y 2-1的是( )A. (2y-1)2B. (2y+1)(2y-1)C. (-2y+1)(-2y+1)D. (-2y-1)(2y+1)5.已知 是方程2x -ay=3b 的一个解,那么a -3b 的值是 ( )A. 2B.0C.-2D.16. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度可能是( )A.第一次右拐150,第二次左拐1650B.第一次左拐150,第二次右拐150C.第一次左拐150,第二次左拐1650D. 第一次右拐150,第二次右拐157. 某班同学去划船,若每船坐7人,则余下5人没有座位;若每船坐8人,则又空出2个座位.这个班参加划船的同学人数和船数分别是( ) A.47,6 B.46,6 C.54,7 D.61,88. 已知a m =9,a m -n =3,则a n的值是 ( ) A. -3 B. 3 C.31D. 1 9.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +3b),宽为(2a +b)的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A .2,3,7B .3,7,2C .2,5,3D .2,5,710.已知2n +216+1是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A.30 B.32 C.-18 D.9一、填空题(本题有6个小题,每小题4分,共24分) 11.用科学计数法表示0.00000041=_________________。
2017-2018学年度最新浙教版七年级数学下册期中测试题及答案解析精品试卷
2018学年第二学期七年级数学期中测试试题卷一. 仔细选一选(本题有10个小题, 每小题3分, 共30分)1、同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A. B. C. D.2、下列运算正确的是()A.(a+b)2=a2+ b2B.2a3•3a2=6a6C.(﹣2x3)4=8x12D.(m﹣n)6÷(n﹣m)3=(n﹣m)33、如图所示,下列说法错误的是()A.∠2与∠B是内错角B.∠2与∠3是内错角C.∠3与∠B是同旁内角D.∠A与∠3是同位角4、红细胞的平均直径是0.0000072m,用科学记数法表示为()A.7.2×10-6B. 7.2×106C. 0.72×10-6D. 7.2×10-55、如图,∠3=∠4则下列结论一定成立的是()A.AD∥BCB. ∠B=∠DC. ∠1=∠2D. ∠B+∠BCD=180°6、从图1到图2的变化过程可以发现等式结论是()A.22a b a b a b+-=- B.22()()-=+-()()a b a b a bC.222a b a ab b()2+=++a b a ab b-=-+ D.222()27、设方程组的解是M,则()A. M 是方程y=1-x 的唯一解B. M 是方程3x+2y=5的唯一解C. M 是方程3y-2x=-12的一个解 D .M 不是方程3y-2x=-12的一个解 8、计算:34521134()()()26143⨯⨯=( ) A. 1333 B.10463 C.21337⨯⨯ D.2313327⨯⨯9、已知多项式ax+b 与2x 2﹣x+1的乘积展开式中不含x 的一次项,且常数项为-2,则a b 的值为( )A.﹣4B.14 C .14- D. 4 10、若关于x,y 的方程组5316415x ay bx y +=⎧⎨-+=⎩(其中a,b 是常数)的解为67x y =⎧⎨=⎩,则方程组5(1)3(2)16(1)4(2)15x a x y b x x y ++-=⎧⎨-++-=⎩的解为( ) A.67x y =⎧⎨=⎩ B.51x y =⎧⎨=-⎩ C.51x y =⎧⎨=⎩ D. 5.51x y =⎧⎨=-⎩二、耐心填一填(每小题4分,共24分) 11、如图,若l 1∥l 2,∠1=44°45′,则∠2=_____.12、我们已经学会了用直尺和三角板画平行线,如图,在这一过程中,所用到的判定两直线平行的方法是:13、请仔细观察运算过程,把对应法则名称的编号写在横线上: (2x 2)3•x 4=23(x 2)3•x 4 法则; =8x 6•x 4 法则; =8x 6+4=8x 10 法则.①同底数幂相乘;②积的乘方;③幂的乘方. 14、计算()2472(21)(21)21(21)++++-= 15、若2()25,2,m na a ==则2m na-=16、有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为2和13,则正方形A ,B 的面积之和为 . 三、静心解一解 (本大题共7小题,共66分 ) 17、(本小题满分6分)化简:(1)534222(3)()a b a b a b -÷-(2)a (3﹣a )-(1+a )(1﹣a )18、(本小题满分8分)解方程组326(1)2x y y x +=⎧⎨=-⎩43(2)325x y x y -=⎧⎨+=⎩19、(本小题满分8分)已知∠EDC=∠GFB , CD ⊥AB 于D,FG ⊥AB 于G ,猜想DE 与BC 的关系,并说明理由.20、(本小题满分10分)(1)如图1,P 是∠ABC 内一点,请过点P 画射线PD ,使PD ∥BC ;过点P 画直线PE ∥BA ,交BC 于点E .请画图并通过观察思考后你发现∠ABC 与∠DPE 的大小关系是 ,并说明理由.(2)如图2,直线a ,b 所成的角跑到画板外面去了,为了测量这两条直线所成的角的度数,请画图并简单地写出你的方法.21、(本小题满分10分)设22222212320,42,64,.a a a =-=-=-⋅⋅⋅ (1)请用含n 的代数式表示n a (n 为自然数);(2)探究n a 是否为4的倍数,证明你的结论并用文字描述该结论;(3)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”(如:1,16等),试写出12,,n a a a ⋅⋅⋅这些数中,前4个“完全平方数”。
乐清市2017-2018学年七年级数学上学期期中试题(实验A班)浙教版
浙江省乐清市2017-2018学年七年级数学上学期期中试题(实验A班)(满分:120分,考试时间:90分钟)一、选择题(每小题4分,共40分)1.设a是最小的自然数,b是最大的负整数,c 是绝对值最小的整数,则c b a++的值为()A.-1 B.0 C.1 D.3 2.判断下列语句,①一根拉紧的细线就是直线; ②点A一定在直线AB上;③过三点可以画三条直线;④两点之间,线段最短。
正确的有几个()A.1 B.2 C.3 D.43.已知26543a b bc+-的值是( )-=-.则22a bc+=,227b bcA.3 B.2 C.1 D.04.如图,点E在AC的延长线上,下列条件中能判断BD∥AE的是()A.∠1=∠2 B.∠2=∠3 C.∠A=∠DCE D.∠3=∠45.下列判断正确的个数有( )①不带根号的数一定是有理数;②若22>,则>;③比2大且比3a b a b小的实数有无数个;④两个无理数的和一定是无理数;⑤若a>b>0,则a>bA、1个B、2个C、3个D、4个6.如果⎩⎨⎧==n y m x 是方程2x +y =0 的一个解(m ≠0),那么( )A .m ≠0,n =0B .m ,n 异号C .m ,n 同号D .m ,n 可能同号,也可能异号7.线段AB =5cm ,BC =4cm ,那么A 、C 两点间的距离是( )A .1cmB .9cmC .1cm 或9cmD .以上结果都不对8.某品牌的ipad 机成本价是每台500元,10月份的销售价为每台625元。
经市场预测,该商品销售价在12月份将降低20%,而后在2018年2月份再提高8%,那么在2018年2月份销售该品牌的ipad 机预计可获利( )A .25%B .20%C .8%D .12%9.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )A .A 点处B .线段AB 的中点处C .线段AB 上,距A 点10003米处 D .线段AB 上,距A 点400米处10.已知:0x z <<,0xy >,且y z x >> ,那么x z y z x y +++-- 的值( )A .是正数B .是零C .是负数D .不能确定(第2题)二、填空题(每小题4分,共32分)11、由四舍五入得到的近似数510325.8⨯精确到 位. 12.若关于x 的方程()0321=-+--m x m m 是一元一次方程,则方程的解是 。
2017-2018学年浙教版七年级数学下册期中数学试卷含答案解析
2017-2018学年浙教版七年级数学下册期中数学试卷含答案解析2017-2018学年七年级(下)期中数学试卷一、选择题(本题有10个小题,每题3分,共30分)1.下列运算中正确的是()A。
2a-a=2B。
a2+a3=a5C。
ab2÷a=b2D。
(-2a)3=-6a32.下列各组数中,是二元一次方程5x-y=2的一个解的是()A。
(1.3)B。
(2.-3)C。
(-1.0)D。
(0.2)3.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
其中错误的有()A。
1个B。
2个C。
3个D。
4个4.如图,AB∥CD,CE平分∠ACD交AB于E,若∠A=120°,则∠AEC=()A。
20°B。
25°C。
30°D。
50°5.下列各式不能使用平方差公式的是()A。
(2a+b)(2a-b)B。
(-2a+b)(b-2a)C。
(-2a+b)(-2a-b)D。
(2a-b)-(2a-b)6.一学员在广场上练驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A。
第一次向左拐30°,第二次向右拐30°B。
第一次向右拐50°,第二次向左拐130°C。
第一次向左拐50°,第二次向右拐130°D。
第一次向左拐50°,第二次向左拐130°7.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A。
2B。
-2C。
0.5D。
-0.58.已知4y2+my+9是完全平方式,则m为()A。
6B。
±6C。
±12D。
129.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A。
(2a2+5a)cm2B。
温州市乐清市2018年七年级下期中数学试卷及答案
2015-2016学年浙江省温州市乐清市七年级(下)期中数学试卷、选择题(本题有30小题,每小题3分,共30 分) 1 •将如图所示的图案通过平移后可以得到的图案是(x=2+2y B. y=1 -二xC. x=2 - 2yD.①/ 仁/5;②/ 4=7 7,③/2+7 3=180°;④7 3=7 5;5. 如图,把一块含有 45°角的直角三角板的两个顶点放在直尺的对边上F 列等式中成立的是( A .a 4?a=a 4 B. a 6 - a 3=a 3C.D. (ab 2) 3=a 3?b 53.已知x+2y=2,用y 的代数式表示 x 得(A .4.如图,直线a , b 被直线c 所截,现给出下列四个条件:D.③④.如果7 2.2 6=a(a 3)D.其中能判定a // b 的条件的序号是A. 30°B. 25°C. 20°D. 15°f x—-16. 若是关于x. y的方程2x-y+2a=0的一个解,则常数a为()(尸2A. 1B. 2C. 3D. 47. 若x3?x m y2n=x9y8,则4m- 3n 等于()A. 8B. 9C. 10D. 128. 如果长方体的长为3a-4,宽为2a,高为a,则它的体积是()A. 3a2- 4a B . a2 C. 6a3- 8a2 D . 6a2- 8a9. 女口(x+m)与(x+3)的乘积中不含x的一次项,贝U m的值为()A.- 3 B . 3 C. 0 D. 110 .若/ a与/B的两边分别平行,且/ a = (2x+10)°,z B = (3x - 20)°,则 / a的度数为()A. 70° B . 86° C. 70°或86° D. 30° 或38°二、认真填一填(本大题8个小题,每小题3分,共24分)11 .在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是12 .计算:2x2? (- 3x3)= .的解为:由于不小心,滴上了两滴墨水,刚好遮住13 .如图,CD平分/ ACB DE// AC,若/ 1=70°,则/ 2= _____ 度.了两个数•和★,请你帮他找回这个数,•二15 .已知8x=2, 8y=5,则8x+y=16. 如果定义一种新运算,规定;店d-be,请化简:1 g17. 若a- b=2, a-e=-,则(b-e)2- 3 (b- e)+厂18. 如图,将一副三角板按如图放置,贝U下列结论①/ 1=/ 3;②如果/ 2=30°,则有AC// DE③如果/ 2=30°,则有BC// AD ④如果/ 2=30°,必有/ 4=/ C.其中正确的有(填序号)三、解答题(共46分)19•如图:在正方形网格中有一个△ ABC按要求进行下列作图(只借助于网格,需写出结论):(1)过点A画出BC的平行线;20•化简:(1)3x2y X( -x3y4)(2)(x - 3) (x+2)21 •解方程组:(3x+2y=8(1):y=2(2)(2)X鈕尸厂22. 先化简,再求值:(2x+3) (2x- 3)-( x - 2) 2+3x (1-x),其中x=2.23. 如图,CD平分/ ACB DE// BC / AED=80 ,(1)求/ ACD的度数.(2)求/ EDC的度数.A24 •某校准备组织七年级学生参加夏令营,已知:用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人,现有学生400 人,计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满.(1) 1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)请你帮学校设计出所有的租车方案;(3)若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的方案, 并求出最省租金.2015-2016学年浙江省温州市乐清市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有30小题,每小题3分,共30分)1 •将如图所示的图案通过平移后可以得到的图案是()【考点】生活中的平移现象.【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【解答】解:观察各选项图形可知,A选项的图案可以通过平移得到.故选:A.2•下列等式中成立的是()A. a4?a=a4B. a6- a3=a3C. (a3)2=a6D. (ab2)3=a3?b5【考点】单项式乘单项式;合并同类项;同底数幕的乘法;幕的乘方与积的乘方.【分析】先根据同底数幕的乘法法则,合并同类项法则,幕的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、结果是a5,故本选项错误;B a6和-a3不能合并,故本选项错误;C结果是a6,故本选项正确;D结果是a3b6,故本选项错误;故选C.3. 已知x+2y=2,用y的代数式表示x得()A. x=2+2yB. y=1 - ,:xC. x=2 - 2yD. y= . - x【考点】解二元一次方程.【分析】把y看作已知量,把x看作未知量,根据解一元一次方程的方法求解即可.【解答】解:••• x+2y=2,••• x=2 - 2y.故选:C.4. 如图,直线a, b被直线c所截,现给出下列四个条件:①/ 仁/5;②/ 4=7 7,③/2+7 3=180°;④7 3=7 5;C•①④ D.③④其中能判定a // b的条件的序号是()【考点】平行线的判定.【分析】根据平行线的判定定理对各小题进行逐一分析即可.【解答】解:①T7仁7 5,二a / b,故本小题正确;②7 4=7 7不符合平行线的判定定理,故本小题错误;③7 2+7 3=180°不符合平行线的判定定理,故本小题错误;④T7 3=7 5,二不符合平行线的判定定理,故本小题错误. 故选C.5. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果7仁20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省乐清市2017-2018学年七年级数学下学期期中试题(实验班)一、选择题(每题3分,共30分)1.下列交通标志图案是轴对称图形的是( )A. B. C. D.2. 如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB=DE ,AC=DF ,要使ΔABC ≌ΔDEF ,还需要添加一个条件是( )A .BE=CFB . BE=EC C . EC=CFD .AC//DF 3.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为( )A .24°B .25°C .30°D .35°4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度. A .25 B .40 C .25或40 D .605.一个直角三角形的两直角边长分别为3和4,那么它斜边上的高线长为( ) A 、5 B 、2.5 C 、2.4 D 、26. 如图钢架中,∠A =14°,依次焊上等长的钢条P 1P 2,P 2P 3,…,来加固钢架,这样的钢条最多能焊﹙ ﹚根 A..5B .6C .7D .87.下列命题的逆命题一定成立的是( )①对顶角相等; ②同位角相等,两直线平行; ③若a b =,则a b =; ④若x=3,则0)3(=-x x A .①②③ B .①④ C .②④ D .② 8.关于x 的不等式组有四个整数解,则a 的取值范围是( )A .﹣<a ≤﹣B .﹣≤a <﹣C .﹣≤a ≤﹣D .﹣<a <﹣ABCB'C'EF12FEDCB ARQOPBAP 3P 2P 1C BA9.如图,∠AOB =45º,∠AOB 内有一定点 P ,且 O P =12,在 O A 上有一 动点 Q ,OB 上有一动点 R 。
若△PQR 周长最小,则最小周长是 ( ) A .26B .12C .16D .21210.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假如△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形 如图,若运动方向相反,则称它们是镜面合同三角形 如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180° 如图,下列各组合同三角形中,是镜面合同三角形的是 ( )二、填空题(每题4分,共32分)11.命题“等腰三角形的两个底角相等”的逆命题是 . 12.已知点 M (4-2t ,t -5),若点 M 在 x 轴的下方,则 t 的取值范围是13、如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则 A = 度。
14.如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,AE 为折痕.已知AB=8,BC=10,则EC 的长为 .15.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为(-23,-14),则点B 坐标为 . 16.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为 m 2.17、如图,等腰Rt△ABC 中,∠ABC =90°,O 是△ABC 内一点,OA =6,OB =24,OC =10,设△OAB 的面积为1S ,△OBC 的面积为2S ,则21S S +等于18.如图,等腰△ABC 中,CA=CB=4,∠ACB=120°,点D 在线段AB 上运动(不与A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,给出下列结论:①CD=CP=CQ; ②∠PCQ 的大小不变; ③当点D 在AB 的中点时,△PDQ 是等边三角形; ④当点D 在AB 的中点时,△PCQ 面积为435; 则其中所有正确结论的序号是 . 三、解答题:(共58分) 19.(8分) (1)、解不等式1315>--x x ,并将解集在数轴上表示出来.(2)、求不等式组的非负整数解20、(8分)如图,已知点B ,E ,C ,F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D. (1)求证:AC∥DE;(2)若BF=13,EC=5,求BC 的长.01-12-3-23O A21.(10分)方格纸中小正方形的顶点叫格点.点A 和点B 是格点,位置如图.(1)在图1中确定格点C 使△ABC 为直角三角形,画出一个这样的△ABC ; (2)在图2中确定格点D 使△ABD 为等腰三角形,画出一个这样的△ABD ; (3)在图2中满足题(2)条件的格点D 有 个.22.(10分)某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A 、B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请设计出来.23.(10分)如图,等腰△ABC 中,AB =AC ,∠B =30°,D 是线段BC 上一动点(不与B 、C 重合), 以AD 为边在AD 右侧作等腰△ADE ,使AD =AE ,∠DAE =120°,DE 交AC 于点F , (1)、若∠BAD =15°,求∠FDC 的度数. (2)、若△DFC 是等腰三角形,求∠BAD 的度数.24.(12分)如图,在ABC ∆中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,AF=10cm , AC=14cm ,动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:在运动过程中,不管t 取何值,都有2AED DGC S S ∆∆=; (2)当t 取何值时,DFE ∆与DMG ∆全等;FEDCBA(3)在(2)的前提下,若119126BD DC =, 228AED S cm ∆=,请直接写出△BED 的面积。
育英学校七年级实验A 班数学期中考附加题:(共30分)1.(5分)在ABC ∆中, 30ABC ∠=o , AB 边长为4, AC 边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是( ). A. 3个 B. 4个 C. 5个 D. 6个2、(5分) 如图,在△ABC 中,D 、E 分别是BC 、AC 的中点,已知∠ACB =90º,BE=4,AD=7,则AB 的长为( )A .10B .35C .132D .1523、(5分)如图,长方体的底面是边长为2cm 的正方形,高是6cm .如果从A 点开始经过4个侧面缠绕圈到达点B ,那么所用细线最短长度是 厘米?4、(5分)阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若x n ≤-21<21+n ,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《2》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x ﹣1》=5,则实数x 的取值范围是411≤x <413;⑤满足《x 》=23x 的非负实数x 有三个.其中结论正确的是 (填序号)ED CBA5、(10分)如图,以A为直角顶点,分别在△ABC的外侧作等腰直角三角形ABD和等腰直角三角形ACE,连接CD、BE相交于点F,连接AF、DE。
(1)、求证:BE⊥CD;(2)、求证:FA平分∠DFE;(3)、若BC=a,AC=b,AB=c,求DE的长(用含a,b,c的代数式表示)。
AFB1.D2.A3.B4.C5.C6.B7.D8.B9.D 10.B11.有两个角相等的三角形是等腰三角形. 12.t <5 13.30 14.3 15.(-37,9)16.8或12或10或32517.40 18.①②③三、解答题:(共58分) 19. .答案:2>x答案:不等式组的解为31∠≤-x ,则不等式组的非负整数解为2,1,001-12-3-2320、答案:(1)略 (2)BC=921.(10分)方格纸中小正方形的顶点叫格点.点A 和点B 是格点,位置如图.(1)在图1中确定格点C 使△ABC 为直角三角形,画出一个这样的△ABC ; (2)在图2中确定格点D 使△ABD 为等腰三角形,画出一个这样的△ABD ; (3)在图2中满足题(2)条件的格点D 有 4 个. 22.答案:设A 型货箱x 节,则B 型(50-x )节,1150)50(35151530)50(2535≥-+≥-+x x x x 解得3028≤≤x因为x 为整数,所以x 只能取28,29,30 所以共有三种方案:①A 型28节,B 型22节②A 型29节,B 型21节 ③A 型30节,B 型20节23.答案:(1)、∠FDC =15°(2)、∠BAD 的度数为30°或75° 24.解析:(1)证明:∵∠BAD=∠DAC ,DF ⊥AB ,DM ⊥AC , ∴DF=DM , ∵S △AED =12AE •DF ,S △DGC =12CG •DM , ∴ADE DGC S AE S CG =V V ,∵点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,∴AE=2tcm,CG=tcm,∴2AECG=,即2ADEDGCSS=VV,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.②当M在线段CG上时,∵点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),即10-2t=t-4,解得:t=143,综上所述当t=143时,△DFE与△DMG全等.(3)∵t=143,∴AE=2t=283(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=1199(cm),∴BF=AB-AF=1199-10=299(cm),∵S△ADE:S△BDF=AE:BF=283:299,S△AED=28cm2,∴S△BDE=-335(cm2).。