第一章函数、极限、连续
高等数学第一章函数极限和连续讲义
第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限. 5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出31y x =-,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()s i n f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为fD ,函数()ug x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,22y x =-,2ln(1)y x x =++,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <). (二)函数的极限1.函数极限的定义 (1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <). (三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±; (2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠; (4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim nn x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)lim n n nx Ay B →∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A→=,且存在00δ>,当00(,)x U x δ∈时,有()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ; 0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →时111~n x x n +-,可引申为()0x ϕ→时,11()1~()n x x nϕϕ+-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数. 1.设()12xf x x =-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-. 2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩ .【例1-2】求函数的定义域. 1.()arcsin(21)ln(1)f x x x =-+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由arcsin(21)x -可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x -可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.21()arccos(2)2x f x x x x -=+---. 解:由1x -可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数2()ln(1)f x x x =++的奇偶性.解:因2()ln(()1)f x x x -=-+-+2ln(1)x x =-++21ln 1x x=++2ln(1)()x x f x =-++=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n nn n n→∞+++.解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.222111lim()12n n n n n→∞++++++. 解:因22222111121nn n n n n n nn <+++<+++++,并且2l i m1n nn n→∞=+,2lim 11n nn →∞=+,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限. 1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==. 4.sin 0limsin x x x e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x 比11x +-.解:因 220limlim 01112x x x x x x→→==+-,故2x 是比11x +-高阶的无穷小. 3.11x x +--比x .解:因 0011(11)(11)lim lim (11)x x x x x x x x x x x x →→+--+--++-=++-2lim 1(11)x x x x x →==++-,故11x x +--与x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.2,01()1,11,1x x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()lim 22x x f f x x ---→→===, 11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型. 1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x= .解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数211arccos 2x y x +=--的定义域是( )(A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ). 2.(2010年,1分)极限0sin3lim x xx→等于( )(A )0 (B )1 (C )13(D )3 解:00sin33limlim 3x x x xx x→→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在解:因00lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ). 5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点解:因 2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sinf x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ). 10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12- (B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是( )(A )0x+→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x =是函数1()cos f x x x=的第 类间断点.解:因1lim ()lim cos0x x f x x x→→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln 2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第 类间断点.解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin yx x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数31y x =+的反函数为 .解:由31yx =+可得,31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++, 因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0limsin x x x e e x-→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- .解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x xx x x x x x x→→→--+-==---+11111limlim ln 1ln 112x x x x x x x →→--===-+-++.。
大学数学第1章:_函数、极限、连续
学过的函数中,奇函数有y=x、y=sinx、y=tanx等, 偶函数有y=x2、y=cosx等。 而y=2x和y=lgx既不是奇函数,也不是偶函数。
研究函数奇偶性的好处在于,如果一个函数是奇函数(或偶 函数),则只要研究自变量大于等于零的一半就可以推知全 貌。
定义1-4 设函数y=f (x)的定义域为D。如果存在常数
sinx,tanx,cscx为奇函数。cosx,cotx,secx为偶函数。
(6)反三角函数
反正弦函数
y arcsin x
y arcsin
x
反余弦函数
y arccos
x
y arccos
x
反正切函数
y arctan
x
y arctan
x
反余切函数
y arc cot x
T>0,使得对任一
,都有
,且等式
3、周期性 一定成立;则称函数y=f (x)是周期函数,T 称为该
函数的周期。
x D
xT D
f (x T ) f (x)
周期函数的周期通常是指它的最小正周期。
例如,y=sin x和y=tan x都是周期函数, 前者的周期是2π,后者的周期是π。
4、单调性
和反三角函数6类是最常见、最基本的函数,这些函 数称为基本初等函数。 基本初等函数是构建复杂函数的基础。
(1)常值函数 y c
y
c x
O
(2)幂函数
y x
( 是常数 )
y
y x
2
y x
y
( 1 ,1 )
1
x
o
y 1 x
1
x
(3)指数函数 y a
高数第一章
第一节 函数
一、函数的概念
1.函数的定义 定义 1 设D是一个数集,如果对属于D的每一个数x,按照某个对应关 系f ,都有确定的数值y与之对应,则称y是定义在数集D上的x的函数,记作 y = f(x),x叫作自变量,数集D叫作函数的定义域,当x取遍D中的一切数时, 与它对应的函数值的集合M叫作函数的值域. 当自变量取某一数值x0时, 函数y具有确定的对应值,则称函数在x0有定义.
......
函数y = f(x),当x = x0 D时,对应的函数值可以记为y0 = f(x0 ) .
例2 若f(x)= | x - 2 | ,求f(2), f(-2), f(0), f(a), f(a +b). x=1
解 f(2)=0,f(-2)=|--41| 4, f(0)=|-12| 2, f(a)=|aa-+21|,
x
(b)偶函数
图 1-2 奇函数与偶函数的图形
例3 判断函数f(x)=ln(x+ x2 +1 )的奇偶性.
解 因为f(-x)=ln (-x)+ (-x)2 1 ln( x2 1 x)
=ln ( x2 1 x)( x2 1 x) ln
1
x2 1 x
x2 1 x
单调增加(或单调减少)函数的图形沿 x 轴的正向上升(或下降).
上述定义也适用于其它有限区间和无限区间的情形.
例4 证明f(x)= 1 在区间(0,1) 内是单调减少的函数. x
证 在区间(0,1)内任取两点x1, x2 ,设x1 x2 ,则x1 x2 0.因为
所以
f(x2
)
f(x1
函数y f (x)的图形与其反函数y f 1(x)的图形关于直线y = x对称.
函数,极限与连续
定义 1 表明,函数在某点连续含有三层意思:
它在该点的一个邻域内有定义,极限存在且极限 值等于该点处的函数值.
例 1 证明函数 y = sin x 在其定义域内连续 . 证 任取 x0 (- , + ),则因
有定义, 如果
x 0
lim y 0.
则称函数 y = f (x) 在 x0 处连续.
若函数 y = f (x) 在点 x0 处有:
x x0
lim f ( x ) f ( x 0 ) 或 lim f ( x ) f ( x 0 ) ,
x x0
则分别称函数 y = f (x) 在 x0 处是左连续或右连续.
a O c b x y = f (x)
例 9 证明方程 x3 - 4x2 + 1 = 0 在 (0, 1) 内至 少有一个实根.
证
设 f (x) = x3 - 4x2 + 1,由于它在 [0, 1]
上连续且 f (0) = 1 > 0, f (1) = - 2 < 0,因此由推 论可知,至少存在一点 c (0, 1) ,使得 f (c) = 0. 这表明所给方程在 (0, 1) 内至少有一个实根 .
sin(x a ) lim x a ( x a ) cos a cos x
令 x – a t ,由 x a,则 t 0.
sint 1 1 上式 lim lim . 2 t 0 t cos a cos(t a ) t 0 cos a cos(t a ) cos a
因 此 lim y 0. 这表明 y = sin x 在 x0 处连续,
微积分第一章
高等数学教案、第一章 函数、极限与与连续本章将在分别研究数列的极限与函数的极限的基础上,讨论极限的一些重要性质以及运算法则,函数的连续性,闭区间上连续函数的性质。
具体的要求如下:1. 理解极限的概念(理解极限的描述性定义,对极限的N -ε、δε-定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求)。
2. 掌握极限四则运算法则。
3. 了解极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
4. 了解无穷小、无穷大及无穷小的阶的概念.能够正确运用等价无穷小求极限。
5。
理解函数在一点连续的概念,理解区间内(上)连续函数的概念。
6. 了解间断点的概念,会求函数的间断点并判别间断点的类型。
7. 了解初等函数的连续性和闭区间上连续函数的性质(最大、最小值定理、零点定理、介值定理)。
第一章共12学时,课时安排如下绪论 §1.1、函数 §1.2初等函数 2课时 §1。
4数列极限及其运算法则 2课时 §1.4函数极限及其运算法则 2课时 §1。
4两个重要极限 无穷小与无穷大 2课时 §1.4函数的连续性 2课时 第一章 习题课 2课时绪论数学:数学是研究空间形式和数量关系的一门学科,数学是研究抽象结构及其规律、特性的学科.数学具有高度的抽象性、严密的逻辑性和应用的广泛性。
关于数学应用和关于微积分的评价:恩格斯:在一切理论成就中,未必再有像17世纪下叶微积分的微积分的发现那样被看作人类精神的最高胜利了。
如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是这里.华罗庚:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之迷,日用之繁,无处不用数学。
张顺燕:微积分是人类的伟大结晶,它给出了一整套科学方法,开创了科学的新纪元,并因此加强和加深了数学的作用。
……有了微积分,人类才有能力把握运动和过程;有了微积分,就有了工业革命,有了大工业生产,也就有了现代的社会。
高数函数,极限和连续总结
第一章 函数.极限和连续第一节 函数1. 决定函数的要素:对应法则和定义域2. 基本初等函数:(六类)(1) 常数函数(y=c );(2)幂函数(y=x a );(3)指数函数(y=a x ,a>0,a ≠1);(4)对数函数(y=log a x ,a>0,a ≠1)(5)三角函数;(6)反三角函数。
注:分段函数不是初等函数。
特例:y =√x 2是初等函数3.构成复合函数的条件:内层函数的值域位于外层函数的定义域之内。
4.复合函数的分解技巧:对照基本初等函数的形式。
5.函数的几种简单性质:有界性,单调性,奇偶性,周期性。
第二节 极限1.分析定义∀&>0(任意小) ∃∂>0当|x |>ð(或0<|x −x 0|<ð )时总有 |f (x )−A |<&称 lim x→∞f (x )=0 (或lim x→x0f (x )=A)2.极限存在的充要条件lim x→x0f (x )=A ↔lim x→x 0+f (x )=lim x→x 0−f (x )=A 3.极限存在的判定准则(1)夹逼定理f 1(x )≤f(x)≪f 2(x) ,且 lim x→x0f 1(x )=A = lim x→x0f 2(x ) 所以lim x→x0f (x )=A(2)单调有界准则单调有界数列一定有极限。
4.无穷小量与无穷大量,则称 时,f (x )为无穷小量 , 则称 时,f (x )为无穷大量 注:零是唯一的可作为无穷小的常数。
性质1 有限多个无穷小的代数和或乘积还是无穷小。
注:无限个无穷小量的代数和不一定是无穷小量性质2 有界变量或常数与无穷小的乘积还是无穷小。
5. 定义 设 是同一极限过程中的无穷小, 则若 则称 α 是β比高阶的无穷小,记作若 则称α是比β 低阶的无穷小∞=→)(lim 0x f x x )(或∞→→x x x 00)(lim 0=→x f x x )(或∞→→x x x 0)(,)(x x ββαα==,0)(≠x β且,0lim =βα);(βαo =,lim ∞=βα,0lim ≠=C βα若 则称 α 是β的同阶无穷小;特别地,当c=1 时,则称α 是β的等价无穷小,记作若 则称α是关于β 的 k 阶无穷小。
第一章 函数,极限与连续
五、初等函数
1.复合函数
设 y u, u 1 x2 ,
y 1 x2
第一章 函数,极限与连续
1.1 初等函数 1.2 数列的极限 1.3 函数的极限 1.4 无穷小与无穷大
1.5 极限的计算法则 1.6 无穷小的比较 1.7 函数的连续性 1.8 连续函数的性质
1.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心, 叫做这邻域的半径 .
x y xb
loga x loga b loga x
y
我们在以后的计算中经常会用到
a elna
xa eln xa ealn x
4.三角函数
正弦函数 y sin x
y
y sin x
1
ቤተ መጻሕፍቲ ባይዱ
R
-π π O π π 3π 2π
3π
2
2
2
-1
4π x
余弦函数 y cos x
y
y cos x R
阶梯曲线
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
记作: U(a, ) {x a x a }.
a
函数极限和连续性
第一章 函数、极限和连续性内容提要:1.函数实质上是自变量与因变量之间按照一定法则的对应关系。
函数的概念及各种性质在考研数学中一般不作为直接的考点。
但函数是微积分的基本研究对象,绝大多数知识点都直接或间接地与函数相关,相当大的一部分题目中也要直接或间接地用到函数的各种性质。
因此,在开始微积分的学习之前,重温一遍函数的主要内容是必要的。
函数部分需要重点掌握的内容有:复合函数,分段函数的运算,反函数的概念及计算,函数的奇偶性和有界性。
2.极限是这一章的主要内容,也是整个学科的理论基础。
学习本章的核心任务是熟练掌握各种极限的计算方法,极限计算的方法牵涉到方方面面的理论,在后续很多章节都有涉及,总结起来主要有:利用四则运算,利用两个重要极限,利用等价无穷小替换,利用洛必达法则,利用变量替换,分别求左右极限,数列极限转化为函数极限,利用夹逼原理,利用单调有界原理,利用泰勒公式,利用定积分的定义等。
对于极限的计算需要大量的练习,以求熟能生巧,对各种方法融会贯通。
无穷大量和无穷小量的概念是这一部分的另一重要内容。
它们既是对极限计算的应用,又可以反过来帮助我们求极限。
学习时,要理解无穷大量和无穷小量的概念及它们的关系,重点掌握无穷小量的比较方法,理解无穷小量的高阶、同阶、等价的概念并能用等价无穷小替换计算极限。
3.函数的连续性是函数的基本性质之一,微积分中研究的函数都是连续函数或仅在有限个点间断的函数。
对函数连续性的考查也是考研数学的重要内容,考题主要集中在连续性的讨论及间断点的分类上。
对函数连续性的考查本质上还是考查极限的计算。
另外,闭区间上连续函数的性质也是需要考生有所了解的内容。
第一节 函数Ⅰ考点精讲一.基本概念1.函数:从实数集的子集D 到R 的一个映射f 称之为函数,记作(),y f x x D =∈,称x 为自变量,y 为因变量。
函数的三要素:定义域、解析式和值域(也作二要素:定义域、解析式,因为这两者可以决定值域)。
第一章函数、极限与连续
例8
求
lim
n
n
n2
n2
n
2
解
n2
n
n
因为 n2
n
i
n2
n
n
(i 1, 2,
, n), n2
n
i
n
n2
(i 1, 2,
, n)
所以
n
n n2 n
n
n2
n
n2 2
n
n
n2 n n n2
而
n2
lim
n
n2
n
lim
n
1
1
n
1, lim n
n2 n2
lim
n
1
1
n2
例11 已知
x2 2x 3 x 1
f x x 1
1 x 3,求 lim f x,lim f x.
sin x 1 x 3
x1
x3
解 在x 1处,求f x的左右极限
lim f x lim x2 2x 3 0, lim f x lim x 1 0,
x1
x1
x1
x1
t 0
x
三、几个充要条件
(1 ) lim f xx0 (x)
(x)
A
f (x)
A
当 x
(
x0 x )
时 0
;
( 2) lim f (x) A lim f (x) lim f (x) A ;
x x0
xx0 0
xx0 0
( 3) lim f (x) A lim f (x) lim f (x) A ;
解 因为已知极限为 0 形式不定式,且含有三角函数,则有 0
第一章 函数、极限与连续
第一章 函数 极限 连续知识点拔1.1 函数一、函数的概念设D 是一个非空数集,若存在一个对应法则f ,使得对D 内的每一个值x 都有唯一的y 值与之对应,则称这个对应法则f 是定义在数集D 上的一个函数,记作:)(x f y =,其中x 叫自变量,y 叫因变量或函数,数集D 称为函数的定义域,而数集}),(|{D x x f y y z ∈==叫函数的值域.如果D x ∈0,称函数)(x f 在0x 处有定义,函数)(x f 在0x 处的函数值记为0x x y =或)(0x f .注释:①函数定义的两个要素:定义域和对应法则;②两个函数相等条件:定义域和对应法则都相同的两个函数是相同函数,如:22)(2---=x x x x f 与1)(+=x x g 不同,因定义域不同;x x f 2sin )(=与x x g sin )(=不同,因对应法则不同;x x x x f 222cos sin )(++=与1)(2+=t t g 相同,也就是当两上函数的定义域和对应法则都相同时,即使其自变量所用的字母不同,但两个函数相同.③若定义域内的每一个x 只对应一个函数值y ,则称该函数为单值函数,若同一个x 值可对应于多于一个的函数值y ,这种函数称为多值函数.二、函数的基本性质1、函数的单调性:设函数在区间D 上有定义,如果对2121,x x D x x <∈∀且,恒有)()(21x f x f <(或)()(21x f x f >),则称)(x f 在区间D 上严格单调增加(或严格单调减少)的.如果对于D x x ∈∀21,21x x <且,有)()(21x f x f ≤ (或)()(21x f x f ≥)称)(x f 在区间D 上是单调增加(或单调减少)的.注释:(1)函数的有界性与单调性是与某个区间密切相关的,区间不同函数的有界性与单调性也不同.(2)增+增=增,增-减=增,减+减=减,减-增=减,增的倒数为减,减的倒数为增. (3)增函数与增函数或减函数与减函数的复合为单调增加函数. (4)增函数与减函数或减函数与增函数的复合为单调减少函数.2、函数的奇偶性:设D 是对称于原点的区间,若对D x ∈∀,)()(x f x f -=-有,则称)(x f 是奇函数;若有)()(x f x f =-,称)(x f 是偶函数.注释:①奇(偶)函数的定义域必须是关于原点对称的区间. ②奇函数)(x f 的图象关于原点对称,偶函数的图象关于y 轴对称. ③奇偶函数的运算性质1°奇函数的代数和仍为奇函数;偶函数的代数和仍为偶函数;奇函数与偶函数的代数和为非奇非偶函数;2°偶数个奇(或偶)函数的积为偶函数;奇数个奇函数的积为奇函数; 3°一奇一偶函数的积是奇函数;4°奇函数的导数是偶函数,偶函数的导数是奇函数;5°奇函数的原函数是偶函数;偶函数)(x f 的原函数⎰=xa dt t f x F )()(是奇函数的充要条件是0=a ,即在所有原函数中只有一个函数是奇函数.④任何一个定义域是关于原点对称的函数都可以表示成一个奇函数与一个偶函数和的形式,即=)(x f 2)()(2)()(x f x f x f x f -++--.3、函数的有界性:设)(x f 在区间D 上有定义,如果存在0>M ,使得对一切D x ∈都有M x f ≤)(,则称)(x f 在D 上有界,否则称为无界,即对0>∀M ,若存在D x ∈0,使得M x f >)(,称)(x f 在D 上是无界的.注释:函数的有界性与x 的取值区间有关. 若函数xy 1=在区间),1(+∞上有界,但在)1,0(内是无界的,因为在这个区间上函数满足定义的M 不存在,即函数的有界性与x 的取值区间有关.4、函数的周期性:设)(x f 的定义域为D ,若存在常数0>T ,伎得对D x ∈∀,必有D T x ∈±,并且有)()(x f T x f =+成立,则称)(x f 是以T 为周期的周期函数,T 称为函数)(x f 的周期,所有周期中的最小正周期叫函数)(x f 的周期.注释:①周期函数的定义域必须是无限点集,但不能是有限区间. 如:x y tan =的定义域是(+∞∞-,)且....,2,1,0,2=+≠k k x ππ②若)(x f 的周期为T ,则)(φω+x f 的周期为ωT(0≠ω);③周期函数的和、差、积仍为周期函数,且周期为各个函数周期的最小公倍数,如:x x y 3cos 4sin +=周期是32,42ππ的最小公倍数π2,但也有例外,如:x sin ,x cos 的周期为2π,但x x y cos sin +=的周期为π;④周期函数的导数仍为周期函数,且周期不变; ⑤设)(x f 是周期为T 的函数,则它的原函数⎰=xadt t f x F )()(为周期函数的充要条件是0)(0=⎰Tdx x f ,或者说,周期函数的原函数不一定是周期函数,如:x x f cos 1)(+=是以2π为周期的函数,但其任一个原函数C x x x F ++=sin )(不是周期函数.⑥不是每一个周期函数都有最小正周期的,如:狄利克雷函数⎩⎨⎧=无理数有理数x x y ,0,1任何有理数r 都是它的周期,即若x 为有理数, r x +也是有理数,故有)(1)(r x f x f +==;若x 为无理数, r x +也是无理数,故)(0)(r x f x f +==,可见r 为)(x f 的周期,但它没有最小的正周期. 又如:C y =,C 为常数,它是周期为任意实数且没有最小正周期的周期函数.三、反函数设函数)(x f y =,其定义域为D ,值域为M ,如果对于M 中的某一个y 值(M y ∈),都可以从关系式)(x f y =确定唯一的x (D x ∈)与之对应,这样就确定了一个以y 为自变量的新函数,记为:)(1y fx -=,称函数)(1y f x -=为函数)(x f y =的反函数,它的定义域为M ,值域为D .注释:①习惯上自变量用x 表示,函数用y 表示,因此函数)(x f y =的反函数)(1y f x -=通常表示为)(1x fy -=.②反函数的定义域就是其原来函数的值域;反函数的值域就是原来函数的定义域,且有)]([)]([11x f f x x f f --==.③原来函数)(x f y =与其反函数)(1x fy -=的图像关于x y =对称(前提是在同一坐标系中),)(x f y =的图像与其反函数)(y x φ=的图像重合.④只有一一对应的函数才有反函数.⑤若)(x f 在区间I 内单调⇒)(x f 在区间I 内一定存在单值反函数,反之不一定成立,即若)(x f 在区间I 内存在单值反函数但)(x f 在区间I 内不一定单调,如: ⎩⎨⎧≤≤+≤--=10,101,)(x x x <x x f 在区间]1,1[-内存在单值反函数,但它在]1,1[-上不单调.四、复合函数若函数)(x u φ=在0x 处有定义,而)(u f y =在)(00x u φ=处有定义,则)]([x f y φ=称为由)(u f y =和)(x u φ=复合而成的复合函数,u 称为中间变量.注释:①只有当函数)(x u φ=的值域与)(u f y =的定义域的交集不是空集时才构成复合数. ②函数的复合:先利用外层函数关系,再利用内层函数关系而构成,如:设x x f sin )(=,x e x =)(φ,则x e x x f sin )](sin[)]([==φφ.③复合函数的分解:先找到外层函数关系,设其内部整体为中间变量u ,再依次分解,如:21)]sin [arctan(x x y +=,可设)sin arctan(x x u +=,x x v sin +=,则原来函数是由21u y = , v u arctan =,x x v sin +=复合而成.五、初等函数1、基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数这五类函数统称为基本初等函数.2、初等函数:由常数和五类基本初等函数经过有限次的四则运算和有限次复合运算且可用一个数学解析式表示的函数叫初等函数.注释:初等函数必须用一个式子表示,不能用一个式表示的函数不能称为初等函数,故分段函数一般不是初等函数.3、分段函数:若函数在其定义域内的不同部分上,分别用不同的表达式表示,这类函数称为分段函数.如:符号函数⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1sgn x x x x 是分段函数且是有界函数和奇函数.又如: x x x x x x x y sgn .0,,0,=⎩⎨⎧<-≥==是分段函数.注释:分段函数一般不是初等函数,但若)(x f 是初等函数,则⎩⎨⎧<-≥==.0)(),(,0)(),()()(2x f x f x f x f x f x f 是初等函数. 又如:取整函数[]x y =,即“不超过x 的最大整数”是分段函数. 又如:定义在R 上的狄利克雷(Dirichlet )函数⎩⎨⎧=.,0,1)(无理数有理数x ,x x D 是分段函数,且是有界的,)(x D 是周期函数,但没有最小的正周期,任何有理数都是它的周期,并且)(x D 还是偶函数.4、初等函数的几个特例设函数)(x f 和)(x g 都是初等函数,则(1))(x f 是初等函数,因为=)(x f []2)(x f ;(2)最大值函数max )(=x ϕ{})(),(x g x f 和最小值函数{})(),(min )(x g x f x =ψ都是初等函数,这是因为{}[])()()()(21)(),(max )(x g x f x g x f x g x f x -++==ϕ {}[])()()()(21)(),(min )(x g x f x g x f x g x f x --+==ψ (3)幂指函数)()]([x g x f y = (0)(>x f )是初等函数,因为)(ln )()](ln[)()()]([x f x g x f x g e e x f x g ==.1.2 极限一、数列极限的定义 1、数列极限的概念设}{n x 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时,有ε<-a x n ,则称数列}{n x 收敛于a ,而a 称为数列}{n x 的极限,记作:a x n n =∞→lim ,或a x n →(∞→n ).若数列}{n x 没有极限,则称数列}{n x 不收敛,或称}{n x 为发散数列. 若0lim =∞→n n x ,则称}{n x 为无穷小数列.定理 数列}{n x 收敛于a 的充要条件是:}{a x n -为无穷小数列. 2、有界数列的概念对于数列}{n x ,如果存在正数M ,使得对于一切的n x 都有不等式M x n ≤||成立,则称数列}{n x 是有界的;如果这样的正数M 不存在,则称数列}{n x 是无界的.注释:(1)若数列}{n x 收敛,则数列有界;(2)有界数列}{n x 不一定收敛,如:n n a )1(-=有界,但不收敛,所以数列有界是数列收敛的必要条件;(3)C C n =∞→lim (常数);01lim=∞→p n n (0>p );0lim =∞→nn q (1<q ); (4)等差数列的求和公式2)(1n n a a n S +=或d n n na S n 2)1(1-+=. (5)等比数列的前n 项和公式qq a S n n --=1)1(1.3、单调数列的概念对于数列}{n x ,如果满足条件 ≤≤≤≤≤+121n n x x x x ,则称数列}{n x 为单调增加数列;如果满足条件 ≥≥≥≥≥+121n n x x x x ,则称数列}{n x 为单调减少数列.单调增加数列和单调减少数列统称为单调数列. 定理(单调有界准则) 单调有界数列必有极限.二、函数极限1、∞→x 时,函数)(x f 的极限 (1)概念定义 如果当∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当∞→x 时的极限,记作:A x f x =∞→)(lim 或A x f →)((∞→x ).注释:(1)∞→x 是指x 的绝对值无限增大,它包含以下两种情况:x 取正值并无限增大,记作:+∞→x ;x 取负值且其绝对值无限增大,记作:-∞→x .(2)如果+∞→x 和-∞→x 两种情况都存在且函数的极限值相等时,则可合并写成∞→x . 定义 如果当+∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或A x f →)((+∞→x ).如果当-∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或A x f →)((-∞→x ).(2)函数)(x f 在∞→x 时极限存在的充要条件定理 极限A x f x =∞→)(lim 存在的充要条件是A x f x =+∞→)(lim 且A x f x =-∞→)(lim .如:由于2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,所以x x x x arctan lim arctan lim -∞→+∞→≠,故极限x x arctan lim ∞→不存在;又如:由于0lim =-∞→x x e ,+∞=+∞→x x e lim 即不存在,故极限xx e ∞→lim 不存在.2、0x x →时,函数)(x f 的极限 (1)函数)(x f 在0x x →时的极限概念定义 设函数)(x f 在0x 的某个去心邻域内有定义,如果当0x x →时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当0x x →时的极限,记作:A x f x x =→)(lim 0或Ax f →)((0x x →).注释:0x x →表示x 趋近于0x ,含以下两种情况:(1)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:+→0x x ; (2)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:-→0x x .(2)函数左极限与右极限的概念定义 设函数)(x f 在0x 的某个左侧邻域),(00x x δ-(0>δ)内有定义,如果当x 从0x 的左侧趋近于0x (记作:-→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当-→0x x 时的极限,记作:A x f x x =-→)(lim 0或A x f =-)(0或A x f =-)0(0.设函数)(x f 在0x 的某个右侧邻域),(00δ+x x (0>δ)内有定义,如果当x 从0x 的右侧趋近于0x (记作:+→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当+→0x x 时的极限,记作:A x f x x =+→)(lim 0或A x f =+)(0或A x f =+)0(0.(3)函数)(x f 在0x x →时极限存在的充要条件定理 极限A x f x x =→)(lim 0存在的充要条件是A x f x x =-→)(lim 0且A x f x x =+→)(lim 0.注释:该定理主要用来判定分段函数在分段点处极限是否存在的重要定理. (4)几个常用极限01lim=∞→x x ,C C x x =→0lim (常数),0sin lim 0=→x x ,1cos lim 0=→x x ,00lim x x x x =→. (5)初等函数的极限基本初等函数在定义域内任一点0x 的极限等于该点的函数值;初等函数在定义区间内任一点0x 的极限等于该点的函数值.3、函数极限的性质(1)唯一性:若极限)(lim 0x f x x →存在,则它的极限必唯一;(2)局部有界性:若)(li m 0x f x x →存在,则0>∃δ和0>M ,当δ<-<00x x 时,有M x f ≤)(;(3)保序性:设A x f x x =→)(lim 0,B x g x x =→)(lim 0,(Ⅰ)若B A >,则0>∃δ,当δ<-<00x x 时,有)()(x g x f >; (Ⅱ)若当δ<-<00x x 时,有)()(x g x f >,则B A ≥.(4)保号性:若0)(lim 0>=→A x f x x (或<0),则必0>∃δ,当δ<-<00x x 时,有0)(>x f (或0)(<x f )若0)(>x f (或0)(<x f ),且A x f x x =→)(lim 0,则0≥A (或0≤A ).注释:①上述的变化趋势0x x →,可以换成-→0x x ,+→0x x ,∞→x ,-∞→x ,+∞→x②若)0(0)(<>或x f ,且A x f x x =→)(lim 0,则0>A )0(<或是错误的,如)0(0)(2≠>=x x x f ,但0)(lim 0=→x f x1.3 极限的运算法则若)(lim x f ,)(lim x g 都存在,则(1)[])(lim )(lim )()(lim x g x f x g x f ±=±;(2)[])(lim )(lim )()(lim x g x f x g x f ±=,特别地)(lim )(lim x f C x Cf =; (3))(lim )(lim )()(limx g x f x g x f =,其中0)(lim ≠x g ; (4))]([lim )]([lim x g f x g f =; (5)[],)(lim )(lim )(lim )(x g x g x f x f =其中0)(lim >x f 且不等于1,特别地[]αα)(lim )](lim[x f x f =(α为实数). 注释:①法则(1)(2)可以推广到有限个函数.②0x x →时有理分式极限的求法设)(x R 是有理分式,01110111)()()(b x b x b x b a x a x a x a x Q x P x R n n n n n n n n m n ++++++++==---- ,其中0≠n a ,0≠n b .(1)若0)(0≠x Q m ,则)()()()(lim 0000x R x Q x P x R m n x x ==→;(2)若0)(0=x Q m ,而0)(0≠x P n ,则∞=→)(lim 0x R x x ;(3)若0)(0=x Q m 且0)(0=x P n ,则)(x P n 与)(x Q m 一定有公因子)(0x x -,将)(x P n 与)(x Q m 因式分解,约去公因式后再计算极限.③∞→x 时有理分式极限的求法⎪⎪⎩⎪⎪⎨⎧<∞=>=∞→.,.,.,0)(lim 时当时当时当n m n m b an m x R n n x 其中0≠n a ,0≠n b . ④无理分式极限的求法:先分子或分母有理化,在计算极限 ⑤“∞-∞”型有理分式的求法:先通分,再求极限.1.4 极限存在准则及两个重要极限一、极限存在准则夹逼定理:如果对于0x 的去心邻域内的一切x 都有)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0.二、两个重要极限 1、1sin lim0=→xx x ,1sin lim 0=→x x x ,一般的1sin lim0=∆∆→∆,∆表示任一函数)(x u ,即1)()(sin lim 0)(=→x u x u x u ;2、e xxx =+∞→)11(lim ,e x x x =+→10)1(lim ,一般的e =∆+∆∞→∆)11(lim ,e =∆+∆→∆10)1(lim ,∆表示任一函数)(x u ,即e x u x u x u =+∞→)()())(11(li m ,e x u x u x u =+→)(1)())(1(lim .1.5 无穷小量与无穷大量、无穷小的比较一、无穷小量1、无穷小量的概念若0)(lim 0=→x f x x (或0)(lim =∞→x f x ),则称)(x f 是0x x →(或∞→x )时的无穷小量,简称无穷小;2、极限与无穷小量的关系α+=⇔=∞→→A x f A x f x x x )()(lim )(0,其中α是0x x →时的无穷小量.|)(|)(lim )(0A x f A x f x x x -⇔=∞→→是0x x →(或∞→x )时的无穷小量.3、无穷小量的性质(1)有限个无穷小量的和、差、积仍然是无穷小量,(2)有界函数与无穷小量的乘积是无穷小量。
第一讲:函数的极限与连续
例11求极限
三、连续
(一).理解函数在一点处连续的概念,函数在一点 处连续与函数在该点处极限存在的关系。会判断分段函数 在分段点的连续性。
连续定义: 例1、(1)如,讨论在处的极限是否存在
(2) 如果存在,求b
(二).理解函数在一点处间断的概念,会求函数的 间断点,并会判断间断点的类型。
1、找间断点:(1)初等函数---无定义点;(2)分段函数--分段点
在工程中,常以无理数e=2.718 281 828…作为指数函数和对数 函数的底,并且记,而后者称为自然对数函数。
图1-4
(4)三角函数 三角函数有 正弦函数、 余弦函数、 正切函数、 余切函数、 正割函数和余割函数。 其中正弦、余弦、正切和余切函数的图形见图1-4。
(5)反三角函数
图1-5
反三角函数主要包括反正弦函数、反余弦函数、反正切函数和反 余切函数等.它们的图形如图1-5所示。 (6)常量函数为常数 (为常数)
例2、(1);(2);(3); (4); (5); (6);(7)
(三).理解“一切初等函数在其定义区间上都是连 续的”,并会利用初等函数的连续性求函数的极限。
(四).掌握闭区间上连续函数的性质:最值定理(有 界性定理),介值定理(零点存在定理)。会运用介值定理推 证一些简单命题。
定理1(最值存在定理):
为自变量在此变化过程中的无穷小量(简称无穷小),记作.其
中“”是简记符号,极限的条件可以是,,中的某一个.
定义2 在自变量的某一个变化过程中,变量的绝对值无限增
大,则称为自变量在此变化过程中的无穷大量(简称无穷大),记作.
其中“”是简记符号,极限的条件可以是,,中的某一个.
2、(无穷小量的代数性质):
高等数学(微积分学)教学课件
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数 极限 连续1.1 数列极限的求法一 基本概念 数列极限、数列收敛、数列发散 1. 数列极限:lim n n x a →∞=描述语言:当n 充分大时,数列一般项n x 无限趋于(无限接近,充分接近)某个确定的常数a ,则称a 就是数列{}n x 的极限.“N ε-”语言:0ε∀>,N ∃,当n N >时,有n x a ε-<. 二 基本结论1. 收敛数列性质:唯一性;有界性;保号性;子序列的收敛性.2. 单调有界原理:单调有界数列必有极限;或叙述为:单调增加有上界必有极限,单调减少有下界必有极限.3. 夹逼法则:若n n n y x z ≤≤,n N >,且lim lim n n n n y z a →∞→∞==,则lim n n x a →∞=.4. 数列极限运算法则:设lim n n x A →∞=,lim n n y B →∞=,那么(1)lim()n n n x y A B →∞±=±;(2)lim n n n x y AB →∞⋅=;(3)lim(0)n n n x AB y B→∞=≠. (4)lim()ny B n n x A →∞=5. 两个重要极限:10lim(1)e xx x →+=;0sin lim1x xx→=.这两个极限公式可以推广为:当0x x →时,()0f x →,则1()lim(1())e f x x x f x →+=;0sin ()lim1()x x f x f x →=.三 基本方法数列极限的未定式(不确定型)有八种形式:00;∞∞;0⋅∞;∞±∞;1∞;0∞;00;无限个无穷小的和.1. 取大原则 (极限的形式是∞∞,分子和分母同除以n 的最大次幂) 例1 求下列极限:(1)2221lim 21n n n n n →∞+--+; (2)n2. 有理化法(当分子或分母含有根式时,n 的最大次幂有抵消,一般要考虑分子有理化或分母有理化,或分子、分母同时有理化,通过有理化,明确抵消后剩余部分)例2 求下列极限:(1)n →∞; (2))n n →∞.3. 夹逼法则 (当数列的一般项不是关于n 代数式或为无限个无穷小的和)例3 求120lim d 1sin nn x x x→∞+⎰. 解 解此题的关键是将积分表示为关于n 的代数式,显然没办法直接积分,只能通过 对被积函数的放缩,达到可积的目的.1111200110d d 1sin 11n nn x x x x x x n n +≤≤==+++⎰⎰, 所以120lim d 01sin nn x x x→∞=+⎰. 例4 求22212lim()12n nn n n n→∞++++++L (说明将分子n 变成m 的结果) 解 无限个无穷小的和是数列极限的未定式的一种常见的形式,解决此类问题常见方法有:夹逼法则;定积分;Stolz 定理.本题应用夹逼法则:22222121212121n n nn n n n n n n ++++++≤+++≤+++++L L L 由于2212121limlim 12n n n n n n n →∞→∞++++++==++L L ,于是222121lim()122n n n n n n →∞+++=+++L4. 单调有界原理(数列一般项不是关于n 的代数式,而是有规律的给出一般项;或是一般项的递推公式)解决此类问题的具体方法:1. 证明单调;2. 证明有界;3. 通过递推公式求极限. 例5 若数列{}n a满足1a >,11()2n n naa a a +=+,证明数列极限存在,并求之. 证明单调性:因为11()2n n naa a a +=+≥ ()21102n n n na a a a a +-=-≤ 或 1n n a a +≤ 于是,数列{}n a 单调递减.有下界:显然有下界. 根据单调有界原理:极限存在.令lim n n a x →∞=,对递推公式两边取极限,有12a x x x ⎛⎫=+ ⎪⎝⎭,解方程得x =lim n n a →∞=例6L 收敛,并求其极限. 证明令1x =2x =n nx =n x =,用数学归纳法可以证明:数列{}n x 单调增加,有上界。
证明单调增加:显然21x x >,假设1n n x x ->1n n x x +>,所以数列{}n x 单调增加.证明有上界:12x <,假设12n x -<,显然2n x =<,故对所有的n ,有2n x <。
所以数列{}n x 有上界,根据单调有界原理,数列{}n x 收敛. 设lim n n x a →∞=,对n x =两端取极限,则有a =2a =注 关于数列的界,可用观察和归纳的方法得到,然后给予证明.如果没有更简便的方法证明有界性,可以使用数学归纳法.5. 验证法 (给出数列递推公式,而此数列并非是单调的)具体方法:假设极限存在,根据递推公式求出极限,并给予证明.证明是必要的.例7 设12x =,112n nx x +=+,求lim n n x →∞.解 令lim n n x a →∞=,对递推公式两边取极限12a a=+,得1a =.下面证明1a =+{}n x 的极限. 11111111112(2)44n n n n n n x a x a x a x a x a x a -------=+-+=≤-≤≤-L , 所以lim 0n n x a →∞-=,故lim 1n n x →∞=.注1 验证是必须的!例如112,21n n x x x +==+,求lim n n x →∞.事实上,该数列的极限并不存在,但是若令lim n n x a →∞=,则可以求出1a =-.所以说证明是必须的.注2 事实上,例5和例6也可以用验证法,请同学们给出证明。
要说明的是:证明lim n n x a →∞=,只需证明lim 0n n x a →∞-=。
证明lim 0n n x a →∞-=,应用夹逼法则,即111n n n x a r x a r x a ---≤-≤≤-L (1r <)6. 公式法 (若极限的未定式是1∞型,最好利用极限公式)例8 求1(1)1lim sin n n n n n n+→∞+ 解 因为111(1)111(1)11lim sin limsin /lim(1)(1)n n n n n n n n n n e n n n n n n n+++→∞→∞→∞++=⋅=++= 7. 转换法 (将数列极限转换成函数极限,具体的说:令n x =,则x →∞或令1x n=则0x →,这是求数列极限的一个重要方法.例9 设,0a b >,试求lim nn →∞⎝⎭解 极限为不定式1∞,于是利用极限公式lim lim 1nn n →∞→∞⎛= ⎝⎭⎝⎭而02lim 2x x n x a b x→∞→+-== 所以lim nn e →∞==⎝⎭注 一般的,如果极限形式是1∞的形式,套用极限公式1()lim(1())(()0)f x f x e f x +=→,其余的工作就是求指数部分的极限了.8. 定积分法如果极限的形式表现为表现为无穷项的和或积的形式或∑和∏的形式.(积或∏的形式可以利用恒等变换公式:ln NN e=将积的形式化成和的形式)定积分法原理:1011111lim lim ()nn n n k k k k f f f x dx n n n n →∞→∞==-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑⎰.应用定积分方法的具体步骤:1. 将无穷项的和或积的形式表示成∑的形式;2. 制作1n ∑(每项提取1n); 3. 将∑里面表示成关于kn的函数式; 4. 将kn换成x ,此时∑里面的式子就是被积函数()f x .于是极限就是()f x 在(0,1)上的定积分.例10 计算lim n →∞⎛⎫++L 解1100111limlim arcsin26nn n n k k xn π→∞→∞======⎰注:此题不能应用夹逼法则. 例11n 解 首先将积的形式变成和的形式1[ln ln(1)ln((1))]ln lim n n n n n nn n e +++++--→∞=L 111[ln1ln(1)ln(1)]lim n n n nn e-+++++→∞=L1110011ln(1)ln(1)d [ln(1)ln(1)]4lim nk k x x n nx x x x n ee e e=-+++-++→∞∑⎰====.9. 相减法(Stolz 定理)如果极限表示为分式的形式,分子或分母表示为无穷项的和,需要考虑相减法.这样可以使无穷项变成有限项.Stolz 定理:如果满足lim n n y →∞=∞,1n n y y +>,11limn nn n nx x y y +→∞+--存在,则有11limlim n n n n n n n nx x x y y y +→∞→∞+-=-. 例12 求22231lim[13(21)]n n n→∞+++-L 解 22231lim [13(21)]n n n →∞+++-L 233(21)4lim (1)3n n n n →∞+==+-例13 求极限()11lim12pp p p n n n+→∞+++L .解 ()11lim12p p pp n n n+→∞+++L 11111lim lim1(1)1(1)1pp p n n p nnn n p n++→∞→∞+===+-++- 10. 相除法如果极限的形式表示为n 次方根的形式,则我们需要考虑相除法. 基本原理:若 1limn n na a a +→∞=,则1lim lim n n n n aa a +→∞→∞==例14求n 解n 1lim 01n n →∞==+ 练习1.11.用取大原则求下列极限:(1)11(2)3lim (2)3n nn n n ++→∞-+-+;(2)3(21)(31)(41)lim5n n n n n →∞+++;(3)n2.用有理化法求下列极限: (1)limn →∞;(2)lim n n →∞;(3)lim(n n →∞+.3.用夹逼法则求下列极限: (1)lim n →∞⎛⎫+L ; (2)22221111lim (1)(2)()n n n n n n →∞⎛⎫++++⎪+++⎝⎭L ; (3)10lim 1nnn x dx x →∞+⎰. 4.用Stole 引理求下列极限:(1)222312(21)lim n n n →∞+++-L ;(2)212limn nn →∞+++L ;(3)1lim n n→∞+L ;(4)111lim(1)ln 2n n n→∞+++L .5.用相除法求下列极限:(1)n ; (2)n . 6.用转化法求下列极限: (1)1lim (1)nn n e →∞-;(2)lim 1)ln n n n →∞;x =,当n →∞时,1x →,1)ln n n = 7.用定积分法求下列极限 (1)221limnn k nn k →∞=+∑;(2)n ;(3)设()f x 在[0,1]连续,()0f x >,求n (4)112limsin sin sin n n n n n n πππ→∞⎛⎫+++ ⎪⎝⎭L (5)limn n→∞8.用公式法求下列极限:(1)lim nn →∞⎝⎭; (2)165lim 7n n n n +→∞+⎛⎫⎪-⎝⎭;(3)21221lim 1n n n n n n +→∞⎛⎫++⎪-+⎝⎭; (4)222lim 1n n n n n n -→∞⎛⎫+⎪-+⎝⎭.9. 设110x =,n x =(2,3)n =L ,试证数列{}n x 极限存在,并求此极限.(分别用单调有界原理和验证法解此题)1.2 函数极限的求法一 基本概念 函数极限;左极限、右极限(单侧极限);无穷小;无穷大; 1. 函数极限:0lim ()x x f x A →=;lim ()x f x A →∞=描述语言:当x 趋于0x 时,()f x 无限趋近(接近)于某个常数A .“εδ-”语言:0ε∀>,0δ∃>,对任意的0()x U x ∈o,有()f x A ε-<.2. 左极限(右极限):0lim ()x x f x A -→=或0()f x A -=(0lim ()x x f x A +→=或0()f x A +=) 描述语言:当x 从0x 左(右)侧趋于0x 时,()f x 无限趋近于某个常数A .“εδ-”语言:0ε∀>,0δ∃>,对任意的00(,)x x x δ∈-(00(,)x x x δ∈+),有()f x A ε-<.3. 无穷小和无穷大:若0lim ()0x x f x →=,则称在0x x →过程中,()f x 是无穷小量;若01lim0()x x f x →=,则称在0x x →过程中,()f x 是无穷大量;注1 极限的存在与否以及极限的大小和函数在该点的情况(是否有定义和函数值大小)无关;注2 无穷小是一个变量,但0是无穷小.于是若()f x 是无穷小量,1()f x 未必是无穷大量。