高一三角同步练习6(化简与证明)
必修4--三角函数的化简、求值与证明综合练习
必修4—三角函数的化简、求值与证明练习A 组1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于---------------( ) A、3 B、3- C 、23 D 、23-2、函数222y sin x x =-+的最小正周期 -------------------------------( )A 、2πB 、πC 、3πD 、4π3、tan 70cos10201)-等于 -------------------------------------------------( )A 、1B 、2C 、-1D 、-24、已知46sin (4)4m m mαα-=≠-,则实数m 的取值范围是______。
5、设10,sin cos 2απαα<<+=,则cos2α=_____。
6、化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+ 7、设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值。
8、求证:sin(2)sin 2cos().sin sin αββαβαα+-+=9、已知11sin()cos [sin(2)cos ],022αβααβββπ+-+-=<<,求β的值。
10、 已知tan 2α=2,求(I )tan()4πα+的值; (II )6sin cos 3sin 2cos αααα+-的值.11、已知函数2()2sin sin 2,[0,2].f x x x x =+∈π求使()f x 为正值的x 的集合.12、已知函数f (x )=-3sin 2x +sin x cos x .(Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41,求sin α的值.B 组1、已知1sin()43πα-=,则cos()4πα+的值等于-----------------------------------( ) A、3 B、3- C 、13 D 、13-2、已知tan α、tan β是方程240x ++=的两根,且(,)22ππαβ∈-、,则αβ+等于 ------------------------------------------------------------------------------------------------( )A 、3π B 、23π- C 、3π或23π- D 、3π-或23π3、化简23cos (1sin )[2tan()]422cos ()42x xx x ππ+---为 --------------------------------( )A 、sin xB 、cos xC 、tan xD 、αtan 14、22sin 2cos 1cos 2cos 2⋅=+αααα-------------------------------------------------------------------( )(A) tan α (B) tan 2α (C) 1 (D)125、函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为( )(A )1 (B )22,1- (C )22- (D )22,1 6、设a 为第四象限的角,若 513sin 3sin =a a ,则tan 2a =______________. 7、已知tan2α=2,则tanα的值为 ,tan ()4πα+的值为8、已知tan()34πθ+=,则2sin 22cos θθ-的值为_______。
高一数学,三角函数同步练习题,同角三角函数化简与证明
三角函数同步练习6:同角关系化简与证明一、选择题1、已知cos α= - 1213,α∈(π,2π),则tan α的值是 ( ) A .513 B .512 C .125 D .± 5122、化简 160tan 112+的结果为 ( )A .-cos160°B .cos160°C .±cos160°D .-sec160°3、若是α第二象限角,则1sin 1tan 2-αα化简的结果是 ( ) A .1 B .-1 C .tan 2α D .-tan 2α4、若0cot tan cos cos sin sin 22=++θθθθθθ,则θ不可能是 ( )A .第一、第二、第三象限角B .第一、第二、第四象限角C .第一、第三、第四象限角D .第二、第三、第四象限角5、如果角θ满足1cos sin =+θθ,那么θθcot tan +的值是 ( )A .1-B .0C .1D .不存在6、若θ为二象限角,且2cos 2sin 212sin 2cosθθθθ-=-,那么2θ是A .第一象限角B .第二象限角C .第三象限角D .第四象限角7、若2tan =x , 则()()x x x x sin cos cos 3sin 1--的值为:A .3-B .5-C .3D .58、函数()=x f 1cos 1tan 2tan 1cos 122-++x x xx 值域中元素的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题1、化简sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β=.2、化简40sin 140sin 40cos 40sin 212---= .3、若ααααsin 1sin 1sin 1sin 1+---+ = -2 tan α,则角α的取值范围是 .三、解答题1、化简:tan α(cos α-sin α)+ααααcos 1)tan (sin sin ++.2、求证:1tan 1tan cos sin cos sin 2122-+=-+αααααα.3、求证:ααααααααcot tan cos sin 2cot cos tan sin 22+=++.4、已知cos B = cos θsin A , cos C = sin θsin A ,求证:sin 2A +sin 2B +sin 2C = 2.参考答案一、选择题BABB DCDD二、填空题1、1;2、αtan 1-;3、()Z k k k ∈+<<+,22322ππαππ 三、解答题1、αsin2、左边αααααα2222cos sin cos sin 2cos sin -++=()αααα222cos sin cos sin -+= =-+=-+=1tan 1tan cos sin cos sin αααααα右边. 3、 ∵()()()ααααααααααcot cos 1tan sin 1cot cos tan sin cot tan 2222-+-=+-+ ααααααααααcos sin 2cos sin sin cos cot sin tan cos 22=+=+= ∴ααααααααcot tan cos sin 2cot cos tan sin 22+=++.4、∵A B 222sin cos cos θ=,A C 222sin sin cos θ=,∴()A C B 22222sin sin coscos cos θθ+=+, 即:A C B 222sin sin 1sin 1=-+-,∴2sin sin sin 222=++C B A .。
(完整版)三角函数化简求值证明技巧
第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。
练习:已知sin(α+β)=,cos(α-β)=,求的值。
2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
三角函数化简和证明()
三角函数的化简、求值与证明(3)主化锐:当已知角是90 到360内的角时,可利用180,270,360ααα--- 的诱导公式把这个角的三角函数值化为0 到90 内的角.二. 两角和与差的三角函数公式1. 两角和与差的正弦公式:()sin αβ±=______________.变形式:()()sin sin αβαβ++-=_______()();sin sin αβαβ+--=_______;2.两角和与差的余弦公式:()cos αβ±=__________________变形式:()()cos cos αβαβ++-=_____________;()()cos cos αβαβ+--=__________;3.两角和与差的正切公式:()tan αβ±=___________())2k k Z παβαβπ+≠+∈(、、.变形式:tan tan αβ±=_________________.【例1】计算:2(sincos )tan()643πππ++-=【例2】已知tan α=sin()cos()()sin()sin()n n n n n αααα+π-π∈+π+-πZ 的值.【例3】函数()cos()sin(),22xx f x x =-+π-∈R . (1)求()f x 的最小正周期有最大值; (2)求)(x f 在[0,)π上的减区间.【例4】若[0,2α∈π]sin co s αα=+,则α的取值范围是( ) A.(0,)2π B.(,)2ππ C.(,)23ππ D.(,2)23ππ【例5】已知关于x 的方程221)0x x m -++=的两根为s i nc o s θθ、,其中(0,2)θπ∈.(1)求m 的值;(2)求sin cos 1cot 1tan θθθθ+--的值.【例6】已知02x π-<<,1sin cos 5x x +=. (1)求sin cos x x -的值;(2)求sin 22cos21tan x x x++的值.针对性训练1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 ( ) A、3 B、3- C 、23 D 、23- 2、函数22y sin x x =- ( ) A 、2π B 、π C 、3π D 、4π3、tan70cos10201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-24、已知46sin (4)4m m mαα-=≠-,则实数m 的取值范围是______。
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.在中,求证:.【答案】见解析【解析】证明:,同理可得,,.【考点】本题主要考查余弦定理、半角公式。
点评:涉及三角不等式的证明问题,往往要考虑三角函数的单调性、有界性,本题利用“放缩”思想,达到证明目的。
2.在中,求证:.【答案】见解析【解析】证明:,同理可得,,.【考点】本题主要考查余弦定理、半角公式。
点评:涉及三角不等式的证明问题,往往要考虑三角函数的单调性、有界性,本题利用“放缩”思想,达到证明目的。
3.函数y=tan x是A.周期为π的偶函数B.周期为π的奇函数C.周期为π的偶函数D.周期为π的奇函数【答案】B【解析】函数定义域关于原点对称,且,所以函数为奇函数;又因为=tan x,所以周期为π,故选B。
【考点】本题主要考查三角函数的性质。
点评:简单题,利用周期函数、奇偶函数的定义判断。
4.已知θ角终边上一点M(x,-2),,则sinθ=____________;tanθ=____________.【答案】【解析】由三角函数定义,所以=3,,故sinθ=,tanθ=。
【考点】本题主要考查任意角的三角函数定义、同角公式。
点评:待定系数法的应用,分类讨论思想的应用,常考题型5.设(m>n>0),求θ的其他三角函数值.【答案】见解析。
【解析】∵m>n>0,∴>0∴θ是第一象限角或第四象限角.当θ是第一象限角时:sinθ==tanθ=当θ是第四象限角时:sinθ=-tanθ=【考点】本题主要考查任意角的三角函数同角公式。
点评:运用了平方关系求值时,要特别注意讨论开方运算中正负号的选取。
6.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°【答案】2【解析】原式=2-(sin221°+cos 221°)+sin217°(sin217°+cos 217°)+cos 217°=2-1+sin217°+cos 217°=1+1=2【考点】本题主要考查任意角的三角函数同角公式。
6-三角函数的化简与求值(练习)
值为1,求常数a的值.
【解析】f(x)=sin(x+ )+sin(x- )+cos x+a
6 6
= 3 sin x+cos x+a=2sin(x+ )+a.
6
由a+2=1,得a=-1.
1.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角 与特殊角之间的关系,利用三角变换消去非特殊角,转化为求 特殊角的三角函数值问题;
3 6 3 3
(2)化简
2 2 tan α tan 2α + 3 (sin α-cos α). tan 2α tan α
【分析】此三角函数式出现两类函数,利用两角和与差公式 统一函数成为化简的主要目标. 【解析】(1)sin(3x+ )cos(x- )+cos(3x+ )cos(x+ )
3 6 3 3
4 2 4
3
由sin(β- )= ,知cos(β- )=- , 4 13 4 13
cos(α+ )=cos [(α+β)-(β- )]
4 4
12
5
=cos(α+β)cos(β- )+sin(α+β)sin(β- )
4 4
= ×(- )+(- )× =- .
4 5
5 13
3 5
(2)给值求值:给出某些角的三角函数式的值,求另外一些角
的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α +β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意
2021上海沪教新版高一数学下学期同步练习6.3.1正弦定理详解版(01)
6.3.1正弦定理(作业)一、单选题1.(2020·上海高一课时练习)在ABC 中,2a =,1c =,则C 的取值范围是( ).A .0,6π⎛⎤ ⎥⎝⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,62ππ⎛⎫ ⎪⎝⎭D .0,2π⎛⎫ ⎪⎝⎭2.(2020·上海高一课时练习)在ABC 中,5a =,45B =,105C =,则b 等于( )A .2B .10C .D .3.(2020·上海高一课时练习)在ABC 中,80a =,100b =,30A ︒=,则B 的解的个数是( ) A .无解B .两个解C .一个解D .不确定4.(2020·上海高一课时练习)在ABC 中,若2C B =,则b 等于( )A .2sin cBB .2cos cBC .2sin cCD .2cos cC5.(2020·上海高一课时练习)在ABC 中,用三个角A ,B ,C 或三条边长a ,b ,c 及外接圆半径R 表示三角形的面积S ,下列式子中正确的是( ) ①4abcS R =;②22sin sin sin =S R A B C ;③sin sin =S aR B C ;④1sin sin sin 2S A B C =. A .①②B .①②③C .①④D .②③6.(2020·上海高一课时练习)在ABC 中,45,60,1︒︒===B C c ,则最小边长等于( ).A B C .12D 7.(2020·上海高一课时练习)已知下列条件解三角形,其中有唯一解的是( ) A .20,28,40︒===a b A B .18,20,150︒===a b A C .20,34,70︒===b c BD .60,50,45︒===b c B8.(2020·上海高一课时练习)在ABC 中,3,30︒===a c A ,则ABCS=_________.9.(2020·上海高一课时练习)在ABC 中,若30,10︒===A a b ,则B =________. 10.(2020·上海高一课时练习)在ABC 中,若3,10,30︒===a b C ,则ABCS=__________.11.(2020·上海高一课时练习)在ABC 中,若20a =,11b =,30B =,则sin A =_________. 12.(2020·上海高一课时练习)半径为1的圆内接三角形的面积为14,则三边之积abc =________.13.(2020·上海高一课时练习)在ABC 中,若45,15,2︒︒===B C b ,则该三角形的最长边等于________.14.(2020·上海高一课时练习)在ABC 中,若30,45,10︒︒===A B a ,则b =________. 15.(2020·上海高一课时练习)ABC 的三内角为A ,B ,C ,且方程2()0+++=Bx A C x B 有两个相等的实数根,若cos cos =a C c A ,则ABC 是________三角形. 16.(2020·上海高一课时练习)若ABC 的外接圆半径为12,则2sin sin b C B c+=_________. 17.(2020·上海高一课时练习)若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为_______18.(2020·上海高一课时练习)在ABC 中,满足条件4,45a b A ︒===的ABC 的个数是________.19.(2020·上海高一课时练习)在ABC 中,若30,8,︒===A a b ,则ABC 的面积等于_________. 三、解答题20.(2020·安徽宣城市·高一期中)△ABC 中,a =7,c =3,且sin sin C B =35. (1)求b ;21.(2020·广东深圳市·红岭中学高一月考)在ABC ∆中,已知4B π=,c =3C π=,求,,A a b 的值.22.(2020·贵港市覃塘区覃塘高级中学高一月考)(1)等比数列{}n a 中,210S =,315S =,求n S .(2)在ABC ∆中,已知030,2B c b ===,求ABC ∆的面积23.(2020·全国高一专题练习)在ABC ∆中,若cos b a C =,试判断ABC ∆的形状.24.(2019·四川眉山市·仁寿一中高一月考)已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若sin cos a C A =.(1)求角A .(2)若a =2c =,求ABC 的面积.25.(2020·四川成都市·成都外国语学校高一期中(文))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a b c bc a b c-+=+-. (1)求角A ;(2)若ABC 的外接圆半径为1,求ABC 的面积S 的最大值.26.(2020·四川省成都市盐道街中学高一期中)已知A 、B 、C 为ABC 的三内角,且其对边分别为a 、b 、c ,若cos (2)cos 0a C c b A ++=. (1)求A .(2)若a =4b c +=,求ABC 的面积.27.(2019·四川成都市·成都七中高一月考)已知△ABC 中,,33BAC AB π∠==,BD DC λ=,且ACD ∆. (1)若3λ=,求AC 的长;(2)当线段BC 的长度最小时,求λ的值.28.(2021·江苏省锡山高级中学高一期末)如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.29.(2020·辽河油田第二高级中学高一期中)ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c .已知sinsin()2A Ca b B C +=+. (1) 求B ;(2) 若ABC ∆为锐角三角形,且2c =,求ABC ∆面积的取值范围。
高中数学三角函数专题专项练习(非常好)
高中数学三角函数专题专项练习(非常好)三角函数疑难点解析】一、忽略隐含条件例3:若sinx+cosx-1>0,求x的取值范围。
正解:2sin(x+π/4)>1,由sin(x+π/4)>1/√2得2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)∴2kπ+π/4<x<2kπ+5π/4(k∈Z),即x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。
改写后:对于不等式sinx+cosx-1>0,可以化简为2sin(x+π/4)>1.由于sin(x+π/4)>1/√2,所以可以得到2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)。
进一步化简得到x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。
二、忽视角的范围,盲目地套用正弦、余弦的有界性例4:设α、β为锐角,且α+β=120°,讨论函数y=cos2α+cos2β的最值。
正解:y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-cos(α-β),可见,当cos(α-β)=1时,ymin=0;当cos(α-β)=-1时,ymax=2.分析:由已知得30°<α,β<90°,∴-60°<α-β<60°,则-1<cos(α-β)≤1,∴当cos(α-β)=1,即α=β=60°时,ymin=0,最大值不存在。
改写后:已知α、β为锐角,且α+β=120°,求函数y=cos2α+cos2β的最值。
根据cos2θ=1-2sin2θ和cos(α+β)=cosαcosβ-sinαsinβ,可以得到y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-co s(α-β)。
当cos(α-β)=1时,即α=β=60°时,ymin=0,最大值不存在。
【高考风向标】高考数学一轮复习 第六章 第6讲 三角函数的求值、化简与证明课件 文
设 φ(t)=t+4t ,由(1)知 t∈[1, 2], ∴φ′(t)=1-t42<0, 即函数 φ(t)在区间[1, 2]上是减函数, 其最小值为 φ( 2)= 2+ 42=3 2. 即 x=π4时,函数 f(x)的最小值为 3 2. 【失误与防范】认清二次函数问题是解决问题的关键,例如: 若 sinα+cosα 是“一次”,则 sinαcosα 是“二次”;若 1+k是“一 次”,则 2k+1 是“二次”等.
∵x∈0,2π,∴x+π4∈π4,34π. ∴ 2sinx+π4∈[1, 2]. ∴sinx+cosx 的取值范围是[1, 2]. (2)设 t=sinx+cosx,则 t2=(sinx+cosx)2=1+2sinxcosx,2sinxcosx=t2-1. 则 f(x)=2ssiinnxxc+oscxo+sx5=t2+t 4=t+4t .
=-2sicno2s05°0s°in70°=-2sicno2s05°0c°os20°
=-cossin5400°°=-cocso5s05°0°=-1.
切化弦和边角统一都是基本方法.关于三角形中的 三角函数问题,边角的统一是问题的切入点,等式右边的分子分 母均为 a,b,c 的二次齐次式,所以考虑使用余弦定理.
易错、易混、易漏 11.三角函数中的二次函数问题,忽视了自变量范围的研究 例题:已知函数 f(x)=2ssiinnxxc+oscxo+sx5,x∈0,2π.
(1)求 sinx+cosx 的取值范围; (2)求函数 f(x)的最小值.
正解:(1)sinx+cosx=
2
22sinx+
2
2
cosx
= 2cos4πsinx+sinπ4cosx= 2sinx+π4.
2.三角公式的三大作用 (1)三角函数式的化简. (2)三角函数式的求值. (3)三角函数式的证明. 3.求三角函数最值的常用方法 (1)配方法. (2)化为一个角的三角函数. (3)数形结合法. (4)换元法. (5)基本不等式法等.
高一三角函数公式及诱导公式习题(附答案)
三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。
三角函数化简练习题及答案
三角函数化简练习题及答案1.能正确运用三角公式,进行简单三角函数式的化简和恒等式证明2.掌握三角函数式的化简和证明的方法及步骤。
1.cosαcosβ=sinαcosβ=2.sinθ+sinφ= ;sinθ-sinφ= ;cosθ+cosφ= ; cosθ-cosφ=1cos2a1.已知tan ? ? ,则sin2a?2的值是4cos2a-4sin2a5A.B.?22C. 1D.?114142.?sin22?cos4等于A.C. sin B.D.4?cos?3coscos. 1 a等于 cosa-sina?sin2asinA.C. cosa sina B. cos2aD sin2a4.化简2?sin4?2?2cos4的结果是sin? sin?]可化简为. ? ?)cosa ?[sin?sin?B. ?sinC. sin?D. 0?)??)等于.化简4北京一对一上门家教品牌家教电话:010—6256125 xx??x2xx A. tanx B.tanxtan2tan222cos100-sin200的值是 D.1 A. C.2. tan700?cos100等于化简 ??a?cos?a-cos?a10. cos sina a?sin???11.如果tana,tna?是方程x2?3x?3?0两根,则。
cossin12.2cos2a?1化简2?a)sin24413.求证: sinsin??2cos?sina sina1214.讨论函数f?cos?cos??2coscosxcos?的值域、周期性、2奇偶性及单调性北京一对一上门家教品牌家教电话:010—6256125515.设sin??msin?2?????m?0?,????k??k?z?,求证:tan??????无论是化简还是证明都要注意:角度的特点函数名的特点化切为弦是常用手段升降幂公式的灵活应用1?mtan? 1?m3.2.2三角函数化简及证明111.[cos+cos];[sin+sin];22.2sin3.2cos???2coscos???22;2cos;-2sin???22sinsin???22; ???2?????????1.C2.D3.B4.2sin25.C.6.B北京一对一上门家教品牌家教电话:010—62561255 7.C8.C9.-210.cos?11.?12.cos2a?1-a)??cos2=2cosa?113. ?a)?-a)442cos2a-1cos2a? ? 1 cos2acos2a2证明∵sin?2cossina=sin[?a]?2cossina=sincosa?cossina?2cossina=sincosa?cossina=sin[-a]=sin?.sinsin?两边同除以sina?2cos=.sinasina12214.解:f?[2cos?1]?cos??2coscosxcos?12 =cos??2coscosxcos??cos?12=cos[cos?2cosxcos?]?cos??12=cos[sinxsin??cosxcos?]?cos??11=cos[?cos]?cos2? ??cos2x211∴f的值域为[?,],周期为π,是偶函数,2??当x?[k?,k??]时f是增函数,当x?[k??,k?]时f是减函22北京一对一上门家教品牌家教电话:010—62561255 数。
三角函数化简题
2|cos||cos|
22
∵0,∴0
∴原式cos.
22
,∴|cos|cos
22
,
§4.04三角函数的化简、求值与证明共7页,第3页
222(3cos4x)
例3.证明:(1)tanxcotx
1cos4x
sin(2AB)sinB
;(2)2cos()
AB
sinAsinA
.
证:(1)左边
224422222
右边,∴得证.
说明:由等式两边的差异知:若选择“从左证到右”,必定要“切化弦”;若“从右证到
左”,必定要用倍角公式.
(2)左边
sin[(AB)B]2cos(AB)sinA
sinA
sin(AB)cosAcos(AB)sinA
sinA
sin[(AB)A]sinB
sinAsinA
右边,∴得证.
课堂练习
1.若cos130a,则tan50
1cos1cossin1cos
()(1)
sinsincossin
2cos1cos1
(1)2cot(11)2csc
sincoscos
.
(3)原式
2
(2cos2cossin)(sincos)
22222
2(1cos)
2cos(cossin)(sincos)
22222
2
22cos
2
22
2cos(sincos)cos(cos)
1.三角函数式的化简:
三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为
同次,切割化弦,特殊值与特殊角的三角函数互化.
2.三角恒等式的证明:
三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是
第6讲三角函数的求值化简与证明1
1 C.7
D .-17
3.下列各式中,值为12的是( D )
A.sin15°cos15°
B.2cos21π2-1
1+cos30°
C.
2
tan22.5° D.1-tan222.5°
4.tan20°+tan40°+ 3tan20°tan40°=__3__.
解析:原式=tan(20°+40°)(1-tan20°tan40°)+
1.转化思想是本讲三角变换的基本思想,包括角的变换、 函数名的变换、和积变换、次数变换等.
2.三个角 α、β、α+β 中任何一个角都可以用其他两个角 来表示,到底是两角和或差要看题目而定.
3.形如 cosαcos2αcos22α·…·cos2nα 的求值问题,只需要将 分子分母都乘以 2n+1sinα,应用正弦二倍角公式即可.
=cos22x-xsin22xsin2x=
cosx·sin2x x
=tan2x.
cos2·cosx
cos2·cosx
使用升次公式的一个技巧为 1+sin2α+cos2α= (1+cos2α)+sin2α=2cos2α+2sinαcosα=2cosα(cosα+sinα).
【互动探究】
2.若 tanx= 2,求2cossi2n2xx-+scionsxx-1的值.
例 4:设△ABC 的内角 A、B、C 的对边分别为 a、b、c, 且 A=60°,c=3b.求:
(1)ac的值; (2)求ta1nB+ta1nC的值.
解题思路:从 c=3b 这个齐次方程入手. 解析:(1)由余弦定理得 a2=b2+c2-2bccosA
=13c2+c2-2·13c·c·12=79c2,故ac=
解题思路:首先要使角要统一,所以分母使用二倍角公式. 解析:原式=sinx+1-2sin22x-s1in2sxinx-1+2sin22x+1 =2sin2xcos2x-2sinx22x2xsin2xcos2x+2sin22x
学年高中数学第章三角恒等变换...求值化简与证明课后课时精练新人教A版必修
3.1.2.2 求值、化简与证明A 级:根底稳固练一、选择题1.假设sin α+cos αsin α-cos α=12,那么tan ⎝ ⎛⎭⎪⎫α+π4=( ) A .-2 B .2 C .-12D .12答案 C解析 因为sin α+cos αsin α-cos α=12,所以tan α+1tan α-1=12,因为tan α+1tan α-1=tan α+tanπ4tan αtan π4-1=-tan ⎝⎛⎭⎪⎫α+π4=12,所以tan ⎝⎛⎭⎪⎫α+π4=-12. 2.函数y =sin ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x -π4的最小值为( )A . 2B .-2C .- 2D . 3 答案 C解析 因为y =sin ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x -π4=sin2x cos π4+cos2x sin π4+sin2x cos π4-cos2x sin π4=2sin2x ,所以所求函数的最小值为- 2.3.向量a =(cos75°,sin75°),b =(cos15°,sin15°),那么|a -b |的值为( ) A .12 B .22 C .32D .1答案 D解析 因为|a -b |2=a 2-2a ·b +b 2=2-2(cos75°cos15°+sin75°sin15°)=2-2cos(75°-15°)=2-2cos60°=1.所以|a -b |=1.4.sin(65°-x )cos(x -20°)+cos(65°-x )cos(110°-x )的值为( )A . 2B .22 C .12 D .32答案 B解析 原式=sin(65°-x )cos(x -20°)-cos(65°-x )·sin(20°-x )=sin(65°-x )·cos(x -20°)+cos(65°-x )·sin(x -20°)=sin[(65°-x )+(x -20°)]=sin45°=22. 5.tan α和tan ⎝ ⎛⎭⎪⎫π4-α是方程ax 2+bx +c =0的两个根,那么a ,b ,c 的关系是( )A .b =a +cB .2b =a +cC .c =b +aD .c =ab答案 C解析 由韦达定理可知tan α+tan ⎝ ⎛⎭⎪⎫π4-α=-b a 且tan αtan ⎝ ⎛⎭⎪⎫π4-α=ca ,∴tan π4=tan ⎣⎢⎡⎦⎥⎤α+⎝ ⎛⎭⎪⎫π4-α=-ba 1-c a=1.∴-b a =1-c a .∴-b =a -C .∴c =a +B .应选C . 二、填空题6.计算1-tan 5π12·ta nπ4tan 5π12+tanπ4的值等于________.答案 -33解析 原式=1tan ⎝ ⎛⎭⎪⎫5π12+π4=1tan 2π3=-33.7.13sin α+5cos β=9,13cos α+5sin β=15,那么sin(α+β)=________. 答案5665解析 将条件平方并两式相加,得169+25+130(sin αcos β+cos αsin β)=81+225,∴sin(α+β)=112130=5665.8.tan ⎝ ⎛⎭⎪⎫α-β2=12,tan ⎝⎛⎭⎪⎫β-α2=-13,那么tan α+β2的值等于________.。
人教A版高中数学必修四《3.2.2三角函数化简及证明》练习题.docx
鑫达捷 a 2sin 4-a 2cos 4a 2cos 2a 2sin ,21tan +-=则2525-141141-a 4asin 2sin 41a 8sin -a 8cos +]sin )a 2[sin(21)cosa sin(a βββ-+-+)2x 4tan()4x x tan(--+ππ2xtan 2x tan 2070sin 020sin -010cos 22123§3.2.2 三角函数化简及证明【学习目标 细解考纲】1. 能正确运用三角公式,进行简单三角函数式的化简和恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆);2. 掌握三角函数式的化简和证明的方法及步骤。
【知识梳理、双基再现】1.cos αcos β= ;sin αcos β=2.sin θ+sin φ= ; sin θ-sin φ= ;cos θ+cos φ= ; cos θ-cos φ=【小试身手、轻松过关】1.已知 的值是( ) A. B. C. D.2. 4cos 22sin 2+-等于 ( ) A. 2sin B.2cos - C. 2cos 3 D.2cos 3- 3. 等于( )A. cosaB. cos2aC. sina D a 2sin4.化简4cos 224sin 12+++的结果是 。
【基本训练、锋芒初显】5. 可化简为( ) A. ββsin )a 2sin(++- B. )a 2sin(β+-C. βsinD. 06.化简 等于 A. tanx B. 2tanx C. D. .7. 的值是()A. B. C.3 D. 2鑫达捷 aa -1tan =θ=++θθθθcos -a 2sin cos a 2sin =-+2a 4sin 82a 2sin 6a 2cos =-+)cos(a )sin(a ββa)4(2a)sin 4tan(21a 2cos 2+--ππsinasin )cos(a 2sina )a 2sin(βββ=+-+8. )1020tan 3(010cos 070tan -•等于( ) 9. 若 (其中0<a<1)化简 10.11.如果βtna tana,是方程03x 32x =--两根,则 。
三角函数化简题
日期:2009年 月 日星期,能正确地运用三角公式进行三角函数式的化简与恒等式的证明.用.1常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等;2化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:1给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;2给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;3给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角;3、三角等式的证明:1三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;2三角条件等式的证题,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明;.三角函数的求值: ,化非特殊角为特殊角; 2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值; 3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等. 1.三角函数式的化简: 三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化. 2.三角恒等式的证明: 三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是化繁为简、左右归一、变更命题等,使等式两端的“异”化为“同”;②有条件的等式常1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 AA 、3B 、3-C 、23D 、23-2、函数222y sin x x =--+的最小正周期 BA 、2πB 、πC 、3πD 、4π3、tan 70cos10(3tan 201)-等于 DA 、1B 、2C 、-1D 、-24、已知46sin (4)4m m m αα-=≠-,则实数m 的取值范围是__-1,73___;5、设10,sin cos 2απαα<<+=,则cos2α=__4-___;例1.已知3sin 5m m θ-=+,42cos 5m m θ-=+2πθπ<<,则tan θ= C ()A 423m m -- ()B 342m m -±- ()C 512- ()D 34-或512-略解:由22342()()155m m m m --+=++得8m =或0m =舍,∴5sin 13θ=,∴5tan 12θ=-.例2.已知1cos(75)3α+=,α是第三象限角,求cos(15)sin(15)αα-+-的值.解:∵α是第三象限角,∴36025575360345k k α⋅+<+<⋅+k Z ∈,∵1cos(75)3α+=,∴75α+是第四象限角,∴sin(75)α+==,∴原式221cos(15)sin(15)sin(75)cos(75)3αααα+=---=+-+=-. 例3.已知2sin sin 1θθ+=,求243cos cos 2sin 1θθθ+-+的值.解:由题意,22sin 1sin cos θθθ=-=,∴原式223sin sin 2sin 1sin 1cos 1sin sin 22θθθθθθθ=+-+=+-+=-+=.例4.已知8cos(2)5cos 0αββ++=,求tan()tan αβα+⋅的值. 解:∵2()αβαβα+=++,()βαβα=+-, ∴8cos[()]5cos[()]0a αβααβ++++-=,得13cos()cos 3sin()sin αβααβα+=+,若cos()cos 0αβα+≠,则13tan()tan 3αβα+⋅=,若cos()cos 0αβα+=,tan()tan αβα+⋅无意义.说明:角的和、差、倍、半具有相对性,如()()βαβαβαα=+-=-+,2()()ααβαβ=++-,2()αβαβα+=++等,解题过程中应充分利用这种变形.例5.已知关于x 的方程221)0x x m -+=的两根为sin ,cos ,(0,2)θθθπ∈,求:1sin cos1cot 1tan θθθθ+--的值;2m 的值;3方程的两根及此时θ的值. 解:1由根与系数的关系,得sin cos sincos 2m θθθθ⎧+=⎪⎪⎨⎪⋅=⎪⎩, ∴原式2222sin cos sin cos sin cos sin cos cos sin sin cos θθθθθθθθθθθθ-=+==+=---.2由①平方得:12sincos θθ+⋅=sin cos θθ⋅=即2m =,故m =.3当221)0x x -=,解得1212x x ==, ① ②∴sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩或1sin 2cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,∵(0,2)x π∈,∴3πθ=或6π.例1.化简:23tan123sin12(4cos 122)--; 2(cot tan )(1tan tan )222αααα-+⋅;(1sin cos )(sin cos ))θθθθθπ++-<<. 解:1原式213sin12cos12)3sin123cos12222sin12cos12(2cos 121)sin 24cos24--==- sin 482==-2原式1cos 1cos sin 1cos ()(1)sin sin cos sin αααααααα+--=-+⋅2cos 1cos 1(1)2cot (11)2csc sin coscos ααααααα-=+=+-=.3原式2(2cos 2cos sin )(sin cos )θθθθθ+-=2cos (cos sin )(sin cos )θθθθθ+-=222cos (sin cos )cos (cos )22222|cos ||cos |22θθθθθθθ--== ∵0θπ<<,∴022θπ<<,∴|cos |cos 22θθ=,∴原式cos θ=-.例3.证明:1222(3cos 4)tan cot 1cos 4x x x x ++=-;2sin(2)sin 2cos()sin sin A B B A B A A+-+=.证:1左边22442222222222sin cos sin cos (sin cos )2sin cos 1cos sin sin cos sin 24x x x x x x x xx x x x x ++-=+==22222111sin 21sin 284sin 244cos 222111cos 41cos 4sin 2(1cos 4)48x xx x x x x x ---+====--- 42(1cos 4)2(3cos 4)1cos 41cos 4x x x x+++===--右边,∴得证.说明:由等式两边的差异知:若选择“从左证到右”,必定要“切化弦”;若“从右证到左”,必定要用倍角公式.2左边sin[()]2cos()sin sin A B B A B A A ++-+=sin()cos cos()sin sin A B A A B AA+-+=sin[()]sin sin sin A B A B A A+-===右边,∴得证.1.若cos130a =,则tan 50=D()A()B± ()C()D 2.(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++=B()A 2 ()B 4 ()C 8()D 163.化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+ 答案:1cos 22x 4.设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值;答案:2875- 6.已知11sin()cos [sin(2)cos ],022αβααβββπ+-+-=<<,求β的值;答案:2π7.05北京卷已知tan 2α=2,求I tan()4πα+的值;II 6sin cos 3sin 2cos αααα+-的值.解:I ∵ tan2α=2, ∴ 22tan2242tan 1431tan 2ααα⨯===---; 所以tan tantan 14tan()41tan 1tan tan 4παπααπαα+++==--=41134713-+=-+; II 由I, tan α=-34, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--.8.05全国卷已知函数2()2sin sin 2,[0,2].f x x x x =+∈π求使()f x 为正值的x 的集合. 解:∵()1cos 2sin 2f x x x =-+………………………………………………2分1)4x π=-…………………………………………………4分()01)04f x x π∴>⇔->sin(2)4x π⇔->…………6分 5222444k x k πππππ⇔-+<-<+…………………………8分 34k x k πππ⇔<<+…………………………………………10分 又[0,2].x π∈ ∴37(0,)(,)44x πππ∈⋃………………………12分9.05浙江卷已知函数fx =-3sin 2x +sin x cos x .Ⅰ 求f 256π的值; Ⅱ 设α∈0,π,f 2α=41-2,求sin α的值.解:Ⅰ25125sin,cos626ππ==225252525()sin cos 06666f ππππ=+=Ⅱ 1()2sin 2222f x x x =-+11()cos sin 222242f ααα∴=+-=-011sin 4sin 162=-α-α 解得8531sin ±=α 0sin ),0(>α∴π∈α 8531sin +=∴a 1.1sin 4cos 41sin 4cos 4αααα++=+-B()A cot α ()B cot 2α()C tan α()D tan 2a2.已知()f x =当53(,)42ππα∈时,式子(sin 2)(sin 2)f f αα--可化简为 D()A 2sin α ()B 2cos α- ()C 2sin α- ()D 2cos α 3.222cos 12tan()sin ()44αππαα-=-+ 1 .§三角函数的化简、求值与证明 日期:2009年 月 日星期 一、选择题1、已知1sin()43πα-=,则cos()4πα+的值等于 D A、3 B、3- C 、13 D 、13-2、已知tan α、tan β是方程240x ++=的两根,且(,)22ππαβ∈-、,则αβ+等于BA 、3π B 、23π- C 、3π或23π- D 、3π-或23π3、化简23cos (1sin )[2tan()]422cos ()42x xx x ππ+---为 BA 、sin xB 、cos xC 、tan xD 、cot x4、全国卷Ⅲ22sin 2cos 1cos 2cos 2⋅=+ααααB A tan α B tan 2αC 1 D125、山东卷函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为 BA1 B 22,1-C 22-D 22,1二、填空题6、全国卷Ⅱ设a 为第四象限的角,若513sin 3sin =a a ,则tan 2a =_____43-_________. 7、北京卷已知tan 2α=2,则tanα的值为-34,tan ()4πα+的值为 -718、已知tan()34πθ+=,则2sin 22cos θθ-的值为___45-____;9、已知A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B +=_2-_. 三、解答题 10、求证:21tan 1sin 2.12sin 1tan 22αααα++=--11、已知2sin 22sin ()1tan 42k ααππαα+=<<+,试用k 表示sin cos αα-的值;12、求值:23)csc12.4cos 122--答案:-13、已知tan tan αβ=,求(2cos 2)(2cos 2)αβ--的值;答案:3备用题参考资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一三角同步练习6(化简与证明)
一、选择题
1、已知cos α= - 1213 ,α∈(π,2π),则tan α的值是 ( )
A .513
B .512
C .125
D .± 512
2、化简
160tan 112+的结果为 ( )
A .-cos160°
B .cos160°
C .±cos160°
D .-sec160°
3、若是α第二象限角,则1sin 1
tan 2-αα化简的结果是 ( )
A .1
B .-1
C .tan 2α
D .-tan 2α
4、若0cot tan cos cos sin sin 22=++θθθθθθ,则θ不可能是 (
) A .第一、第二、第三象限角 B .第一、第二、第四象限角
C .第一、第三、第四象限角
D .第二、第三、第四象限角
5、如果角θ满足1cos sin =+θθ,那么θθcot tan +的值是 ( )
A .1-
B .0
C .1
D .不存在
6、若θ为二象限角,且2cos 2sin 212sin 2cos θ
θ
θθ
-=-,那么2θ
是
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
7、若2tan =x , 则()()x x x x sin cos cos 3sin 1
--的值为:
A .3-
B .5-
C .3
D .5
8、函数()=x f 1
cos 1tan 2tan 1cos 122-++x x x x 值域中元素的个数是( )
A .1个
B .2个
C .3个
D .4个
二、填空题
1、化简sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β= .
2、化简
40sin 140sin 40
cos 40sin 212---= .
3、若α是第四象限角,化简ααtan 2sec 2-=________________.
4、若αα
ααsin 1sin 1sin 1sin 1+---+ = -2 tan α,则角α的取值范围是 .
三、解答题
1、化简:tan α(cos α-sin α)+
ααααcos 1)tan (sin sin ++.
2、求证:1tan 1tan cos sin cos sin 2122-+=-+ααα
ααα.
3、求证:ααααααααcot tan cos sin 2cot cos tan sin 22+=++.
4、已知cos B = cos θsin A , cos C = sin θsin A ,求证:sin 2A +sin 2B +sin 2C = 2.
参考答案
一、选择题
BABB DCDD
二、填空题
1、1;
2、-1;
3、αtan 1-;
4、
()Z k k k ∈+<<+,22
322ππαππ 三、解答题
1、αsin
2、左边αααααα2222cos sin cos sin 2cos sin -++=()α
ααα222cos sin cos sin -+= =-+=-+=1
tan 1tan cos sin cos sin αααααα右边. 3、
∵()()()ααααααααααcot cos 1tan sin 1cot cos tan sin cot tan 2222-+-=+-+ ααααααααααcos sin 2cos sin sin cos cot sin tan cos 22=+=+= ∴ααααααααcot tan cos sin 2cot cos tan sin 22+=++.
4、
∵A B 222sin cos cos θ=,A C 222sin sin cos θ=,
∴()
A C
B 22222sin sin cos cos cos θθ+=+,
即:A C B 222sin sin 1sin 1=-+-,
∴2sin sin sin 222=++C B A .。