解三角形大题经典练习
高考解三角形大题(30道)
高考解三角形大题(30道)1.已知在三角形ABC中,内角A,B,C的对边分别为a,b,c,且有 $\frac{\cos A - 2\cos C}{2c-a}=\frac{\cos B b}{\sin C}$。
求该三角形的 $\sin A$ 值和面积 $S$,已知 $\cosB=\frac{1}{4}。
b=2$。
2.已知在三角形ABC中,角A,B,C的对边分别为a,b,c,且有 $\sin C+\cos C=1$。
求 $\sin C$ 值和边c的值,已知$a+b=4(a+b)-8$。
3.已知在三角形ABC中,角A,B,C的对边分别为a,b,c。
求 $\sin(A+\frac{C}{2})=\frac{1}{2}\cos A$,并求角A的值;已知 $\cos A=\frac{1}{3}。
b=3c$,求 $\sin C$ 值。
4.在三角形ABC中,D为边BC上的一点,且有$BD=\frac{3}{3},\sin B=\frac{5}{3},\cos\angle ADC=-\frac{1}{\sqrt{3}}$。
求AD的值。
5.已知在三角形ABC中,角A,B,C的对边分别为a,b,c,且有 $a=1,b=2,\cos C=\frac{1}{4}$。
求该三角形的周长和$\cos(A-C)$ 值。
6.已知在三角形ABC中,角A,B,C的对边分别为a,b,c,且有$\sin A+\sin C=\frac{1}{2}\sin B$,且$ac=\frac{1}{2}b$。
已知 $p=\frac{1}{5},b=1$,求 $a,c$ 的值;若角B为锐角,求p的取值范围。
7.已知在三角形ABC中,角A,B,C的对边分别为a,b,c,且有 $2a\sin A=(2b+c)\sin B+(2c+b)\sin C$。
求角A的值和$\sin B+\sin C$ 的最大值。
8.已知在三角形ABC中,角A,B,C的对边分别为a,b,c,且有 $\cos 2C=-\frac{1}{4}$。
高考解三角形面积大题(30道)
高考解三角形面积大题(30道)1. 题目描述题目:计算三角形的面积。
2. 解题思路解题思路如下:1. 确定三个顶点的坐标;2. 根据三个顶点的坐标,计算两条边的长度;3. 根据两条边的长度,使用海伦公式计算三角形的半周长;4. 根据半周长和两条边的长度,计算三角形的面积。
3. 解题步骤具体解题步骤如下:1. 读取三个顶点的坐标;2. 计算边的长度,如$AB$的长度为$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$;3. 计算另外两条边的长度$BC$和$CA$;4. 计算半周长$s$,即$s = \frac{1}{2}(AB + BC + CA)$;5. 计算三角形的面积,如$S = \sqrt{s(s - AB)(s - BC)(s - CA)}$;6. 输出三角形的面积。
4. 注意事项注意事项如下:- 在计算边长时,需要考虑顶点的坐标顺序;- 在计算面积时,需要根据实际情况选择合适的计算方法。
5. 示例代码以下是一个计算三角形面积的示例代码:def calculate_triangle_area(x1, y1, x2, y2, x3, y3):计算边的长度AB = ((x1 - x2)2 + (y1 - y2)2)**0.52 + (y1 - y2)2)**0.5BC = ((x2 - x3)2 + (y2 - y3)2)**0.52 + (y2 - y3)2)**0.5CA = ((x3 - x1)2 + (y3 - y1)2)**0.52 + (y3 - y1)2)**0.5计算半周长s = (AB + BC + CA) / 2计算面积area = (s * (s - AB) * (s - BC) * (s - CA))**0.5return area输入三个顶点的坐标x1, y1 = 1, 1x2, y2 = 3, 4x3, y3 = 6, 2计算面积triangle_area = calculate_triangle_area(x1, y1, x2, y2, x3, y3)输出结果print("三角形的面积为:", triangle_area)6. 总结通过以上解题步骤和示例代码,可以方便地计算三角形的面积。
解三角形专项练习以及答案
解三角形专项练习以及答案一、选择题1.在△ABC中,sinA=sinB,则△ABC是A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,∴tanA=tanB=tanC,∴A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是A.152,+∞B.10,+∞C.0,10D.0,403答案D解析∵csinC=asinA=403,∴c=403sinC.∴04.在△ABC中,a=2bcosC,则这个三角形一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,∴sinB+C=2sin Bcos C,∴sin Bcos C+cos Bsin C=2sin Bcos C,∴sinB-C=0,∴B=C.5.在△ABC中,已知b+c∶c+a∶a+b=4∶5∶6,则sin A∶sin B∶sin C等于A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵b+c∶c+a∶a+b=4∶5∶6,∴b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k k>0,则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由πR2=π,得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13,∴sinC=223,∴12absinC=43,∴b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60°=1sinB,∴sinB=12,故B=30°或150°.由a>b,得A>B,∴B=30°,故C=90°,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的外接圆直径为2R=2,∴asinA=bsinB=csinC=2R=2,∴asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案12 6解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12×63×12sinC=183,∴sinC=12,∴csinC=asinA=12,∴c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sinB+C-sinCcosBsinA+C-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanA⇔a2sinBcosB=b2sinAcosA⇔4R2sin2AsinBcosB=4R2sin2BsinAcosA⇔sinAcosA=sinBcosB⇔sin2A=sin2B⇔2A=2B或2A+2B=π⇔A=B或A+B=π2.∴△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60°,最大边与最小边之比为3+1∶2,则最大角为A.45°B.60°C.75°D.90°答案C解析设C为最大角,则A为最小角,则A+C=120°,∴sinCsinA=sin120°-AsinA=sin120°cosA-cos120°sinAsinA=32tanA+12=3+12=32+12,∴tanA=1,A=45°,C=75°.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π4, cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sinπ-B-C=sin3π4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12×2×107×45=87.1.在△ABC中,有以下结论:1A+B+C=π;2sinA+B=sin C,cosA+B=-cos C;3A+B2+C2=π2;4sin A+B2=cos C2,cos A+B2=sin C2,tan A+B2=1tan C2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.感谢您的阅读,祝您生活愉快。
数学-2023年解三角形高频题型精选
解三角形高频题型精选1.(2023·全国·高一专题练习)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则下列说法不正确的是( )A .若A >B ,则sin A >sin BB .若A =30∘,b =4,a =3,则△ABC 有两解C .若△ABC 为钝角三角形,则a 2+b 2>c 2D .若三角形ABC 为斜三角形,则tan A +tan B +tan C =tan A tan B tan C2.(2019春·安徽芜湖·高一芜湖一中校考期中)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a =2,b =3,B =π3,那么A =( )A .3π4B .π4C .3π4或π4D .π33.(2020秋·陕西西安·高二西安建筑科技大学附属中学校联考期中)在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C的值为( )A .2633B .2393C .393D .13334.(2021春·河北·高三统考学业考试)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若a =1,c =17,sin A =1717,则cos B =( )A .178B .14C .34D .17175.(2023·江西赣州·统考一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,C =2A +B ,则b a =( )A .75B .32C .53D .746.(2020秋·广东清远·高二校考期中)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .3∶1B .3∶2C .1∶3D .4∶37.(2023·河南郑州·统考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知角C =π4,b sin π4+A -a sin π4+B =c ,则角B =( )A .π8B .π6C .5π8D .π38.(2023·河北·高三学业考试)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .5π6B .2π3C .π3D .π69.(2023春·江西赣州·高三统考阶段练习)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =1,且b cos A -cos B =1,则3sin B +2sin 2A 的取值范围是( )A .0,3+1B .2,3+1C .1,3D .2,3 10.(2022秋·江西吉安·高二江西省吉水县第二中学校考开学考试)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且c =2a cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.(2023秋·浙江宁波·高三期末)在△ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知b sin (B +C )=a sinA +C 2,且△ABC 的面积为23,则△ABC 周长的最小值为( )A .22B .23C .62D .6+2312.(2023·陕西榆林·统考一模)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +b +λa sin B =c sin C ,则λ的取值范围为( )A .-2,2B .0,2C .-2,2D .0,213.(2022·北京·统考模拟预测)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且3a cos B =b sin A ,则B =( )A .π6B .π4C .π3D .π214.(2023秋·陕西西安·高二统考期末)在△ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若a =4,b =43,A =30°,则B =( )A .30°B .30°或150°C .60°D .60°或120°15.(2023·全国·高三专题练习)“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的log o 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是△ABC 内的一点,△BOC ,△AOC ,△AOB 的面积分别为S A ,S B ,S C ,则有S A ⋅OA +S B ⋅OB +S C ⋅OC =0 .设O 是锐角△ABC 内的一点,∠BAC ,∠ABC ,∠ACB 分别是△ABC 的三个内角,以下命题不正确的有( )A .若OA +OB +OC =0 ,则O 为△ABC 的重心B .若OA +2OB +3OC =0 ,则S A :S B :S C =1:2:3C .若OA =OB =2,∠AOB =5π6,2OA +3OB +4OC =0 ,则S △ABC =92D .若O 为△ABC 的垂心,则tan ∠BAC ⋅OA +tan ∠ABC ⋅OB +tan ∠ACB ⋅OC =016.(2023·全国·高一专题练习)不解三角形,判断下列三角形解的个数.(1)a =5,b =4,A =120°;(2)a =9,b =10,A =60°;(3)b =72,c =50,C =135°.17.(山西省部分学校2023届高三下学期质量检测试题)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c 1+cos B =3b sin C .(1)求角B 的大小;(2)若b =2,a +c =4,求△ABC 的面积.18.(河北省石家庄市2023届高三质量检测(一)数学试题)△ABC 的内角A ,B ,C 的对边长分别为a ,b ,c ,设a +bc -b =sin C +sin B sin A (1)求C ;(2)若3+1 a +2b =6c ,求sin A .19.(2023·湖南·模拟预测)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b sin A =a cos B -π6 .(1)求角B 的大小;(2)若b =13.且a +c =5,求△ABC 的面积.20.(2023·福建福州·统考二模)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2-a 2=2c 2.(1)求tan B tan A的值:(2)求C 的最大值.21.(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且sin A =3a 2+c 2-b 2 2bc .(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =3,求△ABC 的周长的取值范围.22.(2023·湖北·统考模拟预测)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b cos C =2a +c .(1)求B ;(2)设b =9,若点M 是边AC 上一点,2AM =MC ,且∠MAB =∠MB A ,求△BMC 的面积.23.(2023春·四川资阳·高三四川省乐至中学校考开学考试)在△ABC 中,内角A 、B 、C 满足sin 2A =sin 2B +sin 2C -2sin B sin C .(1)求A ;(2)若AB 边上的高等于13AB ,求cos C .24.(2023春·浙江温州·高三统考开学考试)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C a +c=1.(1)求B ;(2)若a +c =43,△ABC 内切圆的面积为π,求△ABC 的面积.25.(2023·全国·高三专题练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,b =3,a <c ,且sin π3-Acos π6+A =14.(1)求A 的大小;(2)若a sin A +c sin C =43sin B ,求△ABC 的面积.26.(2023·山东临沂·统考一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a cos B +b cos A =2c cos C .(1)求C ;(2)若c =1,求△ABC 面积的取值范围.27.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin C -sin B =tan A cos B .(1)求A ;(2)若a =2,求2c -b 的取值范围.28.(2023·河南·高三信阳高中校联考阶段练习)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2a sin C =ctan A .(1)求角A 的大小;(2)若a =2,D 为BC 的中点,求线段AD 长度的最大值.29.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,满足c 2=b b +a .(1)求证:C =2B ;(2)求1tan B -1tan C+3sin C 的取值范围.30.(2021春·四川成都·高一四川省成都市盐道街中学校考阶段练习)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,b =2sin B ,tan A +tan C =2sin B cos A.(1)求角C 和边c 的大小.(2)求△ABC 周长的范围.31.(2023秋·浙江绍兴·高三期末)记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 外接圆的半径为R ,已知a cos B -b cos A =R .(1)若B =π4,求A 的值;(2)求R -c b 的取值范围.32.(2023春·湖北·高三统考阶段练习)已知a ,b ,c 分别为锐角△ABC 三个内角A ,B ,C 的对边,且m =a ,2b -c ,n =cos A ,cos C ,且m ⎳n.(1)求角A 的大小;(2)求b c的取值范围.33.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,面积为23,且3b 2+c 2-a 2 =2ac sin B ,求:(1)求角A 的大小;(2)求BC 边中线AD 长的最小值.34.(2020春·陕西西安·高二交大附中分校校考阶段练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足ctan C =3a cos B +b cos A .(1)求角C 的大小.(2)若c =43,求△ABC 面积的最大值.35.(2022秋·云南昆明·高二昆明市第三中学校考阶段练习)在△ABC中,角A,B,C 的对边分别为a,b,c,且2c-a=2b cos A.(1)求角B的大小;(2)若b=2,求△ABC周长l的取值范围.36.(2023·全国·校联考一模)在△ABC中,角A,B,C所对的边分别为a,b,c,c2+ ac=b2.(1)证明:B=2C;(2)求a+bc的取值范围.37.(2019春·安徽芜湖·高一芜湖一中校考期中)设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围.38.(2023·全国·高三专题练习)已知函数f(x)=cos2(ωx)+3sin(ωx)cos(ωx)-12,其中ω>0,且函数f(x)的两个相邻零点间的距离为π2,(1)求ω的值及函数f(x)的对称轴方程;(2)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-1,a=3,求△ABC 周长的取值范围.39.(2023秋·陕西汉中·高二统考期末)在①a sin C-sin Asin C+sin B=c-b;②sin2A+sin2C-sin2B=sin A sin C;③2a-cb=cos Ccos B.这三个条件中任选一个,补充在下面的问题中并作答.在△ABC中,内角A,B,C所对的边分别是a,b,c,__________.(1)求B;(2)若b=4,求△ABC的周长的取值范围.40.(2023·辽宁沈阳·统考一模)在△ABC中,角A、B、C的对边分别为a、b、c.已知sin A+3cos A=0.(1)求角A的大小;(2)给出以下三个条件:①a=43,b=4;②b2-a2+c2+10b=0;③S△ABC= 153.若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题:(i)求sin B的值;(ii)∠BAC的角平分线交BC于点D,求AD的长.参考答案:1.C【分析】根据正弦定理、余弦定理、三角恒等变换的知识对选项进行分析,从而确定正确答案.【详解】对于A 选项,若A >B ,则a >b ,由正弦定理可得2R sin A >2R sin B ,所以,sin A >sin B ,故A 选项正确;对于B 选项,b sin A =4sin30∘=2,则b sin A <a <b ,如图:所以△ABC 有两解,B 选项正确;对于C 选项,若△ABC 为钝角三角形且C 为钝角,则cos C =a 2+b 2-c 22ab<0,可得a 2+b 2<c 2,C 选项错误;对于D ,因为tan (B +C )=tan B +tan C 1-tan B tan C,所以tan B +tan C =tan (B +C )(1-tan B tan C )因为tan B +C =tan π-A =-tan A ,所以tan B +tan C =tan (B +C )(1-tan B tan C )=tan A tan B tan C -tan A ,所以tan A +tan B +tan C =tan A tan B tan C ,所以D 正确.故选:C2.B【分析】利用正弦定理可求出sin A ,再结合大边对大角即可得解.【详解】因为a =2,b =3,B =π3,由正弦定理a sin A=b sin B ,可得sin A =a sin B b =2sin π33=22,又因为a <b ,所以A <B ,故0<A <π3,所以A =π4.故选:B .3.B 【分析】根据三角形面积公式可得c =4,再由余弦定理计算可得a =13,根据正弦定理可知a +b +c sin A +sin B +sin C =a sin A,代入计算即可得出结果.【详解】根据三角形面积公式可得S △ABC =12bc sin A =12×32c =3,即c =4;由余弦定理可知a 2=b 2+c 2-2bc cos A =1+16-2×1×4×12=13,可得a =13;由正弦定理可得a +b +c sin A +sin B +sin C =a sin A =1332=2393.答案第1页,共2页4.D【分析】利用正弦定理求得sin C ,再利用诱导公式求解即可.【详解】由正弦定理可得a sin A=csin C ,即11717=17sin C ,解得sin C =1,因为△ABC 中C ∈0,π ,所以C =π2,所以B =π2-A ,cos B =cos π2-A=sin A =1717,故选:D 5.C【分析】根据题意和等差数列等差中项的应用可得C =2π3、2b =a +c ,利用余弦定理化简计算即可求解.【详解】由C =2A +B ,A +B +C =π,得C =2π3,由a ,b ,c 成等差数列,得2b =a +c ,由余弦定理,得cos C =a 2+b 2-c 22ab,即-12=a 2+b 2-(2b -a )22ab ,整理,得5ab -3b 2=0,由b ≠0得5a -3b =0,由a ≠0得ba =53.故选:C .6.A【分析】利用正弦定理及三角恒等变换即可求解.【详解】由正弦定理得3sin B cos C =sin C (1-3cos B ),即3sin B cos C +3sin C cos B =sin C ,3sin B +C =sin C ,∵A +B +C =π,∴3sin π-A =sin C ,即3sin A =sin C ,sin Csin A=3,故选:A .7.C【分析】先由正弦定理把边转化为角,再展开化简求得B 与A 的关系,进一步计算得出结果.【详解】已知角C =π4,b sin π4+A -a sin π4+B =c ,由正弦定理可得sin B sin π4+A -sin A sin π4+B =sin C ,整理得22sin B cos A -sin A cos B =22,即sin B -A =1,因为A ,B ∈0,3π4 ,所以B -A ∈-3π4,3π4 ,所以B -A =π2.又B +A =3π4,所以B =5π8.8.D【分析】根据正弦定理把sin C=23sin B化为c=23b,再结合余弦定理求角即可【详解】∵sin C=23sin B,∴c=23b,结合a2-b2=3bc即可求得a=7b.由余弦定理可得cos A=b2+c2-a22bc=b2+12b2-7b22×b×23b=32.又∵A∈0,π,∴A=π6.故选:D 9.B【分析】由正弦定理边化角可得B=2A,由△ABC为锐角三角形可得π6<A<π4,运用降次公式及辅助角公式将问题转化为求三角函数y=2sin2A-π6+1在π6,π4上的值域.【详解】∵b cos A-cos B=1,即:b cos A=cos B+1,a=1,∴b cos A=(cos B+1)a,∴由正弦定理得:sin B cos A=(cos B+1)sin A,即:sin B cos A=sin A cos B+sin A,∴sin(B-A)=sin A,∴B-A=A或B-A+A=π,解得:B=2A或B=π(舍),又∵△ABC为锐角三角形,则C=π-A-B=π-3A,∴0<A<π20<B<π20<C<π2⇒0<A<π20<2A<π20<π-3A<π2,解得:π6<A<π4,∴3sin B+2sin2A=3sin2A+1-cos2A=2sin2A-π6+1,又∵π6<A<π4,∴π6<2A-π6<π3,∴12<sin2A-π6<32,∴2<2sin2A-π6+1<3+1,即3sin B+2sin2A的取值范围(2,3+1).故选:B.10.A【分析】已知条件用正弦定理边化角,由sin C=sin A+B展开后化简得tan A=tan B,可得出等腰三角形的结论.【详解】c=2a cos B,由正弦定理,得sin C=sin A+B=2sin A cos B,即sin A cos B+cos A sin B=2sin A cos B,∴sin A cos B=cos A sin B,可得tan A=tan B,又0<A<π,0<B<π,∴A=B,则△ABC的形状为等腰三角形.故选:A.11.C【分析】首先利用正弦定理及诱导公式,二倍角公式对原式化简得sin B2=12,即求出B的大小,再利用三角形面积公式得ac=8,从而求出a+c的最小值,最后得到C△ABC=(a+c) +(a+c)2-24,利用函数单调性即可求出其最小值.【详解】因为b sin A=a sin π-B 2,根据正弦定理及诱导公式得sin B⋅sin A=sin A⋅cos B 2,∵A∈0,π,∴sin A≠0,∴sin B=cos B 2,即2sin B2cosB2=cosB2,∵B∈0,π,则B2∈0,π2,则cos B2≠0解得sin B2=12,所以B2=π6⇒B=π3,所以S=12ac sin B=3ac4=23,所以ac=8,a+c≥2ac=42,当且仅当a=c=22时等号成立,根据余弦定理得b=a2+c2-2ac cos B,即b=a2+c2-ac,设△ABC的周长为C,所以C△ABC=a+c+(a+c)2-3ac=(a+c)+(a+c)2-24,设a+c=t,t≥42,则f t =t+t2-24,根据复合函数单调性及增函数加增函数为增函数的结论得:f t 在42,+∞上为单调增函数,故f t min=f42=62,故C△ABCmin=62,当且仅当a=b=c=22时取等.故选:C.12.A【分析】根据正弦、余弦定理可得λ=-2cos C,结合C∈0,π即可求解.【详解】因为a sin A+b+λasin B=c sin C,由正弦定理得c2=a2+b2+λab.又c2= a2+b2-2ab cos C,所以λ=-2cos C.因为C∈0,π,所以cos C∈-1,1,故λ∈-2,2.故选:A.13.C【分析】由正弦定理化简得出tan B的值,结合角B的取值范围可求得角B的值.【详解】因为3a cos B=b sin A,由正弦定理可得3sin A cos B=sin B sin A,∵A、B∈0,π,则sin A>0,所以,3cos B=sin B>0,所以,tan B =3,故B =π3.故选:C .14.D【分析】根据a =4,b =43,A =30°,利用正弦定理求解.【详解】解:在△ABC 中,a =4,b =43,A =30°,由正弦定理得a sin A=bsin B ,所以sin B =b ⋅sin A a =43⋅sin30∘4=32,所以B =60°或120°,故选:D 15.C【分析】对于A ,假设D 为AB 的中点,连接OD ,由已知得O 在中线CD 上,同理可得O 在其它中线上,即可判断;对于选项B ,利用奔驰定理可直接得出B 正确;对于C ,根据奔驰定理可得S A :S B :S C =2:3:4,再利用三角形面积公式可求得S C =1,即可计算出S △ABC =94,可得C 错误;选项D ,由垂心的性质、向量数量积的运算律OB ∙AC =OB ∙OC -OB ∙OA=0,得到OA :OB :OC=cos ∠BAC :cos ∠ABC :cos ∠BCA ,结合三角形面积公式及角的互补关系得结论.【详解】对于A :如下图所示,假设D 为AB 的中点,连接OD ,则OA +OB =2OD =CO,故C ,O ,D 共线,即O 在中线CD 上,同理可得O 在另外两边BC ,AC 的中线上,故O 为△ABC 的重心,即A 正确;对于B :由奔驰定理O 是△ABC 内的一点,△BOC ,△AOC ,△AOB 的面积分别为S A ,S B ,S C ,则有S A ⋅OA +S B ⋅OB +S C ⋅OC=0可知,若OA +2OB +3OC =0,可得S A :S B :S C =1:2:3,即B 正确;对于C :由|OA |=|OB|=2,∠AOB =5π6可知,S C =12×2×2×sin 5π6=1,又2OA +3OB +4OC =0 ,所以S A :S B :S C =2:3:4由S C =1可得,S A =12,S B =34;所以S △ABC =S A +S B +S C =12+34+1=94,即C 错误;对于D :由四边形内角和可知,∠BOC +∠BAC =π,则OB ∙OC=OB OCcos ∠BOC =-OB OC cos ∠BAC ,同理,OB ∙OA =OB OA cos ∠BOA =-OB OAcos ∠BCA ,因为O 为△ABC 的垂心,则OB ∙AC =OB ∙(OC -OA )=OB ∙OC -OB ∙OA=0,所以OC cos ∠BAC =OA cos ∠BCA ,同理得OC cos ∠ABC =OB cos ∠BCA ,OA cos ∠ABC =OB cos ∠BAC ,则OA :OB :OC=cos ∠BAC :cos ∠ABC :cos ∠BCA ,令OA =m cos ∠BAC ,OB =m cos ∠ABC ,OC=m cos ∠BCA ,由S A =12OB OCsin ∠BOC ,则S A =12OB OC sin ∠BAC =m 22cos ∠ABC cos ∠BCA sin ∠BAC ,同理:S B =12OAOC sin ∠ABC =m 22cos ∠BAC cos ∠BCA sin ∠ABC ,S C =12OA OB sin ∠BCA =m 22cos ∠BAC cos ∠ABC sin ∠BCA ,综上,S A :S B :S C =sin ∠BAC cos ∠BAC :sin ∠ABC cos ∠ABC :sin ∠BCAcos ∠BCA=tan ∠BAC :tan ∠ABC :tan ∠BCA ,根据奔驰定理得tan ∠BAC ⋅OA +tan ∠ABC ⋅OB +tan ∠ACB ⋅OC =0,即D 正确.故选:C【点睛】关键点点睛:利用向量数量积定义、运算律和垂心性质得到向量模的比例,结合三角形面积公式和奔驰定理判断结论即可.16.(1)一解(2)两解(3)无解【分析】使用正弦定理、正弦函数的性质及三角形内角和、大边对大角等知识进行判断即可.【详解】(1)由正弦定理a sin A=bsin B ,∴sin B =b a sin A =45×32<32,∵A =120°,∴B =180°-A +C =60°-C <60°,∴B 只有一解,三角形解的个数为一解.(2)由正弦定理a sin A=bsin B ,∴sin B =b a sin A =109×32=539,∴32<sin B <1,∵A =60°,a <b ,∴60°<B <120°,∴B 有两解,三角形解的个数为两解.(3)∵b >c ,∴B >C =135°,∴B +C >270°,∴B 无解,三角形无解.17.(1)B =π3(2)3【分析】(1)利用正弦定理化边为角,再结合辅助角公式即可得解;(2)利用余弦定理求得ac ,再根据三角形的面积公式即可得解.【详解】(1)因为c 1+cos B =3b sin C ,所以sin C 1+cos B =3sin B sin C ,因为C ∈0,π ,所以sin C ≠0,所以1+cos B =3sin B ,得2sin B -π6 =1,即sin B -π6 =12,因为B ∈0,π ,所以B -π6∈-π6,5π6,所以B -π6=π6,所以B =π3;(2)由余弦定理得b 2=a 2+c 2-2ac cos B =a +c 2-3ac =16-3ac ,即22=16-3ac ,解得ac =4,所以S △ABC =12ac sin B =12×4×32=3.18.(1)2π3(2)sin A =6-24【分析】(1)利用正弦定理边角互化结合余弦定理求解即可;(2)利用正弦定理边角互化结合三角恒等变换求解即可.【详解】(1)根据题意,由正弦定理可得a +bc -b=c +b a ,即c 2=a 2+b 2+ab ,所以根据余弦定理cos C =a 2+b 2-c 22ab=-12及△ABC 中C ∈0,π 可得C =2π3.(2)根据题意,由正弦定理可得3+1 sin A +2sin B =6sin C ,所以3+1 sin A +2sin A +2π3 =3+1 sin A +2-12sin A +32cos A =3sin A +cos A =322,解得sin A +cos A =62①,因为sin 2A +cos 2A =1②,①②联立可解得sin A =6+24或6-24,又因为C =2π3,则A <π3,sin 2A <34,6+242=2+34>34(舍去),所以sin A=6-2 4.19.(1)B=π3(2)S△ABC=3【分析】(1)由正弦定理和两角差的余弦公式,化简已知等式,求得tan B,可求角B的大小;(2)由已知条件利用余弦定理求得ac,根据三角形面积公式求△ABC的面积.【详解】(1)在△ABC中,由正弦定理asin A=bsin B,可得b sin A=a sin B,又由b sin A=a cos B-π6,得a sin B=a cos B-π6即sin B=cos B-π6,由sin B=cos B-π6=32cos B+12sin B,有32cos B=12sin B可得tan B=3,又因为B∈(0,π),所以B=π3.(2)b=13.且a+c=5,B=π3,由余弦定理:b2=a2+c2-2ac cos B=a+c2-2ac-2ac cos B,有13=25-2ac-ac,解得ac=4,∴S△ABC=12ac sin B=12×4×32=3.20.(1)tan Btan A=-3(2)π6【分析】(1)通过余弦定理、正弦定理将条件中的边转化为角即可求出结果;(2)由余弦定理表示出cos C,借助条件消去边c,利用基本不等式求出cos C的范围,进而求出C的最大值.【详解】(1)由余弦定理可得b2=c2+a2-2ac cos B,代入b2-a2=2c2,得到c2+a2-2ac cos B-a2=2c2,化简得c2+2ac cos B=0,即c+2a cos B=0.由正弦定理可得sin C+2sin A cos B=0,即sin A+B+2sin A cos B=0,展开得sin A cos B+cos A sin B+2sin A cos B= 0,即3sin A cos B=-cos A sin B,所以tan Btan A=-3.(2)由b2-a2=2c2得c2=b2-a2 2,故cos C=a2+b2-c22ab=a2+b2-b2-a222ab=3a2+b24ab=3a4b+b4a≥2316=32,当且仅当b2=3a2,即b=3a时等号成立.因为C ∈0,π ,所以C ≤π6,所以C 的最大值为π6.21.(1)π3(2)23,3+3【分析】(1)根据正余弦定理,将条件变形,求角B 的大小;(2)根据正弦定理,将周长表示为三角函数,根据函数的定义域,求周长的取值范围.【详解】(1)根据余弦定理可知,a 2+c 2-b 22ac=cos B ,所以sin A =3⋅2ac cos B 2bc ,即sin A =3a cos Bb⇔sin A =3sin A cos Bsin B,则tan B =3,B ∈0,π ,所以B =π3;(2)设∠A ∈π2,2π3,根据正弦定理可知a sin A =c sin C =b sin B =3sinπ3=2,所以a =2sin A ,c =2sin C =2sin 2π3-A ,所以周长a +b +c =2sin A +2sin 2π3-A +3=2sin A +232cos A +12sin A+3=3sin A +3cos A +3=23sin A +π6 +3,因为A ∈π2,2π3 ,A +π6∈2π3,5π6 ,所以sin A +π6 ∈12,32 ,所以23<23sin A +π6 +3<3+3,所以△ABC 的周长为23,3+3 .22.(1)B =2π3(2)932【详解】(1)依题意,由2b cos C =2a +c 及正弦定理得2sin B cos C =2sin A +sin C ,即2sin B cos C =2sin B +C +sin C =2sin B cos C +2cos B sin C +sin C ,所以2cos B sin C =-sin C .因为C ∈0,π ,所以sin C ≠0,所以cos B =-12,又B ∈0,π ,所以B =2π3.(2)如图所示:因为2AM =MC,所以AM =3,MC =6.又∠MAB =∠MB A ,所以BM =AM =3.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2+c 2+ac =81.①又2AM =MC ,所以BM=23BA +13BC,两边平方得BM 2=49BA 2+19BC 2+49BA ⋅BC,即9=49c 2+19a 2+49ac cos B ,所以a 2+4c 2-2ac =81.②②-①得3c 2=3ac ,所以a =c ,代入①得a =c =33,在△BMC 中,BM 2+BC 2=32+33 2=36=MC 2,所以△BMC 是以∠MB C 为直角的三角形,所以△BMC 的面积为12×3×33=932.23.(1)A =π4(2)-1010【分析】(1)利用正弦定理及余弦定理可求得cos A 的值,结合角A 的取值范围可求得角A 的值;(2)由三角形的面积公式可得出c 2=3ab sin C ,利用正弦定理以及两角和的正弦公式可得出sin C =-3cos C ,由同角三角函数的平方关系以及sin C >0可求得cos C 的值.【详解】(1)解:因为sin 2A =sin 2B +sin 2C -2sin B sin C ,令△ABC 的三内角A ,B ,C 所对的边分别为a ,b ,c ,所以由正弦定理可得a 2=b 2+c 2-2bc ,所以由余弦定理可得cos A =b 2+c 2-a 22bc =2bc 2bc=22,因为A ∈0,π ,所以A =π4.(2)由三角形的面积公式可得S △ABC =12ab sin C =12×13c 2,则c 2=3ab sin C ,由正弦定理可得sin 2C =3sin A sin B sin C ,因为C ∈0,π ,则sin C >0,所以,sin C =3sin A sin B ,即sin C =322sin B ,即sin C =322sin C +π4 =32sin C +32cos C ,整理可得sin C =-3cos C ,所以,sin C =-3cos Csin 2C +cos 2C =0sin C >0,解得cos C =-1010.24.(1)π3(2)33【分析】(1)利用正弦定理边化角结合三角恒等变换求解;(2)利用等面积法可得12ac sin B =12(a +b +c )r ,从而得32ac =43+b ,再根据余弦定理,联立方程组求出b =23,从而可求三角形的面积.【详解】(1)因为b cos C +3b sin Ca +c=1,所以b cos C +3b sin C -a -c =0,所以sin B cos C +3sin B sin C -sin A -sin C =0因为A +B +C =π,所以sin B cos C +3sin B sin C -sin (B +C )-sin C =0.所以3sin B sin C -cos B sin C -sin C =0,又因为C ∈0,π ,sin C >0,所以3sin B -cos B =1,所以sin B -π6 =12,因为B ∈0,π ,所以B -π6∈-π6,5π6 ,所以B -π6=π6,所以B =π3.(2)因为△ABC 内切圆的面积为π,所以内切圆半径r =1.由于S △ABC =12ac sin B =12(a +b +c )r ,所以32ac =43+b ,①由余弦定理b 2=a 2+c 2-2ac cos B 得,b 2=a +c 2-3ac ,即b 2=48-3ac ,②联立①②可得b 2=48-38+233b,即b 2+23b -24=0,解得b =23或b =-43(舍去),所以S △ABC =12(a +b +c )×r =33.25.(1)A =π6(2)334【分析】(1)已知等式利用诱导公式和倍角公式化简,可求A 的大小;(2)条件中的等式,利用正弦定理角化边,再用余弦定理求得c 边,用面积公式计算面积.【详解】(1)sin π3-Acos π6+A =cos π2-π3-A cos π6+A =cos 2π6+A =cos π3+2A +12=14,∴cos π3+2A =-12,因为0<A <π,得π3<π3+2A <7π3,所以π3+2A =2π3或π3+2A =4π3,解得A =π6或A =π2,因为a <c ,得A <π2,∴A =π6.(2)由(1)知,A =π6,a sin A +c sin C =43sin B ,由正弦定理,得a 2+c 2=43b =12,由余弦定理,得a 2=b 2+c 2-2bc ⋅cos A ,即12-c 2=3+c 2-23c ⋅32,整理,得2c 2-3c -9=0,由c >0得c =3,所以S △ABC =12bc sin A =12×3×3×12=334.26.(1)C =π3;(2)0,34.【分析】(1)利用正弦定理边化角,再利用和角的正弦化简作答.(2)由(1)的结论,利用余弦定理结合均值不等式求出三角形面积范围作答.【详解】(1)在△ABC 中,由已知及正弦定理得:sin A cos B +sin B cos A =2sin C cos C ,即有sin A +B =2sin C cos C ,即sin C =2sin C cos C ,而0<C <π,sin C >0,则cos C =12,所以C =π3.(2)在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C 得:1=a 2+b 2-ab ,因此1≥2ab -ab ,即0<ab ≤1,当且仅当a =b 时取等号,又S △ABC =12ab sin C =12×32ab =34ab ∈0,34 ,所以△ABC 面积的取值范围是0,34.27.(1)A =π3(2)-2,4 【分析】(1)利用同角三角函数的商数关系及两角和的正弦公式的逆用,结合三角形的内角和定理及三角函数的特殊值对应特殊角注意角的范围即可;(2)利用同角三角函数的商数关系及正弦定理的边化角,根据(1)的结论得出角B 的范围及余弦函数的性质即可求解.【详解】(1)由题意知,2sin C -sin B =sin A cos A×cos B ,所以2cos A sin C -cos A sin B =sin A cos B ,则2cos A sin C =sin A cos B +cos A sin B =sin A +B =sin C ,又C ∈0,π ,所以sin C ≠0,所以cos A =12,又A ∈0,π ,所以A =π3.(2)由(1)得2sin C -sin B =sin A cos A ×cos B ,由正弦定理得2c -b =a cos B cos A ,又a =2,A =π3,所以2c -b =4cos B .因为B ∈0,2π3,所以cos B ∈-12,1 ,所以4cos B ∈-2,4 ,故2c -b ∈-2,4 ,即2c -b 的取值范围为-2,4 .28.(1)A =π4(2)2+1【分析】(1)利用正弦定理求得正确答案.(2)利用圆的几何性质求得AD 的最大值.【详解】(1)依题意,2a sin C =ctan A ,由正弦定理得2sin A sin C =sin C ⋅sin A cos A,由于A ,C 是三角形的内角,所以sin A >0,sin C >0,所以cos A =22,则A 为锐角,所以A =π4.(2)设三角形ABC 外接圆的半径为r ,圆心为O ,则2r =2sin π4=22,r =2,由于A =π4,所以A 在三角形ABC 外接圆上运动,且只在优弧BC (不包括端点)上运动,如图所示,则∠BOC =π2,OD =2 2-12=1,当A ,O ,D 三点共线时,AD 最大,所以AD 长度的最大值是2+1.29.(1)证明见解析(2)1336,4【分析】(1)利用正余弦定理化简得sin A =sin B 2cos c +1 ,再利用两角和差的正弦公式及三角形的性质得sin C -B =sin B ,得证;(2)弦切互化转化为正弦复合函数,先求角C 的范围,然后换元,利用函数单调性求范围.【详解】(1)由c 2=b 2+ab 及余弦定理c 2=a 2+b 2-2ab cos C得a =b 2cos C +1 ,由正弦定理得:sin A =sin B 2cos C +1 ,又A +B +C =π,∴sin A =sin B +C =sin B cos C +cos B ⋅sin C =2sin B cos C +sin B ,∴cos B sin C -sin B cos C =sin B ,∴sin C -B =sin B ,∵A ,B ,C 都是锐角,∴C -B =B ,即C =2B .(2)令y =1tan B -1tan C +3sin C =cos B sin B -cos C sin C+3sin C =sin C cos B -cos C ⋅sin B sin B ⋅sin C +3sin C =sin C -B sin B ⋅sin C +3sin C ,由(1)C =2B 得y =1sin C +3sin C ,在锐角三角形ABC 中,0<A <π20<B <π20<C <π2 ,即0<π-B +C <π20<B =C 2<π20<C <π2,解得π3<C <π2,∴sin C ∈32,1,令t =sin C ∈32,1 ,∴y =f t =1t +3t ,t ∈32,1,又函数y =f t =1t +3t 在32,1上单调递增,∴y =f t ∈1336,4 ,故1tan B -1tan C+3sin C 的取值范围是1336,4 .30.(1)c =62,C =π3(2)6,362【分析】(1)由三角恒等变换化简等式tan A +tan C =2sin B cos A ,结合角的范围可得C ,再由正弦定理及b =2sin B 求得c ;(2)结合正弦定理有a +b +c =2sin A +sin B +62,结合角的关系及三角恒等变换化简求范围即可.【详解】(1)2sin B cos A=tan A +tan C =sin A cos A +sin C cos C =sin A cos C +cos A sin C cos A cos C =sin A +C cos A cos C =sin π-B cos A cos C =sin B cos A cos C ,∵A 、B 、C ∈0,π ,sin B cos A≠0,∴cos C =12,∴C =π3.由b =2sin B 及正弦定理得2=b sin B =c sin C ⇒c =2sin C =62;(2)由正弦定理得a sin A =b sin B =2⇒a =2sin A ,∴a +b =2sin A +sin B =2sin 2π3-B +sin B=232cos B +32sin B =612cos B +32sin B =6sin B +π6.∵B ∈0,2π3 ,∴B +π6∈π6,5π6 ,∴a +b =6sin B +π6∈62,6 .∴△ABC 周长a +b +c ∈6,362.31.(1)A =5π12(2)(-1,0)【分析】(1)已知等式由正弦定理边化角解得A -B =π6,又B =π4,可求A 的值;(2)锐角△ABC 且A -B =π6,可求角B 的范围,利用正弦定理边化角得R -c b =2sin B -π3 ,可求取值范围.【详解】(1)根据正弦定理a sin A=b sin B =c sin C =2R ,有a =2R sin A ,b =2R sin B ,c =2R sin C ,由a cos B -b cos A =R ,有2R sin A cos B -2R sin B cos A =R ,得sin (A -B )=12,因为A ,B ∈0,π2 ,所以A -B ∈-π2,π2 ,所以A -B =π6,由B =π4,解得A =5π12.(2)因为A =π6+B ,所以C =π-(A +B )=5π6-2B ,因为0<A <π20<B <π20<C <π2 ,即0<π6+B <π20<B <π20<5π6-2B <π2 ,所以B ∈π6,π3 ,则R -c b=R -2R sin C 2R sin B =1-2sin C 2sin B =1-2sin 5π6-2B 2sin B =1-cos2B -3sin2B 2sin B=2sin 2B -23sin B cos B 2sin B =sin B -3cos B =2sin B -π3 ,B ∈π6,π3 ,有B -π3∈-π6,0 ,所以2sin B -π3 ∈(-1,0),所以R -c b 的取值范围为(-1,0).32.(1)A =π3(2)12,2 【分析】(1)根据向量平行和正弦定理得cos A =12,则得到A 的大小;(2)首先根据锐角三角形求出C 的范围,再利用正弦定理进行边换角得b c =32tan C +12,根据tan C 的范围即可得到答案.【详解】(1)由m ⎳n得a cos C =2b -c cos A ,∴a cos C +c cos A =2b cos A ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos A ,所以sin A +C =2sin B cos A ,又A +C =π-B ,所以sin B =2sin B cos A .又sin B ≠0,∴cos A =12,又A ∈0,π ,∴A =π3;(2)由(1)得A =π3,B +C =2π3,∵B ,C 为锐角,所以0<C <π20<2π3-C <π2,∴C ∈π6,π2 ,根据正弦定理得b c =sin B sin C =sin 2π3-C sin C =32cos C +12sin C sin C =32tan C +12,其中tan C ∈33,+∞ ,∴32tan C ∈0,32 ,即32tan C+12∈12,2 ,综上可知,b c 的取值范围是12,2 .33.(1)π3(2)6【分析】(1)先使用余弦定理,再用正弦定理进行角变边即求得结果;(2)由平面向量可知AD =12AB +AC ,两边平方,用三角形的边及角表示并结合基本不等式得出结果.【详解】(1)∵3b 2+c 2-a 2 =2ac sin B ,由余弦定理可得23bc cos A =2ac sin B ,即3b cos A =a sin B ,由正弦定理可得3sin B cos A =sin A sin B ,∵B ∈0,π ,∴sin B ≠0.∴3cos A =sin A ,即tan A =3,又A ∈0,π ,所以A =π3.(2)由(1)知,A =π3,△ABC 的面积为23,所以12bc sin π3=23,解得bc =8.由平面向量可知AD =12AB +AC ,所以AD 2=14(AB +AC )2=14AB 2+AC 2+2AB ⋅AC=14b 2+c 2+2bc cos π3 =14b 2+c 2+bc ≥142bc +bc =34bc =6,当且仅当b =c =22时取等号,故BC 边中线AD 的最小值为6.34.(1)π3(2)123【分析】(1)根据正弦定理边角互化,结合两角和的正弦的公式求解即可;(2)利用余弦定理和基本不等式得到ab ≤48,再利用三角形的面积公式求解即可.【详解】(1)根据题意,由正弦定理,可得sin C tan C =3sin A cos B +sin B cos A =3sin A +B ,又因为△ABC 中A +B =π-C ,且C ∈0,π ,所以sin C tan C =3sin C ,即tan C =3,所以C =π3.(2)由余弦定理,可得c 2=a 2+b 2-2ab cos C ,即48=a 2+b 2-ab所以48+ab =a 2+b 2≥2ab ,当且仅当a =b 时等号成立,所以ab ≤48,所以S △ABC =12ab sin C ≤12×48×32=123,所以△ABC 面积的最大值为123.35.(1)π3(2)4,6 【分析】(1)根据正弦定理边化角结合三角形内角和与诱导公式得出2sin A cos B =sin A ,根据三角形内角范围可知sin A ≠0,即可得出cos B =12,再根据角围得出答案;(2)根据已知结合余弦定理即可得出a 、c 关系,再根据基本不等式得出a +c 范围,即可得出答案.【详解】(1)由正弦定理,得2sin C -sin A =2sin B cos A ,因为A +B +C =π,所以sin C =sin A +B ,所以2sin (A +B )-sin A =2sin B cos A ,即2sin A cos B +2cos A sin B -sin A =2sin B cos A ,所以2sin A cos B =sin A ,因为0<A <π,所以sin A ≠0,所以cos B =12,又0<B <π,所以B =π3;(2)由(1)可得B =π3,若b =2,则由余弦定理,得4=a 2+c 2-ac =a +c 2-3ac ,所以3ac =a +c 2-4≤3×a +c 2 2,即14a +c 2≤4,所以a +c ≤4,当且仅当a =c 时等号成立,又a +c >b =2,所以2<a +c ≤4,即4<a +b +c ≤6,所以△ABC 周长的取值范围为4,6 .36.(1)证明见解析.(2)(1,5).【分析】(1)运用余弦定理得2c ⋅cos B =a -c ,再运用正弦定理边化角化简计算即可.(2)运用三角形内角范围求得角C 的范围,进而求得cos C 范围,运用边化角将问题转化为求关于cos C 的二次函数在区间上的值域.【详解】(1)∵c 2+ac =b 2,∴c 2-b 2=-ac ,∴由余弦定理得:cos B =a 2+c 2-b 22ac =a 2-ac 2ac =a -c 2c,即:2c ⋅cos B =a -c ,由正弦定理得:2sin C ⋅cos B =sin A -sin C ,∴2sin C ⋅cos B =sin (B +C )-sin C =sin B cos C +sin C cos B -sin C ,整理得:sin B cos C -sin C cos B -sin C =0,即:sin (B -C )=sin C ,又∵B 、C ∈(0,π),∴B -C =C ,即:B =2C .(2)∵B =2C ,∴A =π-3C ,又∵sin2C =2sin C ⋅cos C ,sin3C =sin (C +2C )=sin C ⋅cos2C +cos C ⋅sin2C =sin C ⋅cos2C +2sin C ⋅cos 2C ,sin C ≠0,∴由正弦定理得:a +b c =sin A +sin B sin C =sin (π-3C )+sin2C sin C =sin3C +sin2C sin C=sin C⋅cos2C+2sin C⋅cos2C+2sin C⋅cos Csin C=cos2C+2cos2C+2cos C =2cos2C-1+2cos2C+2cos C=4cos2C+2cos C-1,又∵0<A<π0<B<π0<C<π⇒0<π-3C<π0<2C<π0<C<π⇒0<C<π3,∴12<cos C<1,令t=cos C,则a+bc=4t2+2t-1,12<t<1,∵y=4t2+2t-1对称轴为t=-1 4,∴y=4t2+2t-1在12,1上单调递增,当t=12时,y=4×14+2×12-1=1;当t=1时,y=4+2-1=5,∴1<a+bc<5,即:a+bc的范围为(1,5).37.(1)证明见解析(2)2 2,98【分析】(1)利用同角的商数关系与正弦定理的边角变换化简得到sin B=cos A,再由条件和诱导公式求得B=π2+A,由此得证;(2)先由(1)求出A的范围,再由诱导公式和二倍角的余弦公式变形化简得到sin A+sin C =-2sin2A+sin A+1,从而利用换元法和二次函数的性质即可求出式子的范围.【详解】(1)因为a=b tan A,所以ab=tan A=sin Acos A,由正弦定理可得sin Acos A=ab=sin Asin B,又0<A<π,所以sin A>0,故sin B=cos A,则sin B=sinπ2+A ,又B为钝角,则0<A<π2,因此B∈π2,π,π2+A∈π2,π,所以B=π2+A,即B-A=π2;(2)由(1)知,C=π-(A+B)=π-2A+π2=π2-2A>0,所以A<π4,又0<A<π2,所以0<A<π4,则0<sin A<22,所以sin A+sin C=sin A+sinπ2-2A=sin A+cos2A=-2sin2A+sin A+1=-2sin A-142+98,令t=sin A,则0<t<22,sin A+sin C=-2t-142+98,对于y=-2t-1 42+98=-2t2+t+1,其开口向下,对称轴为t=14,所以y=-2t-1 42+98在0,14上单调递增,在14,22上单调递减,故当t=14时,y=-2t-142+98取得最大值为98,又当t=0时,y=1,当t=22时,y=22,所以y=-2t-1 42+98的值域为22,98,故22<-2sin A-142+98≤98,即22<sin A+sin C≤98,所以sin A+sin C的取值范围是22,98 .38.(1)ω=1,对称轴方程为:x=kπ2+π6k∈Z;(2)(23,2+3].【分析】(1)根据降幂公式、辅助角公式,结合正弦型函数的零点性质、周期公式、对称轴方程进行求解即可;(2)根据正弦定理、辅助角公式、正弦型函数的单调性进行求解即可.【详解】(1)f(x)=cos2(ωx)+3sin(ωx)cos(ωx)-12=1+cos(2ωx)2+3sin(2ωx)2-1 2,f x =sin2ωx+π6,因为函数f(x)的两个相邻零点间的距离为π2,所以函数f(x)的最小正周期为2×π2=π,因为ω>0,所以2π2ω=π⇒ω=1,即f x =sin2x+π6,令2x+π6=kπ+π2k∈Z⇒x=kπ2+π6k∈Z,所以对称轴为x=kπ2+π6k∈Z;(2)由f(A)=-1⇒sin2A+π6=-1,因为A∈(0,π),所以2A+π6∈π6,13π6⇒2A+π6=3π2⇒A=2π3,因为a=3,所以由正弦定理可知:asin A=bsin B=csin C=332=2⇒b=2sin B,c=2sin C,所以三角形的周长为3+2sin B+2sin C=3+2sin B+2sinπ3-B ,=3+2sin B +232cos B -12sin B=3cos B +sin B +3=2sin B +π3 +3,因为B ∈0,π3 ,所以B +π3∈π3,2π3 ,因此sin B +π3∈32,1 ⇒2sin B +π3 +3∈(23,2+3],所以△ABC 周长的取值范围为(23,2+3].39.(1)π3(2)8,12 【分析】(1)选①或②:由正弦定理得到a 2+c 2-b 2=ac ,再由余弦定理得到cos B =12,结合B ∈0,π ,求出B =π3;选③:由正弦定理化简得到2sin A cos B -sin C cos B =sin B cos C ,进而得到2sin A cos B =sin A ,cos B =12,求出B =π3;(2)由余弦定理结合基本不等式可得出a +c ≤8,从而可求得△ABC 的周长的取值范围.【详解】(1)选①,∵a sin C -sin A sin C +sin B=c -b ,∴sin A sin C -sin A sin C +sin B=sin C -sin B ∴sin A sin C -sin 2A =sin 2C -sin 2B∴sin A sin C =sin 2A +sin 2C -sin 2B∴ac =a 2+c 2-b 2,又∵a 2+c 2-b 2=2ac cos B∴cos B =12,又∵0<B <π,∴B =π3.选②,∵sin 2A +sin 2C -sin 2B =sin A sin C ∴a 2+c 2-b 2=ac ,又∵a 2+c 2-b 2=2ac cos B∴cos B =12,又∵0<B <π,∴B =π3.选③,∵2a -c b=cos C cos B ,∴2sin A -sin C sin B =cos C cos B ∴2sin A cos B -sin C cos B =sin B cos C∴2sin A cos B =sin C cos B +sin B cos C =sin (B +C )=sin A∵sin A ≠0,∴cos B =12,又∵0<B <π,∴B =π3.(2)由余弦定理得:b 2=a 2+c 2-2ac cos B ,∴16=a 2+c 2-ac =(a +c )2-3ac ≥a +c 2-3a +c 24=a +c 24,当且仅当a =c =4时,取等号.∴a +c 2≤64,∴a +c ≤8,又∵a +c >4,∴4<a +c ≤8,∴8<a +c +b ≤12。
专题解三角形大题(含答案)
解三角形专题1.在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+a=c.(1)求B的大小;(2)若c=,a+b=2,求△ABC的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-a)sin B+a sin A=c sin C,且c=2.(Ⅰ)求角C的度数;(Ⅱ)求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需3.已知在△ABC中,,a=13,c=15.(Ⅰ)求sin C;(Ⅱ)若△ABC是钝角三角形,求△ABC的面积.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求角C;(2)若c=2,求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需5.如图,在四边形ABCD中,∠D=2∠B,且AD=2,CD=6,cos B=.(1)求△ACD的面积;(2)若BC=6,求AB的长.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.高三几何每日一题(5 )答案靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需1.【答案】解:(1)∵b cos A+a=c,∴由正弦定理可得sin B cos A+sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A ≠0,∴cos B=,∵B∈(0,π),∴B=.(2)∵B=,c=,∴由余弦定理可得cos B==,整理可得a2-b2+3=3a ,又a+b=2,解得a=b=1,∴S△ABC=ac sin B==.2.【答案】解:(Ⅰ)由正弦定理得(b-a)b+a2=c2,即a2+b2-c2=ab由余弦定理得,∵C∈(0,π),∴.(Ⅱ)由面积公式,由a2+b2-c2=ab,得到ab+4=a2+b2,由不等式a2+b2≥2ab,得到ab +4≥2ab,∴ab≤4,从而,当且仅当a =b=2时取等号.所以△ABC面积的最大值为,3.【答案】解:(Ⅰ)在△ABC中根据正弦定理得,即,∴,(Ⅱ)因为a2=b2+c2-2bc cos A,所以.解得b=8或b=7.当b=7时,所以C为钝角,所以△ABC的面积,当b=8时,.此时C为锐角,不满足题意,所以△ABC的面积.4.【答案】解:(1)△ABC中,2cos C(a cos B+b cos A)=c,由正弦定理可得:2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sinC=sin C,又0<C<π,sin C≠0,∴cos C=,求得C=;(2)由c=2,C=,利用余弦定理可得:4=c2=a2+b2-2ab cos C≥2ab-ab=ab,靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
高考数学大题专练—解三角形(周长问题)
cos (2)cos a B c b A=-解三角形(周长问题)1、ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC △的周长.2、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,(1)求角A 的大小;(2)求△ABC 周长的最大值.3、ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知cA bB aC =+)cos cos (cos 2(1)求C(2)若7=c ,ABC ∆的面积为233,求ABC ∆的周长4、ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC ∆的周长最大时,求它的面积.5、在ABC ∆中,已知3a =,2b c =.(1)若23A π=,求ABC S ∆.(2)若2sin sin 1BC -=,求ABC C ∆.6、已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,满足51sin()sin(664A A ππ-+=-.(1)求角A 的大小;(2)若ABC ∆为锐角三角形,1a =,求ABC ∆周长的取值范围.7、在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,S 为ABC ∆的面积,且20S AC +⋅=.(1)求A 的大小;(2)若a =1b =,D 为直线BC 上一点,且AD AB ⊥,求ABD ∆的周长.(3sin )sin (1cos cos )b c A C c A C -=-8、已知函数2()sin(sin()2cos 662x f x x x ππ=++--,x R ∈.(1)求函数()f x 的值域;(2)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,若2a =且f (A )0=,ABC ∆3ABC ∆的周长.9、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知(Ⅰ)求B 的值;(Ⅱ)在①934ABC S ∆=,②4A π=,③2a c =这三个条件中任选一个,补充在下列问题中,并解决问题.若3b =,_______,求ABC ∆的周长.10、如图,在四边形ABCD 中,33CD =,7BC =7cos 14CBD ∠=-.(1)求BDC ∠;(2)若3A π∠=,求ABD ∆周长的最大值.参考答案1、(1)∵ABC △面积23sin a S A=.且1sin 2S bc A =∴21sin 3sin 2a bc A A =∴223sin 2a bc A =∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=又∵()0πA ∈,∴60A =︒,3sin 2A =,1cos 2A =由余弦定理得2229a b c bc =+-=①由正弦定理得sin sin a bB A =⋅,sin sin a cC A=⋅∴22sin sin 8sin a bc B C A=⋅=②由①②得b c +=∴3a b c ++=+ABC △周长为32、解:(Ⅰ)∵cos (2)cos a B c b A =-,由正弦定理2sin sin sin a b c R A B C===,得sin cos (2sin sin )cos A B c B A =-,sin cos sin cos 2sin cos A B B A C A +=,即sin()2sin cos A B C A +=,又∵A B C π+=-,sin 2sin cos C C A∴=∵(0,)C π∈,∴1cos ,23A A π==.(Ⅱ)由(Ⅰ)可知3A π=432sin 3a R A ==,22sin 2sin 2(sin sin )32(sin()sin )33a b cR A R BB C C C ππ++=++=++=+--+24sin()6C π=++250,3666C C ππππ<<∴<+< ∴当,623C C πππ+==时,ABC ∆周长最大最大值为2+4=6,即ABC ∆周长最大值是63、(1)由正弦定理得:∵,∴∴,∵∴(2)由余弦定理得:∴∴∴周长为4、解:(1)因为222sin sin sin sin sin B A C A C --=,所以222b a c ac --=,可得222a c b ac +-=-,由余弦定理可得2221cos 222a cb ac B ac ac +--===-,因为(0,)B π∈,所以23B π=.(2)因为23B π=,3b =,所以由余弦定理知,2222222392cos ()()()()24a c b a c ac B a c ac a c a c +==+-=+-+-=+,当且仅当3a c ==所以23a c +ABC ∆的周长最大值为323+3ac =,所以ABC ∆的面积11333sin 322S ac B ==⨯⨯5、解:(1)由余弦定理得22222159cos 224b c a c A bc c +--=-==,解得297c =,21393sin 22414ABC S bc A c ∆∴===;(2)2b c = ,∴由正弦定理得sin 2sin B C =,又2sin sin 1B C -= ,1sin 3C ∴=,2sin 3B =,sin sinC B ∴<,C B ∴<,C ∴为锐角,2122cos 1()33C ∴=-=.由余弦定理得:2222cos c a b ab C =+-,又3a = ,2b c =,229482c c c ∴=+-,得:23290c c -+=,解得:425c ±=当4253c +=时,82253b +=325ABC C ∆∴=+当4253c =时,82253b -=,3ABC C ∆∴=+.6、解:(1)因为51sin()sin()664A A ππ-+=-,所以111(cos )()22224A A A A --+=-,即22311cos sin cos 444A A A A --=-,3112(1cos 2)cos 2)884A A A ---+=-112cos 244A A +=,所以可得1sin(2)62A π+=,因为(0,)A π∈,可得2(66A ππ+∈,13)6π,所以5266A ππ+=,可得3A π=.(2)由正弦定理sin sin sin a b c A B C ==,且1a =,3A π=,所以b B =,c C =;所以232321sin )1[sin sin(?)]12sin()3336a b c B C B B B ππ++=++=++=++.因为ABC ∆为锐角三角形,所以得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<.所以12sin((16B π++∈+,3];即ABC ∆周长的取值范围是(1+3].7、解:(1)20S AC ⋅= ,∴12sin cos 02b c A c A ⨯⋅⋅+⋅⋅=,又0b c ⋅>,∴sin 0A A +=,即tan A =,又(0,)A π∈,∴23A π=;(2)在ABC ∆中,由余弦定理得:2222cos a b c bc A =+-⋅,又a =、1b =,23A π=,260c c ∴+-=,又0c >,2c ∴=,在ABC ∆中,由正弦定理得21sin 14B =,又a b >,B ∴为锐角,∴cos 14B =,在Rt ABD ∆中,cos AB B BD =,∴BD 21sin 14AD BD B =⋅==ABD ∴∆的周长为235710234725145+++=.8、解:(1)23131()sin cos 2cos 22222x f x x x x x =++--cos 12sin(16x x x π=--=--,∴当2sin()16x π-=-时,()f x 取得最小值3-,当2sin()16x π-=时,()f x 取得最大值1,即函数()f x 的值域是[3-,1].(2)由f (A )2sin()106A π=--=得1sin()62A π-=,0A π<< ,5666A πππ∴-<-<,则66A ππ-=,得3A π=,ABC ∆ ,2a =,∴1sin 23bc π==4bc =,又22222cos()23a b c bc b c bc bc π=+-=+--,即24()12b c =+-,得2()16b c +=,即4b c +=,则周长426a b c ++=+=.9、解:(Ⅰ)因为sin )sin (1cos cos )c A C c A C -=-,sin cos()0C c A C c ++-=,即sin cos )sin C B B C -=,因为(0,)C π∈,sin 0C ≠,cos 2sin()16B B B π-=-=,即1sin(62B π-=,因为0B π<<,5666B πππ-<-<,所以66B ππ-=,可得3B π=.(Ⅱ)若选择条件①,因为1sin 23ABC S ac π∆=,所以9ac =,由余弦定理可得2291cos 322a c ac π+-==,所以2218a c +=,可得2()36a c +=,又0a c +>,解得6a c +=,因此ABC ∆的周长为9a b c ++=.若选择条件②4A π=,在ABC ∆中,由正弦定理可得3sin sin sin sin 3a b c A B C π====所以4a π==,sin()34c ππ=+=所以ABC ∆的周长为32632366322a b c ++=+=.若选择条件③2a c =,由余弦定理可得2291cos 322a c ac π+-==,所以222492c c c +-=,即23c =,解得c =,a =,因此ABC ∆的周长为3a b c ++=+.10、解:(1)在BCD ∆中,cos CBD ∠=,所以321sin 14CBD ∠===,利用正弦定理得sin sin CD BC CBD BDC=∠∠,所以321sin 114sin 2BC CBD BDC CD ⋅∠∠==,又因为CBD ∠为钝角,所以BDC ∠为锐角,故6BDC π∠=;(2)在BCD ∆中,由余弦定理得2222cos214BC BD CD CBD BC BD +-∠===-⋅,解得4BD =或5BD =-(舍去),在ABD ∆中,3A π∠=,设AB x =,AD y =,由余弦定理得22222161cos 222AB AD BD x y A AB AD xy +-+-===⋅,即2216x y xy +-=,整理得2()163x y xy +-=,又0x >,0y >,利用基本不等式得223()()1634x y x y xy ++-=,即2()64x y +,当且仅当4x y ==时,等号成立,所以x y +的最大值为8,所以AB AD BD ++的最大值为8412+=,所以ABD ∆周长的最大值为12.。
解三角形练习题及答案
解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
高中数学解三角形大题经典题目总结
高中数学解三角形大题经典题目总结一、基础题1. 已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB (1)求B 的大小;(2)求cos 3cos AC A B +的值.2. 在ABC ∆中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a 的值:(2)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.3. 如图,在圆内接ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足cos cos 2cos a C c A b B +=.(1)求B ;(2)若点D 是劣弧AC 上一点,AB =2,BC =3,AD =1,求四边形ABCD 的面积4.ABC ∆中的内角A ,B ,C 的对边分别是a ,b ,c 4c =,2B C =.(1)求cos B ;(2)若5c =,点D 为边BC 上一点,且6BD =,求ADC ∆的面积.5. 请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题①2252b c +=;②ABC 的面积为;③26AB AB BC +⋅=-.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在已知2b c -=,A 为钝角,sin A (1)求边a 的长; (2)求sin 26C π⎛⎫- ⎪⎝⎭的值.6. 在①222sin 2cos 2cos cos 122C B C B C B -+++=,①2tan tan tan B b A B c =+,①(sin )a C C =三个条件中任选一个,补充在下面问题中,并加以解答.在ABC ∆中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足a =,3b =, ______,求ABC ∆的面积.7. 在①2sin cos C A =②tan a A =,③cos c A =补充在下面问题中,并求ABC ∆的面积.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且4,3a C π==,________?8. 在①22()3a b c ab +=+,①sin cos a A a C =-,①(2)sin (2)sin 2sin a b A b a B c C -+-=,这三个条件中任选一个,补充在下列问题中,并解答.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,c =_____.(1)求C ∠;(2)求ABC 周长的最大值.9. 在①AD 是BC 边上的高,且AD BC ⋅=,②AD 平分BAC ∠,且7AD =,③AD 是BC 边上的中线,且2AD =这三个条件中任选一个,补充在下面的问题中,并求出边BC 的长.问题:在锐角ABC ∆中,已知4AB =,3AC =,D 是边BC 上一点,_____,求边BC 的长.注:如果选择多个条件分别解答,按第一个解答计分10. 已知ABC ∆的内角A ,B ,C 所对的边分别是,,a b c ,且满足()()()sin sin sin sin sin sin sin A B A B C B C +-=-,ABC 的面积为.(1)求sin 2A ;(2)sin sin B C +=,求ABC 的周长.11. 在ABC ∆中,M 为BC 边上一点,45BAM ∠=︒,cos AMC ∠=. (1)求sin B ; (2)若12MC BM =,4AC =,求MC .12. 在ABC ∆中,角A ,B ,C 的对边分别是a 、b 、c ,且24cos 222Ba abc =-+ (1)求A ;(2)若2b =,ABC 的面积为2,M 是AB 的中点,求2CM .13. ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且(sin cos )(cos sin )b C C c B B -=-.(1)记BC 边上的高为h ,求a h;(2)若b =1c =,求a .14. 在ABC ∆中,BAC ∠的角平分线交BC 于点D ,1AC AD ==,3AB =.(1)求cos BAD ∠; (2)求ABC 的面积.15. 在ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若222sin 2cos 2cos cos 122A B A BA B -+++=(1)求角C 的大小(2)若4,38c CA CB =+=16. 如图,在四边形ABCD 中,2D B ∠=∠,AC BC =,2AD =,6CD =.(1)当ACD ∆的面积最大时,求ABC ∆的面积;(2)若cos B =AB .17. 已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos a B b A +=.(1)求角C ;(2)如图,若点D 在边AC 上,AD DB =,DE AB ⊥,E 为垂足,AE =a =, 求AD 长.二、中档题1. 如图,在直角ACB △中,2ACB π∠=,3CAB π∠=,2AC =,点M 在线段AB 上.(1)若sin 3CMA ∠=,求CM 的长;(2)点N 是线段CB 上一点,MN =12BMN ACB S S =△△,求BM BN +的值.2. 已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且2222c a b ab +-=.(1)若sin 3C =,求B ; (2)若D 为AC 中点,且BD BC =,求a b.3. 在①2b =;②c =;③222a cb +-=这三个条件中任选两个,补充在下面问题中,求BCD ∠的大小和ACD △的面积.问题:已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,2a =,设D 为边AB 上一点,BD =, .注:如果选择多个条件分别解答,按第一个解答给分.4. 在ABC ∆中,内角A 、B 、C 对边分别是a 、b 、c ,已知2sin sin sin B A C =.(1)求证:03B π<≤;(2)求222sin sin 1A CB +-+的取值范围.5. 已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①33()b ac c a b -+=+;②2cos 22cos 12A A +=;③a =④b =(1)满足有解三角形的序号组合有哪些?(1)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)6. 在①sin sin sin sin A C A Bb a c--=+,②2cos cos cos c C a B b A =+这两个条件中任选一个,补充在下面问题中的横线上,并解答.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c , . (1)求角C ;(2)若c =a b +=ABC 的面积.注:如果选择多个条件分别解答,按第一个解答计分.7. 在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2b C a c =-.(1)求角B ;(2)求sin sin A C 的取值范围.8. 在①ANBN=,②AMN S =△,③AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,8c =,点M ,N 是BC 边上的两个三等分点,3BC BM =,____________,求AM 的长和ABC ∆外接圆半径.注:如果选择多个条件分别进行解答,按第一个解答进行计分.三、提升题1. △ABC 中,角A ①B ①C 所对的边分别为a ①b ①c ,已知1a =,sin cos ()cos c B B b C -=. (1)求BC 边上的高AD 的长; (2)求tan A 的最大值.2. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin sin B C aA C b c+=--.(1)求tan B ;(2)若ABC 是锐角三角形,且ABC 的面积为c 的取值范围.3. 若锐角BC △A 中,角,,A B C 所对的边分别为,,a b c ,若32()cos )33x f x C C x x =-++的图像在点(,())C c f c 处的切线与直线y x=垂直,求ABC ∆面积的最大值.4. 重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大?。
解直角三角形练习题(带答案)
解直角三角形—题集1.如图,在地面上的点处测得树顶的仰角为度,米,则树高为( ).A.米B.米C.米D.米【答案】A【解析】米.【标注】【知识点】仰角与俯角2.如图,斜坡,坡顶到水平地面的距离为米,坡底为米,在处,处分别测得顶部点的仰角为,,求的长度.(结果保留根号).【答案】的长度为米.【解析】设米,则米,由题意得,四边形为矩形,∴,在中,∴ ,在中,,∴,∴,解得,,∴.答:的长度为米.【标注】【知识点】仰角与俯角A.的值越小,梯子越陡B.的值越小,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关3.如图,梯子跟地面的夹角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是().【答案】B【标注】【知识点】坡度4.某地的一座人行天桥如图所示,天桥高为米,坡面的坡度为,文化墙在天桥底部正前方米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(1)(2)若新坡面坡角为,求坡角度数.有关部门规定,文化墙距天桥底部小于米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.(参考数据:,)【答案】(1)(2).该文化墙需要拆除,证明见解析.【解析】(1)(2)∵新坡面坡角为,新坡面的坡度为,∴,∴.作于点,则米,∵新坡面的坡度为,∴,解得,米,∵坡面的坡度为,米,∴米,∴米,又∵米,∴米米,故该文化墙需要拆除.【标注】【知识点】坡度游船港口海警船北(1)(2)5.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援.求点到直线的距离.求海警船到达事故船处所需的大约时间.(温馨提示:,)【答案】(1)(2)海里.小时.【解析】游船港口海警船北(1)(2)如图,过点作交延长线于.在中,∵,,海里,∴点到直线距离海里.在中,∵,,∴(海里),∴海警船到达事故船处所需的时间大约为:(小时).【标注】【知识点】方位角在锐角三角函数中的应用6.一副直角三角板按如图所示放置,点在的延长线上,,,,,,则的长为 .【答案】【解析】过点作于点,在中,,,,∴.∵,∴.,在中,,,∴,∴,∴.【标注】【知识点】三角板拼接问题7.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙平行且距离为米,一辆小汽车车门宽为米,当车门打开角度为时,车门是否会碰到墙? .(填“是”或“否”)请简述你的理由 .(参考数据:,,).【答案】否 ; 点到的距离小于与墙的距离【解析】过点作,垂足为点,如图.在中,∵,米,∴米,∵汽车靠墙一侧与墙平行且距离为米,∴车门不会碰到墙(点到的距离小于与墙的距离).故答案为:否;点到的距离小于与墙的距离.【标注】【知识点】测量物体之间的距离8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,求树的高度.【答案】米.【解析】延长交延长线于点,则,作于,在中,,,∴(米),(米),在中,∵同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,(米),,∴(米),∴(米),在中,(米),故答案为:米.【标注】【知识点】影子问题(1)(2)9.如图,在中,,点是边的中点,,.求和的长.求的值.【答案】(1)(2),..【解析】(1)(2)∵点是边的中点,且∴.∵,∴.∵在中,,,∴.在中,,,∴.故,.如图,作交于点.∵在中,,,∴设,,由勾股定理可得,解得,∴.在中,∵,,∴.即.【标注】【知识点】解直角三角形的综合应用10.如图,在四边形中,,于点,已知,,,求的长.【答案】.【解析】过点作于.∵在中,,,∴,.∵,,∴,∵,∴.∴在中,,,∴,.又∵在中,,,.∴.【标注】【知识点】解直角三角形的综合应用11.如图,在中,,,=, ,求.【答案】.【解析】 在中,,,,,,由勾股定理得:,∵,∴,∵∴,,∴.【标注】【知识点】解直角三角形的综合应用。
专题解三角形大题(含答案)
专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。
根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。
代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。
同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。
解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。
根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。
代入正弦定理和已知条件,解得sinB=1/2,周长为3c。
1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。
由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。
(完整版)解三角形练习题及答案
第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小 ( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=( ).A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=().A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是( ).A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B 3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c . 解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c . 又∵a +c =8,∴a =524,c =516.。
中考数学关于解直角三角形的18道经典题
中考数学关于解直角三角形的18道经典题1、如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米) 解:延长CD 交AB 于G ,则CG=12(千米)依题意:PC=300×10=3000(米)=3(千米) 在Rt △PCD 中: PC=3,∠P=60° CD=PC ·tan ∠P =3×tan60°=33∴12-CD=12-33≈6.8(千米) 答:这座山的高约为6.8千米.2、如图,水坝的横断面是梯形,背水坡AB 的坡 角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈).答案:(10分)解:过B作BE ⊥AD 于E在Rt △ABE 中,∠BAE= 60, ∴∠ABE= 30 ∴AE =21AB31032021=⨯=∴BE ()()303103202222=-=-=AE AB∴在Rt △BEF 中, ∠F= 45, ∴EF =BE =30 ∴AF=EF-AE=30-310∵732.13=, ∴AF =12.68≈133、施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千米P C D G60°(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解:(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, …………………………………3分 ∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分4、在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图, 若 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.解:过A 点作AD ⊥BC 于点D , …………1分在Rt △ABD 中,∵∠ABC=60°,∴∠BAD=30°. …………2分 ∵AB=4,∴BD=2, ∴AD=23. …………4分 在Rt △ADC 中,AC=10,∴CD=22AD AC -=12100-=222 . …………5分 ∴BC=2+222 . …………6分 答:B 、C 两点间的距离为2+222. …………7分5、在东西方向的海岸线l 上有一长为1km 的码头MN(如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东NM 东北BCAlCBA17cm(第19题) A BCF60°,且与A相距83的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.答案解:(1)由题意,得∠BAC=90°,………………(1分)∴2240(83)167BC=+=.…………(2分)∴轮船航行的速度为41671273÷=时.……(3分)(2)能.……(4分)作BD⊥l于D,CE⊥l于E,设直线BC交l于F,则BD=AB·cos∠BAD=20,CE=AC·sin∠CAE=43,AE=AC·cos∠CAE=12.∵BD⊥l,CE⊥l,∴∠BDF=∠CEF=90°.又∠BFD=∠CFE,∴△BDF∽△CEF,……(6分)∴,DF BDEF CE=∴3220343EFEF+=,∴EF=8.……(7分)∴AF=AE+EF=20.∵AM<AF<AN,∴轮船不改变航向继续航行,正好能行至码头MN靠岸.6、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)答案(1)如图,作AD⊥BC于点D……………………………………1分Rt△ABD中,AD=AB sin45°=42222=⨯……2分在Rt△ACD中,∵∠ACD=30°FEDlAC北东M NABE FQ P ∴AC =2AD =24≈6.5………………………3分即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分 解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………7分 ∴货物MNQP 应挪走. …………………………………………………………8分7、如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)答案 (1)相等30,6030BEQ BFQ EBF EF BF ∠=∠=∴∠=∴=....................................2分 又6060AF P BFA ∠∠=∴∠=在AEF 与△ABF 中,,EF BF AFE AFB AF AFAFE AFB AE AB=∠=∠=∴≅∴=...........................................................................5分 (2)法一:作AH PQ ⊥,垂足为H 设 AE=x 则AH=xsin74°HE= xcos74° HF=xcos74°+1 ...............................................................................................7分tan60Rt AHF AH HF=中,所以xsin74°=(xcos74°+1)tan60°即0.96x=(0.28x+1)×1.73所以 3.6x≈即AB 3.6km≈法二:设AF与BE的交点为G,在Rt△EGF中,因为EF=1, 所以 EG=3在Rt△AEG中376,cos760.24 3.6 AEG AE EG∠==÷=÷≈答: 两个岛屿A与B之间的距离约为3.6km8、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,AB45°60°C E D∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ……………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………3分9、为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分 在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD∴CA =33 …………4分 ∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分10、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,第19题图A45°60°结果保留整数).解:根据题意,可知45ACB ∠=︒,60ADB ∠=︒,50DC =.在Rt △ABC 中,由45BAC BCA ∠=∠=︒,得BC AB =. 在Rt △ABD 中,由tan ABADB BD∠=, 得3tan tan 60AB AB BD AB ADB ===∠︒. ..............................6分 又 ∵ BC BD DC -=,∴ 350AB AB -=,即(33)150AB -=. ∴ 11833AB =≈-.答:该兴趣小组测得的摩天轮的高度约为118 m. .....................8分11、小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.25.连结AN 、BQ∵点A 在点N 的正北方向,点B 在点Q 的正北方向 ∴l AN ⊥ l BQ ⊥--------------------------1分 在Rt △AMN 中:tan ∠AMN=MNAN∴AN=360-----------------------------------------3分 在Rt △BMQ 中:tan ∠BMQ=MQBQ∴BQ=330----------------------------------------5分 过B 作BE ⊥AN 于点E 则:BE=NQ=30∴AE= AN -BQ -----------------------------------8分 在Rt △ABE 中,由勾股定理得:222BE AE AB +=22230)330(+=AB∴AB=60(米)12、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD 垂直.已知装饰画的高度AD 为0.66米, 求:⑴ 装饰画与墙壁的夹角∠CAD 的度数(精确到1°);⑵ 装饰画顶部到墙壁的距离DC (精确到0.01米).解:⑴ ∵AD =0.66,∴AE =21CD =0.33. 在Rt △ABE 中,………………1分 ∵sin ∠ABE =AB AE =6.133.0, ∴∠ABE ≈12°. ………………4分∵∠CAD +∠DAB =90°,∠ABE +∠DAB =90°, ∴∠CAD =∠ABE =12°.∴镜框与墙壁的夹角∠CAD 的度数约为12°. ………………5分 ⑵ 解法一:在Rt △∠ABE 中, ∵sin ∠CAD =ADCD, ∴CD =AD ·sin ∠CAD =0.66×sin12°≈0.14. ………………7分ACD EBABCD第19题图解法二: ∵∠CAD =∠ABE , ∠ACD =∠AEB =90°,∴△ACD ∽△BEA. ………………6分 ∴AB ADAE CD =. ∴6.166.033.0=CD . ∴CD ≈0.14. ………………7分∴镜框顶部到墙壁的距离CD 约是0.14米.………………8分13、如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第23题图解:过M 作MN ⊥AC ,此时MN 最小,AN =1500米1、(2010山东济南)图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 3求线段AD 的长.解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ··················· 1分 ∴在Rt △ADC 中,cos30ACAD =︒············· 2分=3×3··········· 3分=2 . ·············· 4分14、热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A 处与高楼的水平距离为60m ,这栋高楼有多高?(结果精确到0.1m ,参考数据:2 1.414,3 1.732≈≈)答案: 解:过点A 作BC 的垂线,垂足为D 点 ……………1分由题意知:∠CAD = 45°, ∠BAD =60°, AD = 60m在Rt △ACD 中,∠CAD = 45°, AD ⊥BC∴ CD = AD = 60 ……………………3分 在Rt △ABD 中,∵BDtan BAD AD∠=……………………4分 ∴ BD = AD ·tan ∠BAD= 603 ……………………5分∴BC = CD+BD= 60+603 ……………………6分≈ 163.9 (m) …………………7分答:这栋高楼约有163.9m . …………………8分 (本题其它解法参照此标准给分)15、如图,直角ABC ∆中,90C ∠=︒,25AB =,5sin B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP . (1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并PD CBA求出最大值.22.(1)在Rt ABC ∆中,5sin B =,25AB =, 得5AC AB =,∴2AC =,根据勾股定理得:4BC =. …… 3分(2)∵PD ∥AB ,∴ABC ∆∽DPC ∆,∴12DC AC PC BC == 设PC x =,则12DC x =,122AD x =- ∴2211111(2)(2)122244ADP S AD PC x x x x x ∆=⋅=-⋅=-+=--+ ∴当2x =时,y 的最大值是1. ……… 8分16、小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)答案:解:设CD = x .在Rt △ACD 中,tan37AD CD︒=, 则34AD x=, ∴34AD x =. 在Rt △BCD 中,tan48° = BD CD, 则1110BD x=, ∴1110BD x =. ∵AD +BD = AB , B37° 48° D CA 第19题图∴31180 410x x+=.解得:x≈43.17、在市政府广场进行了热气球飞行表演,如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan,80.037cos,60.037sin≈︒≈︒≈︒73.13≈)解:过A作AD⊥CB,垂足为点D.………………………1分在Rt△ADC中,∵CD=36,∠CAD=60°.∴AD=31233660tan==︒CD≈20.76.……5分在Rt△ADB中,∵AD≈20.76,∠BAD=37°.∴BD=37tan⨯AD≈20.76×0.75=15.57≈15.6(米).………8分答:气球应至少再上升15.6米.…………………………9分18、图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.【答案】解:根据题意得:DE=3.5×16=56,AB=EF=16∵∠ACB=∠CBG-∠CAB=15°,∴∠ACB =∠ CAB∴CB=AB=16.∴CG=BCsin30°=8CH=CG+HG=CG+DE+AD=8+56+5=69.∴塔吊的高CH的长为69m.BACD。
解三角形大题第一问专练13个类型练到位原卷版
专题3解三角形大题第一问专练·13个类型练到位目录高考真题回顾与梳理 (3)2023.新高考一卷T17(1):出现了3个角时 拆角 (3)2022.新高考二卷T18(2):式子变形后出现了三边的平方 余弦 (3)2019.全国Ⅲ卷高考真题:出现两角之和 变为第三个角 (4)题型一正弦定理+和差公式 (5)类型1 出现了3个角(拆角,正向使用和差公式) (5)类型2 反向使用和差公式 (6)类型3 拆角后再用辅助角公式合并求角 (6)题型二用余弦定理 (8)类型1 出现了边的平方 (8)类型2 出现角的余弦(正弦走不通) (9)题型三多解问题分析 (11)题型四通过诱导公式统一函数名 (12)类型1 半角降幂扩角 (13)类型2余弦二倍角转变为1元二次方程 (13)题型六切化弦 (14)题型七判断三角形的形状或验证角度之间的关系 (15)题型七遇到两角之和化为第三个角 (17)一、基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则111sin sin sin 222S ABC ab C bc A ac B ∆=== 1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r . ) (3)二倍角公式sin 22sin cos A A A =,2222cos 22cos 112sin cos sin A A A A A =−=−=−二、相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔=②大边对大角 大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理(结合诱导公式):A B C π++= ①sin sin()sin cos cos sin CA B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B +,cos cos b c A a C +.②cos cos()cos cos sinAsinB CA B A B −=+=−; ③斜三角形中,tan tan tan tan()1tan tan A BCA B A B+−=+=−⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33BA C ππ⇔=+=.(3)2倍角公式的扩角降幂21cos cos 22C C +=.,21cos sin 22C C −= 忘记了可以用二倍角公式推导:记2Ct =, 则22cos cos 22cos 112sin C t t t ==−=−故221cos 2cos22cos 1cos 2t t t t +=−⇒=,221cos 2cos 212sin sin 2tt t t −=−⇒=高考真题回顾与梳理2023·新高考一卷T17(1):出现了3个角时 拆角已知在ABC 中,()3,2sin sin A B C A C B +=−=,求sin A .2022·新高考二卷T18(2):式子变形后出现了三边的平方 余弦2019·全国Ⅲ卷高考真题:出现两角之和 变为第三个角题型一 正弦定理+和差公式类型1 出现了3个角(拆角,正向使用和差公式)1.在ABC cos cos CA =,求A 的值2.△ABC 的内角A,B,C 的对边分别为a,b,c ,且2sin 6b c A π+,求C.重点题型·归类精类型2 反向使用和差公式中,角A,B,C的对边分别为a,b,c,已知4.(2023·重庆二模)在ABC类型3 拆角后再用辅助角公式合并求角7.(2023届·深圳市一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知2sin 6b c a C π+=+ ,求A .8.在 ABC sin sin cos sin B CC C A++=,求A .题型二 用余弦定理 类型1 出现了边的平方11.已知ABC 内角,,A B C 所对的边长分别为2222,,cos 2cos a b c B b ab C a c +=++,求B .12.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =2sin cos sin sin sin a C B a A b B C =−+,求b2023届·湖南四大名校团队模拟冲刺卷(一)2023·广东省六校高三第四次联考14.已知ABC 的角A ,B ,C 的对边分别为a ,b ,c ,且类型2 出现角的余弦(正弦走不通)17.(2023·广州二模)记ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos cos b A a B b c −=−,求A .18.(2023·深圳二模)已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且()sin 2sin A B C −=,证明:22.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin =sin b c B b A C −−,求角A .题型三 多解问题分析23.(易漏解)△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有()sin 20C A B ++=, 求角C .24.(2023上·肇庆·二模)在ABC 中,角,,A B C 的对边分别为,,a b c .已知()cos cos cos 0b c A a B a C +−−=,求角A .题型四 通过诱导公式统一函数名25.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知πsin cos 6a B b A=−,求A 的值26.(2023下·华中师大一附中5月压轴卷(一)·模拟预测)已知ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,若满足(sin 2cos cos )sin sin 0a A B C b A C −+=,求角A 的大小.cos cos b C c B =,求A 的值.题型五 降幂,半角,二倍角 类型1 半角降幂扩角28.(2023·重庆八中二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知223cos cos 222C A a c b +=.证明:sin sin 2sin A C B +=29.在ABC ∆中,内角A ,B ,C 所对的边分别a ,b ,c ,且223(coscos )()222C Aa c a cb ac ++−=,求角B 的大小;类型2 余弦二倍角转变为1元二次方程30.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A -3cos (B +C )=1,求角A 的大小.题型六 切化弦长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届5月“一起考” 31.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos B CA B C+=+,求A ∠.32.(2023·青岛·三模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2sin2tan c B a c C =−,求33.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足πsin 3tan πsin 6C B C+=−,求A .题型七判断三角形的形状或验证角度之间的关系重庆市巴蜀中学校2023届高三下学期适应性月考(十)三角形38.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos a c b A +=,证明:2B A =.39.在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b −=,求证:2A B =.2023届·武汉市华中师范大学第一附属中学5月压轴卷(二)40.ABC 的内角,,A B C 的对边分别为,,a b c 且()()sin cos cos sin A B CB AC −=−,判断ABC 的形状;题型七 遇到两角之和化为第三个角41.(2023sinsin 2A Bc A +=,求角C 的大小.Cc=,求B2。
(完整版)解三角形大题及答案
1.(2013大纲)设的内角的对边分别为,.(I)求(II)若,求. 2.(2013四川)在中,角的对边分别为,且. (Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山东)设△的内角所对的边分别为,且,,. (Ⅰ)求的值; (Ⅱ)求的值.4.(2013湖北)在中,角,,对应的边分别是,,.已知.(I)求角的大小;(II)若的面积,,求的值.5.(2013新课标)△在内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,求△面积的最大值.6.(2013新课标1)如图,在△ABC 中,∠ABC=90°,AB=3,BC=1,P 为△ABC 内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA[7.(2013江西)在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-√3sinA)cosB=0.ABC ∆,,A B C ,,a b c ()()a b c a b c ac ++-+=B sin sin AC =C ABC ∆,,A B C ,,a b c 232cos cos sin()sin cos()25A B B A B B A C ---++=-cosA a =5b =BA BC ABC ,,ABC ,,a b c 6a c +=2b =7cos 9B =,a c sin()A B -ABC ∆A B C a b c ()cos23cos 1A B C -+=A ABC∆S =5b =sin sin B C(1) 求角B 的大小;(2)若a+c=1,求b 的取值范围33.(2013大纲)设的内角的对边分别为,.(I)求(II)若,求. 【答案】4.(2013年高考四川卷(理))在中,角的对边分别为,且. (Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.【答案】解:由,得 , 即, 则,即 ABC ∆,,A B C ,,a b c ()()a b c a b c ac ++-+=B sin sin AC =C ABC ∆,,A B C ,,a b c 232cos cos sin()sin cos()25A B B A B B A C ---++=-cosA a =5b =BA BC ()I ()()232cos cos sin sin cos 25A B B A B B A C ---++=-()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦()()3cos cos sin sin 5A B B A B B ---=-()3cos 5A B B -+=-3cos 5A =-由,得, 由正弦定理,有,所以,. 由题知,则,故.根据余弦定理,有,解得或(舍去).故向量在方向上的投影为 35.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设△的内角所对的边分别为,且,,. (Ⅰ)求的值; (Ⅱ)求的值.【答案】解:(Ⅰ)由余弦定理,得,又,,,所以,解得,.(Ⅱ)在△中,,由正弦定理得,因为,所以为锐角,所以因此.36.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数的最小正周期为.()II 3cos ,05A A π=-<<4sin 5A =sin sin a bA B=sin sin 2b A B a ==a b >A B >4B π=(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭1c =7c =-BABC cos BA B =ABC ,,A B C ,,a b c 6a c +=2b =7cos 9B =,a c sin()A B -2222cos b a c ac B =+-()222(1cos )b ac ac B =+-+6a c +=2b =7cos 9B =9ac =3a =3c =ABC sin 9B ==sin sin 3a B A b ==a c=A 1cos 3A ==sin()sin cos cos sin A B A B A B -=-=()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭π(Ⅰ)求的值; (Ⅱ)讨论在区间上的单调性.【答案】解:(Ⅰ).所以 (Ⅱ)所以37.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像. (1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由(3)求实数与正整数,使得在内恰有2013个零点. 【答案】解:(Ⅰ)由函数的周期为,,得又曲线的一个对称中心为,故,得,所以将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数ϖ()f x []0,22)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x 122=⇒=⇒ωπωπ1,2)42sin(2)(=++=ωπx x f ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x .]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =(Ⅱ)当时,,所以问题转化为方程在内是否有解设,则因为,所以,在内单调递增又,且函数的图象连续不断,故可知函数在内存在唯一零点,即存在唯一的满足题意(Ⅲ)依题意,,令当,即时,,从而不是方程的解,所以方程等价于关于的方程,现研究时方程解的情况令,则问题转化为研究直线与曲线在的交点情况,令,得或当变化时,和变化情况如下表当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于故当时,直线与曲线在内有无交点,在内有个交点; 当时,直线与曲线在内有个交点,在内无交点;当时,直线与曲线在内有个交点,在内有个交点 由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,,所以综上,当,时,函数在内恰有个零点38.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.已知,. (1)若,求证:;(2)设,若,求的值.【答案】解:(1)∵ ∴ 即,又∵,∴∴∴(cos ,sin )(cos ,sin )a b ααββ==,παβ<<<0||2a b -=a b ⊥(0,1)c =a b c +=βα,2||=-b a 2||2=-b a ()22222=+-=-b b a a b a 1sin cos ||2222=+==ααa a 1sin cos ||2222=+==ββb b 222=-b a 0=b a b ⊥a(2)∵∴即两边分别平方再相加得: ∴ ∴ ∵ ∴ 39.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数,.(Ⅰ) 求的值; (Ⅱ) 若,,求.【答案】(Ⅰ); (Ⅱ) 因为,,所以, 所以, 所以. 40.(2013年高考湖南卷(理))已知函数.(I)若是第一象限角,且.求的值; (II)求使成立的x 的取值集合.【答案】解: (I))1,0()sin sin ,cos (cos b a =++=+βαβα⎩⎨⎧=+=+1sin sin 0cos cos βαβα⎩⎨⎧-=-=βαβαsin 1sin cos cos βsin 221-=21sin =β21sin =απαβ<<<0πβπα61,65==()12f x x π⎛⎫=- ⎪⎝⎭x ∈R 6f π⎛⎫- ⎪⎝⎭3cos 5θ=3,22πθπ⎛⎫∈ ⎪⎝⎭23f πθ⎛⎫+ ⎪⎝⎭1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3cos 5θ=3,22πθπ⎛⎫∈⎪⎝⎭4sin 5θ=-24sin 22sin cos 25θθθ==-227cos 2cos sin 25θθθ=-=-23f πθ⎛⎫+⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭2()sin()cos().()2sin 632x f x x x g x ππ=-+-=α()f α=()g α()()f x g x ≥.(II) 41.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.如图,游客从某旅游景区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲.乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,,. (1)求索道的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵, ∴∴,∴ 根据得 533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππA C A C AB BC A AC min /50m min 2A B B min 1C min /130m AC m 12601312cos =A 53cos =C AB C 31312cos =A 53cos =C ),(、20π∈C A 135sin =A 54sin =C []6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(πsinB sinC AC AB =m C AC AB 1040sin sinB==CBA(2)设乙出发t 分钟后,甲.乙距离为d,则∴ ∵即 ∴时,即乙出发分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理得(m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V ,则∴∴ ∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000,其中0≤x ≤8,当x =3537(min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050=1265(min).若甲等乙3分钟,则乙到C 用时:1265+3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865=125043m/min. 1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d )507037(20022+-=t t d 13010400≤≤t 80≤≤t 3735=t 3735sinBsinA ACBC =50013565631260sin sinB ===A AC BC min /m 350710500≤-v 3507105003≤-≤-v 14625431250≤≤v C 3⎥⎦⎤⎢⎣⎡14625,431250若乙等甲3分钟,则乙到C 用时:1265-3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565=62514m/min. 故乙步行的速度应控制在[125043,62514]范围内.42.(2013年高考湖北卷(理))在中,角,,对应的边分别是,,.已知.(I)求角的大小;(II)若的面积,,求的值.【答案】解:(I)由已知条件得:,解得,角 (II),由余弦定理得:, 43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△在内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,求△面积的最大值.【答案】ABC ∆A B C a b c ()cos23cos 1A B C -+=A ABC∆S =5b =sin sin B C cos23cos 1A A +=22cos 3cos 20A A ∴+-=1cos 2A =60A =︒1sin 2S bc A ==4c ⇒=221a =()222228sin a R A ==25sin sin 47bc B C R ∴==CBADMN44.(2013年高考新课标1(理))如图,在△ABC 中,∠ABC=90°,AB=3,BC=1,P 为△ABC 内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA [【答案】(Ⅰ)由已知得,∠PBC=,∴∠PBA=30o ,在△PBA 中,由余弦定理得==,∴PA=;(Ⅱ)设∠PBA=,由已知得,PB=,在△PBA 中,由正弦定理得,,化简得,,∴=,∴=.45.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系中,点在轴正半轴上,点在轴上,其横坐标为,且 是首项为1、公比为2的等比数列,记,.(1)若,求点的坐标; (2)若点的坐标为,求的最大值及相应的值.[解](1)(2) 【答案】[解](1)设,根据题意,.由,知, 而, 所以,解得或. 故点的坐标为或. (2)由题意,点的坐标为,. 因为所以, xOy A y n P x n x {}n x 1nn n P AP θ+∠=n N *∈31arctan 3θ=A A (0n θn (0 )A t ,12n n x -=31arctan 3θ=31tan 3θ=3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅241323t t =+4t =8t =A (0 4),(0 8),n P 1(2 0)n -,1tan n n OAP -∠=111212tan tan()12n n n n n n n n OAP OAP θ--+-=∠-∠===2n n ≥tan 4n θ≤=当且仅当,即时等号成立. 易知在上为增函数, 因此,当时,最大,其最大值为. 46.(2013年高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-√3sinA)cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围【答案】解:(1)由已知得 即有因为,所以,又,所以, 又,所以. (2)由余弦定理,有.因为,有. 又,于是有,即有.2nn =4n =0 tan 2n y x πθ<<=,(0 )2π,4n =nθarctan4cos()cos cos cos 0A B A B A B -++=sin sin cos 0A B A B =sin 0A≠sin 0B B =cos 0B≠tan B =0B π<<3B π=2222cos b a c ac B =+-11,cos 2a c B +==22113()24b a =-+01a <<2114b ≤<112b ≤<。
解三角形高考大题-带答案
解三角形高考大题,带答案1、 (宁夏17)(本小题满分12分)如图,就就是等边三角形,就就是等腰直角三角形,,交于,、(Ⅰ)求得值;(Ⅱ)求、 解:(Ⅰ)因为,, 所以、所以、 ········································································································· 6分(Ⅱ)在中,, 由正弦定理、故、 12分2、 (江苏17)(14分)某地有三家工厂,分别位于矩形ABCD 得顶点A 、B 及CD 得中点P 处,已知AB =20km ,BC=10km ,为了处理三家工厂得污水,现要在矩形ABC D得区域上(含边界),且A、B 与等距离得一点O处建造一个污水处理厂,并铺设排污管道A O、BO 、OP,设排污管道得总长为ykm 。
解三角形经典练习题集锦
解三角形经典练习题集锦解三角形一、选择题1.在△ABC中,若C=90°,a=6,B=30°,则c-b等于()A.1B.-1C.2/3D.-2/32.若A为△ABC的内角,则下列函数中一定取正值的是()A.sinAB.cosAC.XXXD.1/tanA3.在△ABC中,角A,B均为锐角,且cosA>sinB,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为60°,则底边长为()A.2B.3/2C.3D.2/35.在△ABC中,若b=2asinB,则A等于()A.30°或60°B.45°或60°C.120°或60°D.30°或150°6.边长为5,7,8的三角形的最大角与最小角的和是()A.90°B.120°C.135°D.150°二、填空题1.在Rt△ABC中,C=90°,则sinAsinB的最大值是1/2.2.在△ABC中,若a^2=b^2+bc+c^2,则A=120°。
3.在△ABC中,若b=2,B=30°,C=135°,则a=2√3.4.在△ABC中,若5.在△ABC中,AB=6-2,C=30°,则AC+BC的最大值是2√7.三、解答题1.在△ABC中,若acosA+bcosB=ccosC,则△ABC为等腰三角形。
2.在△ABC中,证明:a/b-cosBcosA/a-c=b/a-c。
3.在锐角△ABC中,证明:XXX>XXX。
4.在△ABC中,设a+c=2b,A-C=π/3,则sinB=1/2.5.在△ABC中,若(a+b+c)(b+c-a)=3bc,则A的度数为()A.90B.60C.135D.150解析:根据余弦定理,有$b^2+c^2-2bc\cos A=a^2$,代入$(a+b+c)(b+c-a)=3bc$中,整理得$\cos A=-\frac{1}{2}$,即$A=120^\circ$,选项B正确。
(完整版)解三角形经典练习题集锦(附答案)
解三角形大题及答案
解三角形大题及答案1.(2013大纲)设的内角的对边分别为,.(I)求 (II)若,求.2.(2013四川)在中,角的对边分别为,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山东)设△的内角所对的边分别为,且,,.(Ⅰ)求的值; (Ⅱ)求的值.4.(2013湖北)在中,角,,对应的边分别是,,.已知. (I)求角的大小;(II)若的面积,,求的值.5.(2013新课标)△在内角的对边分别为,已知.(Ⅰ)求; (Ⅱ)若,求△面积的最大值.6.(2013新课标1)如图,在△ABCABC ∆,,A B C,,a b c()()a b c a b c ac ++-+=B 31sin sin A C -=C ABC ∆,,A B C ,,a b c 232cos cos sin()sin cos()25A B B A B B A C ---++=-cos A 42a =5b =BA u u u rBCuuu r ABC ,,A B C ,,a b c 6a c +=2b =7cos 9B =,a c sin()A B -ABC ∆A B C a b c ()cos23cos 1A B C -+=A ABC ∆53S =5b =sin sin B C4.(2013年高考四川卷(理))在中,角的对边分别为,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.【答案】解:由,得,即, 则,即由,得,ABC ∆,,A B C ,,a b c 232coscos sin()sin cos()25A B B A B B A C ---++=-cos A 42a =5b =BA u u u rBCuuu r ()I ()()232cos cos sin sin cos 25A B B A B B A C ---++=-()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦()()3cos cos sin sin 5A B B A B B ---=-()3cos 5A B B -+=-3cos 5A =-()II 3cos ,05A A π=-<<4sin 5A =由正弦定理,有,所以,.由题知,则,故. 根据余弦定理,有,解得或(舍去). 故向量在方向上的投影为35.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设△的内角所对的边分别为,且,,.(Ⅰ)求的值; (Ⅱ)求的值.【答案】解:(Ⅰ)由余弦定理,得,又,,,所以,解得,.(Ⅱ)在△中,,由正弦定理得,因为,所以为锐角,所以因此.36.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数sin sin a bA B =sin 2sin 2b A B a ==a b >A B >4B π=(2223425255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭1c =7c =-BAu u u r BCuuu r 2cos 2BA B =u u u rABC ,,A B C,,a b c6a c +=2b =7cos 9B =,a c sin()A B -2222cos b a c ac B=+-()222(1cos )b ac ac B =+-+6a c +=2b =7cos 9B =9ac =3a =3c =ABC 242sin 1cos B B =-=sin 2sin 3a B Ab ==a c =A 21cos 1sin 3A A =-=102sin()sin cos cos sin 27A B A B A B -=-=的最小正周期为.(Ⅰ)求的值; (Ⅱ)讨论在区间上的单调性.【答案】解: (Ⅰ).所以(Ⅱ) 所以 37.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式; (2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭πϖ()f x []0,22)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x 122=⇒=⇒ωπωπ1,2)42sin(2)(=++=ωπx x f ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x .]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =(3)求实数与正整数,使得在内恰有2013个零点.【答案】解:(Ⅰ)由函数的周期为,,得又曲线的一个对称中心为,故,得,所以将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数(Ⅱ)当时,,所以问题转化为方程在内是否有解设,则因为,所以,在内单调递增又,且函数的图象连续不断,故可知函数在内存在唯一零点,即存在唯一的满足题意(Ⅲ)依题意,,令当,即时,,从而不是方程的解,所以方程等价于关于的方程,现研究时方程解的情况令,则问题转化为研究直线与曲线在的交点情况,令,得或当变化时,和变化情况如下表当且趋近于时,趋向于当且趋近于时,趋向于当且趋近于时,趋向于当且趋近于时,趋向于故当时,直线与曲线在内有无交点,在内有个交点; 当时,直线与曲线在内有个交点,在内无交点; 当时,直线与曲线在内有个交点,在内有个交点 由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,,所以综上,当,时,函数在内恰有个零点 38.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.已知,.(1)若,求证:;(2)设,若,求的值.【答案】解:(1)∵∴即,(cos ,sin )(cos ,sin )a b ααββ=r r =,παβ<<<0||2a b -=r ra b⊥r r(0,1)c =ra b c+=r r r βα,2||=-2||2=-()22222=+-=-又∵,∴∴∴ (2)∵∴即 两边分别平方再相加得: ∴ ∴∵∴39.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数,.(Ⅰ) 求的值; (Ⅱ) 若,,求.【答案】(Ⅰ); (Ⅱ)因为,,所以, 所以, 所以. 1sin cos ||2222=+==αα1sin cos ||2222=+==ββ222=-0=b a b ⊥a )1,0()sin sin ,cos (cos b a =++=+βαβα⎩⎨⎧=+=+1sin sin 0cos cos βαβα⎩⎨⎧-=-=βαβαsin 1sin cos cos βsin 221-=21sin =β21sin =απαβ<<<0πβπα61,65==()212f x x π⎛⎫=- ⎪⎝⎭x ∈R 6f π⎛⎫- ⎪⎝⎭3cos 5θ=3,22πθπ⎛⎫∈ ⎪⎝⎭23f πθ⎛⎫+ ⎪⎝⎭2221661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3cos 5θ=3,22πθπ⎛⎫∈ ⎪⎝⎭4sin 5θ=-24sin 22sin cos 25θθθ==-227cos 2cos sin 25θθθ=-=-23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭40.(2013年高考湖南卷(理))已知函数.(I)若是第一象限角,且.求的值;(II)求使成立的x 的取值集合.【答案】解: (I).(II)41.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.如图,游客从某旅游景区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲.乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,,. (1)求索道的长;2()sin()cos().()2sin 632xf x x xg x ππ=-+-=α33()5f α=()g α()()f x g x ≥533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππA C A C AB BC A AC min /50m min 2A B B min 1C min/130m ACm12601312cos =A 53cos =C AB(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵, ∴∴, ∴ 根据得 (2)设乙出发t 分钟后,甲.乙距离为d,则∴∵即 ∴时,即乙出发分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理得(m)C 31312cos =A 53cos =C ),(、20π∈C A 135sin =A 54sin =C []6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(πsinB sinC AC AB =m C ACAB 1040sin sinB==1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d )507037(20022+-=t t d13010400≤≤t 80≤≤t 3735=t 3735sinBsinA ACBC =50013565631260sin sinB ===A AC BC CBA乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C设乙的步行速度为V ,则∴∴ ∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内 法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k ,AB =52k ,由AC =63k =1260m,知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000,其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265min /m 350710500≤-v 3507105003≤-≤-v 14625431250≤≤v C 3⎥⎦⎤⎢⎣⎡14625,431250(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415(min),在BC 上用时:865(min) .此时乙的速度最小,且为:500÷865 =125043 m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115(min),在BC 上用时:565(min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.42.(2013年高考湖北卷(理))在中,角,,对应的边分别是,,.已知. (I)求角的大小;(II)若的面积,,求的值.ABC ∆A B C a b c ()cos23cos 1A B C -+=A ABC ∆53S =5b =sin sin B C CBAD M N【答案】解:(I)由已知条件得:,解得,角(II),由余弦定理得:,43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△在内角的对边分别为,已知.(Ⅰ)求; (Ⅱ)若,求△面积的最大值.【答案】cos23cos 1A A +=22cos 3cos 20A A ∴+-=1cos 2A =60A =︒1sin 532S bc A ==4c ⇒=221a=()222228sin a R A==25sin sin 47bc B C R ∴==44.(2013年高考新课标1(理))如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA[【答案】(Ⅰ)由已知得,∠PBC=,∴∠PBA=30o,在△PBA中,由余弦定理得==,∴PA=;(Ⅱ)设∠PBA=,由已知得,PB=,在△PBA 中,由正弦定理得,,化简得,,∴=,∴=.45.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系中,点在轴正半轴上,点在轴上,其横坐标为,且 是首项为1、公比为2的等比数列,记,.(1)若,求点的坐标;(2)若点的坐标为,求的最大值及相应的值.[解](1) (2)【答案】[解](1)设,根据题意,.由,xOy A y nP x nx {}nx 1nn nP AP θ+∠=n N *∈31arctan3θ=A A (0 82),nθn(0 )A t ,12n nx -=31arctan3θ=P 0 x yA P PP知,而,所以,解得或.故点的坐标为或. (2)由题意,点的坐标为,.因为所以,当且仅当即时等号成立.易知在上为增函数, 因此,当时,最大,其最大值为.46.(2013年高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-√3sinA)cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围【答案】解:(1)由已知得31tan 3θ=3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅241323t t=+4t =8t =A (0 4),(0 8),nP 1(20)n -,1tan 82n n OAP -∠=1112128282tan tan()1622182828282282n n n n n n n nnOAP OAP θ--+--=∠-∠===+16222282nn +≥2tan 422nθ≤=162282nn=4n =0 tan 2ny xπθ<<=,(0 )2π,4n =nθ2arctancos()cos cos 3cos 0A B A B A B -++=即有因为,所以,又,所以,又,所以. (2)由余弦定理,有.因为,有.又,于是有,即有.sin sin 3cos 0A B A B =sin 0A ≠sin 30B B =cos 0B ≠tan 3B =0B π<<3B π=2222cos ba c ac B=+-11,cos 2a c B +==22113()24ba =-+01a <<2114b ≤<112b ≤<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形大题经典练习
高考大题练习(解三角形1)
1在"BC中,内角A*的对边分别为a,b,c,已知co TZ 普
cosB
(1)求哑的值;(2)若cos^1,^2,求:ABC的面积S .
sin A 4
C
2、在.ABC中,角A, B,C的对边分别是a,b,c,已知si nC・cosC=1-s in .
2
(1)求sin C的值;
(2)若a2 b2=4(a b) -8,求边c 的值.
3、在. ABC中,角A,B,C的对边分别是a,b,c .
■TT d
(1)若sin(A ^2 cos A,求A 的值;(2)若cosA= —,b=3c,求sinC 的值.
6 3
5 3
4、- ABC 中,D 为边BC 上的一点,BD=33,sin B ,cos ADC ,求AD .
13 5
高考大题练习(解三角形1、在ABC中,角A,B,C的对边分别是a,b,c,已知
1
a =1,
b =2, cosC 二-
4
(1)求ABC的周长;(2)求cos(A-C)的值.
2、在ABC中,角A, B,C的对边分别是a,b,c .已知si n A • si nC二psi nB(p・R),且
ac」b2. (1)当p =5,b =1时,求a,c的值;(2)若角B为锐角,求p的取值范围.
4 4
3、在ABC 中,角A, B,C 的对边分别是a,b,c .且2asi nA = (2b,c)si nB,(2c,b)si nC .
(1)求A的值;(2)求sin B sinC的最大值.
1
4、在ABC中,角A, B,C的对边分别是a,b,c,已知cos2C -
4
(1)求sinC 的值;(2)当a=2,2s in A=s in C 时,求b,c 的长.
高考大题练习(解三角形3)
A 2x15 T
1、在ABC中,角A,B,C的对边分别是a,b,c,且满足cos , AB A^ 3 .
2 5
— — 2
2、 在. ABC 中,角 A, B,C 的对边分别是 a,b,c , cos(C • —) • cos(C )=
4 4 2
(1)求角 C 的大小; (2)若 c = 2.、3 , sin A = 2sin B ,求 a,b .
1
3、 在.ABC 中,角A, B,C 的对边分别是a,b,c ,且acosC c = b .
(1)求角A 的大小;(2)若a =1,求ABC 的周长l 的取值范围.
4、在 ABC 中,角A, B,C 的对边分别是a,b,c ,且满足(2b - c)cos A - acosC = 0 . (1)求角A 的大小;
设 m =(sin 2A, -cos2C), n =(-j'3,1),求 m
的取值范围. 1
3、已知 m =(sin •,x,cos •'X), n =(cos ・,x,cos ・,x)(「• 0),若函数 f(x)=m ・n 的最小正
周期为
2
(1)求函数y =f(x)取最值时x 的取值集合;
(2)在 ABC 中,角A,B,C 的对边分别是a,b,c ,且满足(2a-c)cosB 二bcosC ,求f (A)的 取值范围.
(2)若 a
「3,
3、3
丁,试判
.ABC 断的形状,并说明理由.
高考大题练习(解三角形41、
在=ABC 中,角A,B,C 的对边分别是a,b,c ,且
2 2 2
2(a b -c ) =3ab.
(1)
(2) 求 sin 2
^-B ; (2)若 c = 2, 2
2、在 ABC 中,角 A, B, C 的对边分别是 a,b, c ,且满足 4a 2cosB - 2accosB = a 2 • 求:ABC 面积的最大值.
(1) 求角B 的大小;
(2)
4、如图,L ABC中,sin ABC 3,AB=2,点D 在线段AC
2 3
(1)求BC的长;(2)求DBC的面积.
高考大题练习(解三角形5
1 在. ABC中,角A , B , C对应的边分别是a , b , c .已知cos2A — 3cos B C =1 .
(I)求角A的大小;(II)若ABC的面积S=5■■一 3 , b=5,求sinBsinC的值.
2、在. ABC 中,角代B,C 的对边分别是a,b,c,已知sin 22C sin 2C sinC • cos2C = 1,且a
b =5,C fj7 . (1)求角C的大小;(2)求ABC的面积.
- 1
3、在. ABC中,角A, B,C的对边分别是a,b,c,且满足cosA (..3sin A-cosAH
(1)求角A的大小;(2)若a =2、_2,S「ABC =2・..3,求b,c的长.
4、设ABC 的内角A,B,C 的对边分别为a,b, c,(a b c)(a _b c) =ac .
(1)求B ; (2)若sin Asin C =—3—1,求C .
4
高考大题练习(解三角形6)
1 △ ABC在内角A,B,C的对边分别为a,b,c,已知a二bcosC csinB .
(I )求B ; (II)若b=2,求△ ABC面积的最大值.
2、在ABC 中,角A, B,C 的对边分别是a,b,c,且b2 c2_a2=bc .
(1)求角A的大小;
(2)若函数 f (x)二sin X cos- cos2-,当 f (B)二—1时,若 a = . 3,求 b 的值.
2 2 2 2
3、在ABC中,角A,B,C的对边分别是a,b,c,已知B ,sinA=3,b「3 .
3 5
(1)求sinC的值; (2)求ABC的面积.
4、在ABC 中,角A, B,C 的对边分别是a,b,c,且bcosC =(3a「c)cosB .
(1)求sinB的值; (2)若b=2,且a=c,求:ABC的面积.
(2)高考大题练习(解三角形7)
1、已知函数f(x) = ,3sin-cos X cos2--
2 2 2 2 .
(1)求f(x)的单调区间;
(2)在锐角三角形ABC中,角A,B,C的对边分别是a, b,c,且满足(2b 一a)cosC二c・cosA , 求f(A)的取值范围.
2、在ABC 中,角A, B,C 的对边分别是a, b,c, a sin A sin B - bcos A = •. 2a .
(1)求b;
(2)若c2二b2」3a2,求角B .
a
3、港口A北偏东30方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距
离为21海里,问此时轮船离港口A还有多远?
4、某巡逻艇在A处发现在北偏东45距A处8海里的B处有一走私船,正沿东偏南15的方
向以12海里/小时的速度向我岸行驶,巡逻艇立即以12、一3海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方
向.
高考大题练习(解三角形8)
1如图,△ ACD 是等边三角形,△ ABC 是等腰直角三角形,Z ACB=90: , BD 交AC 于E ,
AB =2 .
(I)求 cos Z CAE 的值;
IT
内角A , B , C 对边的边长分别是a, b, c ,已知c = 2 , C 二—.
3
.3,求 a , b ; (U)若 sin B 二 2sin A ,求△ ABC 的面积.
2、(辽宁17)在厶ABC 中, (I)若△ ABC 的面积等于
bsin A = 4 .
3、设厶ABC的内角A, B, C所对的边长分别为a, b, c,且acosB=3 ,
(I)求边长a ;(U)若△ ABC的面积S =10,求△ ABC的周长I .
4、在厶ABC 中,a=3,b=2 6,/ B=2/A.
(1)求coS的值;(2)求c的值.。