广东省东莞市学年高二数学上学期期末试卷(B卷)理(含解析)

合集下载

广东省东莞市高二上学期期末数学试卷及答案解析

广东省东莞市高二上学期期末数学试卷及答案解析

第 1 页 共 18 页 2020-2021学年广东省东莞市高二上学期期末数学试卷一.单项选择题(共8小题,每小题5分,共40分)1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,B =45°,C =120°,则边c =( )A .√2B .√3C .2D .√62.糖水溶液(不饱和)的浓度计算公式为c =糖的质量b 克糖水的质量a 克(a >b),向糖水(不饱和)中再加入m 克糖,那么糖水(不饱和)将变得更甜,则反应这一事实的不等关系为( )A .b a >b+m a+mB .b a <b+m a+mC .b a >b+m aD .b a <b+m a 3.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的实轴长是虚轴长的两倍,则它的渐近线方程为( ) A .y =±12x B .y =±√2x C .y =±2x D .y =±√3x4.已知数列{a n }是等差数列,且a 3+a 13=50,a 6=19,则a 2=( )A .3B .4C .7D .8 5.已知a ,b 为实数,则“0<ab <2”是“a <2b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第4天走的路程为( )A .96里B .48里C .24里D .12里 7.已知实数a >0,b >0,且1a +2b =2,则b a 的最大值为( )A .49B .12C .23D .√228.已知双曲线C :x 216−y 29=1的左、右焦点分别为F 1、F 2,P 为双曲线C 上一点,直线l分别与以F 1为圆心、F 1P 为半径的圆和以F 2为圆心、F 2P 为半径的圆相切于点A ,B ,则|AB |=( )A .2√7B .6C .8D .10第 2 页 共 18 页二.多项选择题(共4小题,每小题5分,共20分)9.四边形ABCD 内接于圆O ,AB =CD =5,AD =3,∠BCD =60°,下列结论正确的有( )A .四边形ABCD 为梯形B .圆O 的直径为7C .四边形ABCD 的面积为55√34D .△ABD 的三边长度可以构成一个等差数列10.我们通常称离心率为√5−12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2为顶点,F 1,F 2为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .|A 1F 1|,|F 1F 2|,|F 2A 2|为等比数列B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 211.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,以下说法中正确的是( )A .若A >B ,则sin A >sin BB .若a =4,b =5,c =6,则△ABC 为钝角三角形C .若a =5,b =10,A =π4,则符合条件的三角形不存在D .若b cos C +c cos B =a sin A ,则△ABC 为直角三角形12.已知数列{a n }的首项为4,且满足2(n +1)a n ﹣na n +1=0(n ∈N *),则( )A .{an n }为等差数列 B .{a n }为递增数列C .{a n }的前n 项和S n =(n −1)⋅2n+1+4。

广东省东莞市高二上学期期末数学试卷(理科)

广东省东莞市高二上学期期末数学试卷(理科)

广东省东莞市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高二上·黑龙江期中) 在长为12cm的线段AB上任取一点M,并且以线段AM为边作正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()A .B .C .D .2. (2分)(2017·武邑模拟) 已知点F2 , P分别为双曲线的右焦点与右支上的一点,O为坐标原点,若2 |,且,则该双曲线的离心率为()A .B .C .D .3. (2分)(2017·白山模拟) 若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为,则下列命题是真命题的是()A . p∧qB . (¬p)∧qC . p∧(¬q)D . ¬q4. (2分)将正方体的纸盒展开如图,直线AB、CD在原正方体的位置关系是()A . 平行B . 垂直C . 相交成60°角D . 异面且成60°角5. (2分)如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为A .B .C .D .6. (2分) (2018高二上·綦江期末) 已知表示两条不同的直线,表示两个不同的平面,且,则下列命题正确的是()A . 若,则B . 若,则C . 若,则D . 若,则7. (2分) (2016高二上·辽宁期中) 已知抛物线C:y2=4x上一点A到焦点F的距离与其到对称轴的距离之比为5:4,且|AF|>2,则A点到原点的距离为()A . 3B .C . 4D .8. (2分)设分别是双曲线的左右焦点,若双曲线的右支上存在一点P,使,且的三边长构成等差数列,则此双曲线的离心率为()A .B .C . 2D . 59. (2分)在边长为1的正方体中,E,F,G,H分别为A1B1 , C1D1 , AB,CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记E,F,P,Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图象应为()A .B .C .D .10. (2分)(2016·铜仁) 椭圆的左、右焦点分别为,弦AB过,若的内切圆周长为, A,B两点的坐标分别为和,则的值为()A .B .C .D .11. (2分) (2016高二上·上海期中) 两直线l1 , l2的方程分别为x+y +b=0和xsinθ+y﹣a=0(a,b为实常数),θ为第三象限角,则两直线l1 , l2的位置关系是()A . 相交且垂直B . 相交但不垂直C . 平行D . 不确定12. (2分)函数f(x)=lgx﹣sinx在(0,+∞)的零点个数是()A . 1B . 2C . 3D . 4二、填空题 (共4题;共5分)13. (1分) (2016高一下·太康开学考) 某几何体的三视图如图所示,则该几何体的体积为________.14. (1分) (2016高二下·海南期末) 具有线性相关的两个随机变量x,y可用线性回归模型y=bx+a+e表示,通常e是随机变量,称为随机误差,它的均值E(e)=________.15. (1分)(2020·随县模拟) 已知抛物线的焦点为,准线与轴相交于点 .若以为圆心、为半径的圆与抛物线相交于点,,则 ________.16. (2分)(2017·朝阳模拟) 已知双曲线与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是________;该双曲线的渐近线方程为________.三、解答题 (共5题;共55分)17. (15分) (2018高一下·抚顺期末) 随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.18. (5分) (2017高三下·武威开学考) 如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,点E在棱PB上,且PE=2EB.(Ⅰ)求证:平面PA B⊥平面PCB;(Ⅱ)求证:PD∥平面EAC;(Ⅲ)求平面AEC和平面PBC所成锐二面角的余弦值.19. (10分) (2015高二上·城中期末) 已知圆C:x2+y2+2x﹣4y+3=0.(1)若不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;(2)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的轨迹方程.20. (15分) (2015高二下·湖州期中) 已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(1)证明:面PAD⊥面PCD;(2)求直线AC与PB所成角的余弦值;(3)求二面角A﹣MC﹣B的余弦值.21. (10分) (2018高二上·寿光月考) 已知函数在处取得极值为 .(1)求、的值;(2)若有极大值,求在上的最大值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共55分)17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、。

广东省东莞市2017-2018学年高二上学期期末数学试卷(理科)(b卷) Word版含解析

广东省东莞市2017-2018学年高二上学期期末数学试卷(理科)(b卷) Word版含解析

2017-2018学年广东省东莞市高二(上)期末数学试卷(理科)(B卷)一、选择题(本大题共12小题,每小题5分,共60分.每小题各有四个选择支,仅有一个选择支正确.请用2B铅笔把答题卡中所选答案的标号涂黑.)1.在等差数列51、47、43,…中,第一个负数项为()A.第13项B.第14项C.第15项D.第16项2.双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=x D.y=x3.△ABC的内角A,B,C的对边分别为a、b、c,a=,b=,B=60°,那么角A等于()A.30°B.45°C.135°或45°D.135°4.“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.已知正方体ABCD﹣A1B1C1D1,下列向量的数量积不为0的是()A.B. C. D.6.在△ABC中,若acosA=bcosB,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形7.已知a,b都是实数,那么“a2>b2”是“a>b>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知椭圆的一个焦点与抛物线y2=4x的焦点重合,且椭圆的离心率为,该椭圆的方程为()A.B.C.D.9.南沙群岛自古以来都是中国领土,南沙海域有A、B两个岛礁相距100海里,从A岛礁望C岛礁和B岛礁成60°的视角,从B岛礁望C岛礁和A岛礁成75°的视角,我国兰州号军舰航在A岛礁处时候B岛礁处指挥部的命令,前往C岛礁处驱赶某国入侵军舰,则我军舰此时离C岛礁距离是()A.100(+1)海里B.50()海里C.50海里D.50海里10.已知数列{a n}是公比为2的等比数列,且4a1为a m,a n的等比中项,则的最小值为()A.B.C.D.不存在11.已知{a n}是首项为9的等比数列,S n是前n项和,且=,则数列{log3a n}前9项和为()A.54 B.﹣18 C.18 D.﹣3612.已知F1,F2为双曲线的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的离心率是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卡中相应的位置上.)13.已知数列{a n}的前n项和,则a n=.14.若x,y满足约束条件.则的最大值为.15.直线y=x﹣2与抛物线y2=8x交于A,B两点,则|AB|=.16.下列四种说法:①垂直于同一平面的所有向量一定共面;②在△ABC中,已知,则∠A=60°;③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=④若a>0,b>0,a+b=2,则a2+b2≥2;正确的序号有.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).(1)若m=2,且p∧q为真,求实数x的取值范围;(2)若p是q充分不必要条件,求实数m的取值范围.18.在△ABC中,a,b,c分别是A,B,C的对边,且2cosA=.(1)若a2﹣c2=b2﹣mbc,求实数m的值;(2)若a=2,求△ABC面积的最大值.19.东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家(以千元为单位)20.设数列{a n}的前n项和S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列的前n项和T n,求使得成立的n的最小值.21.如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,点M是SD的中点,AN⊥SC,且交SC于点N.(1)求证:SC⊥平面AMN;(2)求二面角D﹣AC﹣M的余弦值.22.已知椭圆E:过点,离心率为,点F1,F2分别为其左、右焦点.(1)求椭圆E的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.2015-2016学年广东省东莞市高二(上)期末数学试卷(理科)(B卷)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.每小题各有四个选择支,仅有一个选择支正确.请用2B铅笔把答题卡中所选答案的标号涂黑.)1.在等差数列51、47、43,…中,第一个负数项为()A.第13项B.第14项C.第15项D.第16项【考点】等差数列的通项公式.【分析】根据等差数列51、47、43,…,得到等差数列的通项公式,让通项小于0得到解集,求出解集中最小的正整数解即可.【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47﹣51=﹣4,首项为51,所以通项a n=51+(n﹣1)×(﹣4)=55﹣4n所以令55﹣4n<0解得n>,因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=x D.y=x【考点】双曲线的简单性质.【分析】由双曲线﹣=1(a,b>0)的渐近线方程为y=±x,求得双曲线的a,b,即可得到所求渐近线方程.【解答】解:由双曲线﹣=1(a,b>0)的渐近线方程为:y=±x,双曲线的a=2,b=4,可得渐近线方程为y=±2x.故选:A.3.△ABC的内角A,B,C的对边分别为a、b、c,a=,b=,B=60°,那么角A等于()A.30°B.45°C.135°或45°D.135°【考点】正弦定理.【分析】由已知及正弦定理可解得:sinA=,从而A=45°或135°,由a<b从而确定A=45°.【解答】解:由正弦定理知:,∵a=,b=,∠B=60°,代入上式,∴,故可解得:sinA=,从而A=45°或135°,∵a<b,∴A<B,∴A=45°.故选:B.4.“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【考点】的否定.【分析】根据全称的否定是特称即可得到结论.【解答】解:为全称,则的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.5.已知正方体ABCD﹣A1B1C1D1,下列向量的数量积不为0的是()A.B. C. D.【考点】平面向量数量积的运算.【分析】建立空间直角坐标系,求出各向量的坐标,计算数量积进行验证.【解答】解:建立如图所示的空间直角坐标系,则=(0,1,1),=(0,1,﹣1),=(0,1,0),=(1,0,0),=(﹣1,1,1),=(1,1,0),∴=0;=0;=1,=0.故选:C.6.在△ABC中,若acosA=bcosB,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【考点】正弦定理.【分析】首先利用正弦定理求得sin2A=sin2B,进一步利用三角函数的诱导公式求出结果.【解答】解:已知:acosA=bcosB利用正弦定理:解得:sinAcosA=sinBcosBsin2A=sin2B所以:2A=2B或2A=180°﹣2B解得:A=B或A+B=90°所以:△ABC的形状一定是等腰或直角三角形故选:D7.已知a,b都是实数,那么“a2>b2”是“a>b>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】结合不等式的性质,利用充分条件和必要条件的定义进行判断.【解答】解:当a>b>0时,a2>b2成立,当a=﹣3,b=﹣1时,满足a2>b2,但a>b>0不成立,即“a2>b2”是“a>b>0”d的必要而不充分条件,故选:B.8.已知椭圆的一个焦点与抛物线y2=4x的焦点重合,且椭圆的离心率为,该椭圆的方程为()A.B.C.D.【考点】椭圆的简单性质.【分析】由抛物线方程求出焦点坐标,得到椭圆的右焦点坐标,进一步得到c值,结合离心率求得a,再由隐含条件求得b,则椭圆方程可求.【解答】解:∵抛物线y2=4x的焦点F(1,0),∴所求椭圆的右焦点为F(1,0),则c=1,又,得.∴,则椭圆方程为:.故选:A.9.南沙群岛自古以来都是中国领土,南沙海域有A、B两个岛礁相距100海里,从A岛礁望C岛礁和B岛礁成60°的视角,从B岛礁望C岛礁和A岛礁成75°的视角,我国兰州号军舰航在A岛礁处时候B岛礁处指挥部的命令,前往C岛礁处驱赶某国入侵军舰,则我军舰此时离C岛礁距离是()A.100(+1)海里B.50()海里C.50海里D.50海里【考点】解三角形的实际应用.【分析】先根据∠A和∠B求出∠C,进而根据正弦定理求得AC.【解答】解:∠C=180°﹣60°﹣75°=45°根据正弦定理得,∴AC=50(+1),故选:B.10.已知数列{a n}是公比为2的等比数列,且4a1为a m,a n的等比中项,则的最小值为()A.B.C.D.不存在【考点】等比数列的通项公式;基本不等式.【分析】数列{a n}是公比为2的等比数列,且4a1为a m,a n的等比中项,可得=a m•a n,化简可得m+n=6.再利用基本不等式的性质即可得出.【解答】解:数列{a n}是公比为2的等比数列,且4a1为a m,a n的等比中项,∴=a m•a n=,∴16=2m+n﹣2,∴m+n=6.则=(m+n)≥≥=,当且仅当n=2m=4时取等号.故选:A.11.已知{a n}是首项为9的等比数列,S n是前n项和,且=,则数列{log3a n}前9项和为()A.54 B.﹣18 C.18 D.﹣36【考点】等比数列的通项公式.【分析】利用等比数列前n项和公式求出q=,从而得到a n=()n﹣3,进而log3a n==3﹣n,由此能求出数列{log3a n}前9项和.【解答】解:∵{a n}是首项为9的等比数列,S n是前n项和,且=,∴=1+q3=,解得q=,∴a n==()n﹣3,∴log3a n==3﹣n,∴数列{log3a n}前9项和S9=9×3﹣(1+2+3+4+5+6+7+8+9)=﹣18.故选:B.12.已知F1,F2为双曲线的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的离心率是()A.B.C.D.【考点】双曲线的简单性质.【分析】由点到直线的距离公式可得||=b,则||=3b,cos∠F1OM=﹣,由此利用余弦定理可得a,b的关系,进而得到a,c的关系,由离心率公式计算即可得到所求值.【解答】解:由F2(c,0)到渐近线y=x的距离为d==b,即有||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=﹣,由余弦定理可知=﹣,又c2=a2+b2,化简可得a2=2b2,即有c2=a2+b2=a2,即有e==.故选:D.二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卡中相应的位置上.)13.已知数列{a n}的前n项和,则a n=4n﹣1.【考点】数列递推式.(n≥2)求得数列的通项公式.【分析】由数列的前n项和求得首项,再由a n=S n﹣S n﹣1【解答】解:由,得a1=S1=3;当n≥2时,=4n﹣1.验证n=1时,上式成立,∴a n=4n﹣1.故答案为:4n﹣1.14.若x,y满足约束条件.则的最大值为3.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.15.直线y=x﹣2与抛物线y2=8x交于A,B两点,则|AB|=16.【考点】抛物线的简单性质.【分析】直线y=x﹣2与抛物线y2=8x联立,求出A,B的坐标,即可求得|AB|.【解答】解:直线y=x﹣2与抛物线y2=8x联立,消去x可得y2﹣8y﹣16=0∴y=4±4∴x=6±4∴|AB|==16故答案为:1616.下列四种说法:①垂直于同一平面的所有向量一定共面;②在△ABC中,已知,则∠A=60°;③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=④若a>0,b>0,a+b=2,则a2+b2≥2;正确的序号有①②④.【考点】必要条件、充分条件与充要条件的判断.【分析】由共面向量的定义判断①;利用正弦定理结合已知判断②;由正弦定理和余弦定理求出A值判断③错误;利用基本不等式的性质判断④.【解答】解:①垂直于同一平面的所有向量一定共面,①正确;②在△ABC中,由,得==,即tanA=tanB=tanC,则∠A=60°,②正确;③在△ABC中,由sin2A=sin2B+sin2C+sinBsinC,得a2=b2+c2+bc,故cosA==﹣,则A=,③错误;④若a>0,b>0,a+b=2,则a2+b2≥()2=2,④正确;故答案为:①②④.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).(1)若m=2,且p∧q为真,求实数x的取值范围;(2)若p是q充分不必要条件,求实数m的取值范围.【考点】复合的真假.【分析】(1)分别求解一元二次不等式化简p,q,然后利用p∧q为真,取交集求得实数x 的取值范围;(2)求解一元二次不等式化简q,结合p是q充分不必要条件,可得[1,5]⊊[1﹣m,1+m],转化为关于m的不等式组得答案.【解答】解:(1)由x2﹣6x+5≤0,得1≤x≤5,∴p:1≤x≤5;当m=2时,q:﹣1≤x≤3.若p∧q为真,p,q同时为真.,则,即1≤x≤3;(2)由x2﹣2x+1﹣m2≤0,得q:1﹣m≤x≤1+m.∵p是q充分不必要条件,∴[1,5]⊊[1﹣m,1+m],∴,解得m≥4.∴实数m的取值范围为m≥4.18.在△ABC中,a,b,c分别是A,B,C的对边,且2cosA=.(1)若a2﹣c2=b2﹣mbc,求实数m的值;(2)若a=2,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【分析】(1)已知等式两边平方后整理可解得cosA=,而由已知及余弦定理可得=,从而解得m的值.(2)由(1)可求得sinA=,结合余弦定理可求得bc≤a2,即可由三角形面积公式求最大值.【解答】(本题满分为15分)解:(1)由2cosA=,两边平方可得:4cos2A﹣4cosA+1=0,解得:cosA=.…4分而a2﹣c2=b2﹣mbc可以变形为:=,即cosA==,所以m=1.…7分(2)由(1)知cosA=,则sinA=,又=.…9分所以bc=b2+c2﹣a2≥2bc﹣a2,即bc≤a2…12分故S△ABC=bcsinA≤•=.…15分19.东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家(以千元为单位)【考点】简单线性规划.【分析】设每周生产书桌x张、书柜y张,则生产电脑椅120﹣x﹣y张,产值为z千元,由题意列出关于x,y的不等式组,再求出线性目标函数z=4x+3y+2=2x+y+240,由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:设每周生产书桌x张、书柜y张,则生产电脑椅120﹣x﹣y张,产值为z千元,则依题意得z=4x+3y+2=2x+y+240,由题意得x,y满足,即,画出可行域如图所示.解方程组,得,即M(20,60).做出直线l0:2x+y=0,平移l0过点M(20,60)时,目标函数有最大值,z max=2×20+60+240=340(千元).答:每周应生产书桌20张,书柜60张,电脑椅40张,才能使产值最高,最高产值是340千元.20.设数列{a n}的前n项和S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列的前n项和T n,求使得成立的n的最小值.【考点】数列的求和;数列递推式.【分析】(1)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n>1),即a n=2a n﹣1(n>1).由a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).解出即可得出.(2)利用等比数列的前n项和公式及其不等式的性质即可得出.【解答】解:(1)∵S n=2a n﹣a1,∴a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n>1),即a n=2a n﹣1(n>1).从而a2=2a1,a3=4a1,又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).∴a1+4a1=2(2a1+1),解得a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故.(2)由(1)得.∴.由,得,即2n>2016.∵210=1024<2016<2048=211,∴n≥11.于是,使成立的n的最小值为11.21.如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,点M是SD的中点,AN⊥SC,且交SC于点N.(1)求证:SC⊥平面AMN;(2)求二面角D﹣AC﹣M的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)以A为坐标原点,AD为x轴,AB为y轴,AS为z轴,建立空间直角坐标系,利用向量法能证明SC⊥平面AMN.(2)求出平面ABCD的一个法向量和平面ACM的法向量,利用向量法能求出二面角D﹣AC﹣M的余弦值.【解答】证明:(1)∵在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,∴以A为坐标原点,AD为x轴,AB为y轴,AS为z轴,建立空间直角坐标系,由SA=AB,设AB=AD=AS=1,则A(0,0,0),B(0,1,0),C(1,1,0),D(1,0,0),S(0,0,1),M(,0,),=(),=(﹣1,﹣1,1),•=﹣=0,∴,∴SC⊥⊥AM,又SC⊥AN,且AN∩AM=A,∴SC⊥平面AMN.解:(2)∵SA⊥底面ABCD,∴是平面ABCD的一个法向量,且=(0,0,1),设平面ACM的法向量为=(x,y,z),=(1,1,0),=(),则,取x=﹣1,得=(﹣1,1,1),cos<>===,由图形知二面角D﹣AC﹣M为锐二面角,∴二面角D﹣AC﹣M的余弦值为.22.已知椭圆E:过点,离心率为,点F1,F2分别为其左、右焦点.(1)求椭圆E的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和A在椭圆上,满足椭圆方程,解方程即可得到所求椭圆的方程;(2)假设满足条件的圆存在,其方程为:x2+y2=r2(0<r<1).当直线PQ的斜率存在时,设直线方程为y=kx+m,代入椭圆方程,运用韦达定理,由,可得x1x2+y1y2=0,代入化简整理,再由直线和圆相切的条件,即可得到满足条件的圆存在;运用弦长公式,化简整理,由二次函数的最值的求法,即可得到所求最大值.【解答】解:(1)由题意得:e=,a2﹣b2=c2,且+=1,解得,a=2,b=1,所以椭圆E方程为;(2)假设满足条件的圆存在,其方程为:x2+y2=r2(0<r<1).当直线PQ的斜率存在时,设直线方程为y=kx+m,由得(1+4k2)x2+8mkx+4m2﹣4=0,令P(x1,y1),Q(x2,y2),可得,,∵,∴x1x2+y1y2=0∴,∴5m2=4k2+4,由直线PQ与圆相切,则,所以存在圆.当直线PQ的斜率不存在时,也适合.综上所述,存在圆心在原点的圆满足题意.由弦长公式可得:==,又,代入上式可得:,令4k2+1=t,即,则,当时,即时,,当直线l的斜率k不存在时,,所以.2016年7月31日。

2023-2024学年广东省深圳高二上学期期末数学试题(含解析)

2023-2024学年广东省深圳高二上学期期末数学试题(含解析)

2023-2024学年广东省深圳高二上册期末数学试题一、单选题1.已知数列{}n a 满足11a =,12n n a a n +=+,则3a =()A .3B .7C .8D .9【正确答案】C【分析】直接把1n =和2n =代入递推关系式求解即可.【详解】解: 数列{}n a 满足11a =,12n n a a n +=+,21213a a ∴=+=,32228a a =+=,故选:C .2.设R a ∈,直线1:210l ax y +-=,直线22:(1)0l x a y a ++-=,若12l l ⊥,则=a ()A .1B .2-C .23-D .1或2-【正确答案】C【分析】由题意,根据两直线垂直的性质列方程即可求得a 的值.【详解】R a ∈ ,直线1:210l ax y +-=,直线22:(1)0l x a y a ++-=,12l l ⊥,()1210a a ∴⨯+⨯+=,求得23a =-,故选:C .3.已知数列{}n a 满足13a =,11n n n a a a +=-,则2023a =()A .12-B .23C .32D .3【正确答案】D【分析】根据已知的递推关系式求出数列的前4项,即可发现循环,求出数列的周期,进而求得结果即可.【详解】解:因为数列{}n a 满足13a =,11n n n a a a +=-,所以2111a a a =-,解得223a =,由2321a a a =-,解得312a =-,由3431a a a =-,解得413a a ==,L ,故可得数列{}n a 是周期为3的数列,且前三项为:3,23,12-,因为202367431=⨯+,所以202313a a ==.故选:D4.如图,在四面体PABC 中,E 是AC 的中点,F 是PB 上靠近P 点的四等分点,则FE =()A .111232PA PB PC-+B .111242PA PB PC-+C .111343PA PB PC ++D .212343PA PB PC -+ 【正确答案】B【分析】根据已知条件,结合空间向量的线性运算,即可求解.【详解】解:E 是AC 的中点,F 是PB 上靠近P 点的四等分点,则()1111142242FE FP PE PB PA PC PA PB PC =+=-++=-+.故选:B .5.已知直线*:34560(N )n l x y n n -+-=∈与圆222:(2)(0)n n n C x y a a -+=>,给出下面三个结论:①直线n l 与直线1n l +平行且两直线距离为1;②若直线n l 与圆n C 相切,则22n a n =;③若直线n l 与圆n C 相切,圆1n C +与圆n C 构成的圆环面积最小值为3π.其中正确的是()A .①②B .①③C .②③D .①②③【正确答案】D【分析】由直线*:34560(N )n l x y n n -+-=∈,可得直线1n l +的方程,进而判断两直线的关系,判n a =,进而求得22n a n =,判断②;利用同心圆可求圆环的面积,进而可求圆环面积最小值判断③.【详解】由直线*:34560(N )n l x y n n -+-=∈,可得直线1:345(1)60n l x y n +-++-=,即34510x y n -+-=,∴直线n l 与直线1n l +平行,直线n l 与直线1n l +1=,故①正确;由圆222:(2)(0)n n n C x y a a -+=>,得圆心(2,0)n C ,半径为n a ,若直线n l 与圆n C 相切,n a =,22n a n ∴=,故②正确;圆1n C +与圆n C 是同心圆,且*N n ∈,故圆1n C +与圆n C 构成的圆环面积为221π()π()π(21)3πn n a a n +-=+≥,当且仅当1n =时取等号,故圆1n C +与圆n C 构成的圆环面积最小值为3π,故③正确.故选:D .6.设椭圆2222:1(0,0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,过原点O 的直线l 交椭圆于M ,N 两点,若||2MN c =,22:1:MF NF =C 的离心率为()A .4B .37C .12D .37【正确答案】B【分析】由已知易得四边形12MF NF 是矩形,设2||MF m =,1MF =,进而可得123F F m =,利用212+=MF MF a ,求解即可.【详解】 过原点O 的直线l 交椭圆于M ,N 两点,MN ∴被O 平分,又12F F 被O 平分,∴四边形12MF NF 是平行四边形,又122MN c F F ==,∴四边形12MF NF 是矩形,22:1:MF NF = ,由对称性可得12MF NF =,∴设2||MF m =,1MF =,123F F m ∴=,23c m ∴=,21223c MF MF a ∴+==,∴c a =.故选:B .7.关于x4kx =+有唯一解,则实数k 的取值范围是()A .2k ≤-或2k ≥B .2k ≤-或2k ≥或k =C .2k <-或2k >或k =D .2k <-或2k >【正确答案】C【分析】将问题转化为曲线y =与4y kx =+有唯一交点,采用数形结合的方式可确定临界状态,结合圆的切线方程的求解方法可求得临界值,结合图形可得结果.4kx =+有唯一解等价于曲线y =4y kx =+有唯一交点,由y =得:()2204y x y +=≥,则其图形为以()0,0为圆心,2为半径的圆的上半部分;4y kx =+为恒过定点()0,4的直线;作出y =与4y kx =+图象如下图所示,由图象可知:当3k k =或4k k =或1k k >或2k k <时,曲线y =与4y kx =+有唯一交点;当直线4y kx =+与圆()2204y x y +=≥2,解得:k =即3k =,4k =又140202k -==+,240202k -==--,∴4kx =+有唯一解时,实数k 的取值范围为2k <-或2k >或k =.故选:C.8.已知曲线22:1C x y x y +=-)ABC .1D .1+【正确答案】A【分析】利用222222x y x y x y ++-≤≤【详解】 曲线22:1C x y x y +=-,221()x y x y ∴=-+,又222222x y x y x y ++-≤≤,当且仅当x y =时取等号,2222221()22x y x y x y ++∴-≤-+≤,∴221132x y +≤≤,∴22232x y ≤+≤,∴3≤≤,.故选:A .二、多选题9.设{},,a b c是空间一个基底,则下列选项中正确的是()A .若a b ⊥ ,b c ⊥,则a c⊥ B .a c + ,b c + ,c a +一定能构成空间的一个基底C .对空间中的任一向量p ,总存在有序实数组(,,)x y z ,使p xa yb zc=++ D .存在有序实数对,使得c xa yb=+【正确答案】BC【分析】根据空间向量的基本定理,对选项中的命题进行分析、判断正误即可.【详解】对于A ,a b ⊥ ,b c ⊥,不能得出a c ⊥ ,也可能是a 、c 相交不一定垂直,选项A 错误;对于B ,假设向量a b +,b c + ,c a + 共面,则()()a b x b c y c a +=+++ ,x 、R y ∈,化简得()(1)(1)x y c x b y a +=-+-r r r,所以a 、b 、c 共面,这与已知矛盾,所以选项B 正确;对于C ,根据空间向量基本定理知,对空间任一向量p,总存在有序实数组(x ,y ,)z ,使p xa yb zc =++,选项C 正确;对于D ,因为{},,a b c 是空间一个基底,所以a 与b 、c不共面,选项D 错误.故选:BC .10.已知直线:50l x y -+=,过直线上任意一点M 作圆22:(3)4C x y -+=的两条切线,切点分别为,A B ,则有()A .MA 长度的最小值为2B .不存在点M 使得AMB ∠为60C .当MC AB ⋅最小时,直线AB 的方程为210x y --=D .若圆C 与x 轴交点为,P Q ,则MP MQ ⋅的最小值为28【正确答案】BD【分析】由题知圆C 的圆心为()3,0,半径为2r =,进而根据圆的切线问题依次讨论各选项即可得答案.【详解】解:由题知圆C 的圆心为()3,0,半径为2r =,对于A ,因为圆心()3,0到直线:50l x y -+=的距离为d ==min MC =min MA =A 错误;对于B ,假设存在点M 使得AMB ∠为60 ,如图,则30∠= AMC ,故在Rt AMC △中,24MC r ==,由A 选项知min 4MC =>,故矛盾,即不存在点M 使得AMB ∠为60 ,故B 正确;对于C ,由于MC AB ⊥,故四边形MACB 的面积为1222MACB MAC S MC AB S MA r MA =⋅==⋅=△,所以,4MC AB MA ⋅=,故当MC AB ⋅最小时,MA 最小,由A 选项知min MA =此时MC l ⊥,//l AB ,即直线AB 的斜率为1,由于直线210x y --=的斜率为12,故C 错误;对于D ,由题知()()1,0,5,0P Q ,设(),5M x x +,则()()()()()221,55,55152430MP MQ x x x x x x x x x ⋅=---⋅---=--++=++ ()2212828x =++≥,当且仅当=1x -时等号成立,故MP MQ ⋅的最小值为28,故D 正确;故选:BD11.已知双曲线()222:10x C y a a-=>,若圆22(2)1x y +-=与双曲线C 的渐近线相切,则()A .双曲线CB .双曲线C 的离心率2e =C .点P 为双曲线C 上任意一点,点P 到C 的两条渐近线的距离分别为1d ,2d ,则2134d d =D .直线1y k x m =+与C 交于,A B 两点,点D 为弦AB 的中点,若OD (O 为坐标原点)的斜率为2k ,则123k k =【正确答案】ABD【分析】先根据直线与圆的位置关系求得双曲线C 的标准方程,由双曲线的性质判断AB ,利用点到直线的距离公式化简整理判断C ,将直线与双曲线联立,利用韦达定理求得D 点坐标进而求得2k 判断D.【详解】双曲线()222:10x C y a a-=>的渐近线方程为1y x a =±即0ay x ±=,因为圆22(2)1x y +-=与双曲线C 的渐近线相切,1=,解得a =C 的方程为2231x y -=,选项A :双曲线C的实轴长23a =,正确;选项B:c ==2c e a ==,正确;选项C :设P 点为00(,)x y ,则220031x y -=,点P0y x ±=,则2222000012211(3)1334413x y x y d d --==+⎝⎭,错误;选项D :直线1y k x m =+与双曲线C 联立可得22211(3)210k x k mx m ----=,设11(,)A x y ,22(,)B x y ,由韦达定理得1122123k m x x k +=-,所以12112216()23my y k x x m k +=++=-,因为点D 为弦AB 的中点,所以D 点坐标为122113,33k m m k k ⎛⎫⎪--⎝⎭,所以2121121303303ODmk k k k mk k --===--,所以123k k =,正确;故选:ABD12.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列{}n a 满足10a =,11,,n n na n n a a n n +++⎧=⎨+⎩为奇数为偶数,则()A .46a =B .()221n n a a n +=++C .221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数D .数列{}(1)nn a -的前2n 项和为()1n n +【正确答案】BCD【分析】直接由递推公式求出4a 即可判断A 选项;分n 为奇数或偶数即可判断B 选项;分n 为奇数或偶数结合累加法即可判断C 选项;由分组求和法即可判断D 选项.【详解】对于A ,213243112,24,318a a a a a a =++==+==++=,A 错误;对于B ,当n 为奇数时,1n +为偶数,则211n n a a n ++=++,11n n a a n +=++,可得()221n n a a n +=++;当n 为偶数时,1n +为奇数,则2111n n a a n ++=+++,1n n a a n +=+,可得()221n n a a n +=++,B 正确;对于C ,当n 为奇数且2n ≥时21324312111,2,31,,21,1n n n n a a a a a a aan a an ---=++=+=++=+-+=+- ,累加可得111231211n a a n n =+++++++-++- ()()113121241n n =+++++-+++++- 2211211122222n n n n n +--+---=⋅+⋅=,1n =时也符合;当n 为偶数且2n ≥时21324312111,2,31,,2,11n n n n a a a a a a a an a an ---=++=+=++=+-=+-+ ,累加可得111231211n a a n n =+++++++-+-+ ()()113111242n n =+++++-+++++- 221122222222n n n n n +-++--=⋅+⋅=;则221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,C 正确;对于D ,设数列{}(1)nn a -的前2n 项和为2n S ,则21234212n n n S a a a a a a -=-+-+--+ ,又()()222212211222n n n n a a n ----=-=,()22224212n nS n n n n +=+++=⋅=+ ,D 正确.故选:BCD.本题的关键点在于利用题目中的递推关系式,分n 为奇数或偶数两种情况来考虑,同时借助累加法即可求出通项,再结合分组求和法以及等差数列求和公式即可求得前2n 项和,使问题得以解决.三、填空题13.抛物线22y x =的焦点坐标是______.【正确答案】10,8⎛⎫ ⎪⎝⎭【分析】将抛物线的方程化为标准形式,即可求解出焦点坐标.【详解】因为抛物线方程212x y =,焦点坐标为0,2p ⎛⎫⎪⎝⎭,且14p =,所以焦点坐标为10,8⎛⎫⎪⎝⎭,故答案为.10,8⎛⎫⎪⎝⎭14.设点(3,5)A ,点B 和C 分别为直线:220l x y -+=和y 轴上的两动点,则ABC 的周长的最小值为__.【正确答案】【分析】由题可求点A 关于y 轴的对称点M ,A 关于:220l x y -+=的对称点D ,然后利用数形结合即得.【详解】因为点(3,5)A ,则A 关于y 轴的对称点M 为(3,5)-,设A 关于:220l x y -+=的对称点为(),D a b ,则511323522022b a a b -⎧⨯=-⎪⎪-⎨++⎪-⨯+=⎪⎩,解得5,1a b ==,即()5,1D,所以MC CA =,AB BD =,所以ABC 的周长为MC CB BD ++,则当,,,M C B D 共线时,ABC 的周长的值最小,此时三角形周长为DM ==故15.如图,在正三棱柱111ABC A B C -中,124AA AB ==,E 是1BB 的中点,F 是11A C 的中点,若过A ,E ,F 三点的平面与11B C 交于点G ,则1AG =__________.【正确答案】3【分析】以C 为原点建立空间直角坐标系C xyz -,可设()0,,4G a ,求出平面AEF 的法向量,再根据0AG m ⋅= 求出a ,即可得出答案.【详解】如图,以C 为原点建立空间直角坐标系C xyz -,则)A,)1A ,()0,2,2E,1,42F ⎫⎪⎪⎝⎭,由题可设()0,,4G a ,则()2AE =,1,42AF ⎛⎫=- ⎪ ⎪⎝⎭,()1,4AG a =- ,设平面AEF 的法向量(),,m x y z =,则201402y z x y z ⎧++=⎪⎨-+=⎪⎩,令x =93,55y z ==,故93,55m ⎫=⎪⎭ ,由()91231055AG m a ⋅=-+-+= ,得43a =,则11,03G A ⎛⎫= ⎪⎝⎭ ,13A G ==.16.在数列{}n a 中,如果对任意*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为比等差数列,λ称为比公差,现给出以下命题:①若数列{}n c 满足()*12121,1,3,n n n c c c c c n n N --===+≥∈,则该数列不是比等差数列;②若数列满足132n n a -=⋅,则该数列是比等差数列,且比公差0λ=;③等比数列一定是比等差数列,等差数列一定不是比等差数列;④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列.其中所有正确的序号是_________;【正确答案】①②【分析】①数列{}n c 为斐波那契数列,根据数列的性质代入211n n n na a a a +++-化简即可判断;②数列为等比数列,所以代入公式211n n n n a a a a +++-化简即可判断;③利用具体数列,代入即可判断;④列举一个等差数列与一个等比数列,代入即可判断.【详解】对于①,数列{}n c 为斐波那契数列,所以21111111n n n n n n n n n n n n n nc c c c c c c c c c c c c c +++--+++++-=-=-≠常数不满足比等差数列的定义,所以①正确;对于②,数列132n n a -=⋅,则1211132322203232n nn n n n n n a a a a +++-+⋅⋅-=-=-=⋅⋅满足比等差数列的定义,所以②正确;对于③,设等比数列11n n a a q -=,则1211111110n n n n n n n n a a a q a q q q a a a q a q +++-+⋅⋅-=-=-=⋅⋅,所以等比数列一定是比等差数列;当等差数列为常数数列时,2111111110n n n n a a a a a a a a +++-=-=-=也是比等差数列,所以③错误;对于④,{}n a 是等差数列,{}n b 是等比数列,所以设,2n n na b n ==则2n n n a b n =⋅所以()()()2121112212122n n n n n n n n n n a a a a n n +++++++⋅+⋅-=-+⋅⋅()()()2221211n n n n n n ++=-=-≠++常数不满足比等差数列的定义,所以④错误.综上可知,①②正确故答案为:①②本题考查了数列的新定义应用,注意理解所给条件,结合等差与等比数列的通项公式及性质判断,可利用特殊数列进行判定错误选项,属于难题.四、解答题17.已知圆C 的圆心在直线1:1y x l =--上,且经过(0,1)A -,(2,1)B -两点.(1)求圆C 的方程;(2)已知过点(0,2)P 的直线2l 与圆C 相交,被圆C 截得的弦长为2,求直线2l 的方程.【正确答案】(1)22(1)(2)2x y -++=(2)0x =或158160x y +-=.【分析】(1)求得线段AB 的中点坐标和斜率,可得AB 的垂直平分线的方程,与直线=1y x --联立,可得圆C 的圆心,求得||AC ,可得圆的半径,进而得到圆的方程;(2)讨论直线2l 的斜率不存在和存在的两种情况,结合弦长公式和点到直线的距离公式,可得所求直线2l 的方程.【详解】(1)线段AB 的中点为(1,1)-,直线AB 的斜率为11020AB k -+==-,所以线段AB 的垂直平分线为1x =,由11y x x =--⎧⎨=⎩,解得12x y =⎧⎨=-⎩,所以圆心为(1,2)C -,半径为AC ==所以圆C 的方程为22(1)(2)2x y -++=;(2)当直线2l 的斜率不存在时,则方程为0x =,由220(1)(2)2x x y =⎧⎨-++=⎩,得1y =-,或=3y -,即直线0x =与圆C 相交所得弦长为1(3)2---=,符合题意,当直线2l 的斜率存在时,设直线2l 的方程为2y kx =+,即20kx y -+=,由于圆C 到2l 1=1=,解得158k =-,所以1528y x =-+,即158160x y +-=,综上所述,直线2l 的方程为0x =或158160x y +-=.18.已知函数21()2cos 2f x x =-.(1)求函数()f x 的单调增区间与值域;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知()0f A =,1b =,ABC 求tan B 的值.【正确答案】(1)单调增区间为ππ,π,Z 2k k k ⎡⎤-∈⎢⎥⎣⎦,值域为13,22⎡⎤-⎢⎥⎣⎦(2)tan 3B =或tan B 【分析】(1)利用二倍角公式化简,再根据余弦函数的性质即可求;(2)先根据()0f A =求出A ,再由面积可得c 边长度,再利用余弦定理可得a 边长度,再利用正弦定理即可得sin B ,从而可得tan B 的值.【详解】(1)211()2cos cos 222f x x x =-=+,令2ππ22πk x k -≤≤,Z k ∈,则πππ2k x k -≤≤,Z k ∈,则()f x 的单调增区间为ππ,π,Z 2k k k ⎡⎤-∈⎢⎥⎣⎦,当22πx k =,即πx k =,Z k ∈时,max 13()122f x =+=,当22ππx k =+,即ππ2x k =+,Z k ∈时,min 11()122f x =-+=-,则()f x 的值域为13,22⎡⎤-⎢⎥⎣⎦;(2)由()0f A =,1cos 202A ∴+=,1cos 22A ∴=-,0πA << ,022πA ∴<<,2π23A ∴=或4π3,π3A ∴=或2π3,则sin A =,又ABC的面积为2,∴1sin 22bc A =,1b =Q ,2c ∴=,当π3A =时,2222cos 142a b c bc A =+-=+-,a ∴=则ABC为直角三角形,则tan 3B =,当2π3A =时,2222cos 142a b c bc A =+-=++,a ∴=在ABC中,1sin sin 3B =sin B ∴=π02B <<,cos B =则tan 5B =,综上tan B =tan B 19.设首项为112a =的数列{}n a 的前n 项积为n T ,且满足()111n n n n a a n a na ++=+-(1)求数列{}n a 的通项公式;(2)设数列n n T ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,求证:1211134n S S S +++< .参考公式:()()222211231216n n n n ++++=++ .【正确答案】(1)1n n a n =+(2)证明见解析【分析】(1)由已知可得111n n n n a a ++-=,即数列{}n n a 是以2为首项,1为公差的等差数列,然后求解即可;(2)由参考公式可得()()123n n n n S ++=,则()()()13112112n S n n n n ⎡⎤=-⎢⎥+++⎢⎥⎣⎦,然后累加求和即可.【详解】(1)数列{}n a 的前n 项积为n T ,且满足()111n n n n a a n a na ++=+-.则111n n n n a a ++-=,又112a =,112a =,则数列{}n n a 是以2为首项,1为公差的等差数列,则()211n n n n a =+-=+1n n a n ⇒=+;(2)由(1)可得1212311n n T n n =⨯⨯⨯=++ ,则2n n n n T =+则()()()()()22221112312312162n n n S n n n n n +=+++++++++=+++ ()()123n n n ++=.则()()()()()133********n S n n n n n n n ⎡⎤==-⎢⎥+++++⎢⎥⎣⎦则()()()121113111121223233411112n S S S n n n n +++=-+-++⨯⨯⨯⨯⎛⎫⎡⎤⎛⎫⎛⎫- ⎪⎢⎥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭ ()()311322412n n ⎡⎤=-<⎢⎥++⎢⎥⎣⎦.20.已知双曲线22 1.416x y -=(1)过点(1,4)N 的直线与双曲线交于,S T 两点,若点N 是线段ST 的中点,求直线ST 的方程;(2)直线l :(2)y kx m k =+≠±与双曲线有唯一的公共点M ,过点M 且与l 垂直的直线分别交x 轴、y 轴于0(,0)A x ,0(0,)B y 两点.当点M 运动时,求点00(,)P x y 的轨迹方程.【正确答案】(1)30.x y -+=(2)221(0)10025x y y -=≠.【分析】(1)设11(,)S x y ,22(),T x y ,采用“点差法”可求得直线ST 的斜率,即可求得答案;(2)根据直线l :(2)y kx m k =+≠±与双曲线有唯一的公共点M ,联立方程可得到224(4)m k =-,从而求得点M 坐标,由此表示出过M 且与l 垂直的直线方程,求得00,x y ,化简可得其关系,即可得答案.【详解】(1)设11(,)S x y ,22(),T x y ,则2211222214161416x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得22221212416x x y y --=,即121212124y y x x x x y y -+=⨯-+,因为点(1,4)N 是线段ST 的中点,所以1212214124y y x x -⨯=⨯=-⨯,即直线ST 的斜率为1,所以直线ST 的方程为41y x -=-,即3y x =+,联立方程组2231416y x x y =+⎧⎪⎨-=⎪⎩,得236250x x --=,满足0∆>,故直线ST 的方程为30.x y -+=(2)联立方程组22416x y y kx m⎧-=⎨=+⎩,得222(4)2(16)0k x kmx m ---+=,因为直线l :(2)y kx m k =+≠±与双曲线有唯一的公共点M ,根据双曲线的对称性可知,k m 都不等于0,()()22222Δ444160k k m k m '≠±⎧⎪∴⎨=+-+=⎪⎩,得224(4)m k =-,则244M km k x k m ==--,则4(16M k m y k mm =⨯+=--,所以M 的坐标为416(,k m m--,其中0km ≠,因为过点M 且与l 垂直的直线方程为1614()k y x m k m +=-+,令0y =,得020k x m =-,令0x =,020y m =-,所以2222002224004001600(4)10010044k m x y m m m==+=+=+,故点00(,)P x y 的轨迹方程为.221(0)10025x y y -=≠方法点睛:(1)涉及到弦的中点问题时,一般采用“点差法”解答,较为简便;(2)求动点的轨迹方程时,要能根据题意选择恰当的方法,想法得到动点的坐标之间的变化关系,化简可解.21.已知:在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥平面ABCD ,点M 为PD 中点,1PA AD ==.(1)求证:平面MAC ⊥平面PCD ;(2)求点P 到平面MAC 的距离.【正确答案】(1)证明见解析(2)3.【分析】(1)以AB 所在的直线为x 轴,以AD 所在的直线为y 轴,以AP 所在的直线为z 轴,建立空间直角坐标系,求得相关点的坐标,求出相关向量的坐标,利用向量数量积证明线面垂直,继而可证明结论.(2)利用向量法求得平面MAC 的法向量,根据距离的向量求法求点P 到平面MAC 的距离.【详解】(1)证明:PA ⊥ 平面ABCD ,ABCD 为正方形,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴,以AP 所在的直线为z轴,建立如图所示的直角坐标系.由已知可得()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()0,0,1P M 为PD 的中点,110,,22M ⎛⎫∴ ⎪⎝⎭,所以110,,22AM ⎛⎫= ⎪⎝⎭ ,()1,0,0CD =- ,()1,1,0AC = ,所以·0AM CD = ,所以AM CD ⊥,又点M 为PD 中点,1PA AD ==,所以AM PD ⊥,PD CD D = ,,PD CD ⊂平面PCD ,AM ∴⊥平面PCD ,又因为AM ⊂平面MAC ,故平面MAC ⊥平面PCD .(2)设平面MAC 的法向量为(),,n x y z = ,则1100,22·00n AM y z n AC x y ⎧⎧⋅=+=⎪⎪∴⎨⎨=⎪⎪⎩+=⎩ ,令1x =,则1,1y z =-=,()1,1,1n ∴=- ,()0,0,1PA =- ,设点P 到平面MAC 的距离为d,3PA n d n ⋅∴== ,∴点P 到平面MAC的距离为3.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点A.(1)求椭圆C 的方程;(2)直线l 与椭圆C 交于不同的M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列.椭圆C 上是否存在一点P ,使得四边形OMPN 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由.【正确答案】(1)2212x y +=(2)存在,10x ±-=或10x =.【分析】(1)由离心率的值,可得a ,b 的关系,设椭圆的方程,将A 点的坐标代入椭圆的方程,可得b 的值,进而求出椭圆的方程;(2)由题意可得直线l 的斜率存在且不为0,设直线l 的方程,与椭圆的方程联立,可得两根之和及两根之积,由四边形OMPN 为平行四边形可得P 的坐标,将P 的坐标代入椭圆的方程,可得参数的关系,求出直线OM ,ON 的斜率之积,由直线OM ,MN ,ON 的斜率依次成等比数列可得参数的关系,进而求出参数的值,即求出直线l 的方程.【详解】(1)由离心率2c e a =,可得222a b =,所以椭圆的方程为:222212x y b b +=,将点A代入椭圆的方程可得:2213144b b+=,解得21b =,所以椭圆的方程为2212x y +=;(2)由题意可得直线l 的斜率存在且不为0,设直线l 的方程为:x my t =+,设1(M x ,1)y ,2(N x ,2)y ,联立2222x my t x y =+⎧⎨+=⎩,整理可得:222()2220m y mty t +++-=,222244(2)(2)0m t m t ∆=-+->,即222t m <+,且12222mt y y m -+=+,212222t y y m -=+,()12122422t x x m y y t m +=++=+,因为四边形OMPN 为平行四边,OP 与MN 互相平分,所以2242,22t mt P m m -⎛⎫ ⎪++⎝⎭,因为P 在椭圆上,则2222422122t mt m m ⎛⎫ ⎪-+⎛⎫⎝⎭+= ⎪+⎝⎭,整理可得:2242t m =+,①又因为直线OM ,MN ,ON 的斜率依次成等比数列,即122121y y m x x =⋅,即21212x x m y y =,而()()()222221222122221212222222t m my t my t x x mt t m t m mt m y y y y t t t +++--==+⋅+=+---,可得2222t m t =,②由①②可得:22m =,21t =,符合△0>,可得m =,1t =±,所以直线l的方程为:10x -=或10x +=.本题考查求椭圆的方程及直线与椭圆的综合应用,等比数列的性质的应用,属于中档题,本题的关键是韦达定理求得根与系数的关系,求得点P 的坐标,以及表示写了的关系.。

广东省东莞市2014-2015学年高二上学期期末考试数学(理)试题(B卷) 扫描版含答案

广东省东莞市2014-2015学年高二上学期期末考试数学(理)试题(B卷) 扫描版含答案

东莞市2014-2015学年度第一学期高二理科数学期末考试试卷(B卷)2014—2015学年度第一学期期末教学质量检查高二理科数学(B 卷)参考答案及评分标准一、选择题二、填空题11. 2- 12. 4 13.31 14.[1,3]-三、解答题15.解:(1)∵3cos ,(0,)5B B π=∈且,∴4sin 5B ==,又35ac =,…………………………………3分 ∴114sin 3514225ABC S ac B ∆==⨯⨯=.……………………………………6分 (2)由35ac =,a =7, 得c =5,…………………………………………………………………7分∴22232cos 4925275325b ac ac B =+-=+-⨯⨯⨯=,∴b =9分∴222cos22a b c C ab +-===……………………………10分 又(0,)C π∈…………………………………………………………………11分∴4C π=.……………………………………………………………………12分16. 解:(1)由(4)()0x a x a -⋅-<得4a x a <<.……………………1分当1a =时,14x <<,即p 为真命题时,实数x 的取值范围是14x <<……3分 由2430x x -+≤得13x ≤≤.所以q 为真时实数x 的取值范围是13x ≤≤.…………………………5分若p q ∧为真,则13x <≤,所以实数x 的取值范围是(]1,3.……6分(2) 设{}|4A x a x a =<<,{}|13B x x =≤≤………………………8分q 是p 的充分不必要条件,则B A ≠⊂…………………………………10分所以0131434a a a <<⎧⇒<<⎨>⎩,所以实数a 的取值范围是3,14⎛⎫ ⎪⎝⎭.………12分 17.解:设甲、乙两种蔬菜的种植面积分别为x ,y 亩,农场的总收益为z 万元,则……1分 300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………5分 目标函数为0.30.2z x y =+, ……………6分 不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 可行域如图所示,……………………………9分当目标函数对应的直线经过点M 时,目标函数z 取最小值. ……………………………………………………10分解方程组300,3450,x y x y +=⎧⎨+=⎩得M 的坐标 75x =,225y =,……………………………………12分所以max 0.3750.222567.5z =⨯+⨯=.………………………………13分答:分别种植甲乙两种蔬菜75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………14分18. 解:(1)连接1AD1111D C B A ABCD - 为四棱柱,11//D C CD ∴ 11D C CD =又M 为AB 的中点,1=∴AMAM CD //∴,AM CD =11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形11//MC AD ∴………………4分又111ADD A M C 平面⊄ 111ADD A AD 平面⊂111//ADD A AD 平面∴………………6分(2)方法一:11//B A AB 1111//D C B A共面与面1111D ABC M C D ∴作AB CN ⊥,连接N D 1则NC D 1∠即为所求二面角………………8分在ABCD 中, 60,2,1=∠==DAB AB DC 23=∴CN 在CN D Rt 1∆中,31=CD ,23=CN 2151=∴N D 5515321523cos 11====∠∴N D NC CN D ………………14分 方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴ )3,23,21(),0,0,1(111-==∴D D C 设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n 显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==>=<∴n n 显然二面角为锐角, 所以平面M D C 11和平面ABCD 所成角的余弦值为55………………14分19. 解:(1)当1n =时,211112a S a =+=+=; ……1分当2n ≥时,11()n n S a n N *++=∈11()n n S a n N *-+=∈,两式相减得,12(2)n n a a n +=≥, ……2分又212a a =,……3分所以{}n a 是首项为1,公比为2的等比数列,……4分所以12n n a -=. ……6分(2)由(1)知12n n a -=,所以n n 1n+1n n n n b ==4a 422-=⋅,……7分 所以n 234n+1123n T =...2222++++, n 345n+1n+21123n 1n T = (222222)-+++++,…8分 两式相减得,n 234n+1n+211111n T =...222222++++-2n n+2n+211(1)n 1n +222=122212--=-- 所以n n+2n +2T 12=-(或写成n n n 1T 1(1)22=-+⋅或n n n+11n T 122=--…10分 132********(1)(1)022222n n n n n n n n n n n n T T +++++++++++-=---=-=>…11分 1n n T T +∴>n T ∴是递增的,又134T =314n T ∴≤< …14分 20.解:(1)法一:由椭圆的定义可知1232||||42a MF MF =+== 2a ∴= ……1分由1c =得b =2分故椭圆的方程是22143x y +=; ……3分 法二:由已知得,222291411a b a b ⎧⎪⎪+=⎨⎪-=⎪⎩,……1分 得2243a b ⎧=⎨=⎩,……2分 故椭圆的方程是22143x y +=; ……3分 (2)椭圆的右焦点为2(1,0)F ,分两种情况讨论如下:1°当直线AB 的斜率不存在时,AB:1x =,则 CD:0y =.此时||3AB =,||4CD =,117||||12AB CD +=; ……5分 2°当直线AB 的斜率存在时,设AB : (1)(0)y k x k =-≠,则 CD :1(1)y x k=--. 又设点1122(,),(,)A x y B x y . 联立方程组22(1),3412,y k x x y =-⎧⎨+=⎩ 消去y 并化简得2222(43)84120k x k x k +-+-=,所以 2122843k x x k +=+, 212241243k x x k -⋅=+……7分 12|||AB x x ==-==2212(1)43k k +=+ ……8分 由题知,直线CD 的斜率为1k -,同理可得2212(1)||43k CD k+=+ ……9分所以2211777||||12(1)12k AB CD k ++==+为定值. ……10分 (3)解:由(II )知117||||12AB CD +=, 所以 912911||||(||||)()16716||||AB CD AB CD AB CD +=++ ……11分 9||1225||16()716||||CD AB AB CD =++122521(7164≥+=, ……12分 当且仅当9||||16||||CD AB AB CD =,即3||||4AB CD =,即||3,||4AB CD ==时取等号 …13分 所以9||||16AB CD +的最小值为214. ……14分。

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()()2,1,3,1,1,1a b =-=- ,若()a a b λ⊥-,则实数λ的值为()A .2-B .143-C .73D .22.P 是被长为1的正方体1111ABCD A B C D -的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是()A .11,4⎡⎤--⎢⎥⎣⎦B .1,02⎡⎤-⎢⎥⎣⎦C .1,04⎡⎤-⎢⎥⎣⎦D .11,42⎡⎤--⎢⎥⎣⎦3.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A .333,,22⎛⎫ ⎪⎝⎭B .333,,244⎛⎫ ⎪⎝⎭C .333,,422⎛⎫ ⎪⎝⎭D .()4,2,24.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为()AB C .3D 5.已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为()A .1132a b c++B .1162a b c-++C .1132a b c -+D .1162a b c--+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OC λ=++ .若,,MA MB MC共面,则λ=()A .12B .13C .512D .7127.已知向量()()1,21,0,2,,a t t b t t =--=,则b a - 的最小值为()AB C D8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC -中,PA PB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为().A .π9B .π18C .π27D .π54二、多选题9.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A .13DB =B .向量AE 与1AC uuu r 所成角的余弦值为5C .平面AEF 的一个法向量是()4,1,2-D .点D 到平面AEF 10.在正三棱柱111ABC A B C -中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λμλμ=+∈∈,则下列说法正确的是()A .当1λ=时,点P 在棱1BB 上B .当1μ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上D .当11,2λμ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A .122CG AB AA =+ B .直线CQ 与平面1111D C B A 所成角的正弦值为23C .点1C 到直线CQ 的距离是3D .异面直线CQ 与BD 三、填空题12.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为时,使1⊥MN AB .13.四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC V 的重心,则PG 与平面PAD 所成角θ的正弦值为.14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为.四、解答题15.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.如图所示,直三棱柱11ABC A B C -中,11,92,0,,CA CB BCA AA M N ︒==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB的值.(3)求证:BN ⊥平面1C MN .17.如图,在四棱维P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.如图1,在边长为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成Q 的位置;若不存在,请说明理由.19.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PFBD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE与线段BC交于M点,AH PM于点H,求线段CH长的最小值.参考答案:题号12345678910答案C BADDDCBBCDBCD题号11答案BC1.C【分析】利用两个向量垂直的性质,数量积公式即求得λ的值.【详解】 向量()()2,1,3,1,1,1a b =-=-若()a a b λ⊥-,则2()(419)(213)0a a b a a b λλλ⋅-=-⋅=++-++=,73λ∴=.故选:C .2.B【分析】建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(),,x y z ,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则1,0,0,()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=--- ,()1,1,0PC x y =--,()()2222111111222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----=-+-=-+--⎪ ⎪⎝⎭⎝⎭,当12x y ==时,1PA PC ⋅ 取得最小值12-,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0,所以1PA PC ⋅ 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.故选:B.3.A【分析】根据投影向量公式计算可得答案.【详解】向量a 在向量b上的投影向量为()()()2242312333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⨯+⨯-⎛⎫⋅⋅=⋅=⋅== ⎪⎝⎭r r rr r r r r r .故选:A.4.D【分析】建立空间直角坐标系,由点到平面的距离公式计算即可.【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F ,所以()12,0,1ED =- ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取1x =,得()1,0,2n =r,所以点G 到平面1D EF的距离为EG n d n ⋅== ,故选:D .5.D【分析】利用空间向量的线性运算结合图形计算即可.【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++-()11113262b ac b a b c =-+-=--+.故选:D 6.D【分析】根据给定条件,利用空间向量的共面向量定理的推论列式计算即得.【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=.故选:D 7.C【分析】计算出b a -=≥ .【详解】因为()()1,21,0,2,,a t t b t t =--=,所以b a -=当0t =时,等号成立,故ba -.故选:C.8.B【分析】设1PFCF ==,易知PA PB AB AC BC =====,且23FG =,设肉馅球半径为r ,CG x =,根据中点可知P 到CF 的距离4d r =,sin 4dPFC r PF∠==,根据三角形面积公式及内切圆半径公式可得1x =,结合余弦定理可得1cos 3PFC ∠=,进而可得3PC =,sin 3PFC ∠=,可得内切球半径且可知三棱锥为正三棱锥,再根据球的体积公式及三棱锥公式分别求体积及比值.【详解】如图所示,取AB 中点为F ,PF DE G ⋂=,为方便计算,不妨设1PF CF ==,由PA PB AB AC BC ====,可知3PA PB AB AC BC =====,又D 、E 分别为所在棱靠近P 端的三等分点,则2233FG PF ==,且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF ,即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC ,设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅,则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC r S r =⋅⋅⋅=△,又2132GFC rS x ⎛⎫=++⋅ ⎪⎝⎭ ,解得:1x =,故22241119cos 223213CF FG CG PFC CF FG +-+-∠===⋅⋅⋅⋅,又2222111cos 21132P PF CF PC PC F F C P F C +-+⋅-∠=⋅=⋅⋅,解得PC =,sin 3PFC ∠=,所以:4sin 31rPFC ∠==,解得6r =,343V r =π=球,由以上计算可知:P ABC -为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅∠⋅粽11432332627=⋅⋅⋅⋅⋅⋅=,=.故选:B.9.BCD【分析】先写出需要的点的坐标,然后利用空间向量分别计算每个选项即可.【详解】由题可知,2,0,0,()0,0,0D,()2,2,1E,()1,0,2F,()12,2,2B,()10,2,2C,所以1DB==A错误;()0,2,1AE=,()12,2,2AC=-,所以111·cos,AE ACAE ACAE AC=B正确;()0,2,1AE=,()1,0,2AF=-,记()4,1,2n=-,则0,0AE AFn n==,故,AE AFn n⊥⊥,因为AE AF A⋂=,,AE AF⊂平面AEF,所以()4,1,2n=-垂直于平面AEF,故选项C正确;B =2,0,0,所以点D到平面AEF的距离·21DA ndn===,故选项D正确;故选:BCD10.BCD【分析】对于A,由1CP BP BC BBμ==-即可判断;对于B,由[]11,0,1B P BP BB BCλλ=-=∈和11//B C平面ABC即可判断;对于C,分别取BC和11B C的中点D和E,由BP BD=+1BBμ即1DP BBμ=即可判断;对于D,先求证1A E⊥平面11BB C C,接着即可求证1B P⊥平面1A EB,进而即可求证1A B⊥平面1AB P.【详解】对于A,当1λ=时,[]1,0,1CP BP BC BBμμ=-=∈,又11CC BB=,所以1CP CCμ=即1//CP CC,又1CP CC C=,所以1C C P、、三点共线,故点P在1CC上,故A错误;对于B ,当1μ=时,[]11,0,1B P BP BB BC λλ=-=∈,又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确;对于C ,当12λ=时,取BC 的中点11,D B C 的中点E ,所以1//DE BB 且1DE BB =,BP BD =+[]1,0,1BB μμ∈ ,即1DP BB μ= ,所以DP E D μ= 即//DP DE,又DP DE D ⋂=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λμ==时,点P 为1CC 的中点,连接1,A E BE ,由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C ,又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=,所以111BB E B C P ≌,所以111B EB C PB ∠=∠,所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=,设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB ,所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB ,所以11B P A B ⊥,由正方形性质可知11A B AB ⊥,又111AB B P B = ,11B P AB ⊂、平面1AB P ,所以1A B ⊥平面1AB P ,故D 正确.故选:BCD.【点睛】思路点睛:对于求证1A B ⊥平面1AB P ,可先由111A E B C ⊥和11A E BB ⊥得1A E ⊥平面11BB C C ,从而得11A E B P ⊥,接着求证1BE B P ⊥得1B P ⊥平面1A EB ,进而11B P A B ⊥,再结合11A B AB ⊥即可得证1A B ⊥平面1AB P .11.BC【分析】A 选项,建立空间直角坐标系,写出点的坐标,得到122AB AA CG +≠ ;B 选项,求出平面的法向量,利用线面角的夹角公式求出答案;C 选项,利用空间向量点到直线距离公式进行求解;D 选项,利用异面直线夹角公式进行求解.【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C ----,()()()110,1,1,1,1,1,1,0,0B C D --,()()()10,2,2,0,1,0,0,0,1CG AB AA =-==,则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误;B 选项,平面1111D C B A 的法向量为()0,0,1m =,()()()0,1,21,1,01,2,2CQ =---=-,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos ,3CQ m CQ m CQ m θ⋅===⋅,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为3d ==,C 正确;D 选项,()()()1,0,00,1,01,1,0BD =--=--,设异面直线CQ 与BD 所成角大小为α,则cos cos ,6CQ BD CQ BD CQ BDα⋅=====⋅,D 错误.故选:BC 12.18/0.125【分析】根据正三柱性质建立空间直角坐标系,利用向量垂直的坐标表示可得结果.【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥,因此以M 为坐标原点,以1,,AMBM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,0,0,,2,0,0,022A B M ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,设CN 的长为a ,且0a >,可得10,,2N a ⎛⎫- ⎪⎝⎭;易知1110,,,,,2222MN a AB ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭若1⊥MN AB ,则1112022MN AB a ⋅=-⨯+= ,解得18a =,所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.23【分析】建立空间直角坐标系,求出平面PAD 的一个法向量m 及PG,由PG 与平面PAD 所成角θ,根据sin cos ,m PG m PG m PGθ⋅==⋅即可求解.【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =- ,()3,0,0DA = ,()0,0,1DP =,设平面PAD 的一个法向量为(),,m x y z =,则300m DA x m DP z ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =则()0,1,0m = ,则22sin cos ,133m PG m PG m PG θ⋅====⨯⋅,故答案为:23.14.117m【分析】先根据线面角的定义求得5tan tan EMO EGO ∠=∠,从而依次求EO ,EG ,EB ,EF ,再把所有棱长相加即可得解.【详解】如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以5tan tan EMO EGO ∠=∠.因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO 5OG =,所以在直角三角形EOG 中,EG =在直角三角形EBG 中,5BG OM ==,8EB ==,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117⨯+⨯++⨯=.故答案为:117m15.(2)当2AE =时,直线1A D 与平面1D EC 【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA,利用向量法可得sin θ=.【详解】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n =,又平面1DCD 的一个法向量为(1,0,0)DA =,所以·cos ,·DA n DA n DA n=== 所以平面1D EC 与平面1DCD(2)设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =-,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ===令4[2,4]m t -=∈,则sin θ=当2t =时,sin θ取得最小值,最小值为5.16.(2)10(3)证明见解析【分析】(1)建立空间直角坐标系,求出相关点坐标,根据空间两点间距离公式,即得答案;(2)根据空间向量的夹角公式,即可求得答案;(3)求出1C M ,1C N,BN 的坐标,根据空间位置关系的向量证明方法,结合线面垂直的判定定理,即可证明结论.【详解】(1)如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴BN == (2)依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =- ,1(0,1,2)CB =,113BA CB =⋅,1BA1CB所以11111cos ,BA CB BA CB BA CB ⋅=⋅(3)证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M ⎛⎫⎪⎝⎭.∴111,,022C M ⎛⎫= ⎪⎝⎭ ,()11,0,1C N =- ,()1,1,1BN =-,∴1111(1)10022C M BN ⋅=⨯+⨯-+⨯= ,1110(1)(1)10C N BN ⋅=⨯+⨯-+-⨯=,∴1C M BN ⊥ ,1C N BN ⊥,即11,C M BN C N BN ⊥⊥,又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C ,∴BN ⊥平面1C MN .17.(2)存在点M ,使得//BM 平面PCD ,14AM AP =.【分析】(1)取AD 的中点为O ,连接,PO CO ,由面面垂直的性质定理证明⊥PO 平面ABCD ,建立空间直角坐标系求解直线PB 与平面PCD 所成角的正切值即可;(2)假设在PA 上存在点M ,使得()01PM PA λλ=≤≤,由线面平行,转化为平面的法向量与直线的方向向量垂直,求解参数即可.【详解】(1)取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,AC CD ==2CO =,所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系,0,0,1,()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D -,所以()2,0,1PC =- ,()0,1,1PD =--,()1,1,1PB =- ,设平面PCD 的一个法向量为 =s s ,则00PC m PD m ⎧⋅=⎪⎨⋅=⎪⎩,200x z y z -=⎧⎨--=⎩,令1,x =则2,2z y ==-,所以()1,2,2m =-,设直线PB 与平面PCD 所成角为θ,sin cos ,m PB m PB m PB θ⋅====,所以cos 3θ==,所以tan θ所以直线PB 与平面PCD所成角的正切值2.(2)在PA 上存在点M ,使得()01PM PA λλ=≤≤,所以()0,1,1PA =- ,所以()0,,PM PA λλλ==-,所以()0,,1M λλ-,所以()1,1,1BM λλ=---,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ---+-=,解得34λ=,所以存在点M ,使得//BM 平面PCD ,此时14AM AP =.18.(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【分析】(1)通过证明BD ⊥平面PAG 来证得平面PBD ⊥平面PAG .(2)建立空间直角坐标系,利用平面QDN 与平面PMN 所成角的余弦值来列方程,从而求得Q 点的位置.【详解】(1)折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥,由于,M N 分别是边BC ,CD 的中点,所以//MN BD ,所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥⋂=⊂平面PAG ,所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面PBD ⊥平面PAG .(2)存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥,所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥,由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())(),2,0,,0,1,0,P D B N PB --=- ()A,(PA = ,设()01PQ PA λλ=≤≤ ,则(()(),0,3,0,GQ GP PQ GP PA λ=+=+=+-= ,平面PMN 的法向量为()11,0,0n = ,()(),DQ DN ==,设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩ ,故可设()21n λλ=--+ ,设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所成角的余弦值为13,所以1212cos n n n n θ⋅==⋅解得13λ=,所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN 所成角的余弦值为13.19.(1)证明见解析(2)8(3)5【分析】(1)根据条件建立合适的空间直角坐标系,利用空间向量证明线面关系即可;(2)利用空间向量研究线面夹角,结合二次函数的性质计算最大值即可;(3)设BM tBC = ,利用空间向量基本定理及三点共线的充要条件得出AH ,利用向量模长公式及导数研究函数的单调性计算最值即可.【详解】(1)由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥,又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系,则()()()()()2,0,0,,,0,0,1,B C D P G -,所以()()()1,,2,0,1PC BD BP =-=-=- ,由()01BE PF BD PCλλ==<≤,可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=-++ ()42,0,1λλ=--,易知()AG = 是平面PAB 的一个法向量,显然0EF AG ⋅= ,且EF ⊄平面PAB ,即//EF 平面PAB;(2)由上可知()()()1,,DP PF DF λλλλ+==+-=+- ,设平面PBC 的一个法向量为(),,n x y z =r,则200n BP x z n PC x z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1x =,则2,3z y ==,2n ⎛⎫= ⎪ ⎪⎝⎭,设直线DF 与平面PBC 所成角为α,则sin cos ,n DF n DF n DF α⋅==⋅ ,易知35λ=时,()2min 165655λλ-+=,即此时sin α取得最大值8;(3)设()(](),0,0,12,0BM t BC t t AM AB BM t ==-∈⇒=+=- ,由于,,H M P 共线,不妨设()1AH xAM x AP =+- ,易知AM AP ⊥,则有()()22010AH PM AH AM AP x AM x AP ⋅=⋅-=⇒--= ,所以22114451x t t AM ==-++ ,则()()2CH CA AH t x x =+=--- ,即()()2222454454655445t CH t t x t x t t --=-+-++=+-+ 记()(]()2450,1445t f t t t t --=∈-+,则()()()2228255445t t f t t t --+'=-+,易知22550t t -+>恒成立,所以()0f t '<,即()f t 单调递减,所以()()min 9155f t f CH ≥=-⇒==.。

广东省东莞市高二上学期期末数学试卷及答案解析

广东省东莞市高二上学期期末数学试卷及答案解析

第 1 页 共 18 页 2020-2021学年广东省东莞市高二上学期期末数学试卷一.单项选择题(共8小题,每小题5分,共40分)1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,B =45°,C =120°,则边c =( )A .√2B .√3C .2D .√62.糖水溶液(不饱和)的浓度计算公式为c =糖的质量b 克糖水的质量a 克(a >b),向糖水(不饱和)中再加入m 克糖,那么糖水(不饱和)将变得更甜,则反应这一事实的不等关系为( )A .b a >b+m a+mB .b a <b+m a+mC .b a >b+m aD .b a <b+m a 3.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的实轴长是虚轴长的两倍,则它的渐近线方程为( ) A .y =±12x B .y =±√2x C .y =±2x D .y =±√3x4.已知数列{a n }是等差数列,且a 3+a 13=50,a 6=19,则a 2=( )A .3B .4C .7D .8 5.已知a ,b 为实数,则“0<ab <2”是“a <2b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第4天走的路程为( )A .96里B .48里C .24里D .12里 7.已知实数a >0,b >0,且1a +2b =2,则b a 的最大值为( )A .49B .12C .23D .√228.已知双曲线C :x 216−y 29=1的左、右焦点分别为F 1、F 2,P 为双曲线C 上一点,直线l分别与以F 1为圆心、F 1P 为半径的圆和以F 2为圆心、F 2P 为半径的圆相切于点A ,B ,则|AB |=( )A .2√7B .6C .8D .10。

广东省东莞市东莞中学松山湖学校2024-2025学年高二上学期第一次检测数学试卷(含答案)

广东省东莞市东莞中学松山湖学校2024-2025学年高二上学期第一次检测数学试卷(含答案)

秘密★启用前松山湖学校2024-2025学年高二上学期第一次检测数学试题试卷分值:150分 考试时间:120分钟注意事项:1.本卷共4页.2.答卷前,考生务必将自己的姓名、考生号、试室号和座位号填写在答题卡上.3.作答选择题时,选出每小题答案后,用2B 铅笔将答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.5.考生必须保证答题卡的整洁.第Ⅰ卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若构成空间的一个基底,则下列向量不共面的是( )A .,,B .,,C .,,D .,,2.已知直线和互相垂直,则实数( )A .3B .4C .5D .63.设x ,,向量,,,且,,则( )A .B .C .5D .64.已知点,,若过点的直线与线段相交,则该直线斜率的取值范围是( )A .B .C .D .5.如图,在正四棱台中,,与的交点为M .设,{,,}a b c b c + c b c- b a b + a b- a b +a b -ca b +a b c ++c1:(3)210l t x y +--=2:(1)20l x t y +-+=t =y ∈R (,2,2)a x = (2,,2)b y = (3,6,3)c =- a c ⊥ //b ca b +=(2,3)A -(3,2)B --(1,1)AB 3,[4,)4⎛⎤-∞-+∞ ⎥⎝⎦3(,4],4⎡⎫-∞-+∞⎪⎢⎣⎭3,44⎡⎤-⎢⎥⎣⎦34,4⎡⎤-⎢⎥⎣⎦1111ABCD A B C D -1123AB A B =AC BD AB a =,,则下列向量中与相等的向量是( )A .B .C .D .6.过点作斜率为的直线,若光线沿该直线传播经x 轴反射后与圆相切,则( )ABC .2D7.在正方体中,平面经过点B ,D ,平面经过点A ,,当平面,分别截正方体所得截面面积最大时,平面与平面的夹角的余弦值为( )ABC .D .8.已知点A 为直线上一动点,点,且满足,则的最小值为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知圆,,则下列说法正确的是( )A .当时,圆与圆有2条公切线B .当时,是圆与圆的一条公切线C .当时,圆与圆相交11A D b = 1A A c = 1B M232323a b c-++ 1334a b c-++1334a b c--+ 1364a b c-++ (2,3)P -2-222:(3)(2)(0)C x y r r -+-=>r =1111ABCD A B C D -αβ1D αβαβ12133470x y +-=(4,0)B (,)P x y 2220x y x ++-=3||||AP BP +6575135215221:1C x y +=2222:(3)(3)(0)C x y r r -+-=>1r =1C 2C 2r =1y =1C 2C 3r =1C 2CD .当时,圆与圆的公共弦所在直线的方程为10.已知点P 在圆上,点,,当最小时,记直线斜率为,当最大时,记直线斜率为,则( )A .B .C .三角形的面积小于D .过点A 和点B 的中点作圆C 的两条切线,则两切点连线的直线方程为11.如图,在多面体中,平面,四边形是正方形,且,,M ,N 分别是线段,的中点,Q 是线段上的一个动点(含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得B .存在点Q ,使得异面直线与所成的角为C .三棱锥体积的最大值是D .当点Q 自D 向C 处运动时,直线与平面所成的角逐渐增大第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知动直线l 经过点,且向量所在直线与动直线l 垂直,则点到l 所在平面的距离为__________.13.若直线与直线平行,且与,则4r =1C 2C 12y x =-+22:(5)(5)16C x y -+-=(4,0)A (0,2)B PBA ∠PB 1k PBA ∠PB 2k 1279k k =-21k k -=PAB 2310x y +-=ABCDES SA ⊥ABCD ABCD //DE SA 22SA AB DE ===BC SB DC NQ SB⊥NQ SA 60︒Q AMN -23DC QMN (2,3,1)A (1,0,1)n =-(4,3,2)P 1:10l mx y -+=2:620l x y n --=1l 2l m n -=__________.14.圆形是古代人最早从太阳、阴历十五的月亮得到圆的概念的.一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也.意思是说:圆有一个圆心,圆心到圆周的长都相等.现在以点为圆心,2为半径的圆上取任意一点,若的取值与x 、y 无关,则实数a 的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题共13分)已知三个顶点的坐标分别为、、,求:(1)边上的中线所在直线的方程;(2)边上的高所在直线的方程;(3)的平分线所在直线的方程.16.(本小题共15分)记的内角A ,B ,C 的对边分别为a ,b ,c,已知.(1)求B ;(2)若,M 是中点,,求的面积.17.(本小题共15分)已知圆E 经过点,,从下列3个条件选取一个__________①过点;②圆E 恒被直线平分;③与y 轴相切.(1)求圆E 的方程;(2)已知线段的端点Q 的坐标是,端点P 在圆E 上运动,求线段的中点M 的轨迹方程.18.(本小题共17分)如图,在四棱锥中,平面平面,,,,,,(1)求证:平面.(2)求直线与平面所成角的正弦值.(3,2)(,)P x y |34||634|x y a x y +++--ABC △(2,4)A (1,1)B -(9,3)C -BC BC BAC ∠ABC △2222sin sin c Ca cb A=+-b =BC AM =ABC △(0,0)A (1,1)B (2,0)C 0()mx y m m --=∈R PQ (4,3)PQ P ABCD -PAD ⊥ABCD PA PD ⊥AB AD ⊥PA PD =1AB =2AD =AC CD ==PD ⊥PAB PB PCD(3)在棱上是否存在点M ,使得平面?若存在,求出的值;若不存在,请说明理由.19.(本小题共17分)如图,已知满足条件(其中i 为虚数单位)的复数z 在复平面对应的点的轨迹为圆C(圆心为C ),设复平面上的复数(x ,)对应的点为,定直线m 的方程为,过的一条动直线l 与直线m 相交于N 点,与圆C 相交于P 、Q 两点,M 是弦中点.(1)当l 的一般式方程;(2)设,试问t 是否为定值?若为定值,请求出t 的值,若t 不为定值,请说明理由.松山湖学校2024-2025学年高二上学期第一次检测数学试题参考答案题号12345678910答案C CDBDDCDBDABC题号11答案ACD11.ACD 【详解】以A 为坐标原点,,,正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,,,,,,,,;PA //BM PCD AMAP|3i i z --xOy xOy i z x y =+y ∈R (,)x y 360x y ++=(1,0)A -PQ ||PQ =t AM AN =⋅AB AD AS(0,0,0)A (2,0,0)B (2,2,0)C (0,2,0)D (0,2,1)E (0,0,2)S (1,0,1)N (2,1,0)M对于A ,假设存在点,使得,则,又,所以,解得,即点Q 与D 重合时,,A正确;对于B ,假设存在点,使得异面直线与所成的角为,因为,,所以,方程无解;所以不存在点Q ,B 错误;对于C ,连接,,,设,因为,所以当,即点Q 与点D 重合时,取得最大值2;又点N 到平面的距离,所以,C 正确;对于D ,由上分析知:,,若是面的法向量,则,令,则,因为,设直线与平面所成的角为,,所以,当点Q 自D 向C 处运动时,m 的值由0到2变大,此时也逐渐增大,因为在为增函数,所以也逐渐增大,故D 正确.故选:ACD .(,2,0)(02)Q m m ≤≤NQ SB ⊥(1,2,1)NQ m =--(2,0,2)SB =- 2(1)20NQ SB m ⋅=-+=0m =NQ SB ⊥(,2,0)(02)Q m m ≤≤NQ SA 60︒(1,2,1)NQ m =-- (0,0,2)SA =- 1cos ,2NQ SA NQ SA NQ SA ⋅===⋅ AQ AM AN (02)DQ m m =≤≤22AMQ ABCD ABM QCM ADQ mSS S S S =---=-Y △△△△0m =AMQ S △AMQ 112d SA ==()()max max 122133Q AMN N AMQ V V --==⨯⨯=(1,2,1)NQ m =-- (1,1,1)NM =-(,,)m x y z = NMQ (1)20m NQ m x y z m NM x y z ⎧⋅=-+-=⎪⎨⋅=+-=⎪⎩1x =(1,2,3)m m m =--(2,0,0)DC = DC QMN θπ0,2θ⎡⎤∈⎢⎥⎣⎦sin DC n DC n θ⋅===⋅ sin θsin y x =π0,2⎡⎤⎢⎥⎣⎦θ12【详解】,由点到平面的距离公式.13.15或14.]15.(1)(2)(3)16.(1)(2)17.(1)(2)18.【详解】(1)平面平面,且平面平面,且,平面,平面,平面,,又,且,,平面,平面;(2)取中点为O ,连接,,又,,则,,,则,以O 为坐标原点,分别以,,所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,则,,,,则,,,,设为平面的一个法向量,则由,得,(2,0,1)PA =-- PA n d n ⋅====5-(,27-∞-52180x y +-=5220x y --=2x =π3B=S =2220x y x +-=22335304x y x y +--+= PAD ⊥ABCD PAD ABCD AD =AB AD ⊥AB ⊂ABCD AB ∴⊥PAD PD ⊂ PAD AB PD ∴⊥PD PA ⊥PA AB A = PA AB ⊂PAB PD ∴⊥PAB AD CO PO PA PD = PO AD ∴⊥1AO PO ==CD AC == CO AD ∴⊥2CO ===OC OA OPO xyz -(0,0,1)P (1,1,0)B (0,1,0)D -(2,0,0)C (1,1,1)PB =- (0,1,1)PD =-- (2,0,1)PC =- (2,1,0)CD =--(,,)n x y z = PCD 0n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩ 020y z x z --=⎧⎨-=⎩令,则.设与平面的夹角为,则;(3)假设在棱上存在点M 点,使得平面.设,,由(2)知,,,,则,,,由(2)知平面的一个法向量.若平面,则,解得,又平面,故在棱上存在点M 点,使得平面,此时.19.(1)或(2)是,1z =1,1,12n ⎛⎫=-⎪⎝⎭PB PCD θsin cos ,n θ=PA //BM PC D AM AP λ=[0,1]λ∈(0,1,0)A (1,1,0)B (0,0,1)P (0,1,1)AP =- (1,0,0)BA =-(1,0,0)(0,,)(1,,)BM BA AM BA AP λλλλλ=+=+=-+-=--PC D 1,1,12n ⎛⎫=-⎪⎝⎭//BM PC D 112022BM n λλλ⋅=-++=-= 14λ=BM ⊂/PC D PA //BM PC D 14AM AP =10x +=4340x y -+=5t =-。

广东省东莞市2023年高二上学期期末考试数学试题+答案解析(附后)

广东省东莞市2023年高二上学期期末考试数学试题+答案解析(附后)

广东省东莞市2021-2022学年高二上学期期末考试数学试题一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.数列,,1,3,5,的一个通项公式为( )A. B. C. D.2.已知双曲线,则双曲线的渐近线方程为( )A. B. C. D.3.如图,在平行六面体中,( )A. B. C. D.4.已知直线l过点,且其方向向量,则直线l的方程为( )A. B. C. D.5.如图,已知二面角平面角的大小为,其棱l上有A,B两点,AC,BD分别在这个二面角的两个半平面内,且都与AB垂直.已知,,则( )A. 5B. 13C.D.6.过抛物线的焦点F的直线l与抛物线交于P,Q两点,若以线段PQ为直径的圆与直线相切,则( )A. 8B. 7C. 6D. 57.设P,Q分别为直线与上任意一点,则PQ的最小值为( )A. 3B. 4C. 5D. 68.定义焦点相同,且离心率互为倒数的椭圆和双曲线为一对相关曲线.已知,是一对相关曲线的焦点,P 是这对相关曲线在第一象限的交点,则点P与以为直径的圆的位置关系是( )A. 在圆外B. 在圆上C. 在圆内D. 不确定二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求)9.设等差数列的前n项和为,且,,则下列结论正确的是( )A. B. C. D.10.若,则方程可能表示下列哪些曲线( )A. 椭圆B. 双曲线C. 圆D. 两条直线11.已知圆,直线,P为直线l上的动点,过点P作圆M的切线PA,PB,切点为A,B,则下列结论正确的是( )A. 四边形MAPB面积的最小值为4B. 四边形MAPB面积的最大值为8C. 当最大时,D. 当最大时,直线AB的方程为12.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2020年底全县的绿地占全县总面积的从2021年起,市政府决定加大植树造林、开辟绿地的力度,预计每年能将前一年沙漠的变成绿地,同时,前一年绿地的又被侵蚀变成沙漠.则下列说法正确的是( )A. 2021年底,该县的绿地面积占全县总面积的B. 2023年底,该县的绿地面积将超过全县总面积的C. 在这种政策之下,将来的任意一年,全县绿地面积都不能超过D. 在这种政策之下,将来的某一年,绿地面积将达到全覆盖三、填空题(本大题共4小题,共20分)13.在空间直角坐标系中,点关于原点的对称点为点B,则__________.14.在数列中,,,则数列的前6项和为__________.15.曲线围成的图形的面积为__________.16.已知双曲线的左,右焦点分别为,,过右焦点且倾斜角为直线l与该双曲线交于M ,N两点点M位于第一象限,的内切圆半径为,的内切圆半径为,则为__________.四、解答题(本大题共6小题,共70分。

广东省东莞市高二数学上学期期末考试试题 理(B卷,扫描版)

广东省东莞市高二数学上学期期末考试试题 理(B卷,扫描版)

东莞市2014-2015学年度第一学期高二理科数学期末考试试卷(B卷)2014—2015学年度第一学期期末教学质量检查 高二理科数学(B 卷)参考答案及评分标准 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CBACCDABBD二、填空题11. 2- 12. 4 13.31 14.[1,3]- 三、解答题15.解:(1)∵3cos ,(0,)5B B π=∈且, ∴24sin 1cos 5B B =-=,又35ac =,…………………………………3分∴114sin 3514225ABC S ac B ∆==⨯⨯=.……………………………………6分(2)由35ac =,a =7,得c =5,…………………………………………………………………7分 ∴22232cos 4925275325b ac ac B =+-=+-⨯⨯⨯=, ∴42b =,…………………………………………………………………9分∴2222cos 222742a b c C ab +-===⨯⨯……………………………10分 又(0,)C π∈…………………………………………………………………11分 ∴4C π=.……………………………………………………………………12分16. 解:(1)由(4)()0x a x a -⋅-<得4a x a <<.……………………1分 当1a =时,14x <<,即p 为真命题时,实数x 的取值范围是14x <<……3分 由2430x x -+≤得13x ≤≤.所以q 为真时实数x 的取值范围是13x ≤≤.…………………………5分 若p q ∧为真,则13x <≤,所以实数x 的取值范围是(]1,3.……6分 (2) 设{}|4A x a x a =<<,{}|13B x x =≤≤………………………8分q 是p 的充分不必要条件,则B A ≠⊂…………………………………10分所以0131434a a a <<⎧⇒<<⎨>⎩,所以实数a 的取值范围是3,14⎛⎫⎪⎝⎭.………12分17.解:设甲、乙两种蔬菜的种植面积分别为x ,y 亩,农场的总收益为z 万元,则……1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………5分 目标函数为0.30.2z x y =+, ……………6分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………9分当目标函数对应的直线经过点M 时,目标函数z 取最小值. ……………………………………………………10分 解方程组300,3450,x y x y +=⎧⎨+=⎩得M 的坐标 75x =,225y =,……………………………………12分 所以max 0.3750.222567.5z =⨯+⨯=.………………………………13分答:分别种植甲乙两种蔬菜75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………14分18. 解:(1)连接1AD1111D C B A ABCD -Θ为四棱柱,11//D C CD ∴ 11D C CD =又M Θ为AB 的中点,1=∴AM AM CD //∴,AM CD =11//D C AM ∴,11D C AM = 11D AMC ∴为平行四边形 11//MC AD ∴………………4分又111ADD A M C 平面⊄Θ 111ADD A AD 平面⊂111//ADD A AD 平面∴………………6分(2)方法一:11//B A AB Θ 1111//D C B AxyOM500400300200100400300200100共面与面1111D ABC M C D ∴作AB CN ⊥,连接N D 1则NC D 1∠即为所求二面角………………8分 在ABCD 中,ο60,2,1=∠==DAB AB DC 23=∴CN 在CN D Rt 1∆中,31=CD ,23=CN 2151=∴N D 5515321523cos 11====∠∴N D NC CN D ………………14分 方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴)3,23,21(),0,0,1(111-==∴D D C设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n 显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==>=<∴n n 显然二面角为锐角, 所以平面M D C 11和平面ABCD 所成角的余弦值为55………………14分19. 解:(1)当1n =时,211112a S a =+=+=; ……1分当2n ≥时,11()n n S a n N *++=∈11()n n S a n N *-+=∈,两式相减得,12(2)n n a a n +=≥, ……2分 又212a a =,……3分所以{}n a 是首项为1,公比为2的等比数列,……4分所以12n n a -=. ……6分 (2)由(1)知12n n a -=,所以n n 1n+1n n n n b ==4a 422-=⋅,……7分 所以n 234n+1123n T = (2222)++++, n 345n+1n+21123n 1nT = (222222)-+++++,…8分 两式相减得,n 234n+1n+211111n T =...222222++++-2n n+2n+211(1)n 1n +222=122212--=-- 所以n n+2n +2T 12=-(或写成n n n 1T 1(1)22=-+⋅或n n n+11nT 122=--…10分132********(1)(1)022222n n n n n n n n n n n n T T +++++++++++-=---=-=>Q …11分1n n T T +∴>n T ∴是递增的,又134T =314n T ∴≤< …14分 20.解:(1)法一: 由椭圆的定义可知2212332||||(11)()422a MF MF =+=++=2a ∴= ……1分 由1c =得3b =2分故椭圆的方程是22143x y +=; ……3分法二:由已知得,222291411a b a b ⎧⎪⎪+=⎨⎪-=⎪⎩,……1分 得2243a b ⎧=⎨=⎩,……2分故椭圆的方程是22143x y +=; ……3分(2)椭圆的右焦点为2(1,0)F ,分两种情况讨论如下:1°当直线AB 的斜率不存在时,AB:1x =,则 CD:0y =.此时||3AB =,||4CD =,117||||12AB CD +=; ……5分 2°当直线AB 的斜率存在时,设AB : (1)(0)y k x k =-≠,则 CD :1(1)y x k=--. 又设点1122(,),(,)A x y B x y .联立方程组22(1),3412,y k x x y =-⎧⎨+=⎩消去y 并化简得2222(43)84120k x k x k +-+-=, 所以2122843k x x k +=+, 212241243k x x k -⋅=+……7分222121212||()()1|AB x x y y k x x =-+-=+-2212121()4k x x x x =++-4222226416(3)(43)1(43)k k k k k --+=++2212(1)43k k +=+ ……8分 由题知,直线CD 的斜率为1k -,同理可得2212(1)||43k CD k +=+ ……9分xyF 1F 2DC BAO所以2211777||||12(1)12k AB CD k ++==+为定值. ……10分 (3)解:由(II )知117||||12AB CD +=, 所以 912911||||(||||)()16716||||AB CD AB CD AB CD +=++ ……11分 9||1225||16()716||||CD AB AB CD =++9||1225||2116(2)716||||4CD AB AB CD ≥+⨯=, ……12分 当且仅当9||||16||||CD AB AB CD =,即3||||4AB CD =,即||3,||4AB CD ==时取等号 …13分 所以9||||16AB CD +的最小值为214. ……14分。

2022-2023学年广东省东莞市高二上学期期末数学质量检测试题(含解析)

2022-2023学年广东省东莞市高二上学期期末数学质量检测试题(含解析)

2022-2023学年广东省东莞市高二上册期末数学质量检测试题一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.1.已知空间直角坐标系Oxyz 中,点()1,3,2P 关于坐标原点的对称点为1P ,则1PP =()A.B. C.14D.56【正确答案】B【分析】根据空间直角坐标系中关于原点对称的点的坐标特征可求得1P ,结合空间中两点间距离公式可求得结果.【详解】 点()1,3,2P 关于坐标原点的对称点为()11,3,2P ---,1PP ∴==.故选:B.2.已知过()()1,,,4A a B a --两点的直线与直线2y x =平行,则=a ()A.7- B.3- C.2- D.2【正确答案】D 【分析】由题知421AB a k a+==+,再解方程即可得答案.【详解】解:因为过()()1,,,4A a B a --两点的直线与直线2y x =平行,所以直线AB 的斜率为421AB a k a+==+,解得2a =,故选:D3.已知等差数列{}n a ,其前n 项和是n S ,若525S =,则24a a +=()A.8B.9C.10D.11【正确答案】C【分析】由已知可得1510a a +=,根据等差数列的性质即可得出结果.【详解】由已知可得,()1555252a a S +==,所以1510a a +=.又1524a a a a +=+,所以2410a a +=.故选:C.4.已知抛物线24x y =的焦点为F ,点P 在抛物线上,若2PF =,则点P 的坐标为()A.()2,1 B.()2,1或()2,1-C.()2,1- D.()2,1-或()2,1--【正确答案】B【分析】由题知()0,1F ,2p =,设()00,P x y ,进而根据焦半径公式得01y =,再代入24x y =求解即可得答案【详解】解:由题知()0,1F ,2p =,设()00,P x y ,因为点P 在抛物线上,所以由焦半径公式得00122pPF y y =+=+=,解得01y =所以20044x y ==,解得02x =±,所以,点P 的坐标为()2,1或()2,1-故选:B5.古希腊数学家阿波罗尼斯在著作《圆锥曲线论》中记载了用平面切割圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面直径均为6,母线长均为5,过圆锥轴的平面α与两个圆锥侧面的交线为,AC BD ,用平行于α的平面截圆锥,该平面与两个圆锥侧面的交线为双曲线Γ的一部分,且双曲线Γ的两条渐近线分别平行于,AC BD ,则双曲线Γ的离心率为()A.54B.32C.53D.65【正确答案】A【分析】以矩形ABCD 的中心为原点,圆锥的轴为x 轴建立平面直角坐标系,由题得34b a =,从而可得到本题答案.【详解】以矩形ABCD 的中心为原点,圆锥的轴为x 轴建立平面直角坐标系,设双曲线的标准方程为22221x y a b-=,由题,得5,3OA AM ==,则34,tan 4OM AOM ==∠=,即34b a =,..由34b a =,得离心率54c e a ===.故选:A .6.已知圆22:(2)(2)8C x y -+-=,点P 为直线:40l x y ++=上一个动点,过点P 作圆C 的切线,切点为A ,则切线长PA 的最小值为()A. B.C. D.【正确答案】B【分析】由已知写出圆心坐标、半径,由228PA PC =-知,PC 最小时,PA 最小,即CP l ⊥时,有最小值.求出圆心到直线的距离即为PC 的最小值,进而求出结果.【详解】由已知可得,()2,2C ,半径r =AC r ==又AC AP ⊥,则在PAC △中有222PA AC PC +=,即22228PA PC AC PC =-=-.所以,当PC 最小时,PA 最小.因为,当CP l ⊥时,PC 最小,此时PC ==224PA =,所以PA 最小为.故选:B.7.如图,在棱长为6的正四面体ABCD 中,点M 在线段AB 上,且满足2AM MB =,点N 在线段CD 上,且满足2CN ND =,则MN = ()A.5B.21C.6D.32【正确答案】A【分析】根据空间向量线性运算的性质,结合空间向量数量积的运算性质进行求解即可.【详解】因为2AM MB = ,2CN ND =,所以1222()3333MN MB BC CN AB AC AB CD AC AB AD AC =++=+-+=-+-,即122333MN AC AB AD =-+ ,2222122144448333999999MN AC AB AD AC AB AD AC AB AC AD AB AD⎛⎫=-+=++-⋅+⋅-⋅ ⎪⎝⎭因为ABCD 是棱长为6的正四面体,所以222144414181666666666=25999929292MN =⨯+⨯+⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯ ,故选:A8.已知n a n 的最大正整数,其中*n ∈N .若22n n b a +=,则12320b b b b ++++= ()A.200 B.210 C.400 D.420【正确答案】B【分析】根据222221n n n n <+<++得22n n n b a +==,进而得数列{}n b 为等差数列,再根据等差数列的求和公式求解即可.【详解】解:因为n a n 的最大正整数,其中*n ∈N .若22n n b a +=,因为222221n n n n <+<++对任意的*n ∈N 恒成立,所以221n n n <+<+对任意的*n ∈N 恒成立,所以22n n n b a +==,所以111n n b b n n +-=+-=,即数列{}n b 为等差数列,公差、首项均为1,所以,()()12012320201202021022b b b b b b ++⨯++++=== .故选:B二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题卡中的相应位置涂黑.9.如图,在正方体1111ABCD A B C D -中,,E F 分别是1,AABC 的中点,,G H 分别在线段111,CC A D 上,且满足12CG GC = ,112A H HD = ,设1AA a = ,AB b = ,AD c = ,则下列结论正确的是()A.1122EF a b c=-++ B.1136GH a b c=-- C.13FH a b c=-+ D.16EG a b c=++ 【正确答案】AD【分析】根据正方体的性质以及已知,用基向量表示出各个选项中的向量,即可得出正确选项.【详解】由已知可得,112233CG CC AA == ,1111133GC CC AA == ,1112233A H A D AD ==,1111133HD A D AD == .对于A ,111112222EF EA AB BF AA AB AD a b c =++=-++=-++,故A 项正确;对于B ,1111111113333GH GC C D D H AA AB AD a b c =++=--=--,故B 错误;对于C ,111121236FH FB BA AA A H AD AB AA AD a b c =+++=--++=-+,故C 项错误;对于D ,11121236EG EA AB BC CG AA AB AD AA a b c =+++=-+++=++,故D 项正确.故选:AD.10.已知{}n a 是公差为d 的等差数列,其前n 项和是n S ,若20212022202220232024,S S S S S <>=,则下列结论正确的是()A.0d > B.20240a <C.40450S = D.20162030S S <【正确答案】BC【分析】由题知02022022232400,0,a a a >=<,再根据等差数列的性质,前n 项和公式依次讨论各选项即可得答案.【详解】解:因为20212022202220232024,S S S S S <>=所以20222021202320222023202420222302202400,0,S S S S a S a S a -=>-==-=<,所以202420230d a a =-<,故A 错误;B 正确;()14045404520234045404502a a S a +===,故C 正确;因为203020162017201820292030S S a a a a =++++- ()()()201720302018202920232024a a a a a a =++++++ ()202320242024770a a a =+=<,所以20302016S S <,故D 错误.故选:BC11.如图,由半圆和半椭圆组成的“曲圆”,半圆的圆心是坐标原点,直径与椭圆的短轴重合,半圆所在的圆过椭圆的焦点()0,1F ,且与y 轴非正半轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则下列结论正确的是()A.AB 的长度的最大值是1B.AFG 的周长为2+C.ABF △的面积的最小值是1D.90AGB ∠≥【正确答案】ABD【分析】根据给定的条件,求出椭圆的短半轴长,半焦距;求出OA 长度范围;利用椭圆的定义求出焦点三角形周长等即可分别判断求解.【详解】由题意可知:半圆所在椭圆的半焦距1c =,短半轴长1b =,得出长半轴长a =2a =对于A,由椭圆性质可知1OA ≤≤1OB =,因此[2,1AB OA OB =+∈+,AB的长度的最大值是1故A 正确;对于B ,由椭圆定义知,因点,F G 是椭圆的两个焦点,则AFG的周长为:222FG AF AG a ++=+=+,所以AFG的周长2+,故B 正确;对于C ,设AB 所在直线方程为y kx =,联立2212y kxy x =⎧⎪⎨+=⎪⎩可得A x =,联立221y kx x y =⎧⎨+=⎩可得B x =,则111||||||||222ABF AOF OBFA B S S S OF x OF x =+=+= ,显然当20k ≥时,函数y =所以当0k =时,ABF S △有最大值1,故C 错误.对于D ,当AB 所在直线方程0k =时,AB 为圆的直径,则90AGB ∠= ;当AB 所在直线方程0k ≠时,如图,连接,,AG BG OG ,在AGB 中,因为OB OG =,所以OBG OGB ∠=∠,因为OA OG >,所以OGA OAG ∠>∠,所以OGB OGA OAG OBG ∠+∠>∠+∠所以BGA OAG OBG∠>∠+∠即得180BGA OAG OBG BGA ∠>∠+∠=-∠ ,所以90BGA ∠> 综上,90BGA ∠≥ ,故D 正确;故选:ABD12.已知O 为坐标原点,过抛物线2:4C y x =焦点F 的直线与C 交于,A B 两点,其中点A 在第一象限,点()3,0M .若AF AM =,则()A.直线AB的斜率为B.52AB =C.AFM BFO~ D.四边形OAMB的面积为【正确答案】AC【分析】求得直线AB 的斜率判断选项A ;求得线段AB 的长度判断选项B ;利用相似三角形判定定理判断选项C ;求得四边形OAMB 的面积判断选项D.【详解】抛物线2:4C y x =焦点(1,0)F ,()3,0M ,AF AM =,则点A 在线段FM 的垂直平分线上,则点A 横坐标为2,又A 在第一象限,代入抛物线方程可得点A纵坐标为(2,A ,则直线AB的斜率22021AB AF k k -===-则选项A 判断正确;直线AB的方程为1)y x =-,与抛物线方程联立21)4y x y x ⎧=-⎪⎨=⎪⎩,解之得2x y =⎧⎪⎨=⎪⎩或12x y ⎧=⎪⎨⎪=⎩即(2,A,1,2B ⎛⎝,则92AB ==.则选项B判断错误;023OB AM k k =-==--,则//AM OB ,则AFM BFO ~ .则选项C 判断正确;四边形OAMB的面积等于113322OAM OBM S S +=⨯⨯+⨯=△△.则选项D 判断错误.故选:AC数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

2023-2024学年广东省广州市高二上学期期末数学试题(含解析)

2023-2024学年广东省广州市高二上学期期末数学试题(含解析)

2023-2024学年广东省广州市高二上册期末数学试题一、单选题1.已知()A 3,5,()1,7B ,则直线AB 的倾斜角大小是()A .45︒B .60︒C .120︒D .135︒【正确答案】D【分析】设出直线的倾斜角,利用倾斜角与斜率的关系求出tan 1α=-,进而求出倾斜角.【详解】设直线AB 的倾斜角为α,则75tan 113α-==--,因为[)0,πα∈,所以135α=︒.故选:D2.抛物线24y x =上一点P 到焦点的距离为3,则点P 的横坐标为()A .1B .2C .3D .4【正确答案】B【分析】根据抛物线的定义解题即可.【详解】设()00,P x y ,因为24y x =,所以2p =,所以0232x +=,解得02x =故选:B .3.过点()1,2P 引直线,使()2,3A ,()4,5B -两点到直线的距离相等,则这条直线的方程是()A .3270x y +-=B .250x y +-=C .3270x y +-=或460x y +-=D .3270x y +-=或250x y +-=【正确答案】C【分析】设所求的直线为l ,则直线l 平行于AB 或直线l 过线段AB 的中点,分情况讨论即可求解.【详解】设所求的直线为l ,则直线l 平行于AB 或直线l 过线段AB 的中点,因为()2,3A ,()4,5B -,所以53442AB k --==--,所以过点()1,2P 且与AB 平行的直线为:()241y x -=--即460x y +-=,因为()2,3A ,()4,5B -,所以线段AB 的中点为()3,1-,所以过点()1,2P 与线段AB 的中点为()3,1-的直线的方程为:()122131y x ---=⨯--,即3270x y +-=,所以这条直线的方程是:3270x y +-=或460x y +-=,故选.C4.设{}n a 是等差数列,若723,13a a ==,则数列{}n a 前8项的和为A .128B .80C .64D .56【正确答案】C【分析】由等差数列的求和公式以及角标之和的性质求解即可.【详解】()()87128886422a a a a S ⨯+⨯+===故选:C本题主要考查了等差数列的求和公式以及角标之和的性质,属于基础题.5.在直三棱柱111ABC A B C -中,1190,,BCA D F ∠=︒分别是1111,A B AC 的中点,1BC CA CC ==,则1BD 与1AF 所成角的正弦值是()A.10B .12C.10D.15【正确答案】C【分析】建立空间直角坐标系,利用向量法求得11BD AF 与所成角的余弦值,从而求得所求.【详解】根据题意易知1,,AC BC CC 两两相互垂直,由此建立如图所示空间直角坐标系,不妨设12BC AC CC ===,则()()()()112,0,0,1,0,2,0,2,0,1,1,2,A F B D 故()11,1,2BD =- ,()11,0,2AF =-,设11BD AF 与所成角为α,090α︒≤≤︒,则11cos AF BD AF BD α⋅==⋅所以sin 10α=,即1BD 与1AF所成角的正弦值是10故选:C.6.已知直线l :310mx y m --+=恒过点P ,过点P 作直线与圆C :22(1)(2)25x y -+-=相交于A ,B 两点,则AB 的最小值为()A .45B .2C .4D .25【正确答案】A【分析】写出直线的定点坐标并判断与圆的位置关系,进而确定AB 最小时直线与直线CP 的位置关系,即可得结果.【详解】由(3)10m x y --+=恒过(3,1)P ,又22(31)(12)525-+-=<,即P 在圆C 内,要使AB 最小,只需圆心(1,2)C 与P 的连线与该直线垂直,所得弦长最短,由||5CP =5,所以22555AB =-故选:A7.已知等差数列{}n a 的公差0d ≠,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是()A .3B .12C .2D .4【正确答案】A【分析】根据等差数列的通项得出第1、5、17项,根据等比中项得出12a d =,即可根据等比数列公比求法得出答案.【详解】数列{}n a 是公差为0d ≠的等差数列,则()11n a a n d +-=,则514a a d =+,17116a a d =+,第1、5、17项顺次成等比数列,则()()2111416a d a a d +=+,解得12a d =,则这个等比数列的公比511111433a a d a q a a a +====,故选:A.8.已知()4,0A ,()0,4B ,从点()2,0P 射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A.B .6C.D.【正确答案】C【分析】求出P 关于直线AB 的对称点Q 和它关于y 轴的对称点T ,则QT 的长就是所求路程.【详解】由题意直线AB 方程为4x y +=,设P 关于直线AB 的对称点(,)Q a b ,则122422ba ab ⎧=⎪⎪-⎨+⎪+=⎪⎩,解得42a b =⎧⎨=⎩,即(4,2)Q ,又P 关于y 轴的对称点为(2,0)T -,QT ==故选:C二、多选题9.已知直线1l 的方程为()258x m y ++=,直线2l 的方程为()345m x y ++=,若12//l l ,则m =()A .1-B .7-C .1D .3-【正确答案】AB【分析】根据两直线平行可得12211221A B A B AC A C =⎧⎨≠⎩,解之即可【详解】因为()1258l x m y ++=:即()2580x m y ++-=,()2345m x l y ++=:即()3450m x y ++-=,且12//l l ,所以()()()()53242583m m m ⎧++=⨯⎪⎨⨯-≠-+⎪⎩,解得1m =-或7-.故选:AB10.已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是()A.直线10x -=与C 有两个公共点B .CC .C 的方程为2213x y -=D .曲线2e 1x y -=-经过C 的一个焦点【正确答案】CD【分析】根据渐近线方程设出双曲线方程,将点(代入即可得双曲线方程,因为直线10x -=与渐近线平行,所以与双曲线只有一个交点,所以A 错误;根据双曲线方程可求出,,a b c ,进而判断选项B,C 的正误;写出焦点坐标,代入2e 1x y -=-中,即可判断选项D 正误.【详解】解:因为双曲线C渐近线方程为y =,不妨设双曲线方程为:223x y λ-=,将点(代入,可得3λ=,所以双曲线方程为:2213x y -=,故选项C 正确;因为直线10x -=与渐近线平行,所以与双曲线只有一个交点,故选项A 错误;因为双曲线方程为:2213x y -=,所以1,2a b c ===,所以离心率为c a =故选项B 错误;因为双曲线的焦点坐标为()()2,0,2,0-,将()2,0代入2e 1x y -=-知,该焦点在曲线上,将()2,0-代入2e 1x y -=-知,该焦点不在曲线上,所以选项D 正确.故选:CD11.已知椭圆C 的中心为坐标原点,焦点1F 、2F 在x 轴上,短轴长等于2,焦距为过焦点1F 作x 轴的垂线交椭圆C 于P 、Q 两点,则下列说法正确的是()A .椭圆C 的方程为2214x y +=B .椭圆C C .12PQ =D .272PF =【正确答案】AD【分析】求出a 、b 、c 的值,可判断AB 选项的正误;设点1F 为椭圆C 的左焦点,将x =入椭圆方程,可求得PQ 的长,可判断C 选项的正误;利用椭圆的定义可判断D 选项的正误.【详解】对于椭圆C ,由已知可得222bc =⎧⎪⎨=⎪⎩1b =,c =2a ==.对于A 选项,因为椭圆C 的焦点在x 轴上,故椭圆C 的方程为2214xy +=,A 对;对于B 选项,椭圆C 的离心率为2c e a ==,B 错;对于C 选项,设点1F 为椭圆C 的左焦点,易知点()1F ,将x =12y =±,故1PQ =,C 错;对于D 选项,11122PF PQ ==,故21722PF a PF =-=,D 对.故选:AD.12.在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且二面角C AB E --的正切值为2,则()A .异面直线AE 与BC 所成角的余弦值为5B .在棱AB 上不存在一点F ,使得1//C F 平面BDE C .1B 到平面ABE 的距离是C 到平面ABE 倍D .直线BE 与平面11BDD B 所成角的大小等于二面角C AB E --的大小【正确答案】CD【分析】建立空间直角坐标系,根据二面角C AB E --的正切值求出点E 的位置,利用空间向量与线面之间的关系可列式得出A 、B 、D 选项;利用等体积法即可求出1B 到平面ABE 的距离和C 到平面ABE 的距离,即可判断出选项 C.【详解】如图建立直角坐标系,设正方体边长为2因为二面角C AB E --2,所以二面角C AB E --设平面ABC 的法向量为()10,0,1n = ,设平面ABE 的法向量为()2,,n x y z =u u r()2,0,0A ,()2,2,0B ,()0,2,E λ,()0,2,0AB =,()2,0,BE λ=- 222020AB n y BE n x z λ⎧⋅==⎪⎨⋅=-+=⎪⎩,设1x =,解得221,0,n λ⎛⎫= ⎪⎝⎭ ()1212122cos ,3n n n n n n ⋅==⋅,解得λ=AE =,2AD =,DE222cos 25AD AE DE DAE AD AE +-∠==⋅⋅,A 错误;()2,2,0B,(0,E ,()0,0,0D ,()2,2,0DB =,(0,DE = 设平面BDE 法向量为()3,,n x y z =3322020DB n x y DE n y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,设1x =,解得(31,n =- ()10,2,2C ,()2,,0F y ,()12,2,2C F y =--若1//C F 平面BDE,则31220n C F y ⋅=-+-=,解得42y =-<故在棱AB上存在一点F,使得1//C F平面BDE,B错误;设1B到平面ABE的距离为1h,C到平面ABE的距离为2h,其中ABES=111112233B ABE E ABBV V h--==⨯=⨯⨯,解得13h=211233C ABE E ABCV V h--==⨯=⨯,解得23h=,12h=,C正确;(BE=-,平面11BDD B的法向量为()2,2,0AC=-()cos,3BE ACBE ACBE AC⋅==⋅,直线BE与平面11BDD B,D正确.故选:CD三、填空题13.过点()1,0,且斜率为2的直线方程是______.【正确答案】220x y--=【分析】由题意写出直线的点斜式方程,再化为一般式方程.【详解】过点()1,0,且斜率为2的直线方程是()021y x-=-,化为一般式方程为220x y--=.故答案为220x y--=.本题考查了直线方程的应用问题,是基础题.14.椭圆221259x y+=的左焦点为1F,M为椭圆上的一点,N是1MF的中点,O为原点,若3ON=,则1MF=______.【正确答案】4【分析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆221259x y+=的左焦点为1F,如图,设右焦点为2F,则5a=,由N是1MF的中点,O为12F F得中点,3ON=,故2||2||6MF ON==,又12||||210MF MF a+==,所以1||4MF =,故415.设椭圆22*221(N 211)x y n n n +=∈++的焦距为n a ,则数列{}n a 的前n 项和为__________.【正确答案】2n n+【分析】根据椭圆的标准方程求出焦距为n a ,再利用等差数列的前n 项和公式即可求解.【详解】因为2n a n ==,所以数列{}n a 为等差数列,首项12a =,所以数列{}n a 的前n 项和为2(22)2n nn n +=+.故2n n+本题考查了椭圆的简单几何性质、等差数列的前n 项和公式,需熟记公式,属于基础题.16.已知等比数列{}n a 的首项为1,且()64312a a a a +=+,则1237a a a a = __________.【正确答案】128【分析】先由等比数列的通项公式得到364312a a q a a +==+,进而得到3412a a q =⋅=,再根据等比数列的性质得到结果.【详解】设等比数列{}n a 的公比为q ,因为()64312a a a a +=+,根据等比数列的通项公式的计算得到:364312a a q a a +==+,所以3412a a q =⋅=.由等比数列的性质得到.77123742128a a a a a === 故答案为128.这个题目考查了等比数列的通项公式的写法,以及等比数列的性质的应用,题目比较基础.对于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或者公差,其二是观察各项间的脚码关系,即利用数列的基本性质.四、解答题17.记n S 为等差数列{}n a 的前n 项和.已知14a =,公差0d >,4a 是2a 与8a 的等比中项.(1)求数列{}n a 的通项公式;(2)求数列1n S ⎧⎫⎨⎬⎩⎭前n 项和为n T .【正确答案】(1)()*4n a n n N =∈;(2)2(1)n n T n =+【分析】(1)由等比数列的性质结合已知条件列出等式即可求得d ,代入等差数列的通项公式即可得解;(2)求出等差数列{}n a 的前n 项和,再由裂项相消法求数列1n S ⎧⎫⎨⎬⎩⎭前n 项和为n T .【详解】(1)因为4a 是2a 与8a 的等比中项,所以2428a a a =,即()()()221113740a d a d a d d d +=++⇒-=,解得4d =或0d =,又0d >,所以4d =,数列{}n a 的通项公式为()*1(1)4n a a n d n n N =+-=∈;(2)()1n 2n n a a S 2n 2n 2+==+ ,2n 111112n 2n 2n n 1S ⎛⎫∴== ⎪++⎝⎭则n 12n111T S S S =++⋯+111111111122231212(1)n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋯+-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.本题考查等差数列通项公式及前n 项和公式,裂项相消法求和,属于基础题.18.已知圆C 过点()4,0A ,()8,6B ,且圆心C 在直线l :30x y --=上.(1)求圆C 的方程;(2)若从点()4,1M -发出的光线经过x 轴反射,反射光线1l 刚好经过圆心C ,求反射光线1l 的方程.【正确答案】(1)()()226313x y -+-=;(2)2530x y -+=【分析】(1)根据题意设圆心(,3)C a a -,利用两点坐标公式求距离公式表示出CA CB =,解出a ,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得()14,1M --,利用直线的两点式方程即可得出结果.【详解】(1)圆C 过点()4,0A ,()8,6B ,因为圆心C 在直线:l :30x y --=上,设圆心(,3)C a a -,又圆C 过点()4,0A ,()8,6B ,所以CA CB =解得6a =,所以()6,3C ,所以r CA ==故圆C 的方程为C :()()226313x y -+-=;(2)点()4,1M -关于x 轴的对称点()14,1M --,则反射光线1l 必经过点1M 和点C ,由直线的两点式方程可得113446y x +--=+--,即1l .2530x y -+=19.四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成角的大小.【正确答案】(1)证明见解析(2)45︒【分析】(1)建立空间直角坐标系,结合向量法证得平面AEC ⊥平面PDB .(2)结合向量法求得直线AE 与平面PDB 所成角的余弦值,进而求得所成角的大小.【详解】(1)建立如图所示空间直角坐标系,设,AB a PD h ==,()()()(),0,0,,,0,0,,0,0,0,A a B a a C a P h ,(),,0AC a a =- ,所以220,0AC DP AC DB a a ⋅=⋅=-+= ,所以,AC DP AC DB ⊥⊥,由于DP DB D ⋂=,所以AC ⊥平面PDB ,由于AC ⊂平面AEC ,所以平面AEC ⊥平面PDB .(2)当PD =且E 为PB中点时,()11,,,222P E a a a ⎛⎫ ⎪ ⎪⎝⎭,设AC BD O = ,则11,,022O a a ⎛⎫ ⎪⎝⎭,连接EO ,则//EO DP ,EO ⊥平面ABCD ,EO AO ⊥.由(1)知AC ⊥平面PDB ,所以AEO ∠是AE 与平面PDB所成角,11,,,0,0,2222EA a a a EO a ⎛⎫⎛⎫=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos EO AEO EA ∠= 由于[]0,90AEO ∠∈︒︒,所以45AEO ∠=︒.20.已知等差数列n {a }的前n 项和为n S ,公差为0d >,且231440,13a a a a =+=,公比为(01)q q <<等比数列n {b }中,12311111,,,,,,60322082b b b ⎧⎫∈⎨⎬⎩⎭(1)求数列n {a },n {b }的通项公式,n n a b ;(2)若数列n {c }满足n n n c a b =+,求数列n {c }的前n 项和n T .【正确答案】(1)3 1.n a n =-2112n n b -⎛⎫= ⎪⎝⎭;(2)()31211234n n n +⎛⎫+- ⎪⎝⎭【分析】(1)根据等差数列与等比数列的通项公式即可求解.(2)利用等差数列前n 项和公式与等比数列的前n 项和公式以及分组求和法即可求解.【详解】(1)由题意可得:等差数列n {a },1111()(2)40,2,2313.3a d a d a a d d ++==⎧⎧⇒⎨⎨+==⎩⎩3 1.n a n =-因为等比数列n {b }中,12311111,,,,,,60322082b b b ⎧⎫∈⎨⎬⎩⎭,(01)q q <<,所以123111,,.2832b b b ===12111,1112•1242.4n n n b b q --⎧=⎪⎪⎛⎫⎛⎫⇒==⎨ ⎪ ⎝⎭⎝⎭⎪=⎪⎩.(2)n n n c a b =+=31n -2112n -⎛⎫+ ⎪⎝⎭.()111242311214nn n n T ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦∴=+-()31211234n n n +⎛⎫=+- ⎪⎝⎭本题主要考查等差等比数列的通项公式、求和公式以及分组求和,需熟记公式,考查学生的计算能力,属于基础题.21.如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A-MA 1-N 的正弦值.【正确答案】(1)见解析;(2【分析】(1)利用三角形中位线和11//AD 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)以菱形ABCD 对角线交点为原点可建立空间直角坐标系,通过取AB 中点F ,可证得DF ⊥平面1AMA ,得到平面1AMA 的法向量DF ;再通过向量法求得平面1MA N 的法向量n ,利用向量夹角公式求得两个法向量夹角的余弦值,进而可求得所求二面角的正弦值.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点M E ∴为1B BC ∆的中位线1//M E BC ∴且112ME B C =又N 为1A D 中点,且11//AD BC 1//ND BC ∴且112ND B C =//M E ∴∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)设AC BD O = ,11111A CB D O ⋂=由直四棱柱性质可知:1OO ⊥平面ABCD四边形ABCD 为菱形AC BD∴⊥则以O 为原点,可建立如下图所示的空间直角坐标系:则:)3,0,0A ,()0,1,2M ,)13,0,4A ,D (0,-1,0)31,,222N ⎫-⎪⎪⎝⎭取AB 中点F ,连接DF ,则31,022F ⎛⎫ ⎪ ⎪⎝⎭四边形ABCD 为菱形且60BAD ∠= BAD ∴∆为等边三角形DF AB∴⊥又1AA ⊥平面ABCD ,DF ⊂平面ABCD1D F A A ∴⊥DF ⊥∴平面11ABB A ,即DF ⊥平面1AMA DF ∴ 为平面1AMA 的一个法向量,且33,,022DF ⎫=⎪⎪⎝⎭设平面1MA N 的法向量(),,n x y z =r ,又)13,1,2MA =- ,33,,022MN ⎫=-⎪⎪⎝⎭132033022n MA y z n MN x y ⎧⋅-+=⎪∴⎨⋅=-=⎪⎩ ,令3x =1y =,1z =-)3,1,1n ∴=- 15cos ,515DF n DF n DF n ⋅∴<>===⋅ 10sin ,5DF n ∴<>= ∴二面角1A M A N --的正弦值为:105本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.22.设抛物线2:4C y x =,直线:20l x my --=与C 交于A ,B 两点.()1若||AB =l 的方程;()2点M 为AB 的中点,过点M 作直线MN 与y 轴垂直,垂足为N .求证:以MN 为直径的圆必经过一定点,并求出该定点坐标.【正确答案】(1)20x y --=或20x y +-=,(2)见证明【分析】(1)联立直线与抛物线消去x 得到关于y 的一元二次方程,利用弦长公式AB ==.(2)设M 的坐标为(),OH OH x y ,由于MN 为直径的圆经过点()00,P x y ,可利用·0PM PN = 找出一关系式,从而求出定点.【详解】()1由224x my y x=+⎧⎨=⎩,消去x 并整理可得2480y my --=,显然216320m =+> ,设()()1122,,,A x y B x y ,124y y m ∴+=,128y y =-AB ∴===21m ∴=,即1m =±,直线方程为20x y --=或20x y +-=,()2证明:设AB 的中点M 的坐标为(),OH OH x y ,则()12122OH y y y m =+=,2=222OH OH x my m ∴+=+,()222,2M m m ∴+,由题意可得()0,2N m ,设MN 为直径的圆经过点()00,P x y ,()20022,2PM m x m y ∴=+-- ,()00,2PN x m y =-- ,由题意可得·0PM PN = ,即()2220000042420x m y m x y x --++-=,由题意可得002200042040,20x y x y x -=⎧⎪=⎨⎪+-=⎩解得002,0x y ==,定点()2,0即为所求本题主要考查直线与抛物线的位置关系,圆的相关性质,定点问题,意在考查学生的转化能力,计算能力,难度较大.。

2017-2018学年广东省东莞市高二第一学期期末考试数学(理)试题(解析版)

2017-2018学年广东省东莞市高二第一学期期末考试数学(理)试题(解析版)

2017-2018学年广东省东莞市高二第一学期期末考试数学(理)试题一、单选题1.命题“,“的否定是A.,B.,C.,D.,【答案】D【解析】根据特称命题的否定方法,根据已知中的原命题,写出其否定形式,可得答案.【详解】解:命题“,“的否定是为,,故选:D.【点睛】本题考查的知识点是全称命题,命题的否定,熟练掌握全称命题和特称命题的否定方法是解答的关键.2.在中,若,,,则A.2 B.3 C.4 D.5【答案】A【解析】由已知,利用余弦定理可得关于BC的方程,解方程可得BC的值.【详解】解:,,,由余弦定理可得:,可得:,可得:,解得:或舍去.故选:A.【点睛】本题主要考查了余弦定理在解三角形中的应用,属于基础题.3.下列结论成立的是A.若,则B.若,则C.若,,则D.若,,则【答案】D【解析】对赋值来排除。

【详解】当,时,A结论不成立。

当时,B结论不成立。

当时,C结论不成立。

故选:D【点睛】本题主要利用赋值法来排除,也可以利用不等式的性质来判断。

4.等差数列中,,,则的值为A.10 B.9 C.8 D.7【答案】B【解析】等差数列中,故答案选5.若椭圆的离心率为,则双曲线的渐近线方程为A.B.C . D.【答案】C【解析】,不妨设,则,对应双曲线的渐近线方程为:,选C6.如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为( )A .2B .1C .2-D .3- 【答案】B【解析】解:当直线2x y t -=过点(0,-1)时,t 最大,故选B 7.若正实数a ,b 满足,则下列说法正确的是A .ab 有最小值B .有最小值C .有最小值4D .有最小值【答案】C【解析】根据a ,b 都是正数,以及即可得出,从而判断选项A 错误,根据基本不等式即可排除选项B ,D ,从而只能选C . 【详解】 解:,,且;;;有最大值,选项A 错误;,,即有最大值,B项错误.,有最小值4,C正确;,的最小值是,不是,D错误.故选:C.【点睛】考查基本不等式的应用,以及不等式的性质.8.等比数列的前n项和为,已知,且与的等差中项为,则A.29 B.31 C.33 D.36【答案】B【解析】设等比数列的公比为q,运用等差数列中项性质和等比数列的通项公式,可得首项和公比的方程,解方程可得首项和公比,再由等比数列的求和公式,计算可得所求值.【详解】解:等比数列的公比设为q,前n项和为,,且与的等差中项为,可得,,解得,,则.故选:B.【点睛】本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.9.已知三棱锥,点M ,N 分别为边AB ,OC 的中点,P 是MN 上的点,满足,设,,,则等于A .B .C .D .【答案】D【解析】根据所给的图形,在图形中看出要求的向量如何得到,再利用向量的加减法法则,得到结果. 【详解】解:,,故选:D .【点睛】本题考查空间向量的加减法,本题解题的关键是在已知图形中应用已知棱去表示要求的结果,本题是一个基础题. 10.如图在一个的二面角的棱上有两个点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,且,,则CD 的长为A .2B .C .D .1【答案】A【解析】∵= + + ,∴=+ ++2⋅+2⋅+2⋅,∵⊥,⊥,∴⋅=0,⋅=0,⋅=||||cos120∘=−×1×2=−1.∴=1+1+4−2×1=4,∴||=2,故选:A.11.如图所示,为了测量A,B两处岛屿间的距离,小明在D处观测,A,B分别在D 处的北偏西、北偏东方向,再往正东方向行驶20海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为A.海里B.海里C.海里D.20海里【答案】B【解析】分别在和中利用正弦定理计算AD,BD,再在中利用余弦定理计算AB的值.【详解】解:连接AB,如图所示;由题意可知,,,,,,,在中,由正弦定理得,,在中,,,;在中,由余弦定理得海里.故选:B.【点睛】本题考查了解三角形的应用问题,合理选择三角形,利用正余弦定理计算是解题的关键,是中档题.12.已知双曲线E:上的四点A,B,C,D满足,若直线AD的斜率与直线AB的斜率之积为2,则双曲线C的离心率为A.B.C.D.【答案】A【解析】很明显,A,B,C,D四点组成平行四边形ABDC,如图所示,设,则:,点A在双曲线上,则:,据此可得:,结合可得双曲线的离心率为.本题选择A选项.点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解.二、填空题13.已知向量1,,,且,则实数x的值为______【答案】4【解析】利用向量垂直的性质直接求解.【详解】解:向量,,且,,解得.实数x的值为4.故答案为:4.【点睛】本题考查向量的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.14.已知命题p:,,若命题p为假命题,则实数a的取值范围是___.【答案】【解析】根据已知中“,”为假命题,可以得到否定命题:“,”为真命题,则问题可转化为一个函数恒成立问题,对二次项系数a分类讨论后,综合讨论结果,即可得到答案.【详解】解:“,”为假命题,其否定“,”为真命题,当时,显然成立;当时,恒成立可化为:解得综上实数a的取值范围是.故答案为:.【点睛】本题考查的知识点是命题真假判断与应用,其中根据原命题与其否定命题之间真假性相反,写出原命题的否定命题,并将问题转化为一个函数恒成立问题是解答本题的关键.15.已知抛物线的焦点为F,过点F的直线1交抛物线于A,B两点,若,则线段AB的中点到x轴的距离为___.【答案】【解析】根据抛物线方程可求得准线方程,根据抛物线的定义和梯形中位线定理,可得出答案.【详解】解:如图,F为焦点,AB中点为E,抛物线准线的方程:,分别过A、E、B做的垂线并交于点L,M,N.根据梯形的中位线定理,|EM|=,又根据抛物线性质,,,,.故答案为:.【点睛】本题主要考查了抛物线的应用灵活利用了抛物线的定义,考查分析问题解决问题的能力.16.如图,四边形ABCD中,,,,,,则线段AC长度的取值范围是______.【答案】【解析】在中,根据条件求出的取值范围,然后根据正弦定理可求得AC取值范围.【详解】解:在中,,,又,,且,,即,由正弦定理,,,,故答案为:.【点睛】本题考查了正弦定理、三角形边角关系,考查了推理能力与计算能力,属于中档题.三、解答题17.设命题p:实数x满足,其中;命题q:.若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围.【答案】(1) (2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则,列不等式组可求解.【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则,所以,即.故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题.18.已知正项数列是公差为2的等差数列,且是与的等比中项.求数列的通项公式.若,求数列的前n项和.【答案】(1)(2).【解析】正项数列是公差d为2的等差数列,由等差数列的通项公式和等比数列中项性质,可得首项和公差的方程组,解方程即可得到所求通项公式;求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】解:正项数列是公差d为2的等差数列,可得,又是与的等比中项,即有,即,解得,可得,故数列的通项公式为;,即,前n项和,,相减可得,化简可得.【点睛】本题考查等差数列的通项公式和等比数列中项性质,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题.19.某家具公司制作木质的椅子和书桌两种家具,需要木工和漆工两道工序,已知木工平均6个小时做一把椅子,10个小时做一张书桌,该公司每月木工最多有6000个工作时;漆工平均4个小时漆一把椅子,2个小时漆一张书桌,该公司每月漆工最多有2600个工作时又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排每月的生产,才能获得最大的利润?【答案】每月制作500把椅子、300张书桌.【解析】先设每天生产桌子x张,椅子y张,利润总额为P千元,根据题意抽象出x,y满足的条件,建立约束条件,作出可行域,再根据目标函数,利用截距模型,平移直线找到最优解,即可.【详解】解:依题意,设每月生产x把椅子,y张书桌,利润为z元那么,目标函数为,x,y满足限制条件即作出二元一次不等式组所表示的平面区域,即可行域,如图阴影部分作直线l:,平移直线l,当直线通过B点时,目标函数取得最大值由,得所以点B的坐标为,此时,,所以该公司每月制作500把椅子、300张书桌可获得最大利润13500元.【点睛】本题主要考查用线性规划解决实际问题中的最值问题,基本思路是抽象约束条件,作出可行域,利用目标函数的类型,找到最优解.属于中档题.20.已知数列的前n项和.若三角形的三边长分别为,,,求此三角形的面积;探究数列中是否存在相邻的三项,同时满足以下两个条件:此三项可作为三角形三边的长;此三项构成的三角形最大角是最小角的2倍若存在,找出这样的三项,若不存在,说明理由.【答案】(1)(2)见解析【解析】数列的前n项和求出,,遂得出三角形三边边长,利用余弦定理求解三角形的面积假设数列存在相邻的三项满足条件,因为,设三角形三边长分别是n,,,,三个角分别是,,,利用正弦定理,余弦定理,验证此三角形的最大角是最小角的2倍,然后推出结果.【详解】解:数列的前n项和.当时,,当时,,又时,,所以,不妨设三边长为,,,所以所以假设数列存在相邻的三项满足条件,因为,设三角形三边长分别是n,,,,三个角分别是,,由正弦定理:,所以由余弦定理:,即化简得:,所以:或舍去当时,三角形的三边长分别是4,5,6,可以验证此三角形的最大角是最小角的2倍.所以数列中存在相邻的三项4,5,6,满足条件.【点睛】本题考查数列与三角函数的综合应用,考查转化思想以及计算能力.21.在图所示的五面体中,面ABCD为直角梯形,,平面平面ABCD,,,是边长为2的正三角形.证明:平面ACF;若点P在线段EF上,且二面角的余弦值为,求的值.【答案】(1)详见解析;(2).【解析】建立空间直角坐标系,利用向量法能证明平面ACF.求出平面BCF 的一个法向量和平面PBC的一个法向量,利用向量法能求出结果.【详解】解:连结BE、AC、AF,取AD的中点O,连结OE,依题意知,平面平面ABCD,又平面ADE,平面平面,平面ABCD,以O为原点,OA为x轴,OE为z轴,过O作AB的平行线为y轴,建立空间直角坐标系,则0,,1,,2,,0,,4,,,2,,4,,,,,,又,平面ACF.由知1,,3,,设平面BCF的一个法向量y,,则,取,得2,,设,,,4,,则,,1,,,设平面PBC的一个法向量y,,则,取,得2,,二面角的余弦值为,,解得或舍,.【点睛】本题考查线面垂直的证明,考查满足二面角的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.22.已知中心在原点的椭圆C的一个顶点为,焦点在x轴上,右焦点到直线的距离为.求椭圆的标准方程;若直线l:交椭圆C于M,N两点,设点N关于x轴的对称点为点与点M不重合,且直线与x轴的交于点P,求的面积的最大值.【答案】(1);(2).【解析】由题意可知,椭圆是焦点在x轴上的椭圆,并求得b,再由点到直线的距离公式求得c,由隐含条件求得a,则椭圆方程可求;联立直线方程与椭圆方程,化为关于y的一元二次方程,利用根与系数的关系求得M,N的纵坐标的和与积,再求出P的坐标,写出三角形面积公式,利用基本不等式求最值.【详解】解:依题意可设椭圆方程为,.设右焦点,由题设条件:,解得,.故所求椭圆方程为:;设,,联立,得.,,由题设知,,直线的方程为.令,得.点P坐标为..当且仅当,即时等号成立.的面积的最大值为1.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,属于中档题.。

广东省东莞市高二上册期末数学试题与答案

广东省东莞市高二上册期末数学试题与答案

广东省东莞市高二上册期末数学试题与答案一、选择题(本大题共12小题,每小题5分,共60分. 每小题各有四个选择支,仅有一个选择支正确. 请用2B铅笔把答题卡中所选答案的标号涂黑.)1.不等式的解集为()A. B.C. D.【答案】A将一元二次不等式因式分解,再结合二次函数的图像即可求解.因为,所以,所以或,即原不等式的解集为本题主要考查一元二次不等式的解法,属于基础题型.2.在等差数列中,,,则公差为( )A. B. C. D.【答案】C由等差数列的性质即可求解.因为在等差数列中,,,所以,所以.本题主要考查等差数列的性质,属于基础题型.3.命题“”的否定是()A. B.C. D.【答案】B由特称命题的否定,直接写出结果即可.命题“”的否定是“”.本题主要考查特称命题的否定,属于基础题型.4.实数满足,则目标函数的最小值为()A. B. C. D.【答案】C先由不等式组作出其所表示的平面区域,再将目标函数化为,结合图像即可确定结果.由不等式组作出平面区域如下:由题意求目标函数的最小值即是求在y轴截距的最小值问题,由图像可得,直线过点时,截距最小为1.本题主要考查简单线性规划问题,属于基础题型.5.若双曲线的渐近线方程为,则双曲线的离心率为()A. 2B.C.D.【答案】D由题意先求出m,进而可求出结果.因为双曲线的渐近线方程为,所以,所以离心率.本题主要考查双曲线的简单性质,属于基础题型.6.在中,内角满足,则的形状为()A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 正三角形【答案】B先由得,化简整理即可判断出结果.因为,所以,所以,所以,故,所以三角形是等腰三角形.本题主要考查三角恒等变换,属于基础题型.7.若点在曲线上,则的最小值为()A. 8B. 9C. 16D. 18【答案】D由在曲线得到关系式,结合基本不等式即可求解.因为点在曲线上,所以,因此,当且仅当,即时,取最小值18.本题主要考查基本不等式,属于基础题型.8.已知实数满足,,则下列选项一定成立的是()A. B. C. D.【答案】C结合条件,逐项判断即可。

广东省东莞市高二数学上学期期末考试试题 理 (扫描版)新人教A版

广东省东莞市高二数学上学期期末考试试题 理 (扫描版)新人教A版

2011—2012学年度第一学期期末教学质量检查 高二理科数学(B 卷)参考答案及评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案DBADBCCBBC二、填空题11. 02,2<-∈∀x R x 12.15 13. 13)1()1(22=+++y x 14. 35 三、解答题15.(本小题满分12分) 解:由正弦定理BbA a sin sin =,得A b B a sin sin =. ……………3分 代入B a b sin 2=得A b b sin 2=,即21sin =A . ……………6分又因为A 为锐角,所以ο30=A . ……………8分 由余弦定理得A bc c b a cos 2222-+=72353222512=⨯⨯⨯-+=. ……………11分 所以7=a . ……………12分16.(本小题满分12分)解:(1)由d n a a n )1(1-+=及,50,302010==a a …………………1分得方程组: ⎩⎨⎧=+=+.5019,30911d a d a …………………4分解得.2,121==d a …………………6分 所以.102+=n a n …………………8分 (2)由242,2)1(1=-+=n n S d n n na S , …………………9分xzy得方程:.24222)1(12=⨯-+n n n .....................10分 解得11=n 或22-=n (舍). (12)分17.(本小题满分14分)解:设A 、B 两种金属板各取,x 张,用料面积为2z m , ………………1分则364556500,0x y x y x y +≥⎧⎪+≥⎨⎪≥≥⎩,…4分 目标函数23z x y =+,……分 可行域如右图.……………7分由136450256500164x x y x y y ⎧=⎪+-=⎧⎪⇒⎨⎨+-=⎩⎪=⎪⎩.…………………………8分 所以直线36450x y +-=与直线56500x y +-=的交点为11(2,6)24M .………10分 而当动直线2133y x z =-+经过点M 时,23z x y =+取最小值,由于11(2,6)24M 坐标不是整数,在可行域找到点(3,6)N 符合要求, ………………12分 此时min 233624z =⨯+⨯=. ………………13分 故A 、B 两种金属板各取3张、6张时,能完成计划并能使总用料面积最省. ……14分18.(本小题满分14分)解:设b PA =,建立如图所示空间直角坐标系,),,(000A ,),,(001B ,(0,0,)P b ,),,(020D ),,(022C ,),,(211b E . ………………2分 (1))2,1,0(b =,平面PAD 的法向量为)0,0,1(=,所以0=⋅, ………………5分 又BE ⊄平面PAD ,//BE ∴平面PAD . ………………7分(2)BE ⊥Q 平面PCD ,y56500x y +-=36450x y +-=11(2,6)24M O xBE PC ∴⊥,即0BE PC ⋅=u u u r u u u r. (8)分又),2,2(b -=,0222=-=⋅∴b PC BE , ………………9分即2=b ,所以PA 的长为 2. ………………10分),,(220-=,),,(021=, (11)分5105224,cos =⋅>=<, ………………13分所以异面直线PD 与BC . ………………14分19. (本小题满分14分)解:(1)由题意得,2=c ,8)30())2(2()30())2(2(22222=-+--+-+---=a ,4=a ,……………………2分 所以12222=-=c a b , ……………………3分所以椭圆C 的方程为1121622=+y x . ……………………4分 (2)根据椭圆的对称性,椭圆C 内接矩形的对称轴必为坐标轴. ……………………5分设椭圆C 内接矩形位于第一象限的顶点坐标为)0,0)(,(0000>>y x y x ,……6分则112162020=+yx . ……………………7分 椭圆C 的内接矩形的面积为316])32()4[(3163242316420200000=+⋅≤⋅⋅⋅==yx y x y x S ,………10分 所以椭圆C 的内接矩形面积的最大值为316max =S , ……………………11分 此时2132400==y x ,解得6,2200==y x , ……………………13分矩形的周长为6428)(400+=+y x . ……………………14分20.(本小题满分14分) 解:(1)由已知,当2≥n 时,122=-nn n nS S b b , 又1--=n n n S S b ,所以1)()(2211=-----nn n n n n S S S S S S . ………………2分 即1)(211=----nn n n S S S S ,所以21111=--n n S S , ………………4分 又1111===a b S ,所以数列⎭⎬⎫⎩⎨⎧n S 1是首项为1,公差为21的等差数列. ……5分(2)由(1)知,21)1(21111+=-+=n n S S n ,即12+=n S n . ………………7分 所以,当2≥n 时,)1(2112121+-=+--+=-=-n n n n S S b n n n , …………8分 因此⎪⎩⎪⎨⎧≥+-==).2()1(2),1(1n n n n b n ………………10分 (3)设上表中从第三行起,每行的公比都为q ,且0>q .因为782131212321=⨯=++++Λ,所以表中第1行至第12行共含有数列}{n a 的前78项,故81a 在表中第13行第三列. ………………11分 所以,91421381-==q b a , ………………12分 又1413213⨯-=b ,所以2=q . ………………13分记表中第)3(≥k k 行所有项的和为S ,则)3)(21()1(221)21()1(21)1(≥-+=--⋅+-=--=k k k k k q q b S k k k k .…………14分。

2022-2023学年高二上学期期末冲刺卷数学(B)(解析版)

2022-2023学年高二上学期期末冲刺卷数学(B)(解析版)
【详解】(1)若选①,设数列 的公差为 .
由 ,可得 ,解得 , ;
若选②,当 时, ,
当 时, ,满足 .
所以 ;
若选③,设数列 的公差为 .
,即 ,则 ,
又 ,所以 , ,所以 ;
(2)因为 ,
所以 .
则 ,
上式 下式得 ,
所以 ,因此, .
【点睛】方法点睛:解决等差数列问题时常用的思想方法:
一是方程思想,即设出首项和公差,然后根据已知列出方程(组)求解;
二是整体思想,即当所给条件只有一个时,可将已知和所求都用首项和公差表示出来,寻求两者的联系,整体代换即可求解;
三是利用性质,即运用等差数列的性质,化繁为简,优化解题过程.
18.如图,在三棱锥 中, , , 为 的中点.
(1)证明: 平面 ;
(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值.
因为正方体 的棱长为4,所以正六边形 的边长为 ,
所以点 的轨迹围成图形的面积是 .
如图,

∴ 的最大值为12.
故答案为: ,12.
四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)
17.在① ,且 ,② ,③ , 这三个条件中任选一个,补充在下面问题中,并作答.
已知 是公差不为 的等差数列,其前 项和为 ,______.
2.已知抛物线 ( )的焦点在直线 上,则a的值为()
A.8B.-4C.-8D.-16
【答案】D
【解析】
【分析】由抛物线方程写出焦点坐标,再将点坐标代入 求参数a即可.
【详解】由抛物线方程知:焦点坐标为 ,且在 上,
∴ ,则 .
故选:D
3.已知圆 ,点 是圆 内一点,过点P的圆O的最短弦所在的直线为 ,直线 的方程为 ,那么()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省东莞市2014-2015学年高二上学期期末数学试卷(B卷)(理科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“若x>2015,则x>0”的否命题是()A.若x>2015,则x≤0B.若x≤0,则x≤2015C.若x≤2015,则x≤0D.若x>0,则x>20152.(5分)若a∈R,则“a=2”是“(a﹣2)(a+4)=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.(5分)在△A BC中,角 A,B,C的对边长分别为a,b,c,a=4,A=45°,B=60°,则b=()A.2B.2C.2D.4.(5分)抛物线y2=16x的准线方程为()A.y=4 B.y=﹣4 C.x=﹣4 D.x=45.(5分)已知等比数列{a n},a1=1,a3=,则a5=()A.±B.﹣C.D.±6.(5分)已知双曲线的渐近线方程是y=±x,焦点在x轴上,焦距为20,则它的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣7.(5分)已知等差数列{a n},a1=1,a3=3,则数列{}的前10项和为()A.B.C.D.8.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.9.(5分)如图,空间四边形OABC中,,点M在上,且OM=2MA,点N为BC中点,则=()A.B.C.D.10.(5分)当双曲线C不是等轴双曲线时,我们把以双曲线C的实轴、虚轴的端点作为顶点的椭圆称为双曲线C的“伴生椭圆”.则离心率为的双曲线的“伴生椭圆”的离心率为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.)11.(5分)已知向量=(2,﹣1,1),=(t,1,﹣1),t∈R,若∥,则t=.12.(5分)不等式组表示的平面区域的面积是.13.(5分)已知等差数列{a n},a1=1,公差d≠0,若a1,a2,a6成等比数列,则a11=.14.(5分)已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.)15.(12分)在△A BC中,a,b,c分别是角 A,B,C的对边,cosB=且ac=35.(1)求△ABC的面积;(2)若a=7,求角C.16.(12分)设命题p:实数x满足(x﹣4a)(x﹣a)<0,其中a>0,命题q:实数x满足x2﹣4x+3≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q成立的必要不充分条件,求实数a的取值范围.17.(14分)某农场计划种植甲、乙两个品种的蔬菜,总面积不超过300亩,总成本不超过9万元.甲、乙两种蔬菜的成本分别是每亩600元和每亩200元.假设种植这两个品种的蔬菜,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种蔬菜的种植面积,可使农场的总收益最大,最大收益是多少万元?18.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.19.(14分)已知S n为数列{a n}的前n项和,且有a1=1,S n+1=a n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=,其前n项和为 T n,求证:≤T n<1.20.(14分)已知椭圆+=1(a>b>0)经过点(1,),且椭圆的左、右焦点分别为F1(﹣1,0)、F2(1,0),过椭圆的右焦点F2作两条互相垂直的直线,分别交椭圆于点 A、B及C、D.(1)求椭圆的方程;(2)求+的值;(3)求|AB|+|CD|的最小值.广东省东莞市2014-2015学年高二上学期期末数学试卷(B卷)(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“若x>2015,则x>0”的否命题是()A.若x>2015,则x≤0B.若x≤0,则x≤2015C.若x≤2015,则x≤0D.若x>0,则x>2015考点:四种命题.专题:简易逻辑.分析:否命题是既否定题设又否定结论,从而得到答案.解答:解:命题“若x>2015,则x>0”的否命题是:若x≤2015,则x≤0,故选:C.点评:要将命题的否定和否命题区分开来,本题属于基础题.2.(5分)若a∈R,则“a=2”是“(a﹣2)(a+4)=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义分别判断充分性和必要性,从而得到答案,解答:解:若a=2,则(a﹣2)(a+4)=0,是充分条件,若(a﹣2)(a+4)=0,则a不一定等于2,是不必要条件,故选:B.点评:本题考查了充分必要条件,是一道基础题.3.(5分)在△A BC中,角 A,B,C的对边长分别为a,b,c,a=4,A=45°,B=60°,则b=()A.2B.2C.2D.考点:正弦定理.专题:解三角形.分析:由正弦定理可得b=,代入已知即可求值.解答:解:由正弦定理可得:b===2.故选:A.点评:本题主要考查了正弦定理的应用,属于基础题.4.(5分)抛物线y2=16x的准线方程为()A.y=4 B.y=﹣4 C.x=﹣4 D.x=4考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线y2=2px(p>0)的准线方程为x=﹣,则抛物线y2=16x的准线方程即可得到.解答:解:由抛物线y2=2px(p>0)的准线方程为x=﹣,则抛物线y2=16x的准线方程为x=﹣4.故选C.点评:本题考查抛物线的方程和性质,主要考查抛物线的准线方程的求法,属于基础题.5.(5分)已知等比数列{a n},a1=1,a3=,则a5=()A.±B.﹣C.D.±考点:等比数列的通项公式.专题:等差数列与等比数列.分析:由等比数列的性质可得a32=a1•a5,代值计算可得.解答:解:∵等比数列{a n},a1=1,a3=,∴a32=a1•a5,∴=1×a5,解得a5=故选:C点评:本题考查等比数列的通项公式,属基础题.6.(5分)已知双曲线的渐近线方程是y=±x,焦点在x轴上,焦距为20,则它的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设出双曲线的方程,求出渐近线方程,可得a=2b,a2+b2=100,解方程即可得到双曲线的方程.解答:解:设双曲线的方程为﹣=1(a>0,b>0),则渐近线方程为y=x,则有=,c=10,a2+b2=100,解得a2=80,b2=20,即有双曲线的方程为﹣=1.故选D.点评:本题考查双曲线的方程和性质,考查渐近线方程的运用,考查运算能力,属于基础题.7.(5分)已知等差数列{a n},a1=1,a3=3,则数列{}的前10项和为()A.B.C.D.考点:数列的求和.专题:等差数列与等比数列.分析:利用等差数列的通项公式可得a n,再利用“裂项求和”即可得出.解答:解:设等差数列{a n}的公差为d,∵a1=1,a3=3,∴1+2d=3,解得d=1,∴a n=1+(n﹣1)=n.∴=,∴数列{}的前10项和=+…+=1﹣=.故选:A.点评:本题考查了“裂项求和”、等差数列的通项公式,考查了推理能力与计算能力,属于解出题.8.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.考点:基本不等式;等比数列的性质.专题:不等式的解法及应用.分析:由题设条件中的等比关系得出a+b=1,代入中,将其变为2+,利用基本不等式就可得出其最小值解答:解:因为3a•3b=3,所以a+b=1,,当且仅当即时“=”成立,故选择B.点评:本小题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力.9.(5分)如图,空间四边形OABC中,,点M在上,且OM=2MA,点N为BC中点,则=()A.B.C.D.考点:向量加减混合运算及其几何意义.专题:计算题.分析:由题意,把,,三个向量看作是基向量,由图形根据向量的线性运算,将用三个基向量表示出来,即可得到答案,选出正确选项.解答:解:由题意=++=+﹣+=﹣++﹣=﹣++又=,=,=∴=﹣++故选B.点评:本题考点是空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.10.(5分)当双曲线C不是等轴双曲线时,我们把以双曲线C的实轴、虚轴的端点作为顶点的椭圆称为双曲线C的“伴生椭圆”.则离心率为的双曲线的“伴生椭圆”的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线、椭圆的离心率计算公式计算即得结论.解答:解:设双曲线C的方程为﹣=1,则e==,∴b2=2a2,∴双曲线C的“伴生椭圆”方程为:+=1,∴“伴生椭圆”的离心率为==,故选:D.点评:本题考查椭圆的简单性质,注意解题方法的积累,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)11.(5分)已知向量=(2,﹣1,1),=(t,1,﹣1),t∈R,若∥,则t=﹣2.考点:向量的数量积判断向量的共线与垂直.专题:空间向量及应用.分析:利用向量共线定理即可得出.解答:解:∵∥,∴,解得t=﹣2.故答案为:﹣2.点评:本题考查了向量共线定理,属于基础题.12.(5分)不等式组表示的平面区域的面积是4.考点:二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,根据图象即可得到结论.解答:解:作出不等式组对应的平面区域如图:由解得,即A(2,2),由,解得,即B(2,﹣2),则三角形的面积S=,故答案为:4点评:本题主要考查二元一次不等式组表示平面区域以及三角形面积的求解,比较基础.13.(5分)已知等差数列{a n},a1=1,公差d≠0,若a1,a2,a6成等比数列,则a11=31.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由题意可得(1+d)2=1×(1+5d),解得d由等差数列的通项公式可得.解答:解:∵等差数列{a n},a1=1,公差d≠0,且a1,a2,a6成等比数列,∴a22=a1•a6,代入数据可得(1+d)2=1×(1+5d),解得d=3,或d=0(舍去)∴a11=a1+10d=1+10×3=31故答案为:31点评:本题考查等差数列的通项公式,涉及等比数列的通项公式,属基础题.14.(5分)已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是(1,+∞).(用区间表示)考点:特称命题.专题:不等式的解法及应用;简易逻辑.分析:根据题意,写出命题p的否定命题,利用p与¬p真假相反得到¬p为真命题,再应用判别式求出a的取值范围.解答:解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).点评:本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.)15.(12分)在△A BC中,a,b,c分别是角 A,B,C的对边,cosB=且ac=35.(1)求△ABC的面积;(2)若a=7,求角C.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(1)由已知可先求sinB的值,由ac=35,即可根据面积公式求S△ABC的值.(2)由已知先求c的值,由余弦定理可求b的值,从而可求cosC的值,即可求出C的值.解答:解:(1)∵cosB=,且B∈(0,π),∴sinB==,又ac=35,…(3分)∴S△ABC=acsinB==14.…(6分)(2)由ac=35,a=7,得c=5,…(7分)∴b2=a2+c2﹣2accosB=49+25﹣2×=32,∴b=4,…(9分)∴cosC===…(10分)又C∈(0,π)…(11分)∴C=.…(12分)点评:本题主要考察了正弦定理、余弦定理、三角形的面积公式在解三角形中的应用,属于基础题.16.(12分)设命题p:实数x满足(x﹣4a)(x﹣a)<0,其中a>0,命题q:实数x满足x2﹣4x+3≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q成立的必要不充分条件,求实数a的取值范围.考点:必要条件、充分条件与充要条件的判断;复合命题的真假.专题:简易逻辑.分析:(1)将a=1代入,求出q为真时x的范围,从而求出p且q为真时x的范围;(2)q是p的充分不必要条件,则B⊊A,得到不等式组,解出即可.解答:解:(1)由(x﹣4a)(x﹣a)<0得a<x<4a,当a=1时,1<x<4,即p为真命题时,实数x的取值范围是1<x<4,由x2﹣4x+3≤0得1≤x≤3.所以q为真时实数x的取值范围是1≤x≤3,若p∧q为真,则1<x≤3,所以实数x的取值范围是(1,3],(2)设A={x|a<x<4a},B={x|1≤x≤3},q是p的充分不必要条件,则B⊊A,所以⇒<a<1,所以实数a的取值范围是(,1).点评:本题考查了复合命题的判断,考查了充分必要条件问题,是一道基础题.17.(14分)某农场计划种植甲、乙两个品种的蔬菜,总面积不超过300亩,总成本不超过9万元.甲、乙两种蔬菜的成本分别是每亩600元和每亩200元.假设种植这两个品种的蔬菜,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种蔬菜的种植面积,可使农场的总收益最大,最大收益是多少万元?考点:简单线性规划.专题:不等式的解法及应用.分析:设甲、乙两种蔬菜的种植面积分别为x,y亩,农场的总收益为z万元,建立目标函数和约束条件,利用线性规划进行求解即可.解答:解:设甲、乙两种蔬菜的种植面积分别为x,y亩,农场的总收益为z万元,则…(1分)…①…(5分)目标函数为z=0.3x+0.2y,…(6分)不等式组①等价于可行域如图所示,…(9分)当目标函数对应的直线经过点M时,目标函数z取最小值.…(10分)解方程组得M的坐标(75,225)…(12分)所以z max=0.3×75+0.2×225=67.5.…(13分)答:分别种植甲乙两种蔬菜75亩和225亩,可使农场的总收益最大,最大收益为67.5万元.…(14分)点评:本题主要考查线性规划的应用问题,根据条件建立约束条件,利用数形结合是解决本题的关键.18.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定.专题:空间位置关系与距离;空间角;空间向量及应用;立体几何.分析:(Ⅰ)连接AD1,易证AMC1D1为平行四边形,利用线面平行的判定定理即可证得C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,易求C1(﹣1,0,),D1,(0,0,),M(,,0),=(1,1,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),可求得=(0,2,1),而平面ABCD的法向量=(1,0,0),从而可求得平面C1D1M和平面ABCD所成的角(锐角)的余弦值.解答:解:(Ⅰ)连接AD1,∵ABCD﹣A1B1C1D1为四棱柱,∴CD C1D1,又M为AB的中点,∴AM=1.∴CD∥AM,CD=AM,∴AM C1D1,∴AMC1D1为平行四边形,∴AD1∥MC1,又MC1⊄平面A1ADD1,AD1⊂平面A1ADD1,∴C1M∥平面A1ADD1;(Ⅱ)解法一:∵AB∥A1B1,A1B1∥C1D1,∴面D1C1M与ABC1D1共面,作CN⊥AB,连接D1N,则∠D1NC即为所求二面角,在ABCD中,DC=1,AB=2,∠DAB=60°,∴CN=,在Rt△D1CN中,CD1=,CN=,∴D1N=∴cos∠D1CN===解法二:作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系则C1(﹣1,0,),D1,(0,0,),M(,,0),∴=(1,0,0),=(﹣,,﹣),设平面C1D1M的法向量=(x1,y1,z1),则,∴=(0,2,1).显然平面ABCD的法向量=(0,0,1),cos<,>|===,显然二面角为锐角,∴平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.点评:本题考查用空间向量求平面间的夹角,主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.19.(14分)已知S n为数列{a n}的前n项和,且有a1=1,S n+1=a n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=,其前n项和为 T n,求证:≤T n<1.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)利用当n=1时,a2=S1+1=a1+1;当n≥2时,S n+1=a n+1(n∈N*),S n﹣1+1=a n,两式相减得a n+1=2a n,再利用等比数列的通项公式即可得出.(2)由(1)知,可得b n==,利用“错位相减法”、等比数列的前n项和公式,即可得出.解答:(1)解:当n=1时,a2=S1+1=a1+1=2;当n≥2时,S n+1=a n+1(n∈N*),S n﹣1+1=a n,两式相减得,a n=a n+1﹣a n,即a n+1=2a n,又a2=2a1,∴{a n}是首项为1,公比为2的等比数列,∴.(2)证明:由(1)知,∴b n==,∴T n=+…+,∴=+…++,∴=++…+﹣,∴T n=…+﹣=﹣=,∵T n+1﹣T n==>0,∴T n+1>T n,∴T n是递增的,又T1=,∴≤T n<1.点评:本题考查了“错位相减法”、等比数列的定义通项公式及其前n项和公式、递推式的意义、数列的单调性,考查了推理能力与计算能力,属于中档题.20.(14分)已知椭圆+=1(a>b>0)经过点(1,),且椭圆的左、右焦点分别为F1(﹣1,0)、F2(1,0),过椭圆的右焦点F2作两条互相垂直的直线,分别交椭圆于点 A、B及C、D.(1)求椭圆的方程;(2)求+的值;(3)求|AB|+|CD|的最小值.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)通过椭圆的定义直接计算可得结论;(2)椭圆的右焦点为F2(1,0),分直线AB的斜率不存在与存在两种情况讨论即可;(3)通过+=,利用基本不等式计算即得结论.解答:解:(1)由椭圆的定义可知:2a=|MF1|+|MF2|=+=4,∴a=2,由c=1得:b=,故椭圆的方程为:+=1;(2)椭圆的右焦点为F2(1,0),分两种情况讨论如下:1°.当直线AB的斜率不存在时,AB:x=1,则CD:y=0.此时|AB|=3,|CD|=4,∴+=;2°.当直线AB的斜率存在时,设AB:y=k(x﹣1)(k≠0),则CD:y=﹣(x﹣1).又设点A(x1,y1),B(x2,y2),联立方程组,消去y并化简得:(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理可知:x1+x2=,x1•x2=,∴|AB|==•=•=,∴+==,综上所述,+为定值;(3)解:由(II)知+=,∴|AB|+|CD|=(|AB|+|CD|)(+)=(++)≥(+2)=,当且仅当=,即|AB|=4、|CD|=3时取等号,∴|AB|+|CD|的最小值为.点评:本题考查椭圆与直线方程,利用用韦达定理是解题的关键,需要较强的计算能力,属于中档题.。

相关文档
最新文档