高考文科数学中档题训练22(学生版)

合集下载

2019年高考数学(文科)中档大题规范练(三角函数)(含答案)

2019年高考数学(文科)中档大题规范练(三角函数)(含答案)

高考数学精品复习资料2019.5中档大题规范练中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z . 故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.。

2023高考数学复习专项训练《面面垂直的性质》(含解析)

2023高考数学复习专项训练《面面垂直的性质》(含解析)

2023高考数学复习专项训练《面面垂直的性质》一 、单选题(本大题共12小题,共60分)1.(5分)已知集合A ={ 1,2},A ∪B ={ 1,2,3,4},则满足条件的集合B 有( )个.A. 1B. 2C. 3D. 42.(5分)已知a ∈R ,复数z =3+i1+ai (i 为虚部单位)为纯虚数,则z 的共轭复数的虚部为()A. 1B. −1C. iD. −i3.(5分)已知函数f(x)={lo g 2(4−x),x <41+2x−1,x ⩾4,则f(0)+f(log 232)=( )A. 19B. 17C. 15D. 134.(5分)扇形OAB 的半径为1,圆心角为90∘,P 是AB ⏜上的动点,OP →⋅(OA →−OB →)的最小值是( )A. 0B. −1C. −√2D. 125.(5分)设α,β是两个不同的平面,m 是直线且m ⊂α,“m//β“是“α//β”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.(5分)已知函数f(x)=sin (ωx +ϕ)(ω>0,|ϕ|<π2的最小正周期为π,且f(x)是(π3,4π5)上的单调函数,则ϕ的取值范围是( )A. (-π2,-π6] B. (-π2,π6] C. [-π6,-π10]D. [-π6,π2)7.(5分)若实数x ,y 满足{x −y −1⩽0x +2⩾0x +2y −1⩽0,则目标函数z =2x +y 的最大值为( )A. 2B. 3C. −7D. −528.(5分)某程序框图如图所示,则程序运行后输出的S的值是()A. 1008B. 2017C. 2018D. 30259.(5分)在等比数列{a n}中,a1=1,公比|q|≠1,若a m=a1a2a3a4a5,则m=().A. 9B. 10C. 11D. 1210.(5分)已知点P是曲线y=x2−3lnx上任意的一点,则点P到直线2x+2y+3=0的距离的最小值是()A. 74B. 78C. 3√22D. 7√2411.(5分)直线x−2y+2=0关于直线x=1对称的直线方程是()A. x+2y−4=0B. 2x+y−1=0C. 2x+y−3=0D. 2x+y−4=012.(5分)已知边长为3的正方形ABCD与正方形CDEF所在的平面互相垂直,M为线段CD上的动点(不含端点),过M作MH//DE交CE于H,作MG//AD交BD于G,连结GH.设CM=x(0<x<3),则下面四个图象中大致描绘了三棱锥C−GHM的体积y与变量x变化关系的是()A. B.C. D.二、填空题(本大题共5小题,共25分)13.(5分)若f(x)=(m−1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的排列是____________________.14.(5分)某空间几何体的三视图如图所示,则该几何体的体积是 (1) ;表面积是 (2)15.(5分)已知△ABC 的三边长分别为3,5,7,则该三角形的 外接圆半径等于__________.16.(5分)设m ,n 已知函数fx )=og2(−|x|+4)的定域是[mn ]值域0,],若关x 的2|1−x|+m +1=0有一的实解,则m +n = ______ .17.(5分)已知函数f(x)=12x 2−ax +lnx ,对于任意不同的x 1,x 2∈(0,+∞),有f(x 1)−f(x 2)x 1−x 2>3,则实数a 的取值范围为 ______.三 、解答题(本大题共6小题,共72分)18.(12分)已知函数f (x)=(x −1)2,数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的等比数列(q ∈R,q ≠1,q ≠0).若a 1=f(d −1),a 3=f (d +1),b 1=f (q −1),b 3=f (q +1), (1)求数列{a n },{b n }的通项公式; (2)若数列{a n }的前n 项和为S n ,①求证:对任意的n ⩾2,(n ∈N ∗)时 1S 2+1S 3+⋯+1S n<1②设数列{c n }对任意的自然数n 均有c1b 1+c 2b 2+c 3b 3+⋯+c n b n=S n+1成立,求c 1+c 2+c 3+⋯+c n 的值.19.(12分)已知函数f(x)=√32sin(ωx +φ)+sin 2(ωx+φ2)−12(ω>0,0<φ<π)为奇函数,且f(x)图象的相邻两对称轴间的距离为π. (1)求f(x)的解析式;(2)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f(π2+C)c+f(π2−B)b=1a,求角A 的取值范围.20.(12分)如图,在三棱锥A −BCD 中,ΔABD 为边长等于√2的正三角形,CD =CB =1.ΔADC 与ΔABC 是有公共斜边AC 的全等的直角三角形. (Ⅰ)求证:AC ⊥BD ;(Ⅱ)求D点到平面ABC的距离.21.(12分)已知点(0,1),(3+2√2,0),(3−2√2,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x−y+a=0交于A,B两点,且OA⊥OB,求a的值.22.(12分)已知极坐标中,曲线C的极坐标方程为ρ−2cosθ=3ρ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,若直线l的参数方程为{x=−√2+2ty=−1+2t,(t 为参数),且直线l与曲线C交于M,N两点,(Ⅰ)求直线l的极坐标方程以及曲线C的参数方程;(Ⅰ)若点P在曲线C上,求ΔPMN面积的最大值.23.(12分)设函数f(x)=|x−a|.(1)当a=2时,解不等式f(x)⩾7−|x−1|;(2)若f(x)⩽1的解集为[0,2],1m +12n=a(m>0,n>0),求证:m+4n⩾2√2+3.答案和解析1.【答案】D;【解析】解:集合A ={ 1,2},A ∪B ={ 1,2,3,4}, 所以B 至少含有,3,4两个元素,所以B 的可能情况为:{ 3,4},{ 3,4,1},{ 3,4,2},{ 3,4,1,2}. 故选D .由题意列举集合B 的所有可能情况,得到集合B 的个数.该题考查集合的基本运算,集合中元素的基本性质,考查计算能力.2.【答案】B; 【解析】解:∵z =3+i 1+ai=(3+i)(1−ai)(1−ai)(1+ai)=3+a 1+a 2−3a−11+a 2i 为纯虚数,∴{3+a1+a 2=01−3a 1+a 2≠0,解得a =−3, ∴z =i ,即z −=−i , ∴z 的共轭复数的虚部为−1. 故选:B.根据已知条件,结合复数的运算法则,以及复数的性质,即可求解. 此题主要考查复数的运算法则,以及复数的性质,属于基础题.3.【答案】A; 【解析】该题考查分段函数的应用,函数值的求法,考查计算能力,属于基础题. 利用函数的解析式,直接求解函数值即可.解:函数f(x)={lo g 2(4−x),x <41+2x−1,x ⩾4,则f(0)+f(log 232)=log 24+1+2lo g 232−1 =2+1+12×32=19. 故选:A .4.【答案】B; 【解析】此题主要考查了向量的坐标运算和三角函数的性质,属于中档题.建立平面直角坐标系,求出向量坐标,设P(cosθ,sinθ),根据向量坐标的运算得到OP →.(OA →−OB →),根据三角函数的性质即可求出最值.解:以O 为原点,以OA 为x 轴,建立平面直角坐标系,则A(1,0),B(0,1). 设P(cosθ,sinθ),0°⩽θ⩽90°.则OP →=(cosθ,sinθ),OA →=(1,0),OB →=(0,1).∴OP →.(OA →−OB →)=(cosθ,sinθ).(1,−1)=cosθ−sinθ=−√2sin (θ−45∘). ∵0°⩽θ⩽90°,∴−45°⩽θ−45°⩽45°, ∴当θ=90°时,OP →.(OA →−OB →)取得最小值为−1. 故选B.5.【答案】B;【解析】解:m ⊂α,m//β得不到α//β,因为α,β可能相交,只要m 和α,β的交线平行即可得到m//β;α//β,m ⊂α,∴m 和β没有公共点,∴m//β,即α//β能得到m//β; ∴“m//β”是“α//β”的必要不充分条件. 故选:B .m//β并得不到α//β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α//β,并且m ⊂α,显然能得到m//β,这样即可找出正确选项.考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.6.【答案】C;【解析】解:∵函数f(x)=sin (ωx +ϕ)(ω>0,|ϕ|<π2)的最小正周期为2πω=π,∴ω=2,∴f(x)=sin (2x +ϕ).∵f(x)是(π3,4π5)上的单调函数,∴2π3+ϕ⩾π2,且8π5+ϕ⩽3π2,求得−π6⩽ϕ⩽−π10,故选:C .由题意利用正弦函数的周期性求得ω,再根据单调性求得ϕ的取值范围. 此题主要考查正弦函数的周期性和单调性,属于基础题.7.【答案】A;【解析】解:作出约束条件不等式组满足{x −y −1⩽0x +2⩾0x +2y −1⩽0的可行域如图:目标函数z =2x +y 在{x −y −1=0x +2y −1=0的交点A(1,0)处取最大值为z =2×1+0=2. 故选:A .画出约束条件表示的可行域,判断目标函数z =2x +y 的位置,求出最大值. 此题主要考查简单的线性规划的应用,正确画出可行域,判断目标函数经过的位置是解答该题的关键.8.【答案】A;的值以4为周期呈周期性变化,【解析】解:由y=cos iπ2+1每四个值分为一组,每组的和为6,故a i=i cos iπ2最后满足i<2018的i值为2017,执行循环体后,i=2018,故S共进行为2018次累加,由2018÷4=504……2,故S=6×504+1−2018+1=1008,故选:A.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.此题主要考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.【答案】C;【解析】该题考查等比数列的性质、通项公式的灵活应用,属于基础题.根据等比数列的性质得a1⋅a5=a2⋅a4=a32,结合条件和等比数列的通项公式列出方程,求出m的值.解:根据等比数列的性质得,a1⋅a5=a2⋅a4=a32,又a m=a1a2a3a4a5,所以a m=a35,因为a m=a1q m−1=q m−1,a3=a1q2=q2,所以q m−1=(q2)5,所以m−1=10,即m=11,故选:C.10.【答案】D;【解析】解:设P(x,y),则y′=2x−3x(x>0),令2x−3x =−1,解得x=1或x=−32,∵x>0,∴x=1,∴y=1,即平行于直线2x+2y+3=0且与曲线y=x2−lnx相切的切点坐标为(1,1),由点到直线的距离公式可得点P到直线2x+2y+3=0的距离的最小值d=√4+4=7√24,故选:D.求出平行于直线2x+2y+3=0且与曲线y=x2−3lnx相切的切点坐标,再利用点到直线的距离公式求解.此题主要考查点到直线的距离公式的应用,函数的导数的求法及导数的意义,体现了转化思想,属于基础题.11.【答案】A;【解析】解:直线x−2y+2=0上的点(−2,0)关于直线x=1对称的点A(4,0),直线x−2y+2=0上的点(0,1)关于直线x=1对称的点B(2,1),故直线x−2y+2=0关于直线x=1对称的直线方程,即直线AB的方程,为y−10−1=x−24−2,即x+2y−4=0,故选:A.在直线x−2y+2=0上任取2个点,求出它们关于直线x=1对称的对称点,用两点式可得对称直线的方程.这道题主要考查求一条直线关于另一条直线的对称直线的方法,属于基础题.12.【答案】A;【解析】此题主要考查了面面垂直的性质定理的运用、三棱锥体积公式以及利用导数研究函数的单调性,属于中档题.由题意,画出图形,利用x表示三棱锥的体积,利用导数得到函数的单调区间,即可得到函数图象.解:如图,因为正方形ABCD与正方形CDEF所在的平面互相垂直,又过M作MH//DE交CE于H,作MG//AD交BD于G,所以GM⊥HM,设CM=x(0<x<3),则HM=CM,GM=DM=3−x,所以三棱锥的体积为V=13×12×GM×HM×CM=16(3−x)x2=−16x3+12x2,(0<x<3),V′=−12x2+x,令V′=−12x2+x=0,解得x=0或者x=2,令V′>0得0<x<2,令V′<0得2<x<3,故体积V在(0,2)单调递增,在(2,3)单调递减,所以V关于x的图象如下:故选:A.13.【答案】f(-2)<f(1)<f(0);【解析】略14.【答案】163;16+8√2;【解析】解:几何体的直观图如图,是正四棱柱的一部分,正四棱柱的底面边长为2,棱柱的高为:4;所以几何体的体积为:12×2×2×4−13×12×2×2×4=163.几何体的表面积为:4×2√2+2×12×2×4+12×2×2+12×2√2×√42+22−(√2)2=16+8√2.故答案为:163;16+8√2.由三视图,画出几何体的直观图,利用三视图的数据求解几何体的体积,表面积.此题主要考查三视图求解几何体的体积与表面积,判断几何体的形状是解答该题的关键.15.【答案】7√33;【解析】略16.【答案】1;【解析】解:∵f()=og2(−|x|+4)的值域02],即:m+n1结合可n=3由函数f()=log(−|+4)的定义域[m,n],|x|∈[0,]…∴−|∈[−3,0]则m=2故答案1由关于的方程2|1−x|+m=0有一的实数解,我们易m的值然后根据f()=o2(−||+4)的定义域是m,n,值域是[0,2,结合函f(x)=log2(−|x|+)性质,可出的值,进而案.本题考的知识点是的存在性及的数的判断,对函数的义及对数值域,其中利用于的方程21−x|++1=0有唯一的实数解,变形得到关x的方程2|−x|+1=m有唯一实解,即−m为函y=1−x|+1最值,是解答本的关.17.【答案】(-∞,-1];【解析】解:对于任意不同的x1,x2∈(0,+∞),有f(x1)−f(x2)x1−x2>3.不妨设x1<x2,则f(x1)−f(x2)<3(x1−x2),即f(x1)−3x1<f(x2)−3x2,设F(x)=f(x)−3x,则F(x1)<F(x2),又x1<x2,所以F(x)单调递增,F′(x)⩾0恒成立.F(x)=f(x)−3x=12x2−(a+3)x+lnx.则F′(x)=x−(3+a)+1x =x2−(3+a)x+1x,令g(x)=x2−(3+a)x+1,要使F′(x)⩾0在(0,+∞)恒成立,只需g(x)=x2−(3+a)x+1⩾0恒成立,即3+a⩽x+1x 恒成立,x+1x⩾2√x·1x=2,当且仅当x=1x,即x=1时等号成立,所以3+a⩽2,即a⩽−1,则实数a的取值范围为(−∞,−1].故答案为:(−∞,−1].根据题意对于任意不同的x1,x2∈(0,+∞),有f(x1)−f(x2)x1−x2>3,不妨设x1<x2,得到f(x1)−3x1<f(x2)−3x2,设F(x)=f(x)−3x,则F(x1)<F(x2),又x1<x2,即F(x)单调递增,则导函数大于等于0恒成立,即可得到3+a⩽x+1x恒成立,再利用基本不等式求出x+1x的最小值为2,得到3+a⩽2,即可得到答案.此题主要考查了利用导数研究函数的单调性和基本不等式,考查了转化思想和函数思想,属中档题.18.【答案】解:(1)a1=f(d−1)=(d−2)2,a3=f(d+1)=d2,∴a3-a1=2d,即d2-(d-2)2=2d,解得d=2,∴a1=0,a n=2(n-1),又b1=f(q-1)=(q-2)2,b3=f (q+1)=q2,b3b1=q2,∴q 2(q−2)2=q2,∵q≠1,∴b1=1,b n=3n−1;(2)①证明:∵S n=n(n-1),∴1S n =1n(n−1)=1n−1-1n(n≥2),则1S2+1S3+…+1S n=(1-12)+(12−13)+…+(1n−1-1n)=1-1n<1;②由c1b1+c2b2+c3b3+…+c nb n=S n+1,得c1 b1+c2b2+c3b3+…+c n−1b n−1=S n(n≥2),两式相减得cn b n=S n+1-S n =a n+1=2n ,n=1也符合,∴c n =2n•b n =2n•3n-1=23n.3n ,令T n =1.31+2.32+⋯+n.3n , 利用错位相减法可得T n =2n −14.3n+1+34∴c 1+c 2+c 3+…+c n =23T n =(n −12).3n +12.; 【解析】(1)用d 表示出a 1,a 3,由a 3−a 1=2d 可得关于d 的方程,解出d 可得a n ,用q 表示出b 1,b 3,由b 3b 1=q 2可得q 的方程,解出q 可得b n ;(2)①由(1)可得S n ,利用裂项相消法可求得1S 2+1S 3+⋯+1S n,由结果可作出证明;②由c 1b1+c 2b 2+c 3b 3+⋯+c n b n=S n+1,得c 1b1+c 2b 2+c 3b 3+⋯+c n−1b n−1=S n (n ⩾2),两式相减可求得c n ,注意验证n =1也适合,利用错位相减法可求得c 1+c 2+c 3+⋯+c n 的值. 该题考查等差数列等比数列的通项公式、数列求和、数列与不等式的综合,考查学生综合运用所学知识解决问题的能力,对能力要求较高.19.【答案】解:(1)由题意,函数f(x)=√32sin(ωx +ϕ)+sin 2(ωx+ϕ2)−12=√32sin(ωx +ϕ)−12cos(ωx +ϕ)=sin(ωx +ϕ−π6),因为函数f (x )图象的相邻两对称轴间的距离为π,所以T=2π=2πω,可得ω=1, 由函数为奇函数,可得ϕ−π6=kπ,k ∈Z ,因为0<ϕ<π,所以φ=π6,所以,函数f (x )=sinx . (2)由f(π2+C)c +f(π2−B)b=cosC c+cosB b=1a ,及正弦定理得cosC sinC +cosB sinB =sinBcosC+cosBsinCsinCsinB=sin(B+C)sinCsinB=1sinA ,∵sinA=sin[π-(B+C )]=sin (B+C ),∴si n 2A=sinBsinC ,即a 2=bc , 又由余弦定理知:cosA =b 2+c 2−a 22bc ≥2bc−a 22bc=12,当且仅当b=c 时等号成立,而A ∈(0,π),∴A ∈(0,π3].; 【解析】(1)由题意,利用三角恒等变换,化简函数的解析式,正弦函数的图象和性质,求得ω和φ的值,可得函数的解析式.(2)由题意,利用正弦定理、余弦定理,基本不等式,求得cosA 的范围,可得A 的范围. 此题主要考查三角恒等变换,正弦函数的图象和性质,正弦定理、余弦定理的应用,基本不等式,属于中档题.20.【答案】(Ⅰ)证明:取BD中点M,连AM、CM∵AD=AB∴AM⊥BD,又∵DC=CB,∴CM⊥BD,又∵CM∩AM=M,CM,AM⊂平面ACM∴BD⊥面ACM,又AC⊂面ACM,∴BD⊥AC(Ⅱ)解:过A作AE∥BC,AE=BC,连接EC、ED,则AB∥EC,AB=EC∵BC⊥AB,∴BC⊥EC,又∵BC⊥DC,EC∩DC=C,EC,DC⊂平面DEC.∴BC⊥面DEC.∵BC⊂面ABCE,∴面ABCE⊥面DEC过D作DF⊥EC,交EC于F,DF即为所求,在△DEC中,DE=DC=1,EC=√2,∴DF=√2.;2【解析】此题主要考查线面垂直,面面垂直的证明,考查点到平面距离的计算,属于中档题.(Ⅰ)取BD中点M,连AM、CM,证明BD⊥面ACM,即可证明AC⊥BD;(Ⅱ)证明面ABCE ⊥面DEC ,过D 作DF ⊥EC ,交EC 于F ,DF 即为D 点到平面ABC 的距离.21.【答案】解:(1)由题意可设圆C 的圆心为(3,t ),则有32+(t-1)2=(2√2)2+t 2,解得t=1.则圆C 的圆心为(3,1),半径长为√(3−0)2+(1−1)2=3.…(4分) 所以圆C 的方程为(x-3)2+(y-1)2=9 (2)由{x −y +a =0(x −3)2+(y −1)2=9消去y ,得2x 2+(2a-8)x+a 2-2a+1=0,此时判别式△=56-16a-4a 2.设A (x 1,y 1),B (x 2,y 2), 则有x1+x2=4-a ,x1x2=a 2−2a +12①,由于OA ⊥OB ,可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0②由①②得a=-1,满足△>0,故a=-1; 【解析】(1)设出圆的标准方程,把三个点代入,联立方程组求得.(2)设出点A ,B 的坐标,联立直线与圆的方程,消去y ,确定关于x 的一元二次方程,已知的垂直关系,确定x 1x 2+y 1y 2=0,利用韦达定理求得a .这道题主要考查了直线与圆的位置关系,圆的标准方程.考查了学生分析和图象观察能力.注意把圆的代数问题与圆的平面性质相结合.22.【答案】解:(Ⅰ)曲线C 的普通方程为(x −1)2+y 2=4, 故曲线C 的参数方程为{x =1+2cosθy =2sinθ(θ为参数).直线l 的直角坐标方程为x −y +√2−1=0, 所以直线l 的方程可化为ρsin θ−ρcos θ=√2−1. (Ⅰ)圆心C 到l 的距离为d =√2 −1|√2=1,所以|MN |=2√4−1=2√3,又因为圆C 上的点到直线l 的距离的最大值为r +d =2+1=3, 所以(S ΔPMN )max =12×|MN |×3=3√3, 即ΔPMN 面积的最大值为3√3.;【解析】此题主要考查直线和曲线的三种方程的转化及直线与圆位置关系的运用,考查点到直线距离公式及圆有关的最值问题,属于中档题.(Ⅰ)利用三种方程的转化方法,将曲线C 的极坐标方程转化为参数方程和直线l 的参数方程转化为极坐标方程;(Ⅰ)利用点到直线的距离公式求出圆心(1,0)到直线x −y +√2−1=0的距离,勾股定理求出弦长|MN |,圆C 上的点到直线l 的距离的最大值为r +d =3,利用三角形面积公式即可求解.23.【答案】解:(1)当a=2时,f (x )=|x-2|, 则不等式f (x )≥7-|x-1|等价为|x-2|≥7-|x-1|, 即|x-2|+|x-1|≥7,当x≥2时,不等式等价为x-2+x-1≥7,即2x≥10,即x≥5,此时x≥5;当1<x <2时,不等式等价为2-x+x-1≥7,即1≥7,此时不等式不成立,此时无解, 当x≤1时,不等式等价为-x+2-x+1≥7,则2x≤-4,得x≤-2,此时x≤-2, 综上不等式的解为x≥5或x≤-2,即不等式的解集为(-∞,-2]∪[5,+∞). (2)若f (x )≤1的解集为[0,2], 由|x-a|≤1得-1+a≤x≤1+a . 即{1+a =2−1+a =0得a=1, 即1m +12n =a=1,(m >0,n >0),则m+4n=(m+4n )(1m +12n )=1+2+4n m +m2n ≥3+2√4n m .m2n =2√2+3. 当且仅当4n m =m2n ,即m 2=8n 2时取等号,故m+4n≥2√2+3成立.; 【解析】(1)利用绝对值的应用表示成分段函数形式,解不等式即可.(2)根据不等式的解集求出a =1,利用1的代换结合基本不等式进行证明即可. 这道题主要考查不等式的求解和应用,根据绝对值不等式的性质转化为分段函数形式,利用1的代换转化为基本不等式是解决本题的关键.综合性较强.。

高中数学 数列中档题复习(学生版)

高中数学 数列中档题复习(学生版)

数列一、考点分析:本章的知识结构图:数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.复习建议:在进行数列二轮复习时,建议可以具体从以下几个方面着手:1.运用基本量思想(方程思想)解决有关问题;2.注意等差、等比数列的性质的灵活运用;3.注意等差、等比数列的前n项和的特征在解题中的应用;4.注意深刻理解等差数列与等比数列的定义及其等价形式;5.根据递推公式,通过寻找规律,运用归纳思想,写出数列中的某一项或通项,主要需注意从等差、等比、周期等方面进行归纳;6.掌握数列通项an与前n项和Sn 之间的关系;7.根据递推关系,运用化归思想,将其转化为常见数列;8.掌握一些数列求和的方法(1)分组求和(2)裂项相消(3)错位相减(4)倒序相加(5)公式法。

9.以等差、等比数列的基本问题为主,突出数列与函数、数列与方程、数列与不等式、数列与几何等的综合应用.一、 等差与等比数列的概念和性质1. 已知公差大于零的等差数列}{n a 的前n 项和为n S ,且满足:.22,1175243=+=⋅a a a a (1)求通项n a ;(2)若数列}{n b 是等差数列,且cn S b nn +=,求非零常数c ; 解:(1)34-=n a n(2)n n n n S n -=-+=222)341(, ⎪⎪⎩⎪⎪⎨⎧-===2102c b a 21-=c 2.设数列{a n }和{b n }满足a 1=b 1=6, a 2=b 2=4, a 3=b 3=3, 且数列{a n +1-a n }(n ∈N *)是等差数列,数列{b n -2}(n ∈N *)是等比数列. (1)求数列{a n }和{b n }的通项公式;(2)是否存在k ∈N *,使a k -b k ∈(0,21)?若存在,求出k ;若不存在,说明理由. 解:(1)927212+-=n n a n ,3)21(2-+=n n b(2)不存在3. (2008年海南宁夏卷)已知数列{}n a 是一个等差数列,且21a =,55a =-。

中考数学中档题突破 专项训练三 解含参数的不等式(组)(选填题)

中考数学中档题突破 专项训练三 解含参数的不等式(组)(选填题)
专项训练三 解含参数的 不等式(组)(选填题)
1.关于 x 的方程 3x-2m=1 的解为正数,则 m 的取值范围是
1
1
A.m<-2 B.m>-2
1 C.m>2
1 D.m<2
Байду номын сангаас
( B)
x-a≥1, 2.已知关于 x 的不等式组x+5≤b 的解集是 3≤x≤4,则 a+b 的值为
( C)
A.5 B.8 C.11 D.9
14.对非负实数 x“四舍五入”到个位的值记为(x),即当 n 为非负整数
时,若 n-0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5,若(0.5x
-1)=6,则实数 x 的取值范围是 113≤3≤x<x<15. 15
3.若关于 x 的不等式(m-1)x<m-1 的解集为 x>1,则 m 的取值范围是 ( B)
A.m>1 B.m<1 C.m≠1 D.m=1
x+2y=4k, 4.已知2x+y=2k+1的解满足 y-x<1,则 k 的取值范围是
1 A.k>1 B.k<-2
C.k>0 D.k<1
( D)
x+a≥0, 5.若不等式组5-3x>x-3有解,则 a 的取值范围是 A.a≤-2 B.a≥-2
数解,则实数 a 的取值范围是
( C)
A.7<a<8 B.7<a≤8
C.7≤a<8 D.7≤a≤8
2x+y=3, 8.★若 m 使得关于 x,y 的二元一次方程组mx-2y=7 有解,且使关于
x 的一元一次不等式组x-2 1-2x≤1,有且仅有 3 个整数解,那么所有满
4x+m≤2
足条件的整数 m 的值之和是
x+2y=3m+1, 12.(2020·铜仁模拟)已知关于 x,y 的二元一次方程组3x-y=2m+3, 且 x,y 满足 x+y>3,则 m 的取值范围是 mm>>11.

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小(解析版)

高考数学复习选填题专项练习22---比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三期末)若0,a b c R >>∈,则( )A .ac bc >B .32a bC .2233a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .22log log a b >【答案】D 【解析】【分析】取特殊值排除AB 选项,根据指数函数以及对数函数的单调性判断CD 选项. 【详解】当1c =-时,a b ac bc >⇒<,故A 错误;当3,1a b ==时,3212a b=<=,故B 错误; 由于函数23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,a b >,则2233ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;由于函数2log yx =在0,上单调递增,0a b >>则22log log a b >,故D 正确;故选:D【点睛】本题主要考查了根据所给条件判断不等式是否成立以及利用函数单调性比较大小,属于基础题.2.(2020·江西省南城一中高三期末)三个数0.20.40.44,3,log 0.5的大小顺序是 ( )A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D【解析】由题意得,120.20.4550.40log0.514433<<<==<== D.3.(2020·重庆高三)己知命题:0p x ∀>,lg ln x x <,:0q x ∃>,2x <则下列命题中真命题是( ) A .p q ∧ B .()p q ∧⌝C .p q ∨D .()p q ∨⌝【答案】C 【解析】【分析】分别判断命题,p q 的真假再利用或且非的关系逐个选项判断即可. 【详解】易得当1x =时, lg ln x x =,故p 为假命题.当14x =时, 2x <.故q 为真命题.故p q ∨为真命题.故选:C【点睛】本题主要考查了命题真假的判断,属于基础题型. 4.(2020·钦州市第三中学高三月考)设sin6a π=,2log 3b =,2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】 【分析】利用相关知识分析各值的范围,即可比较大小.【详解】1sin 62a π==,21log 32b <=<,12343111421202c ⎛⎫=<= ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,c a b ∴<<,故选:B 【点睛】本题主要考查了指数函数的单调性,对数函数的单调性,属于中档题. 5.(2020·福建高三)已知log e a π=,lneb π=,2e lnc π=,则( )A .a b c <<B .b c a <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<,故选:B . 【点睛】本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.6.(2020·天津二十五中高三月考)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.7.(2020·榆林市第二中学高三月考)已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,320223<<=,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.8.(2020·内蒙古高三期末)已知π为圆周率,e 为自然对数的底数,则A .e π<3eB .π23e -<32e π-C .log e π>3log eD .π3log e >3log e π【答案】D 【解析】【分析】利用指数函数与对数函数的单调性、不等式的性质即可得出.【详解】对于A :函数y=x e 是(0,+∞)上的增函数,A 错;对于B :π3e ﹣2<3πe ﹣2⇔3e ﹣3<πe ﹣3,而函数 y=x e ﹣3是(0,+∞)上的减函数,B 错;对于C :31133e e e e log e log e log log log log πππ⇔⇔>><,而函数y=log e x 是(0,+∞)上的增函数,C 错,对于D :33333333e e e e log e log e log log log log ππππππππ⇔⇔⇔>>>>,D 正确;故答案为:D .【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题. 9.(2020·天津静海一中高三学业考试)已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数.设()8log 0.2a f =,()0.3log 4b f =,()1.12c f =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .a c b <<D .c a b <<【答案】A 【解析】 【分析】利用偶函数的对称性分析函数的单调性,利用指数函数、对数函数的单调性比较出 1.180.3log 0.2log 42、、的大小关系从而比较函数值的大小关系.【详解】由题意可知()f x 在(],0-∞上是增函数,在0,上是减函数.因为0.30.30.3100102log log 4log 193-=<<=-,3881log 0.125log 0.2log 10-=<<=, 1.122>, 所以 1.180.3log 0.2log 42<<,故c b a <<.故选:A【点睛】本题考查函数的性质,利用函数的奇偶性及对称性判断函数值的大小关系,涉及指数函数、对数函数的单调性,属于基础题.10.(2020·湖南高三期末)已知 3x >,且357log log log ==x y z ,则下列不等式关系中正确的是( )A .357<<x y zB .753<<z y xC .735<<z x yD .537<<y x z【答案】B 【解析】【分析】令357log log log x y z k ===,求得1313k x -=,1515k y -=,1717k z -=,再根据幂函数的单调性即可得出结论.【详解】令357log log log x y z k ===()1k >,∴3k x =,5ky =,7k z =,∴133133k k x -==,155155k k y -==,177177k k z -==,∵3x >,∴1k >,∴10k ->,∴幂函数1k y x -=在()0,∞+上单调递增,∴1110357k k k ---<<<,∴111111753k k k ---<<,即753<<z y x ,故选:B . 【点睛】本题主要考查指数式与对数式的互化,考查根据幂函数的单调性比较大小,属于中档题.11.(2020·福建高三月考)函数()f x 的定义域为R ,其导函数为()f x ',()01f x x '>+,且(1)=-y f x 为偶函数,则( )A .(2)(1)f f -<B .(2)(1)f f -=C .(2)(1)f f ->D .|(2)||(1)|f f ->【答案】A 【解析】 【分析】根据()01f x x '>+以及(1)=-y f x 为偶函数判断出函数()f x 的单调性和对称性,由此判断出()2f -和()1f 的大小关系.【详解】由于(1)=-y f x 为偶函数,所以函数()f x 关于1x =-对称.由于()01f x x '>+,所以当1,10x x <-+<时()'0f x <,()f x 递减,当1,10x x >-+>时,()'0f x >,()f x 递增.所以(2)(1)f f -<.故选:A【点睛】本小题主要考查利用导数研究函数的单调性,考查函数的奇偶性,考查函数的图像变换,考查函数的对称性,属于中档题.12.(2020·福建高三月考)已知25log 5log 2a =+,25log 5log 2b =⋅,25log 5log 2c =,则( ) A .b a c << B .a b c <<C .b c a <<D . c b a <<【答案】A 【解析】【分析】根据2225552log log 5log 83,0log log 24log 511=<<==<=<,得24a <<,25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=,再比较. 【详解】因为2225552log log 5log 83,0log log 24log 511=<<==<=<,所以252log 5log 24<+<, 所以24a <<,又因为25221log 5log 2log 51log 5b =⋅=⋅=,()()222225log 5log 5log 44log 2c ==>=, 所以b a c <<.故选:A 【点睛】本题主要考查对数的换底公式和对数比较大小,还考查了运算求解的能力,属于中档题.13.(2020·江西省南城一中高三期末)若23a ⎛= ⎪⎝⎭,log 3b π=,2log ec π=,则a 、b 、c 的大小关系为( )A .c a b >>B .b c a >>C .a b c >>D .b a c >>【答案】D 【解析】 【分析】利用指数函数与对数函数比较a 、b 、c 三个数与0和23的大小关系,进而可得出这三个数的大小关系. 【详解】指数函数23xy ⎛⎫= ⎪⎝⎭为R上的减函数,则22033⎛<<⎪⎝⎭,即023a <<;对数函数log y x π=为()0,∞+上的增函数,()322333ππ⎡⎤=<⎢⎥⎣⎦,233π∴<,所以,232log log 33πππ=<,即23b >;对数函数2log y x =为()0,∞+上的增函数,则22log log 10ec π=<=.因此,b a c >>.故选:D.【点睛】本题考查指数式和对数式的大小比较,一般利用指数函数、对数函数的单调性结合中间值法来得出各数的大小关系,考查推理能力,属于基础题.14.(2020·山西高三月考)若()10,,2nm m n a b e e c >>==+=,则( )A .b a c >>B .a c b >>C .c b a >>D .b c a >>【答案】A 【解析】 【分析】由基本不等式得出2m nm n ++>>,再根据函数的单调性即可比较大小.【详解】当0m n >>时,2m n m n ++>>,且xy e =是定义域R 上的单调增函数,2m n a e+==,所以2m ne+>a c >;又22m n m n e e e++>=,所以21()2m nm ne e e ++>,即b a >;所以b a c >>.故选:A .【点睛】本题主要考查了根据基本不等式和函数的单调性比较大小的问题,意在考查学生对这些知识的理解掌握水平.15.(2020·广西师大附属外国语学校高三)已知函数()1y f x =+是偶函数,且函数()y f x =在区间[)1,∞+上是增函数,则下列大小关系中正确的是( )A .()211log 323f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()211log 323f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()211log 332f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()211log 332f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】根据函数()1y f x =+是偶函数,关于x =0对称,则()y f x =的图象关于直线x =1对称,结合单调性比较大小.【详解】函数()1y f x =+是偶函数,关于x =0对称,()y f x =的图象关于直线x =1对称,且在区间[)1,∞+上是增函数,则在(0,1)上为减函数,1123>,2211322303327log log --=>, ()22119230228log log --=>, 所以()2211112332323log f f log f ⎛⎫⎛⎫>-><< ⎪ ⎪⎝⎭⎝⎭.故选:D 【点睛】此题考查函数奇偶性的辨析,根据对称性和单调性比较函数值的大小关系,关键在于准确识别函数的单调区间.16.(2020·山西高三月考)已知()f x 是定义在(0,)+∞上的可导函数,满足(1)1f =,2()()xf x f x x '-<,则不等式①(2)2f <,②(2)4f <,③1122⎛⎫> ⎪⎝⎭f ,④1124f ⎛⎫< ⎪⎝⎭中一定成立的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】【分析】根据题意构造函数()()f x g x x=-x ,并判断其在(0,+∞)上单调递减,然后分别算出g (1)、g (2)和g (12),并利用单调性比较大小,即可判断每个选项. 【详解】令()()f x g x x=-x ,则()()()2''xf x f x g x x -=-1()()22'xf x f x x x --=,∵xf '(x )﹣f (x )<x 2,∴g '(x )<0在(0,+∞)上恒成立,即g (x )在(0,+∞)上单调递减, ∵f (1)=1,∴()()1111101f g =-=-=,对于()()()222102f g g =-=<,即f (2)<4,∴①错误,②正确;对于()1112101222f g g ⎛⎫ ⎪⎛⎫⎝⎭=-= ⎪⎝⎭>,即1124f ⎛⎫ ⎪⎝⎭>,∴③和④均错误;因此一定成立的只有②,故选:A .【点睛】本题主要考查导数的综合应用,构造新函数是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。

2023高考数学复习专项训练《面面垂直的判定》(含解析)

2023高考数学复习专项训练《面面垂直的判定》(含解析)

2023高考数学复习专项训练《面面垂直的判定》一、单选题(本大题共12小题,共60分)1.(5分)已知A={ x|3a−1<x<2a+3},B={ x|x2−x−2⩽0},A⊆B,则a的取值范围为()A. { a|a⩽−12} B. { a|a⩽12或a⩾0}C. { a|a⩾4}D. { a|a⩽0或a⩾4}2.(5分)定义:设函数f(x)的定义域为D,如果[m,n]⊆D,使得f(x)在[m,n]上的值域为[m,n],则称函数f(x)在[m,n]上为“等域函数”,若定义域为[1e,e2]的函数g(x)= c x(c>0,c≠1)在其定义域的某个区间上为“等域函数”,则实数c的取值范围为()A. [2e2,1e) B. [2e2,1e]C. [e2e2,e1e] D. [e2e2,e1e)3.(5分)设x、y∈R,则“x≥2且y≥2”是“x2+y2≥4”.()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4.(5分)命题p:关于x的不等式ax2+ax−x−1<0的解集为(−∞,−1)∪(1a,+∞)的一个充分不必要条件是().A、a⩽−1B、a>0C、−2<a<0D、a<−2A. a⩽−1B. a>0C. −2<a<0D. a<−25.(5分)函数y=loga (2x−3)+√22(a>0且a≠1)的图像恒过定点P,且点P在幂函数f(x)的图像上,则f(4)=()A. 2B. 12C. 14D. 166.(5分)设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a−b|;④|a+b|>|a|−|b|;正确的是()A. ①和②B. ①和③C. ①和④D. ②和④7.(5分)已知ΔABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2<a 2,且cos 2A −3sin A +1=0,则sin (C −A)+√32cos (2A −B)的取值范围为 ( )A. (−12,−√34) B. (−12,−√34] C. [0,√34] D. (−23,−12) 8.(5分)函数y =x 2+ln |x|的图象大致为( )A. B.C.D.9.(5分)已知函数f(x)=x 1−|x|(x ∈D),有下列四个结论:①对任意x ∈D ,f(−x)+f(x)=0恒成立;②对任意m ∈(0,1),方程|f(x)|=m 有两个不相等的实数根; ③存在函数g(x)使得g(x)的图象与f(x)的图象关于直线y =x 对称; ④对任意k ∈(1,+∞),函数g(x)=f(x)−kx 在D 上有三个零点. 则上述结论中正确的个数为()A. 1B. 2C. 3D. 410.(5分)已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (2x +1)为奇函数,则( )A. f (−12)=0B. f (−1)=0C. f (2)=0D. f (4)=011.(5分)已知定义在R 上的奇函数f(x),且当x ∈[0,+∞)时,f(x)单调递增,则不等式f(2x +1)+f(1)⩾0的解集是()A. (−∞,1)B. (−1,+∞)C. [−1,+∞)D. (−∞,1]12.(5分)已知集合A ={x|1<x <3},集合B ={x|log 2(x +1)⩽2},则A ∪B =()A 、{x|1<x <3}B 、{x|x ⩽3}C 、{x|−1<x <3}D 、{x|1−<x ⩽3} A. {x|1<x <3} B. {x|x ⩽3} C. {x|−1<x <3}D. {x|1−<x ⩽3}二 、填空题(本大题共5小题,共25分)13.(5分)函数f(x)=x−1x中,若f(x)=0,则x=__________.14.(5分)某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则只参加物理小组的有__________人,同时参加数学和化学小组的有__________人.15.(5分)写出一个同时具有下列性质①②③的函数f(x): ______ .①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.16.(5分)已知函数f(x)满足以下条件:①在R上单调递增;②对任意x1,x2,均有f(x1)⋅f(x2)=4f(x1+x2),则f(x)的一个解析式为 ______.17.(5分)已知等式sin230°+sin230°+sin30°⋅sin30°=34sin220°+sin240°+sin20°⋅sin40°=34sin210°+sin250°+sin10°⋅sin50°=34请你写出一个具有一般性的等式,使你写出的等式包含了已知的等式,这个等式是______.三、解答题(本大题共6小题,共72分)18.(12分)已知集合A={x|1⩽x−1⩽4},B={x|−2<x⩽3},C={x|2a−1< x<2a+1}.(1)若x∈C是“x∈A”的充分条件,求实数a的取值范围;(2)若(A∩B)⊆C,求实数a的取值范围.19.(12分)已知函数f(x)=√3sinx+mcosx(m∈R).(Ⅰ)若m=1,求f(π12)的值;(Ⅰ)若m=√6,且f(x)=0,求tan2x.20.(12分)立德中学高一年级共有200名学生报名参加学校团委与学生会组织的社团组织.据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有多少人?21.(12分)已知sin(α−β)=12,sin(α+β)=13.(1)证明:tanα+5tanβ=0;(2)计算:tan(α−β)−tanα+tanβtan2α·tan(α−β)的值.22.(12分)在①两个相邻对称中心的距离为π2,②两条相邻对称轴的距离为π2,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解.问题:函数f(x)=cos(ωx+φ)(ω>0,0<φ<π2)的图象过点(0,12),且满足________,当α∈(0,π2)时,f(α2)=−√22,求sinα的值.23.(12分)已知函数f(x)=ax−2b x 2+1是定义在[−1,1]上的奇函数,且f(1)=1.(1)求a ,b 的值;(2)判断函数f(x)的单调性并用定义加以证明;(3)求使f(m −1)+f(2m −1)<0成立的实数m 的取值范围. 四 、多选题(本大题共5小题,共25分) 24.(5分)下列说法正确的是()A. “a >1”是“1a <1”的充分不必要条件B. 命题“∀x >1,x 2<1”的否定是“∃x <1,x 2⩾1”C. “x >1”是“(x −1)(x +2)>0”的必要条件D. 设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件 25.(5分)设a >1,b >1且ab −(a +b)=1,那么( )A. a +b 有最小值2+2√2B. a +b 有最大值2+2√2C. ab 有最小值3+2√2D. ab 有最大值1+√226.(5分)已知x ,y ∈R ,x >0,y >0,且x +2y =1.则下列选项正确的是()A. 1x +1y 的最小值为4√2 B. x 2+y 2的最小值为15 C.x−2y x 2+y 2>1D. 2x+1+4y ⩾427.(5分)已知M 、N 均为实数集R 的子集,且N ∩∁R M =∅,则下列结论中正确的是( )A. M ∩∁R N =∅B. M ∪∁R N =RC. ∁R M ∪∁R N =∁R MD. ∁R M ∩∁R N =∁R M28.(5分)已知函数f(x)=2cos (ωx +ϕ)(ω>0,|ϕ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A. f (x )+f (5π6−x)=0 B. 当x ∈[π6,π2]时,f (x )⩾−√3C. 若g(x)=2cos2x ,则g (x −π6)=f (x )D. 若sin 4α−cos 4α=−45,α∈(0,π2),则f (α+π4)的值为4−3√35答案和解析1.【答案】C;【解析】解:由题意知B ={ x |−1⩽x ⩽2}, (1)A =∅时,3a −1⩾2a +3,解得a ⩾4,满足题意;(2)A ≠∅时,a <4,由A ⊆B ,即有{2a +3⩽2,解得{a ⩽−12,可得a ∈∅; 综上,a ⩾4. 故选:C.分别讨论A 是否为空集,结合集合的关系,可得a 的不等式组,解不等式可得所求范围. 此题主要考查集合关系中的含参问题,注意对集合A 分空集和不是空集2种情况进行讨论,属于较易问题.2.【答案】D;【解析】解:由题意得,函数g(x)的图象与直线y =x 在[1e ,e 2]上有两个交点,即方程c x =x 在[1e,e 2]上有两个不等实根,即lnc =lnx x在[1e ,e 2]上有两个不等实根.设函数ℎ(x)=lnx x(1e⩽x ⩽e 2),ℎ′(x)=1−lnx x 2,当1e⩽x <e 时,ℎ′(x)>0,函数ℎ(x)单调递增; 当e <x ⩽e 2时,ℎ′(x)<0,函数ℎ(x)单调递减. 所以ℎ(x)在x =e 处取得极大值,也是最大值,为ℎ(e)=1e .又ℎ(1e )=−e,ℎ(e 2)=2e 2, 故2e 2⩽lnc <1e ,解得e 2e 2⩽c <e 1e.故选:D.由题意可得函数g(x)的图象与直线y =x 在[1e ,e 2]上有两个交点,即lnc =lnx x在[1e ,e 2]上有两个不等实根.构造函数,通过导数求函数的最值与区间端点值,数形结合求解即可.此题主要考查了导数的新定义问题,考查转化思想,属于中档题.3.【答案】A; 【解析】略4.【答案】null; 【解析】此题主要考查了一元二次不等式的解法,充分必要条件的应用,属于中档题. 先根据命题p 成立的充要条件,求出a 的取值范围,然后根据充分不必要条件的定义结合各选项可得答案.解:由题意命题p 即(ax −1)(x +1)<0的解集为(−∞,−1)∪(1a ,+∞),即充要条件为{a <0−1⩽1a ,解得a ⩽−1,因为(−∞,−2)⫋(−∞,−1]所以a <−2是a ⩽−1的一个充分不必要条件, 故选D.5.【答案】B; 【解析】此题主要考查了对数的恒过定点问题以及幂函数的解析式和求值,属于基础题.将定点代入幂函数解析式,可得a ,进而可求f(4).解:可知函数y =log a (2x −3)+√22(a >0且a ≠1)的图象恒过定点P(2,√22), 令幂函数为f(x)=x a ,代入P 点坐标, 可得√22=2a ,则a =−12, f(x)=x −12, 则f(4)=4−12=12.故选B.6.【答案】C;【解析】此题主要考查了不等式与绝对值不等式,根据ab >0,逐项判断即可得到答案.解:∵ab >0,∴a 、b 同号,∴ |a +b|>|a|,|a +b|=|a|+|b|,∴①④正确,故选C.7.【答案】A; 【解析】此题主要考查了二倍角公式,解三角形,以及三角恒等变换等内容,需要学生熟练掌握并巧妙变换.由题意,利用二倍角公式将cos2A −3sin A +1=0化成关于sin A 的一元二次方程,解出sin A 的值,利用cos A <0求出A 的取值;将A 的值和B =π−A −C 代入并化简,可以得到关于C 的三角函数,利用三角函数单调性求出值域,即所求.解:因为cos2A −3sin A +1=0, 所以1−2sin2A −3sin A +1=0, 所以sin A =12或−2(舍), 又因为cos A <0, 所以A =5π6, 所以sin (C −A)+√32cos (2A −B)=sin (C −5π6)+√32cos [2×−(π−5π6−C)]=sin (C −5π6)+√32sin C =−12cos C , 又因为C ∈(0,π6), 所以cos C ∈(√32,1), 所以−12cos C ∈(−12,−√34) .故选A.8.【答案】A;【解析】此题主要考查了函数图象的识别,关键是掌握函数的奇偶性和函数的单调性和函数值的变化趋势,属于基础题.先求出函数为偶函数,再根据函数值的变化趋势或函数的单调性即可判断. 解:∵f(−x)=x 2+ln |x|=f(x), ∴y =f(x)为偶函数,∴y =f(x)的图象关于y 轴对称,故排除B ,C , 当x >0时,y =x 2+ln x 为增函数,故排除D. 故选A .9.【答案】C;【解析】解:①函数的定义域是{x|x ≠±1},f(−x)+f(x)=−x 1−|−x|+x 1−|x|=0,故①正确;②y =|f(x)|=|x1−|x||={x x−1,x >1x 1−x ,0<x <1−x1+x,−1<x <0−x x+1,x <−1,函数的图象如图所示:y =m 与函数图象有2个交点,故②正确;③设函数g(x)上的任一点为P(x,y)关于y =x 的对称点为(y,x)在函数f(x)上, 则x =y 1−|y|,当y >0时,y =xx+1,当y ⩽0时,y =x 1−x,当x =2时,y =23或y =−2,存在一个x 对着两个y 的值,所以不存在函数g(x)使得g(x)的图象与f(x)的图象关于直线v =x 对称,故③不正确; ④x1−|x|−kx =0,当x =0时,满足方程,所以方程的一个实数根是x =0,当x ≠0时,k =11−|x|,|x|=1−1k ,当k >1时,1−1k >0,x =±(1−1k ),),所以函数有3个零所以满足方程g(x)=f(x)−kx=0的有三个实数根据0,±(1−1k点,故④正确.故正确的个数有3个.故选:C.①根据解析式计算f(−x)+f(x)=0;②画出函数y=|f(x)|的图象,由图象的交点个数判断实数根的个数;③假设存在函数g(x)满足条件,再根据函数的定义,判断选项;④根据f(x)−kx=0,求方程的实数根的个数,再判断定义域上的零点个数.此题主要考查函数的图象和性质,零点,重点考查数形结合分析问题的能力,推理能力,属于中档题型.10.【答案】B;【解析】本题是对函数奇偶性和周期性的综合考查,属于拔高题.推导出函数f(x)是以4为周期的周期函数,由已知条件得出f(1)=0,结合已知条件可得出结论.解:因为函数f(x+2)为偶函数,则f(2+x)=f(2−x),可得f(x+3)=f(1−x),因为函数f(2x+1)为奇函数,则f(1−2x)=−f(2x+1),所以,f(1−x)=−f(x+1),所以,f(x+3)=−f(x+1)=f(x−1),即f(x)=f(x+4),故函数f(x)是以4为周期的周期函数,因为函数F(x)=f(2x+1)为奇函数,则F(0)=f(1)=0,故f(−1)=−f(1)=0,其它三个选项未知.故选B.11.【答案】C;【解析】此题主要考查综合运用函数的单调性与奇偶性解不等式,属于中档题.解:因为函数在[0,+∞)上是增函数,且函数是奇函数,所以函数在(−∞,0)上是增函数,函数在x=0处连续,所以函数在R上是增函数,又f(−1)=−f(1),所以不等式可化为f(2x+1)⩾−f(1)=f(−1),所以2x+1⩾−1,解得x⩾−1,即不等式的解集为[−1,+∞).故选C.12.【答案】null;【解析】解:集合A={x|1<x<3},集合B={x|log2(x+1)⩽2}={x|−1<x⩽3},则A∪B={x|−1<x⩽3}.故选:D.求出集合A,集合B,利用并集定义能求出A∪B.此题主要考查集合的运算,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.13.【答案】1或-1;【解析】略14.【答案】5;8;【解析】此题主要考查运用集合间的关系确定元素个数问题以及venn图的运用,属于基础题.把集合间的关系利用方程表示出来,再解方程即可.解:由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学小组,因为参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,所以只参加物理的有15−6−4=5人.设同时参加数学和化学小组的人数有x人,则只参加数学的有26−6−x=20−x,只参加化学的有13−4−x=9−x.又总人数为36人,即20−x+x+6+4+5+9−x=36,所以44−x=36,解得x=8.即同时参加数学和化学小组的人数有8人,15.【答案】f(x)=x2;【解析】此题主要考查了幂函数的求导公式,奇函数的定义及判断,考查了计算能力,属于基础题.函数f(x)=x 2,f(x 1x 2)=(x 1x 2)2=x 12x 22=f(x 1)f(x 2)满足①,求出导函数,可判断满足②③.解:f(x)=x 2时,f(x 1x 2)=(x 1x 2)2=x 12x 22=f(x 1)f(x 2);当x ∈(0,+∞)时,f′(x)=2x >0;f′(x)=2x 是奇函数. 故答案为:f(x)=x 2.16.【答案】f (x )=2x+2;【解析】解:因为函数f(x)满足对任意x 1,x 2,均有f(x 1)⋅f(x 2)=4f(x 1+x 2), 故考虑基本初等函数中的指数函数, 又f(x)在R 上单调递增, 则指数函数的底数大于1,所以f(x)的一个解析式为f(x)=2x+2. 故答案为:f(x)=2x+2.由条件②,考虑为基本初等函数中的指数函数,再利用单调性,即可得到答案. 此题主要考查了基本初等函数性质的理解与应用,指数函数性质的理解与应用,考查了逻辑推理能力,属于基础题.17.【答案】si n 2α+si n 2(60°-α)+sinα•sin (60°-α)=34;【解析】解:等式的右边为常数34,等式左边的两个角之和为60°,故由归纳推理可知,满足条件的一个结论可以是:sin 2α+sin 2(60°−α)+sinα⋅sin(60°−α)=34.故答案为:sin 2α+sin 2(60°−α)+sinα⋅sin(60°−α)=34.根据两个等式的特点,确定角和角之间的关系,然后利用归纳推理归纳出结论. 此题主要考查归纳推理的应用,根据归纳推理,先从条件中确定等式的规律是解决此类问题的基本思路,属于基础题.18.【答案】解:(1)集合A={x|1≤x -1≤4}={x|2≤x≤5},C={x|2a-1<x <2a+1}, ∵x ∈C 是“x ∈A”的充分条件,∴{2a +1≤52a −1≥2,解得32≤a ≤2, ∴实数a 的取值范围是[32,2];(2)∵集合A={x|1≤x -1≤4}={x|2≤x≤5},B={x|-2<x≤3},C={x|2a-1<x <2a+1}, ∴A∩B={x|2≤x≤3},(A∩B )⊆C ,∴{2a −1<22a +1>3,解得1<a <32, ∴实数a 的取值范围是(1,32).;【解析】(1)求出集合A ,利用x ∈C 是“x ∈A ”的充分条件,列出不等式组,由此能求出实数a 的取值范围;(2)利用交集定义求出A ∩B ,利用(A ∩B)⊆C ,列出不等式组,由此能求出实数a 的取值范围.此题主要考查集合的运算,考查充分条件、子集、交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.19.【答案】解:(Ⅰ)若m=1,则函数f (x )=√3sinx+cosx=2sin (x+π6), ∴f (π12)=2sin π4=√2.(Ⅱ)∵m=√6,f (x )=√3sinx+√6cosx=0, ∴√3sinx-=-√6cosx ,∴tanx=-√2, ∴tan2x=2tanx 1−tan 2x =2√2.;【解析】(Ⅰ)由题意,利用两角和差的三角公式化简函数f(x)的解析式,从而得到f(π12)的值.(Ⅰ)先由题意求得tanx 的值,再利用二倍角的正切公式,计算tan2x 的值. 此题主要考查两角和差的三角公式,二倍角的正切公式,属于基础题.20.【答案】解:由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有103+120-200=23人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.; 【解析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 此题主要考查集合的应用,考查运算求解能力,属于基础题.21.【答案】解:(1)证明:由条件sin(α−β)=12,sin(α+β)=13, 即sinαcosβ−cosαsinβ=12,sinαcosβ+cosαsinβ=13, 解得sinαcosβ=512,cosαsinβ=−112,可得tanαtanβ=-5, 从而可得tanα=-5tanβ,tanα+5tanβ=0得证.(2)由tan(α−β)=tanα−tanβ1+tanαtanβ,可得tanα-tanβ=tan (α-β)(1+tanαtanβ),∴原式=tan(α−β)−tanα+tanβtan 2αtan(α−β)=tan(α−β)−tan(α−β)(1+tanαtanβ)tan 2αtan(α−β)=−tan(α−β)·tanαtanβtan 2αtan(α−β)=−tanβtanα=15.;【解析】(1)由题意,把所给条件利用两角和差的三角公式展开,化简可得结论. (2)由题意,把两角差的正切公式展开变形,代入要求的式子化简,可得结论. 此题主要考查两角和差的三角公式的应用,同角三角函数的基本关系,属于中档题.22.【答案】解:由函数f(x)=cos(ωx +φ)的图象过点(0,12),得f(0)=cosφ=12, 又因为0<φ<π2,所以φ=π3,在①②③三个条件中任选一个,可知最小正周期T =π, 根据T =2π|ω|, 得ω=2,所以f(x)=cos(2x +π3), 由f(α2)=−√22,得cos(α+π3)=−√22, 由α∈(0,π2),得α+π3∈(π3,5π6),所以sin(α+π3)=√1−cos 2(α+π3)=√22, sinα=sin[(α+π3)−π3]=sin(α+π3)cos π3−cos(α+π3)sin π3 =√22×12−(−√22)×√32=√2+√64. ;【解析】此题主要考查三角恒等变换和三角函数的图象和性质,属于中档题. 先由f(0)=12求出φ,由三个条件中任选一个,可知最小正周期T =π,得ω=2,求出f(x) ,结合条件以及同角三角函数关系求得sin(α+π3),再利用两角差的正弦公式即可求解.23.【答案】null; 【解析】(1)由奇函数的性质可得f(0)=0,可求得b 的值,再由f(1)=1可求得a 的值,从而可得a ,b 的值;(2)f(x)在[−1,1]上是增函数,利用增函数的定义即可证明;(3)根据函数的奇偶性与单调性将不等式转化为关于m 的一次不等式,求解即可. 此题主要考查函数奇偶性与单调性的综合,考查不等式的解法,考查转化思想与运算求解能力,属于中档题.24.【答案】AD;【解析】解:对于A :当“a >1”时“1a <1”成立,反之不成立,故“a >1”是“1a <1”的充分不必要条件,故A 正确;对于B :命题“任意x >1,都有x 2<1”的否定是“存在x >1,使得x 2⩾1”故B 不正确; 对于C :x >1,则(x −1)(x +2)>0,但由(x −1)(x +2)>0,不能推出x >1,故“x >1”是“(x −1)(x +2)>0”的充分不必要条件,故C 不正确;对于D :设a ,b ∈R ,则“a ≠0”推不出“ab ≠0”,由“ab ≠0”能够推出“a ≠0”,故“a ≠0”是“ab ≠0”的必要不充分条件,故D 正确. 故选:AD.直接利用充分条件和必要条件,命题的否定,简易逻辑中的相关知识的应用判断A 、B 、C 、D 的结论此题主要考查的知识要点:充分条件和必要条件,命题的否定,简易逻辑,主要考查学生的运算能力和数学思维能力,属于基础题.25.【答案】AC;【解析】解:∵a >1,b >1, ∴ab =1+(a +b)⩽(a+b 2)2(当且仅当a =b >1时,取等号),即(a +b)2−4(a +b)−4⩾0且a +b >2, ∴a +b ⩾2+2√2,∴a +b 有最小值2+2√2,即选项A 正确,B 错误;由ab −(a +b)=1,得ab −1=a +b ⩾2√ab (当且仅当a =b >1时,取等号), 即ab −2√ab −1⩾0且ab>1, ∴ab ⩾3+2√2,∴ab 有最小值3+2√2,即选项C 正确,D 错误. 故选:AC . 由(a +b)⩽(a+b 2)2,可推出a +b 的最小值;由a +b ⩾2√ab ,可推出ab 的最小值.该题考查基本不等式的应用,熟练掌握基本不等式的各种变形是解答该题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.26.【答案】BD;【解析】解:对于A :已知x ,y ∈R ,x >0,y >0,且x +2y =1,所以1x +1y =x+2y x+x+2y y=1+3+2y x+xy ⩾4+2√2,当且仅当x 2=2y 2等号成立,故A 错误;对于B :x 2+y 2=(1−2y)2+y 2=5y 2−4y +1=5(y −25)2+15,当y =25时,最小值为15;故B 正确;对于C :当x =12,y =14时,x−2yx 2+y 2>1不成立,故C 错误;对于D :2x+1+4y =2x+1+22y ⩾2√2x+2y+1=4,当且仅当y =12时,等号成立,故D正确.故选:BD.直接利用不等式的性质和基本不等式的应用判断A、B、C、D的结论.此题主要考查的知识要点:不等式的性质,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.27.【答案】BD;【解析】解:因为N∩∁R M=∅,所以N⊆M,所以M∩∁R N≠∅,选项A错误;M∪∁R N=R,选项B正确;∁R M∪∁R N=∁R N,选项C错误;∁R M∩∁R N=∁R M,选项D正确.故选:BD.根据题意知N⊆M,利用交集、并集和补集的定义,判断正误即可.此题主要考查了集合的定义与运算问题,也考查了推理与判断能力,是基础题.28.【答案】BD;【解析】此题主要考查了余弦函数的图象及性质,同角三角函数关系及两角差的余弦公式,属于中档题.根据对称中心与对称轴的最小距离求出周期T,得到ω=2,再根据对称轴方程求出ϕ=−π6,再根据余弦函数的图象及性质对四个选项一一判断即可,选项D先利用同角三角函数关系及二倍角公式化简,再求出f(α+π4).解:由题有T=π,则ω=2,又由对称轴x=π12可得,2×π12+ϕ=kπ,k∈Z,又|ϕ|<π2,则ϕ=−π6,故f(x)=2cos(2x−π6),对于A,因为f(x)+f(5π6−x)=2cos(2x−π6)+2cos(53π−2x−π6)=2cos(2x−π6)−2sin2x=2cos2x cosπ6+2sin2x sinπ6−2sin2x=√3cos2x−sin2x则f(x)+f(5π6−x)=0错误,故A选项不正确.对于B,x∈[π6,π2],则2x−π6∈[π6,5π6],则f(x)∈[−√3,√3],故B选项正确;对于C,f(x)=2cos2(x−π12),应将g(x)=2cos2x的图象向右平移π12个单位,故C选项错误.对于D,sin4α−cos4α=−cos2α=−45,且α∈(0,π2),则2α∈(0,π),故cos2α=45,sin2α=35,而f (α+π4)=2cos (2α+π3)=cos 2α−√3sin 2α=4−3√35,故D 选项正确; 故选BD .。

高考数学中档小题押题训练(四)

高考数学中档小题押题训练(四)

高考数学中档小题押题训练(四)姓名:____________班级:____________一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)....已知13,22m⎡⎤∈-⎢⎥⎣⎦,命题2123ym+=-表示焦点在上的椭圆.则下列命题中为真命题的是(A .8B .4C .二、多选题(本题共4小题,每小题5分,共有多项符合题目要求.全部选对的得5分,分.)9.用分层随机抽样法从某校高一年级学生的数学竞赛成绩(满分容量为120的样本,其中男生成绩的数据有80个,女生成绩的数据有个男生的成绩分为6组,绘制得到如图所示的频率分布直方图,A .男生成绩的样本数据在[)90,110内的频率为B .男生成绩的样本数据的平均数为97C .男生成绩的样本数据的第75百分位数为118D .女生成绩的样本数据的平均数为91,则总样本的平均数为10.已知函数(),()f x g x 的定义域均为R ,(f x 且当[0,2]x ∈时,3()(1)f x x =-,则()A .()f x 的图象关于点对称(10),B .(2023)1f =A .()1π2sin 36f x x ⎛⎫=- ⎪⎝⎭B .若把()f x 的横坐标缩短为原来的C .若把函数()f x 的图像向左平移π2D .ππ,3x ⎡⎤∀∈-⎢⎥⎣⎦3,若()3π32f x a f ⎛+≥ ⎝12.已知函数()()(22f x x b x a =---A .a b>C .()f x 在(),b ∞+上单调递增三、填空题(本题共4小题,每小题分,第二空3分.)13.写出一个同时满足下列条件①②的等比数列①10n n a a +<;②1n n a a +<参考答案:⋂中元素的个数即为直线所以A B由图可知直线y x=与正方形ABCD⋂中元素的个数为2.即A B故选:C.3.A【分析】根据冠军的归属分类列表后结合题设条件可得冠军的国家【详解】根据题意,有冠军甲乙丙由题意知,60ABC ︒∠=,所以23AC =,AC BC ⊥所以AB 的中点即为△ABC 又因为2PA PC ==,所以120APC ︒∠=,PM =所以在APC △中,取AC 的中点+【点睛】方法点睛:零点问题的求解常用的方法有:图象法(作出函数()f x 的图象分析判断);(3)方程分析两函数(),()g x h x 图象即得解).要根据已知灵活选择方法求解11.ACD【分析】对A ,由函数图像即可算出函数的周期T ,由高点即可求出函数的解析式;对B 、C ,由图像的平移变换即可求得变换后的图像,然后根据三角函数的单调性以及函数的奇偶性即可判断;对用三角函数知识即可求得a 的最小值.【详解】对A ,由题意知2,A =6πT =,2π16π3ω∴==,即2πsin()13ϕ+=,2ππ2π32k ϕ∴+=+(Z k ∈),ϕ∴又πϕ< ,π6ϕ∴=-,()1π2sin 36f x x ⎛⎫∴=- ⎪⎝⎭,所以对B ,把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数1π2sin 26y x ⎛⎫=- ⎪⎝⎭,[]ππx ∈- ,,∴-1π2sin 26y x ⎛⎫∴=- ⎪⎝⎭在[]π,π-上不单调递增,故B 错误;对C ,把()y f x =的图像向左平移π2个单位,。

高考数学(文科)中档大题规范练(三角函数)(含答案)

高考数学(文科)中档大题规范练(三角函数)(含答案)

中档大题规范练中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z .故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1,从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.。

2024高考数学全国甲卷解析(文科)(1)

2024高考数学全国甲卷解析(文科)(1)

2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{}{}1,2,3,4,5,9,1A B x x A ==+∈∣,则()A B ⋂=A {}1,2,3,4B {}1,2,3,4C {}1,2,3,4D {}1,2,3,4【答案】A【解析】因为{}{}{}1,2,3,4,5,9,10,1,2,3,4,8A B x x A ==+∈=∣,所以A {}1,2,3,4B ⋂=,故选(A ). 【难度】基础题【关联题点】集合运算、交集 2.设z =则()z z ⋅=A .iB .1C .-1D .2【答案】D【解析】因为z =,所以2z z ⋅=,故选D .【难度】基础题【关联题点】复数运算、共轭复数3.若,x y 满足约束条件4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩则5z x y =-的最小值为A .12B .0C .52-D .72-【答案】D【解析】将约束条件两两联立可得3个交点:()30,1,12⎛⎫- ⎪⎝⎭、和13,2⎛⎫ ⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D . 【难度】基础题【关联题点】线性规划、约束条件4.等差数列{}n a 的前n 项和为n S ,若()9371,S a a =+=A -2 B73 C 1D29【答案】D【解析】令0d =,则9371291,,99n n S a a a a ===+=,故选D . 【难度】基础题【关联题点】等差数列、通项公式5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是() A14B13C12D23【答案】B【解析】甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B . 【难度】基础题【关联题点】计数原理、特殊位置法6.已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为 A .4 B .3C .2D .2【答案】C 【解析】12212F F c e a PF PF ===-,故选C . 【难度】中档题【关联题点】双曲线、离心率、圆锥曲线定义7.曲线()63f x x x =+在()0,1-处的切线与坐标轴围成的面积为()A16B32C12【答案】A【解析】因为563y x '=+,所以1113,31,1236k y x S ==-=⨯⨯=,故选(A ). 【难度】基础题【关联题点】导数应用、切线8.函数()()2e esin xxf x x x -=-+-的大致图像为()ABCD【答案】B【解析】()()()()22-ee sin()e e sin xx x x f x x x x x f x --=-+--=-+-=,所以()f x 是偶函数,图像关于y 轴对称,又因为2()0()22n n f n Z ππ⎛⎫=-<∈ ⎪⎝⎭,观察图像知选B 【难度】中档题【关联题点】函数的奇偶性、函数图像9.已知cos cos sin ααα=-则()tan 4πα⎛⎫+= ⎪⎝⎭A .1B 1C D 1【答案】B【解析】因为cos cos sin ααα=-所以tan 1tan 1tan 141tan παααα+⎛⎫=+== ⎪-⎝⎭,故选B .【难度】基础题【关联题点】三角恒等变化、两角和与差的正切公式10.找不到题目11.已知已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若,m n αα⊥⊥,则//m n ;②若,//m m n αβ⋂=,则//n β;③若//,//,m n m αα与n 可能异面,也可能相交,也可能平行;④若,m n αβ⋂=与α和β所成的角相等,则m n ⊥,以上命题是真命题的是()(A )①③B 23C ①②③D ①③④ 【答案】A【解析】//m n 一定有//n α或//n β,(1)对αβ⊥时m n ⊥也有可能,n α⊂或n β⊂,(2)错.//n α且//n β一定有//m n ,(3)对n 与,αβ所成角相等,有可能,//m n ,(4)错,选A .【难度】中档题【关联题点】立体几何线面关系、线面关系的判定12.在ABC 中,内角,,A B C 所对边分别为,,a b c ,若3B π=,294b ac =,则()sin sin A C += A32C2D2【答案】C 【解析】因为29,34B b ac π==,所以241sin sin sin 93A CB ==.由余弦定理可得:222b a c =+94ac ac -=,即:2222131313,sin sin sin sin 4412a c ac A C A C +=+==,所以()222sin sin sin sin A C A C +=+72sin sin ,sin sin 4A C A C +=+=故选C .【难度】中档题【关联题点】余弦定理、解三角形二、填空题:本题共4小题,每小题5分,共20分.13.二项式1013x ⎛⎫+ ⎪⎝⎭的展开式中系数的最大值是___.【答案】5【解析】1013x ⎛⎫+ ⎪⎝⎭展开式第1r +项系数1013rr C ⎛⎫ ⎪⎝⎭,令第1r +项系数最大 则11101011101011331133rr r r r r r r C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,711,244r r ≤≤∴=,系数最大为2210153C ⎛⎫= ⎪⎝⎭.【难度】中档题【关联题点】二项式系数、组合数14.函数()sin f x x x =在[]0,π上的最大值是___. 【答案】2【解析】()sin 2sin 23f x x x x π⎛⎫==-≤ ⎪⎝⎭,当且仅当56x π=时取等号. 【难度】中档题【关联题点】三角函数图像与性质、辅助角公式15.已知81151,log log 42a a a >-=-,则a =___. 【答案】64 【解析】因为284211315log log log log 22a a a a -=-=-, 所以()()22log 1log 60a a +-=,而1a >,故2log 6,64a a ==. 【难度】中档题【关联题点】一元二次方程、对数运算16.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为___.【答案】()2,1-【解析】令()2331x x x a -=--+,则()2331a x x x =-+-,设()()()2331,x x x x x ϕϕ=--'+()()()351,x x x ϕ=+-在()1,∞+上递增,在()0,1上递减.因为曲线33y x x =-与(y x =-21)a -+在()0,∞+上有两个不同的交点,()()01,12ϕϕ==-,所以a 的取值范围为(2-,1). 【难度】较难题【关联题点】三次函数、导数、函数零点三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式. 【答案】见解析. 【解析】(1)因为1233n n S a +=-,所以12233n n S a ++=-, 两式相减可得:1223n n a a ++=-13n a +,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以1151,3n n a a -⎛⎫== ⎪⎝⎭;(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【难度】中档题【关联题点】数列通项公式、前n 项和与通项公式的关系18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%99%的把握认为甲、乙两车间产品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =.设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?)12.247≈附:()()()()()()2220.0500.0100.010, 3.8416.63510.828P K k n ad bc K a b c d a c b d k ≥-=++++【答案】见解析.【解析】()()22150702426301 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)96160.6415025p === ()11112221.650.5 1.650.5 1.650.56715012.247p p p n ⨯-+=+⋅≈+⨯≈()11.65,p p p p n->+∴可以认为升级改造后,该工厂产品的优级品率提高了.【难度】中档题【关联题点】独立性检验、概率19.(12分)如图,已知//,//,2AB CD CD EF AB DE EF CF ====,4,10,23,CD AD BC AE M ====为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到ADE 的距离. 【答案】见解析 【解析】(1)由题意://,EF CM EF CM =,而CF 写平面,ADO EM 平面ADO ,所以EM //平面BCF ;(2)取DM 的中点O ,连结,OA OE ,则,,3,3OA DM OE DM OA OE ⊥⊥==,而23AE =,故23,3AOEOA OE S⊥=. 因为2,10DE AD ==,所以,10.AOEAD DE S DM ⊥=设点M 到平面ADE 的距离为h , 所以**1143230,33510M ADE ADEAOEV S h SDM h -====, 故点M 到ADE 的距离为2305. 【难度】中档题【关联题点】立体几何、空间向量、点到面的距离20.(12分)已知函数()()1ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立. 【答案】见解析【解析】()()()()111ln 1,,0ax f x a x x f x x x-=--+'=>. 若()()0,0,a f x f x ≤<的减区间为()0,∞+,无增区间; 若0a >时,当10x a<<时,()0f x '<, 当1x a >时,()0f x '>,所以()f x 的减区10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ∞⎛⎫+ ⎪⎝⎭; (2)因为2a ≤,所以当1x >时,()()111e e 1ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令()g x 1e2ln 1x x x -=-++,则()11e 2x g x x-=-+'.令()()h x g x =',则()121e x h x x-=-'在()1,∞+上递增,()()10h x h '>=',所以()()h x g x ='在()1,∞+上递增,()()10g x g '>=',故()g x 在()1,∞+上递增,()()10g x g >=,即:当1x >时,()1e x f x -<恒成立.【难度】较难题【关联题点】函数极值、导数、导数解不等式21.(12分)已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,点(1M ,32⎫⎪⎭在椭圆C 上,且MF x ⊥轴.(I )求椭圆C 的方程;(2)()4,0P ,过P 的直线与椭圆C 交于,A B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴. 【答案】见解析 【解析】(1)设椭圆C 的左焦点为1F ,则132,2F F MF ==.因为MF x ⊥轴,所以 1MF 15,242a MF MF ==+=,解得:2224,13a b a ==-=,故椭圆C 的方程为:22143x y +=;(2)解法1:设()()1122,,,,A x y B x y AP PB λ=,则12124101x x y y λλλλ+⎧=⎪+⎪+=⎨⎪+⎪⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩ 可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅⋅=+-+-,结合上式可得:5λ-2230.x λ+=,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()()1122,,,A x y B x y ,则12124444x x y y ---=-,即:()1221214x y x y y y -=-,所以(12x y -)()()()222222221221122112212121214444433y y x y x y x y x y x y y y y y y y ⎛⎫⎛⎫+=-=+-+=-+ ⎪ ⎪⎝⎭⎝⎭()()2112214,y y x y x y =-+即:1221212112,253.x y x y y y x y y y +=+=-, 则2122112335252Q y y y y x y y x ==--1y =,AQ y ⊥轴.【难度】较难题【关联题点】解析几何、圆锥曲线、韦达定理(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=cos 1ρθ+.(1)写出C 的直角坐标方程; (2)直线(x tt y t a =⎧⎨=+⎩为参数)与曲线C 交于A B 、两点,若2AB =,求a 的值.【答案】见解析.【解析】(1)因为cos 1ρρθ=+,所以()22cos 1ρρθ=+,故C 的直角坐标方程为:22(x y x +=21)+,即:221y x =+;(2)将x t y t a=⎧⎨=+⎩代入221y x =+可得:()222110,2t a t a AB +-+-====,解得:34a =. 【难度】基础题【关联题点】极坐标、参数方程23.[选修4-5:不等式选讲](10分)实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】见解析.【解析】(1)因为3a b +≥,所以()22222a b a b a b +≥+>+;(2)()222222222222a b b a a b b a a b a b -+-≥-+-=+-+()()()()()2222216a b a b a b a b a b a b =+-+≥+-+=++-≥【难度】较难题【关联题点】基本不等式、绝对值不等式。

高三数学高考大题专项训练全套(15个专项)(典型例题)(含答案)

高三数学高考大题专项训练全套(15个专项)(典型例题)(含答案)

⾼三数学⾼考⼤题专项训练全套(15个专项)(典型例题)(含答案)1、函数与导数(1)2、三⾓函数与解三⾓形3、函数与导数(2)4、⽴体⼏何5、数列(1)6、应⽤题7、解析⼏何8、数列(2)9、矩阵与变换10、坐标系与参数⽅程11、空间向量与⽴体⼏何12、曲线与⽅程、抛物线13、计数原理与⼆项式分布14、随机变量及其概率分布15、数学归纳法⾼考压轴⼤题突破练 (⼀)函数与导数(1)1.已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极⼤值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线⽅程为 y -(a e +1)=x -1,⼜直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e.(2)若a <0,f ′(x )=a e x (x -1)+x 2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成⽴,函数在(-∞,0)上⽆极值;当x ∈(0,1)时,f ′(x )>0恒成⽴,函数在(0,1)上⽆极值.⽅法⼀当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极⼤值f (x 0),则x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ?> +> -+ = ?①②③由③得0e x a =-x 20x 0-1,代⼊②得-x 0x 0-1+x 0>0,结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x ,设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x ,当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e2.⼜a <0,故当极⼤值为正数时,a ∈-4e 2,0,从⽽不存在负整数a 满⾜条件.⽅法⼆当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.⼜H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴?x 0∈(1,2),使得H (x 0)=0,且当10,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极⼤值f (x 0)=0e x a x +x 0.(*)⼜H (x 0)=0e x a (x 0-1)+x 20=0,∴00e x a x =-x 0x 0-1,代⼊(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0,∴不存在负整数a 满⾜条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=f (x ),f (x )≥g (x ),g (x ),f (x )(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且?x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a ,∵a >0,∴x 1当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极⼤值为f (0)=1,极⼩值为f 2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵?x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解,设y =1x 3+3x =3x 2+1x3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成⽴,∴y =1x 3+3x 在[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最⼤值为4,∴2a ≤4,即a ≤2.⾼考中档⼤题规范练 (⼀)三⾓函数与解三⾓形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin x +π4sin x -π4,x ∈R . (1)求f (x )的最⼩正周期和值域;(2)若x =x 00≤x 0≤π2为f (x )的⼀个零点,求sin 2x 0的值.解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x )=1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin 2x -π6+12,所以f (x )的最⼩正周期为π,值域为-32,52. (2)由f (x 0)=2sin 2x 0-π6+12=0,得 sin 2x 0-π6=-14<0,⼜由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6,所以-π6≤2x 0-π6<0,故cos 2x 0-π6=154,此时sin 2x 0=sin 2x 0-π6+π6 =sin 2x 0-π6cos π6+cos 2x 0-π6sin π6 =-14×32+154×12=15-38.2.(2017·江苏南通四模)已知向量m =sin x 2,1,n =1,3cos x2,函数f (x )=m ·n . (1)求函数f (x )的最⼩正周期;(2)若f α-2π3=23,求f 2α+π3的值.解 (1)f (x )=m ·n =sin x 2+3cos x2=212sin x 2+32cos x2=2sin x 2cos π3+cos x 2sin π3 =2sin x 2+π3,所以函数f (x )的最⼩正周期为T =2π12=4π.(2)由f α-2π3=23,得2sin α2=23,即sin α2=13. 所以f 2α+π3=2sin α+π2=2cos α=2?1-2sin 2α2=149. 3.(2017·江苏南师⼤考前模拟)已知△ABC 为锐⾓三⾓形,向量m =cos A +π3,sin A +π3,n =(cos B ,sin B ),并且m ⊥n . (1)求A -B ;(2)若cos B =35,AC =8,求BC 的长.解 (1)因为m ⊥n ,所以m ·n =cos A +π3cos B +sinA +π3sin B=cosA +π3-B =0. 因为0所以A +π3-B =π2,即A -B =π6.(2)因为cos B =35,B ∈0,π2,所以sin B =45,所以sin A =sin B +π6=sin B cos π6+cos B sin π6 =45×32+35×12=43+310,由正弦定理可得BC =sin A sin B×AC =43+3.4.(2017·江苏镇江三模)在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B . (1)求⾓A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32,因为06.(2)f (x )=cos 2(x +A )-sin 2(x -A ) =cos 2x +π6-sin 2x -π6 =1+cos 2x +π32-1-cos ?2x -π32=12cos 2x ,令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为π2+k π,π+k π,k ∈Z .(⼆)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的⼀条切线. (1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2. ①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点. h ′(x )=1x -1x-b =-bx +x -1x ,令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b>0,解得04.当04时,设h ′(x )=0的两正根为x 1,x 2,且x 1则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2).当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0.所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是0,14. ②由①知x 1x 2=x 1+x 2=1 b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b ,所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b .记k (b )=12-b ln b -b 0令k ′(b )=0,得b =1e 2∈0,14,且当b ∈0,1e 2时,k ′(b )>0,k (b )单调递增;当b ∈1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最⼤值1e 2+12,所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.2.设函数f (x )=2ax +bx+c ln x .(1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1解 (1)f (x )=2ax +bx+c ln x ,x >0,f ′(x )=2a -b x 2+c x =2ax 2+cx -bx 2.当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x >0恒成⽴,所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a ;令f ′(x )=2ax +1x <0,解得x >-12a,所以,函数f (x )在0,-12a 上单调递增,在-12a ,+∞上单调递减.综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在? 0,-12a上单调递增,在-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-ax 2,函数f (x )有两个极值点x 1,x 2,x 1则⽅程2ax 2-ax +3-a =0有两个⼤于0的解,Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a2a >0,解得83所以a 的取值范围是83,3. ②2ax 22-ax 2+3-a =0, x 2=a +9a 2-24a 4a =141+9-24a ,由832x 22-x 2-1.f (x 2)=2ax 2+a -3x 2-a ln x 2=a 2x 2+1x 2-ln x 2-3x 2 =-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t2t 2-t -1-3t,t ∈14,12,φ′(t )=-32-1t 2-1t (2t 2-t -1)-2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+32t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=32t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在14,12上单调递增,φ(t )∈163ln 2,3+3ln 2,所以f (x 2)的取值范围是163ln 2,3+3ln 2. (⼆)⽴体⼏何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底⾯ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐⾓△P AD 所在平⾯⊥底⾯ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平⾯QBD ; (2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB ∥CD ,AB =2CD ,所以AO =2OC . ⼜PQ =2QC ,所以P A ∥OQ . ⼜OQ ?平⾯QBD ,P A ?平⾯QBD ,所以P A ∥平⾯QBD .(2)在平⾯P AD 内过P 作PH ⊥AD 于点H ,因为侧⾯P AD ⊥底⾯ABCD ,平⾯P AD ∩平⾯ABCD =AD ,PH ?平⾯P AD ,所以PH ⊥平⾯ABCD .⼜BD ?平⾯ABCD ,所以PH ⊥BD .⼜P A ⊥BD ,P A ∩PH =P ,所以BD ⊥平⾯P AD . ⼜AD ?平⾯P AD ,所以BD ⊥AD .2.如图,在四棱锥P -ABCD 中,底⾯ABCD 是正⽅形,AC 与BD 交于点O ,PC ⊥底⾯ABCD ,E 为PB 上⼀点,G 为PO 的中点.(1)若PD∥平⾯ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平⾯PBD.证明(1)连结OE,由四边形ABCD是正⽅形知,O为BD的中点,因为PD∥平⾯ACE,PD?平⾯PBD,平⾯PBD∩平⾯ACE=OE,所以PD∥OE. 因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正⽅形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.⼜因为PC⊥底⾯ABCD,BD?底⾯ABCD,所以PC⊥BD.⽽四边形ABCD是正⽅形,所以AC⊥BD,因为AC,PC?平⾯P AC,AC∩PC=C,所以BD⊥平⾯P AC,因为CG?平⾯P AC,所以BD⊥CG.因为PO,BD?平⾯PBD,PO∩BD=O,所以CG⊥平⾯PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三⾓形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平⾯DMN∥平⾯BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.⼜CO∩EO=O,CO,EO?平⾯EOC,∴BD⊥平⾯EOC.⼜EC?平⾯EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三⾓形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.⼜BC?平⾯BCE,DN?平⾯BCE,∴DN∥平⾯BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,⼜MN?平⾯BCE,BE?平⾯BCE,∴MN∥平⾯BCE.∵MN∩DN=N,∴平⾯DMN∥平⾯BCE.4.(2017·江苏楚⽔中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平⾯BEF;(2)若平⾯P AB⊥平⾯ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.⼜P A?平⾯BEF,EF?平⾯BEF,所以P A∥平⾯BEF.(2)在平⾯P AB内过点P作PD⊥AB,垂⾜为D.因为平⾯P AB ⊥平⾯ABC ,平⾯P AB ∩平⾯ABC =AB ,PD ?平⾯P AB ,所以PD ⊥平⾯ABC ,因为BC ?平⾯ABC ,所以PD ⊥BC ,⼜PB ⊥BC ,PD ∩PB =P ,PD ?平⾯P AB ,PB ?平⾯P AB ,所以BC ⊥平⾯P AB ,⼜P A ?平⾯P AB ,所以BC ⊥P A .(三)数列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=12n -n +22成⽴,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4,两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为⾸项,公⽐为12的等⽐数列,所以a n =22-n (n ∈N *).(2)解由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数,则2-log C 2=0,解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=12n -1-n +12,②②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=12n -n +14,③由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,⼜b 1=-12=-18-38,所以数列{b n }是以-12为⾸项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p ""(1)证明因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2.⼜因为a 1=13,所以31·a 1=1,所以{3n a n }是⾸项为1,公差为-2的等差数列. (2)解由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )13n ,所以S n =1·131+(-1)·132+(-3)·133+…+(3-2n )·13n ,所以13S n =1·132+(-1)·133+…+(5-2n )·13n +(3-2n )·13n +1,两式相减,得23S n =13-2132+133+…+13n -(3-2n )·13n +1=13-219×1-13n -11-13+(2n -3)·13n +1=2n ·13n +1,所以S n =n3n .(3)解假设存在正整数p ,q ,r (p ""3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )13n<0,所以数列{S n }单调递减.⼜p ""①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,⼜r 3r >0,所以p 3p +r 3r >2q3q ,等式不成⽴.②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟⼀确定).综上可知,p ,q ,r 的值为1,2,3.(三)应⽤题1.已知某⾷品⼚需要定期购买⾷品配料,该⼚每天需要⾷品配料200千克,配料的价格为1.8元/千克,每次购买配料需⽀付运费236元.每次购买来的配料还需⽀付保管费⽤,其标准如下:7天以内(含7天),⽆论重量多少,均按10元/天⽀付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克⽀付.(1)当9天购买⼀次配料时,求该⼚⽤于配料的保管费⽤P 是多少元?(2)设该⼚x 天购买⼀次配料,求该⼚在这x 天中⽤于配料的总费⽤y (元)关于x 的函数关系式,并求该⼚多少天购买⼀次配料才能使平均每天⽀付的费⽤最少?解 (1)当9天购买⼀次时,该⼚⽤于配料的保管费⽤ P =70+0.03×200×(1+2)=88(元).。

高考文科数学中档题训练6(学生版)

高考文科数学中档题训练6(学生版)

文科高考数学中档题系列( 6 )
1. 已知向量a =(cos 23x ,sin 23x ),b =(2
sin 2cos x x ,-),且x ∈[0,2π]. (1)求b a +
(2)设函数b a x f +=)(+b a ⋅,求函数)(x f 的最值及相应的x 的值。

2. 如下的三个图中,别离是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm )
(1)依照画三视图的要求画出该多面体的俯视图;
(2)依照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC ',证明:BC '∥面EFG .
3. 设函数()b f x ax x
=-,曲线()y f x =在点()()2 2f ,处的切线方程为74120x y --=. (Ⅰ)求()y f x =的解析式;
(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角
形面积为定值,并求此定值.
4. 某集团预备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地域教育市场进行调查,得出一组数据列表(以班为单位)如下:
E D
A B
C F G
B '
C '
D '
按照有关规定,除书本费、办公费外,初中生每一年可收取学费600元,高中生每一年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.按照以上情形,请你合理计划办学规模使年利润最大,最大利润多少万元?(利润=学费收入-年薪支出)。

高考文科数学中档题训练1(教师版)

高考文科数学中档题训练1(教师版)

文科高考数学中档题系列(1)1.已知函数π124()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的概念域(Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的概念域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得4sin 5α===.从而π124()πsin 2f ααα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ππ1cos 2cos sin 2sin 44cos ααα⎫+⎪⎝⎭= 21cos 2sin 22cos 2sin cos cos cos ααααααα+++==142(cos sin )5αα=+=.2. 已知集合{2,0,1,3},A =-在平面直角坐标系中,点M(x,y)的坐标,x A y A ∈∈。

(1)请列出点M 的所有坐标; (2)求点M 不在x 轴上的概率;(3)求点M 正好落在区域5000x y x y +-<⎧⎪>⎨⎪>⎩上的概率。

解:(1)集合A ={-2,0,1,3},点M(x,y)的坐标,x A y A ∈∈,∴点M 坐标共有:4416⨯=个,别离是:(-2,-2),(-2,0),(-2,1),(-2,3);(0,-2),(0,0),(0,1),(0,3);(1,-2),(1,0),(1,1),(1,3);(3,-2),(3,0),(3,1),(3,3).4分(2)点M 不在x 轴上的坐标共有12种:(-2,-2),(-2,0),(-2,1),(-2,3);(1,-2),(1,0),(1,1),(1,3);(3,-2),(3,0),(3,1),(3,3) 所以点M 不在x 轴上的概率是1123164P ==…………………..8分 (3)点M 正好落在区域5000x y x y +-<⎧⎪>⎨⎪>⎩上的坐标共有3种:(1,1),(1,3),(3,1)故M 正好落在该区域上的概率为2316P =…………………12分 3. 在几何体ABCDE 中,∠BAC=2π,DC ⊥平面ABC ,EB ⊥平面ABC ,F 是BC 的中点,AB=AC=BE=2,CD=1(Ⅰ)求证:DC ∥平面ABE ; (Ⅱ)求证:AF ⊥平面BCDE ;(Ⅲ)求证:平面AFD ⊥平面AFE . 解:(Ⅰ) ∵DC⊥平面ABC ,EB ⊥平面ABC ∴DC ⊄⊂⊂x x ax x f ln 221)(2-+=0=a )(x f (2)当0≠a 时,若)(x f 是减函数,求a 的取值范围;解:(1)∵x x ax x f ln 221)(2-+=当a=0时,x x x f ln 2)(-=,则xx f 12)('-= ……………………2分 ∴)(),(',x f x f x 的转变情形如下表ABCDEF…………………………………………………………5分∴当21=x 时,)(x f 的极小值为1+ln2,函数无极大值. ……………………7分 (2)由已知,得,则且0,ln 221)(2>-+=x x x ax x fxx ax x ax x f 1212)('2-+=-+= ………………9分∵函数)(x f 是减函数∴0)('≤x f 对x>0恒成立,即不等式 0122≤-+x ax 对0>x 恒成立……11分由二次函数的性质可得 ⎩⎨⎧≤+=∆<0440a a …………………………13分解得 a a ,即1-≤的取值范围是 ]1,(--∞ ………………14分。

四川高三高考热身(二)文科数学试卷(解析版)

四川高三高考热身(二)文科数学试卷(解析版)

川大附中高2023届高考热身(二)文科数学命题人:卢中华 审题人:梁如均一、单选题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目)1.设全集,集合,,则( )U =R A ={‒1,0,1,2}B ={y|y =2x }A⋂∁U B =A.B. C. D. {‒1}{‒1,0}{‒1,0,1}{‒1,0,2}2.已知为虚数单位,若复数,则( )i z =1‒ 3i |z |=A. B. C. D. 22483.某公司有员工名,为了调查该公司员工的工资情况,有两种方案.方案一:调查全部名员工的工1515资情况;方案二:收入最高的一人和收入最低的一人工资不纳入调查范围,只调查其他名员工的工13资.这两种调查方案得到的数据,一定相同的是( )A. 中位数B. 平均数C. 方差D. 极差4. 已知,为两个不同的平面,,为两条不同的直线,则下列说法正确的是( )αβm n A. 若,,,则 B. 若,,则α//βm ⊂αn ⊂βm//n α⊥βm ⊥αm//βC. 若,,,则 D. 若,,则m ⊥αn ⊥βm ⊥n α⊥βα⊥βm//αm ⊥β5.已知,则( ) sin (α+π3)=35sin (2α+π6)=A. B. C. D. 2425‒2425725‒7256.如图,在平行四边形中,是边的中点,是的一个三等分点,若存在实数ABCD M CD N AM (|AN |<|NM |)λ和,使得,则( ) μ⃗BN =λ⃗AB +μ⃗AD λ+μ=A. B. C. D. 5412‒54‒127.在区间上任取一个数,则取到的数大于2的概率为( )[]1,3A . B . C . D . 141312238. 已知,则的最小值为( ) a >b >02a +4a +b +1a ‒b A. B. C. D.462 33 29.黎曼函数是一个特殊的函数,由德国数学家波恩哈德黎曼发现并提出,在高等数学中有着广泛的应⋅用.黎曼函数定义在上,其解析式为:[0,1]. R (x )={1p ,当x =q p (p,q 都是正整数,q p 是既约真分数)0,当x =0,1或[0,1]上的无理数若函数是定义在实数集上的偶函数,且对任意都有,当时,f(x)x f(2+x)+f(x)=0x ∈[0,1]f(x)=R(x),则( ) f(‒ln2)‒f(20225)=A.B. C. D. ‒1525‒251510.在三棱锥中,,,,则三棱锥外接球的表面积A ‒BCD AB =CD =2AD =BC =3AC =BD =3A ‒BCD 为 ( ) A. B. C. D.11π11π22π44π11. 抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于拋物线的轴如图下所示,从拋物线的焦点向轴上方发出的两条光线分别经抛物线上的.C:y 2=2px(p >0)F x a,b A,B 两点反射,已知两条入射光线与轴所成角均为,且,则两条反射光线之间的距离为x π3|FB |+|FA |=8a',b'( ) A. B. C. D. 4 322 3(11题) (14题)12.关于函数,有以下三个结论:f(x)=(x 2+ax ‒1)e x 函数恒有两个零点,且两个零点之积为; 函数的极值点不可能是;①‒1②‒1函数必有最小值.其中正确结论的个数有( )③ A. 个 B. 个 C. 个 D. 个0123二、填空题(本大题共4小题,共20.0分)13.计算(lg2)2+lg2lg5+lg5=14.数独是一种非常流行的逻辑游戏如上图就是一个数独,玩家需要根据盘面上的已知数字,推理.6×6出所有剩余空格的未知数字,并满足每一行、每一列、每一个粗线宫内的数字均含这个数字(3×2)1‒66每一行,每一列以及每一个粗线宫都没有重复的数字出现,则图中的 . ()a +b +c +d =15.如图,已知,是椭圆的左、右焦点,点在椭圆上,线段与圆F 1F 2C : x 2a 2+y 2b 2=1(a >b >0)P C P F 2x 2+相切于点,且点为线段的中点,则椭圆的离心率为 .y 2=b 2Q Q P F 2C16.已知函数的图象在上恰有一条对称轴和一个对称中心,则实数的取f(x)=22cosωxsin(ωx +π4)[0,12]ω值范围为 .三、解答题(本大题共5小题,共60.0分。

安徽省六安市新安中学2022届高三上学期开学考试文科数学试题

安徽省六安市新安中学2022届高三上学期开学考试文科数学试题

绝密★启用前安徽省六安市新安中学2022届高三上学期开学考试文科数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知全集{}1,2,3,4,5U =,集合{}1,2A =,集合{}2,4B =,则()U A B =( ) A .{}4B .{}2,3,4,5C .{}3,5D .{}2,3,52.复数z 满足条件23z z i +=+,则复数1z在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若()f x 是R 上周期为5的奇函数,且满足()11f =,()22f =,则()()124f f --等于( ) A .-2B .2C .-1D .14.“2(2)log 0x x ->”是“39x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.函数()()lg 1f x x =- ) A .(]1,4B .()1,4C .[]1,4D .[)1,46.命题“*N n ∀∈,x R ∃∈,使得2n x <”的否定是 A .*N n ∀∈, x R ∃∈,使得2n x ≥ B .*N n ∀∈,x R ∀∈,使得2n x ≥ C .*N n ∃∈,x R ∀∈,使得2n x ≥ D .*N n ∃∈,x R ∃∈,使得2n x ≥7.已知函数1()3()3xx f x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数8.已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的最小值是( )A .32B .1C .12D .29.已知函数321()393f x x x x =--+,给出四个函数①|f(x )|,②f(-x ),③f(|x|),④-f(-x ),又给出四个函数的大致图象,则正确的匹配方案是( )A .甲-②,乙-③,丙-④,丁-①B .甲-②,乙-④,丙-①,丁-③C .甲-④,乙-②,丙-①,丁-③D .甲-①,乙-④,丙-③,丁-②10.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .[)2,-+∞C .12,2⎡⎤--⎢⎥⎣⎦D .12,2⎡⎫--⎪⎢⎣⎭11.已知()()21cos f x x x =+-,则不等式()ln 11f x -<的解集为 A .()0,eB .()1,+∞C .()e,+∞D .()1,e12.若x 1是方程xe x=1的解,x 2是方程xlnx =1的解,则x 1x 2等于( ) A .1 B .-1 C .e D .1e二、填空题13.若2()(1)m f x m x =-是幂函数且在(0,)+∞单调递增,则实数m =_______.14.已知定义在R 上的函数()f x 满足(2)()f x f x +=,当01x <≤时,()21x f x =-,则(5)f =___________.15.若x 0是函数f (x )=2x +3x 的零点,且x 0∈(a ,a+1),a∈Z,则a =_____.16.若函数32()36f x x x ax =-+存在两个极值点1x ,2x ,(12x x <),则()1f x 的取值范围是_____. 三、解答题 17.计算: (1)2log 351log 25lg2100++. (2)060.25687⎛⎫-+ ⎪⎝⎭.18.已知:p x ∃∈R ,220x ax ++=.():0,1q x ∀∈,20x a -<. (1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真,p q ∧为假,求a 的取值范围. 19.已知函数2()log 1x af x x +=-(0a >)为奇函数. (1)求实数a 的值; (2)若(1,4]x ∈,2()log 1mf x x >-恒成立,求实数m 的取值范围. 20.设函数()214ln 2f x x x =-. (1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]1,e 上的最值. 21.已知()1x f x e ax =--. (1)求()f x 的单调增区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围22.已知函数()x f x e ax b =++的图像在点(0,(0))f 处的切线方程为210x y -+=. (1)求()f x 的表达式;(2)当0x >时,2()1f x x mx ≥++恒成立,求m 的取值范围.参考答案 1.B根据集合补集运算,求得UA ,再结合并集的运算,即可求解.由题意,全集{}1,2,3,4,5U =,{}1,2A =,可得{}3,4,5UA =,又集合{}2,4B =,所以(){}2,3,4,5U A B =. 故选:B. 2.D设(),z x yi x y R =+∈,由复数相等可构造方程求得z ,由复数的除法运算可求得1z ,进而得到1z对应的点坐标,由此确定结果.设(),z x yi x y R =+∈,则22233z z x yi x yi x yi i +=++-=+=+,331x y =⎧∴⎨=⎩,解得:11x y =⎧⎨=⎩,1z i ∴=+,()()111111111222i i i z i i i --∴====-++-, 1z ∴对应的复平面上的点为11,22⎛⎫- ⎪⎝⎭,位于第四象限. 故选:D. 3.C根据函数的周期性与奇偶性计算可得;解:∵若()f x 是R 上周期为5的奇函数,∴()()f x f x -=-,(5)()f x f x +=,∴(12)(12)f f -=-(2)2f =-=-,(4)(1)(1)1f f f =-=-=-,∴(12)(4)2(1)1f f --=---=-,故选:C. 4.B由条件不等式分别求得解集,根据等价性判断两个条件间的充分、必要关系.由2(2)log 0x x ->知:2020log 0x x x >⎧⎪->⎨⎪>⎩或2020log 0x x x >⎧⎪-<⎨⎪<⎩,解得01x <<或2x >,由39x >知:2x >,∴“2(2)log 0x x ->”是“39x >”的必要不充分条件. 故选:B. 5.A根据对数的真数为正数以及偶次根式的被开方非负列式可得结果.由1040x x ->⎧⎨-≥⎩解得14x <≤. 所以函数()f x 的定义域为(]1,4. 故选:A方法点睛:已知函数解析式,求函数定义域的方法: 1、有分式时:分母不为0;2、有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;3、有指数时:当指数为0时,底数一定不能为0;4、有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;5、有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;6、有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 6.C命题的否定,是条件不变,结论否定,同时存量词与全称量词要互换,因此命题“N*n ∀∈,x R ∃∈,使得2n x <”的否定是“N*n ∃∈,x R ∀∈,使得2n x ≥”.故选C . 7.A分析:讨论函数()133xxf x ⎛⎫=- ⎪⎝⎭的性质,可得答案.详解:函数()133xxf x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xxx xxx f x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xxy ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题. 8.C由()f x 的性质知:在(,0)-∞上递减且122(log )(log )f a f a =,结合题设不等式可得2|log |1a ≤求a 的范围,即可知最小值.由题设,()f x 在(,0)-∞上递减,由偶函数知:1222(log )(log )(log )f a f a f a =-=,∴2212(log )(log )2(log 2(1))f a f a f a f ≤+=,即2(log )(1)f a f ≤, ∴2|log |1a ≤,则21log 1a -≤≤,得122a ≤≤. 故a 的最小值是12. 故选:C 9.B根据题意,求出函数()f x 的导数,分析函数()f x 的单调性,可以得到()f x 的草图,结合函数图象变化的规律分析四个函数对应的图象,即可得答案.根据题意,函数321()393f x x x x =--+,其导数2()23(1)(3)f x x x x x '=--=+-,在区间(,1)-∞-上,()0f x '>,()f x 为增函数,且2(1)103f -=,在区间(1,3)-上,()0f x '<,()f x 为减函数,且f (3)0=,其简图如图: 对于①|()|f x ,有(),()0|()|(),()0f x f x f x f x f x ⎧=⎨-<⎩,其图象全部在x 轴上和x 轴上方,对应图象丙,②()f x -,其图象与()f x 的图象关于y 轴对称,对应图象甲, ③(||)f x ,有(),0(||)(),0f x x f x f x x ⎧=⎨-<⎩,为偶函数,对应图象丁,④()f x --,其图象与()f x 的图象关于原点对称,对应图象乙, 故选:B .本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.D根据题意,只需102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解不等式组即可求解.当1x ≤时,(]2,2xy a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭, 两段均为增函数,函数()f x 恰有两个零点, 可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭.故选:D本题考查了由函数的零点个数求参数的取值范围,考查了基本知识与基本运算,属于基础题. 11.A利用导数判断出()f x 在R 上递增,而()01f =,由此将不等式()ln 11f x -<转化为()()ln 10f x f -<,然后利用单调性列不等式,解不等式求得x 的取值范围. 由()2sin 0f x x '=+>,故函数()f x 在R 上单调递增, 又由()02cos01f =-=,故不等式()ln 11f x -<可化为,()()ln 10f x f -<,得ln 10x -<, 解得0e x <<.故选A.本小题主要考查利用导数研究函数的单调性,考查对数不等式的解法,属于基础题. 12.A先转化为:x 1,x 2是函数y =e x、函数y =lnx 与函数y =1x的图象的交点A ,B 的横坐标,再根据函数y =e x、函数y =lnx 关于y =x 对称,确定x 1x 2的值.考虑到x 1,x 2是函数y =e x 、函数y =lnx 与函数y =1x的图象的交点A ,B 的横坐标,因为函数y =e x 、函数y =lnx 关于y =x 对称,所以A 111,x x ⎛⎫ ⎪⎝⎭,B 221,x x ⎛⎫⎪⎝⎭两点关于y =x 对称,因此121x x =,即x 1x 2=1. 故选:A本题考查对数函数与指数函数图象关系、考查数形结合思想方法以及基本分析求解能力,属基础题. 13.2由幂函数可得()211m -=,解得0m =或2,检验函数单调性求解即可. ()()21m f x m x =-为幂函数,所以()211m -=,解得0m =或2.当0m =时,()01f x x ==,在()0,+∞不单调递增,舍去; 当2m =时,()2f x x =,在()0,+∞单调递增成立.故答案为2m =.本题主要考查了幂函数的定义及单调性,属于基础题. 14.1由已知条件可知函数的周期为2,从而可得(5)(522)(1)f f f =-⨯=,进而可求得结果 解:因为定义在R 上的函数()f x 满足(2)()f x f x +=, 所以函数的周期为2, 所以(5)(522)(1)f f f =-⨯=, 因为当01x <≤时,()21x f x =-, 所以1(5)(1)211f f ==-=, 故答案为:1此题考查函数的周期性的应用,属于基础题 15.﹣1根据()f x 的单调性和零点存在性定理,判断出()f x 零点所在区间,由此求得a 的值. 由于()f x 在R 上递增,且()()015130,021022f f -=-=-<==>,()()100f f -⋅<,根据零点存在性定理可知()f x 的零点()01,0x ∈-,所以1a =-. 故答案为:1-本小题主要考查利用零点存在性定理判断函数零点所在区间,属于基础题. 16.[0,)+∞求导函数()'f x ,则()0f x '=的两根为1x ,2x ,且1x x =为极大值点,所以()()100f x f ≥=. 由2()3660f x x x a '=-+=,依题意可知23660x x a -+=有两个不同解1x ,2x , 函数2()366f x x x a '=-+的对称轴为1x =,则121x x当1x x <时2()3660f x x x a '=-+>,当12x x x <<时2()3660f x x x a '=-+<, 所以1x x =为极大值点,又因为()00f =, 所以()()100f x f ≥= 故答案为:[0,)+∞ 17.(1)72;(2)111.(1)根据对数的运算性质即可求解;(2)先将根式化成分数指数幂,再利用指数的运算性质即可求解.(1)2log 351log 25lg2100++ 21log 32225log 5lg10ln 2e -=+++ ()12232=+-++17322=+=.(2)060.25687⎛⎫-+ ⎪⎝⎭()113234412223=+⨯+⨯12108111=++=.18.(1)(),22,⎡-∞-+∞⎣;(2)(,⎡-∞-⋃⎣.(1)首先根据题意得到方程220x ax ++=有实数根,从而得到280a ∆=-≥,再解不等式即可. (2)若q 为真命题,则1a >,根据条件得到p ,q 一真一假,再分类讨论解不等式组即可.(1)若p 为真命题,则方程220x ax ++=有实数根,即280a ∆=-≥,解得:a ≤-或a ≥a 的取值范围为(),22,⎡-∞-+∞⎣.(2)若q 为真命题,则()0,1x ∀∈,2a x >成立,即1a ≥. 若p q ∨为真,p q ∧为假,则p ,q 一真一假.若p 真q 假,则1a a a ⎧≤-≥⎪⎨<⎪⎩a ≤-若p 假q 真,则1a a ⎧-<⎪⎨≥⎪⎩1a ≤<综上,a 的取值范围为(,⎡-∞-⋃⎣.19.(1)1a =;(2)(]0,2试题分析:(1)根据奇函数定义,结合对数运算法则恒等变换即可,(2)解决不等式恒成立问题,一般先化简不等式,进行变量分离,再转化为对应函数最值问题,本题根据对数函数单调性可变量分离化简得:01m x <<+在(]1,4x ∈上成立,即min 0(1)m x <<+,最后根据一次函数单调性可得min (1)202x m +>⇒<≤试题解析:(1)∵函数()2log (0)1x af x a x +=>-为奇函数, ∴()()0f x f x +-=,即22log log 011x a x ax x +-++=---, 即222log 01x a x -=-,2211x ax -=-,1a =.(2)由(1)知()21log 1x f x x +=-,因为(]1,4x ∈,()2log 1mf x x >-恒成立, 所以111x mx x +>--,因为(]1,4x ∈,所以01m x <<+在(]1,4x ∈上成立, 所以02m <≤.即实数m 的取值范围是(]0,2.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.20.(1)单调减区间为()0,2,单调增区间为()2,+∞;(2)()242min f x ln =-,1()2max f x =.(1)直接利用导数求函数()f x 的单调区间;(2)由()1得,()f x 在[)1,2单调递减,在[]2,e 单调递增,比较(1)()f f e ,即得解.()1定义域为()0,∞+,由题得()4'f x x =-,令()0f x '=,2x =.所以()f x 的单调减区间为()0,2,单调增区间为()2,+∞; (2)由()1得,()f x 在[)1,2单调递减,在[]2,e 单调递增,所以()()2242min f x f ln ==-, 又()112f =,()2142f e e =-,因为()211422f e e =-<,所以()()2242min f x f ln ==-,1()2max f x =.本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平. 21.(1)当a ≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a ,+∞).(2)(-∞,0]. (1)对f(x)求导得,解可得单调增区间,解不等式过程中要对a 进行讨论;(2)在R 上单调递增,则在R 上恒成立 ,即恒成立,即,求出x y e =的最小值即可. (1)若,则,此时的单调增区间为若,令,得此时的单调增区间为(2)在R 上单调递增,则在R 上恒成立即恒成立 即,因为当时,所以22.(1)()x f x e x =+;(2)(,e 1]m ∈-∞-.(1)根据题干和导数的几何意义得到()012f a ='+=,解得1a =,()011f b =+=,解得0b =,从而得到解析式;(2)原式等价于e 11x m x x x ≤--+,令()e 11x h x x x x=--+,对函数求导得到函数的单调性,进而得到最值.(1)()e x f x a '=+,()012f a ='+=,解得1a =,()011f b =+=,解得0b =,所以()x f x e x =+.(2)当0x >时,21x e x x mx +≥++,即e 11x m x x x≤--+. 令()e 11(0)x h x x x x x=--+>, 则()()22e 11x x x h x x '--+= ()()21e 1x x x x ---=. 令()e 1(0)x x x x ϕ=-->,()e 10x x ϕ='->,当()0,x ∈+∞时,()x ϕ单调递增,()()00x ϕϕ>=,则当()0,1x ∈时,即()0h x '<,所以()h x 单调递减;当()1,x ∈+∞时,即()0h x '>,所以()h x 单调递增,综上,()()min 11h x h e ==-,所以(],e 1m ∈-∞-.对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.。

2022年全国统一高考数学试卷(文科)(甲卷)【含解析】

2022年全国统一高考数学试卷(文科)(甲卷)【含解析】

2022年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{2A =-,1-,0,1,2},5{|0}2B x x =< ,则(AB =)A.{0,1,2}B.{2-,1-,0}C.{0,1}D.{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.若1z i =+,则|3|(iz z +=)A.45B.42C.25D.224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.将函数()sin(0)3f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.126.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.237.函数()(33)cos x x f x x -=-在区间[2π-,2π的图像大致为()A.B.C.D.8.当1x =时,函数()bf x alnx x =+取得最大值2-,则f '(2)(=)A.1-B.12-C.12D.19.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则()A.2AB AD=B.AB 与平面11AB C D 所成的角为30︒C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若2S S =甲乙,则(VV =甲乙)B.D.411.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,1A ,2A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y +=B.22198x y +=C.22132x y +=D.2212x y +=12.已知910m =,1011m a =-,89m b =-,则()A.0a b>>B.0a b >>C.0b a >>D.0b a>>二、填空题:本题共4小题,每小题5分,共20分。

2022-2023学年宁夏银川市回民中学高三下学期开学考试数学(文科)试卷(解析版)

2022-2023学年宁夏银川市回民中学高三下学期开学考试数学(文科)试卷(解析版)

2022-2023学年高三下学期开学考试数学(文科)试卷一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=( )A. {2,3,4}B. {3,4}C. {2,3}D. {2}2. 已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=( )A. −1+2iB. 1+2iC. 1−2iD. 1+i3. 已知向量a⃗,b⃗均为单位向量,若它们的夹角是60°,则|a⃗−3b⃗|等于( )A. √7B. √10C. √13D. 44. 已知在△ABC中,cos(A−π6)=−13,那么sin(A+π6)+cosA等于( )A. −√33B. √33C. −2√33D. 2√335. 根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)( )A. 1033B. 1053C. 1073D. 10936. 函数f(x)=12x2−xsin x的大致图象可能是( )A. B. C. D.7. 已知为等比数列,,,则A. B. C. D. 8. 如图,正方体ABCD−A1B1C1D1的棱长为2,线段D1B1上有两个动点E、F,且EF=√2,则下列结论中错误的是( )A. AA1//平面BEFB. 三棱锥E−FAB的体积为定值C. 二面角A−EF−C的余弦值为13D. 当EF⃗⃗⃗⃗⃗ =2FB1⃗⃗⃗⃗⃗⃗⃗⃗ 时,点A到E的距离为√69. “湖畔波澜飞,耕耘战鼓催”,合肥一六八中学的一草一木都见证了同学们的成长.某同学为了测量澜飞湖两侧C,D两点间的距离,除了观测点C,D外,他又选了两个观测点P1,P2,且P1P2=a,已经测得两个角∠P1P2D=α,∠P2P1D=β,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出C,D间距离的有组( )①∠DP1C和∠DCP1;②∠P1P2C和∠P1CP2;③∠P1DC和∠DCP1A. 0B. 1C. 2D. 310. 定义在R上的函数f(x)满足:f′(x)>1−f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为( )A. (0,+∞)B. (−∞,0)∪(3,+∞)C. (−∞,0)∪(1,+∞)D. (3,+∞)11. 已知椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别是F1,F2,焦距为2c,若直线y=√3(x+c)与椭圆交于M点,且满足∠MF1F2=2∠MF2F1,则椭圆的离心率是( )A. √22B. √3−1C. √3−12D. √3212. 已知侧棱长为2√3的正四棱锥各顶点都在同一球面上.若该球的表面积为36π,则该正四棱锥的体积为 A.163B.8√23C. 83D.323二、填空题(本大题共4小题,共20.0分)13. 设等差数列{a n }的前n 项为S n ,若a 3=8,S 4=26,则公差d =________. 14. 已知实数x ,y 满足约束条件{x −2≥02x +y −7≤0x −y −2≤0,则z =3x +4y 的最大值是______.15. 已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x −2).若当x ∈[−3,0]时,f(x)=6−x ,则f(919)= .16. 已知点M(1,2),点P 是双曲线C :x 29−y216=1左支上的动点,F 2为其右焦点,N 是圆D :(x +5)2+y 2=1的动点,则|PM|−|PN|的最小值为 .三、解答题(本大题共6小题,共70.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科高考数学中档题系列( 22 )
1. 在ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且
3
c o s 2,s i 5A B == (I )求A B +的值;
(II )若1a b +=
,求,,a b c 的值。

2. 2011年武汉电视台问政直播节日首场内容是“让交通更顺畅”.A 、B 、C 、D 四个管理部门的负责人接受问政,分别负责问政A 、B 、C 、D 四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
(I )
若市民甲选择的是A 部门,求甲的调查问卷被选中的概率; (II )
若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D 部门的概率.
3. 如图所示,在直四棱柱1111D C B A ABCD -中,BC DB =,
DB AC ⊥,点M 是棱1BB 上一点. (Ⅰ)求证://11D B 面BD A 1;(5分) (Ⅱ)求证:MD AC ⊥;(5分) (Ⅲ)试确定点M 的位置,使得平面1DMC ⊥平面D D CC 11.
4. 已知数列{}n a 的首项12
3a =,121
n
n n a a a +=+,1,2,3,n =….
(Ⅰ)证明:数列1
{1}n
a -是等比数列; (Ⅱ)求数列{}n
n
a 的前n 项和n S . M A B C D A 1 B 1 C 1 D 1。

相关文档
最新文档