二次函数y=ax2+c的图像与性质12

合集下载

二次函数的图像及性质

二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向

二次函数y=ax2+c的图象与性质

二次函数y=ax2+c的图象与性质

同坐标系中,画出二函数 的图象.
解: (1) 列表:
y x 1和y x 1
2 2
x y = x2+1 y = x2-1
(2) 描点 (3) 连线
·· · ·· · ·· ·
-3
10 8 10
-2
5 3
-1
2 0
0
1 -1
1
2 0
2
5 3
3
10 8
·· · ·· · ·· ·
y x2
归纳:
把抛物线y = 2x2 向上平移5个单位, 会得到哪条抛物线?向下平移3.4个单 位呢? y 2x2 5
把抛物线y=ax2 向上平移c个单 位,就得到抛物 线y=ax2+c; 把抛物线y=ax2 向下平移c个单 -4 位,就得到抛物 线y=ax2-c.
-2
8
6
4 2
y 2x
2
简记为:
上加下减
y 2 x 2 3.4
2
4
-2 -4
a > 0,c > 0
一般地,抛物线y=ax2+c的性质:
(1)开口方向: a>0时, 开口向上, a<0时, 开口向下. (2)对称轴: y轴(或x=0) (3)顶点坐标: 顶点是抛物线的最低点 (或最高点),顶点坐标(0,c) (4)增减性:
y=ax2 (a≠0) 图 象
O
a>0 y
O
a<0 y x
x
开口方向 向上 向下 顶点坐标 (0 ,0) (0 ,0) 对称轴 y轴 y轴 当x<0时, 当x<0时, 增 y随着x的增大而增大。 y随着x的增大而减小。 减 当x>0时, 当x>0时, y随着x的增大而减小。 y随着x的增大而增大。 性 x=0时,y最小=0 x=0时,y最大=0 极值 抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大,抛物线的开口就越小.

初中数学 二次函数y=ax2的图象和性质

初中数学  二次函数y=ax2的图象和性质

9
8 7
y=x2
根据表中x,y的数
6
5
值在坐标平面中描点
4
(x,y),再用平滑曲线
3 2
顺次连接各点,就得到
1 -5 -4 -3-2 -1 o 1 2 3 4 5
x
y=x2的图像.
请画函数y=-x2的图像
解: (1) 列表
x … -3 -2 -1 0 1 2 3 …
y … -9 -4 -1 0 -1 -4 -9 …
思考:在同一坐标系内,抛物线y=x2与抛物线 y= -x2的位置有什么关系? 一般地,抛物线y=ax2 与抛物线y= -ax2呢?
答:抛物线抛物线y=x2与抛物线 y= -x2 既关于x轴对称,又关于原点对称。抛物线y=ax2 与抛物线y= -ax2也有同样的关系。
y x2
y ax2
y x2
y y=x2
o
x
y
o
x
y=-x2
例1.在同一直角坐标系中画出函数y= 21x2和y=2x2的图像
解:(1)列表
x … -4 -3 -2 -1 0 1 2 3 4 …
(2)描点
y=
1 2
x2

8 4.5 2 0.5 0
0.5 2 4.5 8

(3)连线 x … -2
y=2x2 … 8
-1.5 -1 -0.5
图象
O
O
开口 对称轴
顶点
增减性
开口向上
开口向下
a的绝对值越大,开口越小 关于y轴对称 顶点坐标是原点(0,0)
顶点是最低点
顶点是最高点
在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减

二次函数y=ax2的图象和性质ppt课件

二次函数y=ax2的图象和性质ppt课件

例4 如图, 四个二次函数的图象分别对应 ① y=ax2 ;② y=bx2;
③ y=cx2;④ y=dx2,且①与③,②与④分别关于x 轴对称.
(1)比较a,b,c,d 的大小; (2)说明a 与c,b 与d 的数量关系.
解:(1)由抛物线的开口方向,知 a > 0,b > 0,c < 0,d < 0,
由抛物线的开口大小,知 |a| > |b|,|c| > |d|, 因此a > b,c < d. ∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称,
∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
课堂练习
1、下列函数中,y总随x增大而减小的是( B )
归纳总结
位置开 开口向上,在x轴上方 开口向下,在x轴下方
口方向
a的绝对值越大,开口越小
对称性 顶点最值
关于y轴对称,对称轴方程是直线x=0 顶点坐标是原点(0,0)
当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
1、如右图,观察函数y=( k-1)x2的图象, 则k的取值范围是 k>1 .
复习引入
1.二次函数的一般形式是怎样的? y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?





3.一次函数的图象是一条 直线.
4.通常怎样画一个函数的图象? 列表、描点、连线
那么,二次函数的图象会是什么样的图形呢?这节课我们 来学习最简单的二次函数y=ax2的图像
不同点: a的值越大,开口越小.

人教版数学九年级上册22.1.2二次函数y=ax2的图像与性质 课件(21张PPT)

人教版数学九年级上册22.1.2二次函数y=ax2的图像与性质 课件(21张PPT)

二二次次函函数数y的=图x2象的都图是象抛是物一线条,曲线它,们它的的开形口状或类者似向于上投或篮者球向 时下球.在一空般中地所,经二过次的函路数线y,=只ax是2 +这b条x +曲c线(开a≠口0)向的上图,象这叫条做曲抛 线物叫线做y =抛a物x2线+ byx=+xc2 ,
9 6 3
-3
3
实y轴际是上抛,物每线条y抛= 物x 2线的都对有称对轴称,轴抛,物抛线物y 线= x与2 对与称它轴的的对交称点轴 叫的做交抛点物(线0,的0顶)点叫.做顶抛点物是线抛y =物x线2 的的顶最点低,点它或是最抛高物点线.y = x 2 的最低点.
交点坐标
y
求抛物线与直线的 交点坐标的方法: 两解析式联列方程

y=4x2 y=3x+1
O
x
1.若抛物线y=ax²与y=4x²的形状及开口方向 均相同,则a= 4
2.下列关于二次函数y=ax²(a≠0)的说法中,错误 的是( C ) A.它的图像的顶点是原点 B.当a<0,在x=0时,y取得最大值
(2)说出函数图象的顶点坐标、对称轴、
开口方向和图象的位置;
在x轴的下方
解: (1)依题意,得 (2)2 a 3
解得
a=

3 4
∴ 该函数的解析式为 y


3 4
x2
例3、y=kx2与y=kx-2(k≠ 0)在同一坐标系中, 可能是( B )
A
B
C
D
例4、求抛物线y=4x2与直线y=3x+1的
描点法
列表、描点、连线
以0为中心 选取7个x值
画最简单的二次函数 y = x2 的图象列表

人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质

人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质
2
一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶 点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
顶点都是原点(0,0), 顶点是抛物线的最 高点;
增减性相同: 当 x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
y O -3
3x
开口都向下; 对称轴都是y轴;
y = ax2(a<0)
(0,0) y轴
在x轴的下方(除顶点外) 向下
当x<0时,y随着x的增大而增大. 当x>0时,y随着x的增大而减小.
当x = 0时,最大值为0.
Thank you!
A.y1<y2<y3 C.y3<y2<y1
B.y1<y3<y2 D.y2<y1<y3
综合应用
3.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x 的增大而减小. (1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m +1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+ 1<0,m<-1,故m=-2 (2)画图略
单调性
当x<0 (在对称轴 的左侧)时,y随
着x的增大而减小.
y 9 6 3
-3 O 3 x
当x>0 (在对
称轴的右侧) 时,y随着x的
猎豹图书
增大而增大.
例1 在同一直角坐标系中,画出函数 y 1 x2 ,y =2x2的图象.
2
解:分别列表,再画出它们的图象,如图.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
函数 y=1 x2,y=2x2 的图象与函数y=x2 的图象相比,有什么共同点

二次函数y=ax2的图象与性质--教学设计(王莉丹)

二次函数y=ax2的图象与性质--教学设计(王莉丹)

二次函数y=ax2的图象与性质--教学设计(王莉丹)广西桂林市宝贤中学王莉丹内容和内容解析1.内容湘教版义务教育课程标准实验教科书九年级下册第1章1.2节二次函数的图象与性质第一课时——二次函数y=ax2的图象与性质。

2.内容解析本章是继一次函数和反比例函数之后学习的一类新的函数模型——二次函数。

二次函数在研究内容和研究方法上与前两类函数类似,都是先从实际问题中抽象出函数模型,得出函数定义,然后借助图象研究函数的性质,再应用函数性质解决实际问题。

由于二次函数与一次函数的表达式都是整式,与一次函数一脉相承,所以二次函数的图象与性质主要类比一次函数来学习,即先从最特殊的一类二次函数y=ax2开始,遵循从特殊到一般的研究方法,运用数形结合、分类讨论等数学思想,着重研究a>0的图象和性质,再类比探究a<0的图象和性质,体会a的作用。

与一次函数相比,二次函数图象出现了新的特征和性质:如形状、开口方向和大小、对称性、分段讨论函数增减性等,在教学中可让学生体会一次函数与二次函数的联系与区别。

目标和目标解析目标〔1〕会用描点法画出形如y=ax2 的二次函数图象;〔2〕经历独学、对学、群学等方式,通过实验观察、分类讨论、归纳类比、抽象概括等方法理解二次函数y=ax2的图像特征和性质,体悟探究二次函数的思想与方法;〔3〕体验研究二次函数y=ax2 的规律与魅力,增强学习数学的信心与兴趣。

目标解析达到目标〔1〕的标志是:能合理地选择自变量的值进行描点,知道二次函数的图象是抛物线,能根据图象指出抛物线的对称轴和和顶点坐标;达到目标〔2〕的标志是:通过观察函数图象,能说出二次函数y=ax2的图象特征和性质:形状、位置、对称轴、增减性、最值等,能说出本节课研究二次函数y=ax2的函数图象和性质的基本方法和基本内容;达到目标〔3〕的标志是:学生主动探究,课堂气氛轻松愉快。

教学问题诊断分析学生已经历过一次函数和反比例函数的学习,对函数图象及性质的研究内容和研究方法有了一定的了解,但中间隔了一段时间,可能造成遗忘,需要唤醒他们的记忆。

二次函数y=ax2的图像与性质》课件

二次函数y=ax2的图像与性质》课件


0时,y<0.
记 r 为圆的半径,S 为该圆的面 积,有面积公式S=πr2,表明S是r的 函数. (1)当半径r分别为2、2.5、3时,求圆 的 面积S(π取3.14); (2)画出函数S=πr2的图象.
函数S=πr2 的图象: 注意r≥0的条件.
已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。
2 二次函数y=ax 的图象和性质
复习回顾
函数的图象的意义:
一般地,对于一个函数,如果把 自变量与函数的每对对应值分别作为 点的横坐标和纵坐标,那么坐标平面 内由这些点组成的图形就是这个函数 的图象。
函数图象的画法:
组卷网
1、列表
2、描点 3、连线
列出自变量与函数的对应值表。 注意:自变量的值必须满足取值范围.
共同点: 开口都向下; 顶点是原点而且是抛物线 的最高点,对称轴是 y 轴 在对称轴的左侧, y随着x的增大而增大。 在对称轴的右侧, y随着x的增大而减小。 不同点: 开口大小不同;
1
-3 -2 -1 0 -1
y
1 2 3 x
1 2 y x 2
-2 -3 -4 -5
y x2 a 越大, 抛物线的开口越大.
2

y=-x2
-4 -2.25
-2.25 -4 …
-1.125

-2
-1.125
-2

y=-2x2
… -8
-4. 5
-2
-0 . 5 0
-0 . 5
-2
-4. 5
-8 …
1

二次函数y=ax2+c的图像和性质

二次函数y=ax2+c的图像和性质

;
编辑课件
3
x ….. -2 y=x2 …… 4
y=x2+1 …… 5
函数y=x2+1的图 象可由y=x2的图象 沿y轴向上平移1 个单位长度得到.
相同
-10
-5
-1 0 10
21 y 8
12 14
25
y=x2+1
…… ……
6
函数y=x2+1的图象与y=x2的
图象的位置有什么关系?
4
函数y=x2+1的图
向 下 平移 |c|个单位得到编。辑课件 上加下减
6
y=ax2+c (a≠0) 开口方向 顶点坐标 对称轴 增 减 性 极值
a>0 向上
a<0 向下
(0 ,c) y轴 (x=0)
(0 ,c) y轴 (x=0)
当x<0时, y随着x的增大而减小。 当x>0时, y随着x的增大而增大。
当x<0时, y随着x的增大而增大。 当x>0时, y随着x的增大而减小。
y随着x的增大而减小。
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来,
|a|越大,抛物线的开口就编越辑课小件 .
2
1、函数y=2x2的图象的开口 向上
,
对称轴 y轴 ,顶点是 (0,0)
;
2、函数y=-3x2的图象的开口 向下 ,对称
轴 y轴 ,顶点是 (0,0)
(5)抛物线y=7x2-3的开口 上 ,对称轴是 y轴 ,
顶点坐标是 (0,-3) ,在对称轴的左侧,y随x的增大 而减小,在对称轴的右侧,y随x的增大而 增大, 当x= 0 时,取得最 小 值,这个值等于 -3 。

二次函数的图像与性质

二次函数的图像与性质

,对称轴是 时,y 有最
3.将二次函数 y=2x 的图像向左平移 3 个单位后得到函数 个单位得到函数 是 ,说明当 x 的图像;新函数的顶点坐标是 时,y 随 x 的增大而增大,当 x
的图像,再向上平移 2 ,其对称轴 时,y 随 x 的增大而减小.
5. y ax2 bx c 的图象和性质:
[课内练习]
1、二次函数 y mxm
2
1
在其图象对称轴的左侧,y 随 x 的增大而增大,求 m 的值。
2、二次函数 y
3 2 x ,当 x1>x2>0 时,求 y1 与 y2 的大小关系。 2
第 1 页
2. 函数 y ax2 c 的图象与性质:
1.二次函数 y = ax 2 + c 的图象是一条 说明当 x = 时, y 有最值是
单位得到;当 h 0 时, y = a ( x - h) 的图像可以看成是 ,顶点是抛物线的最 ,顶点是抛物线的最
点.在对称轴的左侧,即 x ; 点.在对称轴的左侧,即 x .
时, y 随 x 的 时, y 随 x 的
;在对称轴的右侧,即 x ;在对称轴的右侧,即 x
时, y 随 x 的增大而 时, y 随 x 的增大而
2
② y x 3x 2
2
③ y ax bx c
2
4.归纳:二次函数的一般形式 y ax bx c 可以被整理成顶点式:
2
, .
说明它的对称轴是
,顶点坐标公式是
【典型例题】 例 1、用配方法把下列二次函数化成顶点式:
① y x 3x 2
2
② y x 4x 2
3. 函数 y ax h 的图象与性质:

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。

2. 的性质:2y ax c =+上加下减。

3. 的性质:()2y a x h =-左加右减。

4. 的性质:()2y a x h k =-+的符号a 开口方向顶点坐标对称轴性质a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .c 0a <向下()0c ,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .c 的符号a 开口方向顶点坐标对称轴性质a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y .00a <向下()0h ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()h k ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k,【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2三、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过()2y a x h k =-+2y ax bx c =++配方可以得到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,.k 0a <向下()h k ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .k四、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确2y ax bx c =++2()y a x h k =-+定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点y ()0c ,()0c ,、与轴的交点,(若与轴没有交点,则取两组关于对称轴()2h c ,x ()10x ,()20x ,x 对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 五、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当时,随的增大而减小;当时,随的增大而增大;当2b x a <-y x 2bx a>-y x 时,有最小值.2b x a =-y 244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当0a <2bx a =-2424b ac b aa ⎛⎫-- ⎪⎝⎭,时,随的增大而增大;当时,随的增大而减小;当时,2b x a <-y x 2b x a >-y x 2bx a=-有最大值.y 244ac b a-六、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x 240b ac -≥用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a >a a 大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a <a a 大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决a a a 定开口的大小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,ab abx 2-=y 0>ab y 0<ab 概括的说就是“左同右异”总结:3. 常数项c⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c <y x y 负.总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是; 2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n ,关于点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a 合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=3(x+4)22y=3x 2十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数的图象64212++=x x y 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x 以为中间值,取的一些值,列表如下:4-=x x x …-7-6-5-4-3-2-1…y …25023--223-025…【例2】求作函数的图象。

二次函数y=ax2的图像和性质教案

二次函数y=ax2的图像和性质教案

二次函数y=ax2的图像和性质教案篇一:22.1.2二次函数y=ax2图像与性质教案2123篇二:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,。

22.1.2二次函Y=ax2的图像和性质

22.1.2二次函Y=ax2的图像和性质
9
6
3
倍 速 课 时 学 练
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称轴的交点(0, 0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点. 实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线 的顶点.顶点是抛物线的最低点或最高点.
函数
-1
0
0.5
0 0.5
2
1
4.5
1.5
8
2
· · ·
· · · -2
-0.5
· · ·
y 2 x2
4.5
y x2
2
8 6 4 2
0.5
0
0.5 2 4.5 8
· · ·
y 2 x2
倍 速 课 时 学 练
-4 -2
y
2
1 2 x 2
a>0
4
y 5 4 3 2 1 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5
1 2 【例 2】 在同一直角坐标中,画出函数 y=2x 和 y=-2x2 的图象,并根据图象回答下列问题:
(1)说出这两个函数图象的开口方向、对称轴和顶点坐标; 1 2 (2)抛物线 y=2x ,当 x________时,抛物线上的点都在 x 轴上方;当 x>0 时,曲线自左向右逐渐________;它的顶点是 倍 图象的最________点; 速 (3)函数 y=-2x2,对于一切 x 的值,总有函数值 y_____0; 课 时 当 x<0 时,y 随 x 的增大而___ ____;当 x________时,y 有最 学 ________值为________. 练
图 22-1-1 倍 速 课 时 学 练 ①y=ax2;②y=bx2;③y=cx2;④y=dx2. 比较 a,b,c,d 的大小,用“>”连接.

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的图像与性质

二次函数的图像与性质

学情分析:本节内容是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节.二次函数曲线——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流、标枪的投掷等都形成抛物线路径.同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等.本节课研究最简单的二次函数y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.教学目标:1. 知识与技能目标(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y= ax2的性质.(2)猜想并能作出y=- x2的图象,能比较它与y= x2的图象的异同.2.过程与方法目标(1)经历探索二次函数y= x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.(2)由函数y= x2的图象及性质,对比地学习y=- x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.情感、态度与价值观目标(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.(2)通过小组交流、讨论、比较,研究二次函数y= x2和y=- x2的图象,培养学生合作意识和交流能力.教学重点:经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=a x2的性质.教学难点:描点法画y= x2的图象,体会数与形的相互联系。

教学过程:一、创设情境,提出问题学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题:1.我们已经学过哪些函数?研究函数问题的一般步骤是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?(设计意图:让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.)二、合作交流,探究新知1.认识抛物线问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?(设计意图:通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.)画一画:你能试着用描点法画二次函数y= x2的图象吗?(两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势等情形,这时正好针对问题鼓励小组间互相讨论、相互比较,交流各自的观点.)问题:通过刚才的分析你认为在画y= x2的图象时:(1)列表取值应注意什么问题?(取对称的7或5个点)(2)点和点之间用什么样的线连接? (用平滑曲线按自变量从小到大或从大到小的顺序连接)(学生尝试描述y= x2的图象,建立和实际问题的联系.再通过投篮的动态演示,形象的描述并体会y= x2的图象的形状是抛物线,并且与开始的引例相呼应.)(设计意图:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了.事实上,数学学习应该与学生的生活经验融合起来,让他们在生活中去发现数学、发现生活中的数学、探究数学、认识并掌握数学.)2.探究抛物线y= x2的性质议一议:请你观察y=x2的图象,你能得到哪些方面的性质,然后分组讨论.(在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条理化 .待学生发表自己的观点之后系统地总结一下y= x2的图象的性质)抛物线y=x2的性质(1)开口:抛物线的开口向上.(2)对称性:它是轴对称图形,对称轴是y轴(或x=0).(3)增减性:在对称轴的左侧(x<0时),y随x的增大而减小;在对称轴的右侧(x>0),y随着x的增大而增大.(4)顶点:图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)最值:因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y= 2x2 y=2(设计意图:在此问题上,不再按课本上的问题一一叠列给学生,而是给学生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.)3.探究抛物线y=-x2的性质想一想:(1)二次函数y=- x2的图象是什么形状?先想一想,然后作出它的图象.(2) 类似的你能说出它的性质吗?(让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y= x2与y=-x2的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.)1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y=- 2x2 y= -2(设计意图:这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.)议一议:函数y=x2与y=-x2的图象及其性质有何异同?(学生观察图形,通过小组讨论,归纳y=x2与y=-x2的图象及其性质的异同,然后回答,学生想不到的,及时给予引导.)不同点:开口方向不同:函数值随自变量的增大的变化趋势而不同:函数的最值不同:相同点:关系:它们的图像关于x轴对称(设计意图:通过比较y=x2与y=-x2的性质的异同,让学生更充分地理解y =±x2的性质.)三、变式训练,巩固提高(课堂检测)1.在二次函数y= x2的图象上,与点A(-5,25)对称的点的坐标是.顶点为:_____2.点(x1,y1)、 (x2,y2)在抛物线y=-3x2上,且x1> x2>0,则y1_____y2. 3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()(设计意图:通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.)四、总结反思,纳入系统通过今天的学习,你是否对二次函数y=a x2有了一些新的认识?能谈谈你的想法吗?(由学生总结本节课所学习的主要内容.在学生归纳的基础上总结它们的区别与生的素质,并且逐渐培养学生的良好的个性品质.)五、课后延伸,提升能力你能类比地画出函数:12+y的图象吗?动手画一下吧!=x教学反思:针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法.把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.。

22.1.2 二次函数y=ax2的图象和性质

22.1.2 二次函数y=ax2的图象和性质

3•. 单连击线此:处如编图辑,母再版用文平本滑样曲式线顺次连接各点,就得
到y =• x第2 二的级图象.
• 第三级
y
• 第四级 • 第五级
9
6
3
-4 -2 o 2 4 x
2019/9/21
5
单当击取更此多个处点编时,母函版数y标=x2的题图样象如式下:
y
• 单击此处编辑母版文本9样式
• 第二级
• 第三级
11
二单二击次函此数y处=a编x2的母性质版标题样式
问•题单1击:此观处察编图辑形母,版y随文x本的样变式化如何变化?
• 第二级
• 第三级
(-2,4)
• 第四级 (2,4)
• 第五级
(-1,1)
(1,1)
y x2
y ax2
2019/9/21
12
单击此处编母版标题样式知源自要点• 单击此处编辑母版文本样式 • 第对•二于第级三抛级物线 y = ax 2 (a>0)
的特点.(难点• )第五级 3.掌握形如y=ax²的二次函数图象的性质,并会应用.
(难点)
2019/9/21
2
导入新课
单击此处编母版标题样式
情境引入
• 单击此处编辑母版文本样式
• 第二级
• 第三级
• 第四级 • 第五级
2019/9/21
3
讲授新课
一单二击次函此数处y=a编x2的母图象版标题样式
典例精析
边空白部分面积,
∴S阴影部分面积之和=2×8=16.
2019/9/21
28
单击此处编母版标题样式
方法总结
• 单击二此次处函编数辑y=母a版x2的文图本象样关式于y轴对称,因此左 右两• 部第二分级折叠可以重合,在二次函数比较大小中,

二次函数y=ax2+c的图象与性质

二次函数y=ax2+c的图象与性质

◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 10
函数y=x2+1的图 函数 的图 象可由y=x2的图 象可由 象沿y轴向 轴向上 象沿 轴向上平移 1个单位长度得到 个单位长度得到. 个单位长度得到 相同
-10 -5
6
4
2
y=x2
O
-2
x
x y=x2 y=x2-2
….. …… ……
-2 4
-1 1
0 0
1 1
2 4
……
2
-1
y
8
-2
-1
-4 -3 -2 -1
y = (x −2 2 )
y=x2
2
1
2
3
4
抛物线 的关系
y = 1 ( x + 1) 2 2
y=
1 2 x 与抛物线 y = 1 ( x + 1) 2 2 2
把二次函数 y =
1 2 x 的图象 向左平移 个单位,得到图形 的图象E向左平移 个单位,得到图形F 向左平移1个单位 2 如图. ,如图
A
x1
y B o
x2
x
a (2) 函数 函数y=ax2-a与y= ( a ≠ 0) 与 x
在同一直角坐标系中的图象可能是 (A )
y
y o
y
y o
x
x o A
o
x
x
B
C
D
已知二次函数y=3x2+4,点A(x1,y1), B(x2,y2), 已知二次函数 点 C(x3,y3), D(x4,y4)在其图象上 且x2< x4<0, 在其图象上,且 在其图象上 0<x3< x1, |x2|>|x1|, |x3|>|x4|, 则 A.y1>y2>y3>y4 B.y2>y1>y3>y4 C.y3>y2>y4>y1 D.y4>y2>y3>y1 x2 y2 y1 y3 y4 x4 x3 x1 (B )
向上 (0 ,0) y轴
在对称轴的左侧, 在对称轴的左侧, y随着 的增大而减小。 随着x的增大而减小 随着 的增大而减小。 在对称轴的右侧, 在对称轴的右侧, y随着 的增大而增大。 随着x的增大而增大 随着 的增大而增大。
x=0时,y最小=0 时 x=0时,y最大=0 时 的形状是由|a|来确定的 一般说来, 抛物线y=ax2 (a≠0)的形状是由 来确定的 一般说来 抛物线 的形状是由 来确定的,一般说来 |a|越大 抛物线的开口就越小 越大,抛物线的开口就越小 越大 抛物线的开口就越小.
x ….. y=x2 …… y=x2+1 ……
-2 4
-1 1
0 0
1 1
2 4
…… ……
5
2
y
8
1
2
5
y=x2+1
函数y=x2+1的图象与 的图象与y=x2的 函数 的图象与 图象的位置有什么关系? 图象的位置有什么关系 函数y=x2+1的图 函数 的图 象与y=x2的图象 象与 的形状相同吗? 的形状相同吗
y=- 1 ﹙x-1﹚2 2
-4 -6
1 2 可以看出, 的开口向下, 可以看出,抛物线 y = − ( x + 1) 的开口向下,对称轴 2
是经过点(- , )且与x轴垂直的直线 轴垂直的直线, 是经过点(-1,0)且与 轴垂直的直线,我们把它记住 (-
1 2 x=-1,顶点是(- ,0);抛物线 y = − ( x − 1) (-1, ) - ,顶点是(- 2 的开口向_________,对称轴是 x = 1 的开口向 下 ,对称轴是________________,顶点 ,
5
2
O
-2
x
10
y=x2-2
函数y=-x2+3的图 函数 的图 象可由y=-x2的图 象可由 象沿y轴向 轴向上 象沿 轴向上平移 3个单位长度得到 个单位长度得到. 个单位长度得到
-10 -5
4
y
2
y=-x2+3
5
O
-2
x
10
函数y=-x2-2的图 函数 的图 象可由y=-x2的图 象可由 象沿y轴向 轴向下 象沿 轴向下平移 2个单位长度得到 个单位长度得到. 个单位长度得到
(1,0) 是_________________. .
1 2 1 1 2 y = − ( x − 1) 与抛物线 y = − x 2 抛物线 y = − ( x + 1) 2 2 2
有什么关系? 有什么关系?
1 2 向左平移1个单位 个单位, x 向左平移 个单位,就得到抛物 2 1 1 2 y = − x 2 向右平移 个单位,就得到抛物 向右平移1个单位 个单位, 线 y = − ( x + 1) 把抛物线 ; 2 2
• 说出下列二次 函数的开口方向、
对称轴及顶点坐标 向上, 轴 向上,y轴 (0, (1) y=5x2 向下, 轴 (2) y=-3x2 +2 向下,y轴 (0, 向上, 轴 (3) y=8x2+6 向上,y轴 (0, 向下, 轴 (4) y= -x2-4 向下,y轴 (0,
0) 2) 6) - 4)
轴 (4)抛物线 )抛物线y=-3x2+5的开口 下 ,对称轴是 y轴 , 的开口 顶点坐标是 (0,5) 在对称轴的左侧,y随x的增大 ,在对称轴的左侧, 随 的增大 而 增大 在对称轴的右侧,y随x的增大而 减小 ,在对称轴的右侧, 随 的增大而 , 当x= 0 时,取得最 大 值,这个值等于 5 。 轴 (5)抛物线 )抛物线y=7x2-3的开口 上 ,对称轴是 y轴 , 的开口 在对称轴的左侧, 随 的增大 顶点坐标是 (0,-3) ,在对称轴的左侧,y随x的增大 在对称轴的右侧, 随 的增大而 而 减小,在对称轴的右侧,y随x的增大而 增大, 当x= 0 时,取得最 小 值,这个值等于 -3 。 6.二次函数 二次函数y=ax2+c (a≠0)的图象经过点 (1,-1), 的图象经过点A( , ), ),B 二次函数 的图象经过点 2+c的表达式为 y=2x2-3。若 ),则函数 (2,5),则函数 , ),则函数y=ax 的表达式为 点C(-2,m),D(n ,7)也在函数的图象上,则点 的坐 ( )也在函数的图象上,则点C的坐 . 标为 (-2,5) D的坐标为 ( 5 ,7) 或 (− 5 ,7) 点 的坐标为
探究
的图象, 的图象,
··· ··· ···
-3
-2
-2 1 − 2
-1
0
-8 -4.5 -2
0 1 − 2 1 − 2
1
2
3
··· ··· ···
-2 -4.5 -8 0
1 − 2
-2
-4
-2 -2 -4
2
4
y=- 1 ﹙x+1﹚2 -6 2
y=- 1 ﹙x-1﹚2 2
-4
-2 -2
2
4
y=- 1 ﹙x+1﹚2 2
2 ……
函数y=x2-2的图象 函数 的图象 可由y=x2的图象 可由 轴向下 沿y轴向下平移 轴向 平移2 个单位长度得到. 个单位长度得到 相同
-10 -5
6
函数y=x2-2的图象与 的图象与y=x2的 函数 的图象与 图象的位置有什么关系? 图象的位置有什么关系
4
y=x2
函数y=x2-2的图象 函数 的图象 与y=x2的图象的 形状相同吗? 形状相同吗
-8
个单位得到。 向 下 平移 |c|个单位得到。
上加下减
(1)函数 函数y=4x2+5的图象可由 的图象可由y=4x2的图象 函数 的图象可由 个单位得到; 向上 平移 5 个单位得到;y=4x2-11的图象 的图象 个单位得到。 下 可由 y=4x2的图象向 平移 11个单位得到。 (2)将函数 将函数y=-3x2+4的图象向 下 平移 4 个单位可得 将函数 的图象向 y=-3x2的图象;将y=2x2-7的图象向上平移 7 个 的图象; 的图象向 的图象。 -7的图象 单位得到可由 y=2x2的图象。将y=x2-7的图象 的图象。 的图象 向上 平移 9 个单位可得到 y=x2+2的图象。 向上平移3个单位 个单位, (3)将抛物线 )将抛物线y=4x2向上平移 个单位,所得的 抛物线的函数式是 y=4x2+3 。 向下平移5个单位 将抛物线y=-5x2+1向下平移 个单位 所得的 将抛物线 向下平移 个单位,所得的 抛物线的函数式是 y=-5x2-4 。
函数y=ax2+c ,当x取x1,x2(x1≠x2, (1)已知二次函数 )已知二次函数 取
x1,x2分别是 分别是A,B两点的横坐标 时,函数值相等, 两点的横坐标)时 函数值相等, 两点的横坐标 则当x取 则当 取x1+x2时,函数值为 ( D ) A. a+c B. a-c C. –c D. c
10
y
8
y=x2+1 y=x2 y=x2-2
5
4
y
2
y=-x2+3
5
6ቤተ መጻሕፍቲ ባይዱ
4
-10
-5
O
-2
x
10
2
y=-x2 y=-x2-2
-4
-10 -5
O
-2
x
10
-6
-8
当a>0时,抛物线 时 抛物线y=ax2+c的开口 向上 对称轴 的开口 , 轴 在对称轴的左侧, 随 的 是 y轴,顶点坐标是(0,c),在对称轴的左侧,y随x的 在对称轴的右侧,y随 的增大而 增大而 减小,在对称轴的右侧 随x的增大而 增大, 当x= 0 时,取得最 小 值,这个值等于 c ; 抛物线y=ax2+c的开口 向下 对称轴 当a<0时,抛物线 时 抛物线 的开口 , 轴 在对称轴的左侧, 随 的 是y轴 ,顶点坐标是(0,c),在对称轴的左侧,y随x的 在对称轴的右侧,y随 的增大而 增大而 增大,在对称轴的右侧 随x的增大而 减小, 当x= 0 时,取得最 大 值,这个值等于 c 。
相关文档
最新文档