振幅调制与解调

合集下载

第6章振幅调制、 解调及混频

第6章振幅调制、 解调及混频

(1)波形表示式
u AM (t ) [U C kaU cos t ]cos ct (6-3) kaU U C [1 cos t ]cos c t UC U C [1 ma cos t ]cos c t
(6-4)
调幅度 ma
kaU UC
不仅与 ka 有关,还与信号的幅度有关
第6章振幅调制、 解调及混频
(3)频域表示式及频谱图
u (t ) U n cos(nt n )
n 1
有 min
max
u AM (t ) [U C ka U n cos(nt n )]cos ct
n 1

kaU n U C [1 cos nt ]cos c t n 1 U C U C [1 mn cos nt ]cos ct
u (t ) 频谱
0 3 00 振 幅 3 4 00 (a ) f / Hz
u AM (t ) 频谱
0
fc-3 4 00 (b )
fc
fc+3 4 00
f / Hz
图6-5 (a)语音频谱(b)已调信号频谱
8
《高频电子线路》
第6章振幅调制、 解调及混频
c min 上边带:
载波: c 下边带: c min
(1) 当调幅度m=1时,调幅波的最大功率为载波功率的4倍,
而最小功率为零,因此由于最大、最小功率相差太大,对特 定的功放管而言,其额定输出功率将大大受限;因此在设计
功率放大器时,一定要以此来选择功放管。保证:Pmax≤PH
(功放管的额定输出功率) (2) 当m=1时,不携带调制信号的载波成分将占用调幅波 总功率的 2/3 ,而带有信号的边频只调幅波总功率的 1/3 ,因 此功率浪费大,效率低;若m<1,则效率更低。

高频电子线路第6章振幅调制解调及混频

高频电子线路第6章振幅调制解调及混频

i
VD uΩ
+
H(j) uo(t) 0 F
fc
2fc
3fc
f

(b)流过二极管的电流频谱
uc
2020/4/10
(a)
26
(2) 单差分对电路:
io
Io (1
uB ) Ee
uA 2VT
,
uA , uB 26mV
uB uA
U cost
Uc
c
osct
uo
I o RLU c 2VT
1
U Ee
cost cosct,
m U Ee
单差分对AM调制器的输出波形 :
2020/4/10
27
关于AM调制的说明: (1). 高电平AM调制:集电极调幅需要谐振功放工作在过压状 态,而基极调幅需要谐振功放在欠压状态,前者优点是输出 功率较大,后者优点是所需的激励功率功率较小; (2). 二极管AM调制:合理选择信号的注入位置,可以用二极 管平衡电路直接实现AM调制;要想用二极管环形电路实现 AM调制,需要在输出电压中再加入载波分量,或者在输入调 制信号中叠加上直流成分; (3). 双差分对AM调制电路:在小信号状态下,双差分对电路 就是一个标准的模拟乘法器,要想利用它实现AM调制,也需 要在输出端再加入载频分量,或者在输入调制信号中叠加上 直流成分。
R0Eb0 u cosct
RL
C1 R1
Ec CB
2020/4/10
24
基极调幅的波形:
2020/4/10
25
2) 低电平调制:用第5章的频谱搬移电路实现低电平AM调制。
(1) 单二极管电路: u1=uΩ, u2= uc, Uc>>UΩ。

幅值调制的解调方法

幅值调制的解调方法

幅值调制的解调方法
幅值调制,也被称为振幅调制或AM,是常见的调制方法之一。

在幅值调制中,载波信号的振幅根据输入信号的大小而变化。

解调则是将已调信号还原为原始信号的过程。

以下是一些常用的幅值调制的解调方法:
1、同步解调:
在同步解调中,一个与发送端同步的本地载波信号用于解调。

通过乘法器将已调信号与本地载波相乘,得到一个脉动的包络信号。

包络信号经过滤波器滤除高频成分后,得到原始的调制信号。

2、包络检波法:
包络检波法是一种非相干解调方法。

它利用二极管或类似器件的导通特性,将已调信号的包络检测出来。

这种方法简单,但当信号受到噪声干扰时,可能会受到影响。

3、相干解调:
相干解调需要一个与发送端同步的本地载波信号。

已调信号与本地载波相乘后,再通过低通滤波器滤除高频成分,得到原始的调制信号。

4、频域解调:
频域解调是将已调信号进行快速傅里叶变换(FFT),在频域直接获取调制信号。

这需要较为复杂的计算,但可以避免在时域解调中可能遇到的困难。

5、希尔伯特变换法:
希尔伯特变换法能够从已调信号中准确地恢复出原始信号。

它首先对已调信号进行希尔伯特变换,得到解析信号。

解析信号与原始已调信号只相差一个常数因子。

6、相角解调:
相角解调是利用接收到的信号相位信息来恢复原始调制信号。

它需要一个本地载波信号,并测量已调信号与本地载波之间的相位差。

通过这个相位差信息,可以恢复原始的调制信号。

在实际应用中,选择哪种解调方法取决于具体的应用场景、系统复杂度、性能要求和可用资源等因素。

第五章 振幅调制、解调及混频讲解

第五章 振幅调制、解调及混频讲解
(4)频率调制:调制信号控制载波频率,使已调波的频率随调制 信号线性变化。
(5)相位调制:调制信号控制载波相位,使已调波的相位随调 制信号线变化。
( 6)解调方式:
振幅检波 振幅调制的逆过程 鉴频 调频的逆过程 鉴相 调相的逆过程 (7)振幅调制分三种方式:
普通调幅( AM ) 抑制载波的双边带调幅(DSB ) 单过带调制(SSB )
密码
信号 载波信号:(等幅)高频振荡信号
正弦波 方波 三角波 uc Uc cos(ct )
锯齿波
已调信号(已调波):经过调制后的高频信号(射频信号)
(1) 调制:用调制信号去控制载波信号的某一个参量的过程。 (2)解调:调制的逆过程,即从已调波中恢复原调制信号的过程。
休息1 休息2
(3)振幅调制:由调制信号去控制载波振幅,使已调信号的振 幅 随调制信号线性变化。

)t

可见,调幅波并不是一个简单的正弦波,包含有三个频率分量:
载波分量(c ) : 不含传输信息
上边频分量c : 含传输信息 下边频分量c : 含传输信息
调制信号
Ω
载波
调幅波
U
ωc
c
下边频
1 2 maUc
1 2
maU
c
上边频
ωc - Ω ωc +Ω
(2) 限带信号的调幅波
第5章 振幅调制、解调及混频
5.1 概述 5.2 振幅调制原理及特性 5.3 振幅调制电路 5.4 调幅信号的解调 5.5 混频器原理及电路
返回 休息1 休息2
5.1概述
振幅调制
解调(检波)
属于 频谱线性搬移电路
混频(变频)
语言
定义: 调制信号:需要传输的信号(原始信号)

振幅调制和解调电路

振幅调制和解调电路
在移动通信中,为了提高频谱利用率 和抗干扰能力,通常采用复杂的调制 和解调技术,如QAM(Quadrature Amplitude Modulation)等。
02
振幅调制原理
振幅调制定义
01
振幅调制是指将低频信号调制到 高频载波上,改变载波的幅度大 小的过程。
02
振幅调制是一种线性调制方式, 其原理是将输入信号的幅度变化 ,通过改变高频载波的幅度来实 现信号的传输。
01
03
同时,随着物联网、云计算、大数据等新兴技术的发 展,振幅调制和解调电路的应用领域也将不断拓展,
为人们的生活和工作带来更多的便利和价值。
04
未来发展方向包括采用新型的调制方式、提高调制效 率、降低解调误差率、增强抗干扰能力等。
THANKS
感谢观看
振幅调制优点与缺点
振幅调制的优点包括实现简单、抗干扰能力强、信道利用率 高等。
振幅调制的缺点包括对非线性失真敏感、对信道特性变化敏 感等。
03
振幅调制电路
模拟振幅调制电路
01
模拟振幅调制电路主要 由调制信号、载波信号 和调制器组成。
02
03
04
调制信号通常是音频信 号或低频信号,载波信 号是高频信号。
移动通信
在移动通信系统中,振幅调制用于传 输语音和数据信号。解调电路在接收 端将调制的信号还原为原始信号,以 便用户接收。
有线通信系统中的应用
有线电视
在有线电视系统中,振幅调制用于传 输多路电视信号。解调电路用于将各 个电视频道还原为原始信号,以便用 户选择观看。
DSL宽带接入
在DSL宽带接入中,振幅调制用于传 输高速数据信号。解调电路在接收端 将调制信号还原为原始数据信号,提 供互联网接入服务。

振幅调制与解调实验报告

振幅调制与解调实验报告

振幅调制与解调实验报告一、实验目的二、实验原理1. 振幅调制原理2. 振幅解调原理三、实验器材与仪器1. 实验器材2. 实验仪器四、实验步骤1. 振幅调制步骤2. 振幅解调步骤五、实验结果与分析1. 振幅调制结果及分析2. 振幅解调结果及分析六、实验心得体会一、实验目的本次振幅调制与解调实验的主要目的是了解振幅调制与解调的基本原理,掌握振幅调制和解调的方法,进一步加深对通信原理的认识。

二、实验原理1. 振幅调制原理振幅调制是指将模拟信号的振幅变化转换成载波信号的振幅变化。

在振幅调制中,被传输信息信号称为基带信号,载波信号称为高频信号。

通过将基带信号与高频载波进行线性叠加,即可得到一个新的复合波形,其包含了被传输信息和高频载波两部分内容。

2. 振幅解调原理振幅解调是指将调制信号中的信息信号从高频载波中分离出来的过程。

在振幅解调中,需要使用一个解调器,它会将接收到的带有信息信号的复合波形进行处理,将其分离为基带信号和高频载波两部分。

三、实验器材与仪器1. 实验器材本次实验所需要使用的器材主要包括:(1)信号发生器;(2)示波器;(3)电阻箱。

2. 实验仪器本次实验所需要使用的仪器主要包括:(1)振幅调制解调实验箱;(2)万用表。

四、实验步骤1. 振幅调制步骤(1)连接好各个设备,并打开电源。

(2)设置信号发生器输出正弦波,并通过电阻箱设置合适的基带信号电平。

(3)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。

(4)通过示波器观察振幅调制后的波形,并记录下相关数据。

2. 振幅解调步骤(1)连接好各个设备,并打开电源。

(2)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。

(3)通过示波器观察振幅调制后的波形,并记录下相关数据。

(4)将解调器与示波器相连,并通过万用表测量解调输出电压。

五、实验结果与分析1. 振幅调制结果及分析在进行振幅调制实验时,我们可以通过观察示波器上的波形来验证振幅调制是否成功。

振幅调制、解调与混频电路

振幅调制、解调与混频电路


AMVΩmVcm AMVΩmVcm
cos(c cos(c

)t )t
对于复杂信号调制上面的模型也成立。
通信工程学院
27
F ()
F f (t) cosct

F fˆ (t) sin ct

SUSB ()
SLSB ()
通信工程学院
28
4.1.2 振幅解调和混频电路的组成模型
P(t) 1
2
Vπ 2
-π m0
(1
Ma
cost ) 2
cos2
ctdct

1 2
Vm20
(1

Ma
cos t)2

P0 (1
Ma
cos t)2
式中,P0 Vm20 / 2 :载波分量产生的平均功率。
Pmax P0 1 Ma 2
Pmin P0 1 Ma 2
通信工程学院
20
通信工程学院
21
③组成模型 vO (t) AMVcmv (t) cosct AMVcm ka
④讨论 •其包络与调制信号不一致; •调制效率高; •信号的带宽与AM信号一样。
通信工程学院
22
2. 单边带调制信号
①定义:仅传输一个边带(上边带或下边带)的调制方式称为单 边带调制 。 ②目的:节省发射功率;频谱宽度压缩一半,BWSSB = Fmax。
带通
通信工程学院
37
4.2 相乘器电路

实现:利用非线性器件。 电阻性
按非线性器件 电抗性
• 类别
两输入信号加到同一器件输入端
按输入信号注入方式 两输入信号加到不同器件输入端

振幅调制、解调电路概要

振幅调制、解调电路概要

2.负载效应 检波器作为中频放大器的 输出负载,可以用检波输入电 阻 Ri 来表示这种负载效应。 (1) Ri 定义:输入高频电 压振幅对二极管电流 i 中基波 分量振幅的比值。 (2) Ri 的求法:可近似从能量守恒原理求得。 设输入高频等幅电压 vS(t) = Vm cosct,相应的输出 为直流电压 VAV,则检波器从输入信号源获得的高频功 2 率为 Pi = Vm / 2Ri ,经过二极管的变换作用,一部分转
② 载频减小为 50 kHz,上、下边频间隔仍为0.2 kHz,则两边频的相对间隔为(0.2/50.1) × 100% = 0.4%。
相对间隔越大,滤波器就越容易实现。故单边带发 射机在低载波频率上产生单边带信号,而后用混频器将 载波频率提升到所需的载波频率上。 (2) 组成
本振频率(kHz) 边带最小频率间隔 相对频率间隔 (kHz) 0.2 0.2% 平衡调制器 100(载波) 2000 第一混频器 200.2 9.4% 第二混频器 26000 4200.2 14.9%
且其值与输入调幅信号包络 Vm0(1 + Macost) 成正比:
VAV = dVm0,Vm=d),恒小于1。
3.讨论 (1) D的作用 原理上,D起着受载波电压控制的开关作用 实际上,受 RLC 电压反作用,D 仅在载波一个周 期中接近正峰值的一段时间(vS > vC)内导通(开关闭合), 而在大部分时间内截止(开关断开)。导通与截止时间与 RLC 大小有关。 例: RLC ↑→C向RL的放电速度↓→C的泄放电荷量 ↓→D 导通时间↓→锯齿波动↓→vAV 增大。
二、低电平调制电路——单边带发射机 1.用途:主要用来实现双边带和单边带调制 2.要求:调制线性好,载波抑制能力强,功率和 效率的要求是次要的。 载波抑制能力的强弱可用载漏(输出泄漏的载波分 量低于边带分量的分贝数)表示,分贝数越大,载漏就 越小。 3.种类:前面介绍的各种乘法器均可构成性能优良 的平衡调制器,例1596、AD630 平衡调制器等。 实用的低电平调制电路这里不再作讨论。下面仅 讨论——

通信信号的调制和解调技术

通信信号的调制和解调技术

通信信号的调制和解调技术随着科技的不断进步,通信技术在我们的生活中扮演着越来越重要的角色。

作为通信技术的核心,调制和解调技术起到了关键的作用。

本文将详细介绍通信信号的调制和解调技术,并分步骤进行说明。

一、调制技术1. 通信信号的调制是指将源信号转换为适合传输的调制信号。

调制技术可以将源信号变成需要传输的信号。

2. 常见的调制技术有:振幅调制(AM)、频率调制(FM)和相位调制(PM)。

3. 振幅调制(AM)是指通过改变调制信号的振幅来实现信号的调制。

这种调制技术广泛应用于广播和电视传输中。

4. 频率调制(FM)是指通过改变调制信号的频率来实现信号的调制。

这种调制技术常用于FM广播和音频传输。

5. 相位调制(PM)是指通过改变调制信号的相位来实现信号的调制。

这种调制技术在通信中也有广泛应用。

二、解调技术1. 通信信号的解调是指将调制后的信号还原为源信号的过程。

解调技术可以从调制信号中还原出源信号。

2. 解调技术主要包括同步、检测和滤波三个步骤。

3. 同步是指在解调过程中确保解调器的接收端和发送端保持同步,以便准确还原信号。

4. 检测是指将同步后的信号转化为模拟信号,以便后续处理。

5. 滤波是指通过滤波器去除解调后的信号中的噪声和杂波。

三、调制和解调的分类1. 数字调制和解调:数字调制和解调是指将数字信号转化为模拟信号或将模拟信号转化为数字信号的过程。

常用的数字调制技术包括正交振幅调制(QAM)和相移键控(PSK)等。

2. 模拟调制和解调:模拟调制和解调是指将模拟信号转化为模拟调制信号或将模拟调制信号转化为模拟信号的过程。

常用的模拟调制技术包括调幅调制(AM)、调频调制(FM)和调相调制(PM)等。

四、应用举例1. 无线通信:无线通信中广泛应用的调制技术包括频率调制和相位调制。

比如,蜂窝通信系统中使用的GSM系统就是用的GMSK(高斯最小频移键控)的调制技术。

2. 数字电视:数字电视通过使用数字调制技术将视频信号转化为数字信号进行传输,并通过解调技术将数字信号还原为视频信号。

第四章 振幅调制与解调_2010

第四章  振幅调制与解调_2010

fS
f
fi
f
7
f0 本振
f 非线性 器 件 带通 到中放
fi, 2Fmax fi=fO-fS
高放 f … fi
fS
f
fi
f
1) 它们的实现框图几乎 是相同的,都是利用非线 性器件对输入信号频谱实 行变换以产生新的有用频 率成分后,滤除无用频率 分量。 3) 频谱的横向平移从时域 角度看相当于输入信号与一 个参考正弦信号相乘,而平 移的距离由此参考信号的频 率决定,它们可以用乘法电 路实现。
中放来
非线性 器 件
低通 Fmax
到功放
调制信号 f f
f1
f
0 F max
f1
2f1
f
0
f Fmax
0
fmax f
f0
2f0
f0
(a) 调幅原理
(b) 检波原理
3
(a) 调幅原理
f 非线性 器 件 带通 f0, 2Fmax
f0 主振
调制信号 f f
0
fmax f
f0
2f0
f0
4
(b) 检波原理
40
0
.
5
V
V
0
.
5
1
0
0
0
V
f/KHz
9
9
9
.
8
1
0
0
0
.
2
37
0
.
9
2
6
V
7 9
7
0 1
V
9
0
7
.
3
2
例题4-2
V
0
.
9

振幅调制与解调原理详解

振幅调制与解调原理详解

f f0
f f1
0 Fmax f1
f 2f1
0 Fmax
f
本振
f f0 非线性
器件
高放
带通 到中放
fi, 2Fmax
fi=fO-fS
(c) 检波原理

f fS
fi
f
fi
f
(b) 混频原理
频谱搬移电路的特性
1) 它们的实现框图几乎是相同的,都是利用非线性器件 对输入信号频谱实行变换以产生新的有用频率成分后, 滤除无用频率分量。
由非正弦波调制所得到的调幅波形
v
o t
v o Vmax t
(a) 调制信号
(b)已调波形
若调制信号为非对称信号,如图所示, 则此时调幅度分与上调幅度ma上和下调幅度ma下
m a上
Vmax Vo
Vo
m a下
V0
Vmin Vo
3. 调幅信号的频谱及带宽
将调幅波的数学表达式展开,可得到
v(t)
Vo(1 ma Vo cos ot
PAM
PoT
PDSB
(1
1 2
ma2
)PoT
当ma=1时,PoT=(2/3)PAM ;
当ma=0.5时,PoT=(8/9)PAM ;
V0
ma 2
V0
ma 2
V0
0
0 00 ω
载波本身并不包含信号,但它的功率却占整个调 幅波功率的绝大部分。
从调幅波的频谱图可知,唯有它的上、下边带分
量才实际地反映调制信号的频谱结构,而载波分量仅是 起到频谱搬移的作用,不反映调制信号的变化规律。
由于调 幅信号的振幅与调制信号成线性关系,即有:
Vm (t ) V0 k aV cos t ,式中 ka 为比例常数

第五章 信号变换一:振幅调制、解调

第五章 信号变换一:振幅调制、解调
普通调幅( 普通调幅(AM):含载频、上、下边带 ) 含载频、 双边带调幅( 双边带调幅(DSB):不含载频 ) 单边带调幅( 单边带调幅(SSB):只含一个边带 ) 残留单边带调幅( 残留单边带调幅(VSB):含载频、一个 ) 含载频、 边带
二、双边带调制和单边带调制
1. 双边带调制
(1) 双边带调制电路的模型 )
例题
设载波功率Pc为100W,问调幅度为1及0.3 设载波功率 ,问调幅度为 及 总边频功率、总平均功率各为多少? 时,总边频功率、总平均功率各为多少? (ma =1时, P = 50W、 P∑a=150W、 时 、 、 ma = 0.3 时, P = 4.5W、 P∑a=104.5W) 、 )
7.调幅波的几种调制方式 调幅波的几种调制方式
二、混频器组成框图及工作原理
⒈ 组成框图
⒉ 工作原理
两个不同频率的高频电压作用于非线性器 件时,经非线性变换, 件时,经非线性变换,电流中包含直流分 基波、谐波、和频、差频分量等。 量、基波、谐波、和频、差频分量等。其 中差频分量f 中差频分量 Lo-fs就是混频所需要的中频成 分,通过中频带通滤波器把其它不需要的 频率分量滤掉,取出差频分量完成混频。 频率分量滤掉,取出差频分量完成混频。 若同一个非线性器件既完成混频、又作为 若同一个非线性器件既完成混频、 本地振荡,则这个混频器通常称为变频器 变频器。 本地振荡,则这个混频器通常称为变频器。
5.1.1 振幅调制电路
一、普通调幅(AM) 普通调幅( )
什么是调幅? ⒈ 什么是调幅? ——载波的振幅值随调制信号的大小作线 载波的振幅值随调制信号的大小作线 性变化,称为振幅调制,简称调幅 调幅( 性变化,称为振幅调制,简称调幅(AM) ) 2. 普通调幅电路模型

第5章 振幅调制及解调

第5章   振幅调制及解调

uSSB (t)

Um0 2
cos t
cosCt

Um0 2
sin t
sin C t
第5章 振幅调制及解调
H()
C C4 滤波法框图
第5章 振幅调制及解调
第一项是载波与调制信号相乘项,第二项是调制信号 的正交信号与载波的正交信号的乘积项,两项相加得下边 带信号,如图5.15所示。
第5章 振幅调制及解调
第5章 振幅调制及解调
5.1 概述 5.2 振幅调制信号分析 5.3 振幅调制方法 5.4 振幅调制电路 5.5 振幅解调方法 5.6 振幅解调电路
第5章 振幅调制及解调
5.1 概 述
5.1.1 连续波模拟调制 连续波模拟调制的载波是连续的等幅高频正弦波, 用uC表示
uC=UCmcos(ωCt+φ) 将调制信号uΩ寄载在载波上的方法有三种。一种是把 调制信号寄载在载波的幅度上,叫做振幅调制,简称 调幅(AM)。已调波用uAM表示,如图5.1所示。
第5章 振幅调制及解调
采样
量化
编码
信道
解码
滤波
u(t)
uo(t)
s(t) Ts
定时
发射
接收
同步
图5.4 脉冲数字调制系统框图
第5章 振幅调制及解调
脉冲调制信号的传输方式有两种。一种是直接将 脉冲调制信号送入信道进行传输,这种方式叫基带传 输。这种传输方式适用于短距离通信。另一种是载波 传输。载波传输是两次调制方式。
uAM UC KM uuC uC (1 KM u )
UCm (1 KMUΩm cos t) cosCt
与式(5.2-1)对照可见
U m0
Ucm , ma
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频电子线路
在输入调制信号的一个周期内,调幅信号 的最大振幅为 Uommax=Uom(1+ma) 最小振幅为 Uommin=Uom(1-ma)


由上两式可解出 U ommax U ommin ma U ommax +Uommin
2015年5月2日
27/136
贺州学院机械与电子工程学院
高频(射频): 高频窄带信号
AM广播信号: 535 ~1605kHz,BW=20kHz f max BW 20k 1 3 f min f0 1000k 50
f0 BW Q
low
20
10k
20k
2015年5月2日
频谱搬移
100k
1000k
high
7/136
贺州学院机械与电子工程学院
高频电子线路
检波
信号大小
工作特点
2015年5月2日
14/136
贺州学院机械与电子工程学院
高频电子线路
9.2.1
调幅波的数学表示式与频谱
9.2.2
调幅波中的功率关系
2015年5月2日
15/136
贺州学院机械与电子工程学院
高频电子线路
几个基本概念
1. 调制:调制是指利用调制信号去控制载波的 某个参数的过程。

2. 调制信号:是指由原始消息(如声音、数据、 图象等)转变成的低频或视频信号。可以是模拟信 号,也可是数字信号。通常用uΩ 或f(t)表示。
2015年5月2日
30/136
贺州学院机械与电子工程学院
高频电子线路
振 幅
0
3 00 振 幅
3 4 00 (a )
f/Hz
0
fc-3 4 00 (b )
fc
fc+3 4 00
f/Hz
图 (a)语音频谱(b)已调信号频谱
2015年5月2日 31/136
贺州学院机械与电子工程学院
u (t)
高频电子线路
即:
Vm (t ) V0 (1 kaV cost ) V0 (1 ma cost ) V0 k aV V0
式中ma为调制度,
2015年5月2日
ma
常用百分比数表示。
v AM V0 (1 ma cost ) cos0t
20/136
贺州学院机械与电子工程学院
t u c(t) t Uommax Uommin t
u o(t)
Uom(1+macost)
图 普通调幅电路的波形
2015年5月2日 32/136
贺州学院机械与电子工程学院
高频电子线路
uo (t)
t
(a )
uo (t)
t
(b )
图 过量调幅失真
2015年5月2日 33/136
贺州学院机械与电子工程学院
高频电子线路
Vm (t ) V0 (1 ma cost )
Vmax Vo (1 ma )
Vo
Vmin Vo (1 ma )
波形特点: 调(1) 幅波的振幅(包络)变化规律与调制信号波形 一致 (2) 调幅度ma反映了调幅的强弱度
2015年5月2日
1 (Vmax Vmin ) V V V Vmin 2 ma max 0 0 V0 V0 V0
高频电子线路
1. 普通调幅波的数学表示式
首先讨论单音调制的调幅波。 载波信号: v 0 V0 cos0t 调制信号: v V cost
调 幅信号(已调波): v AM Vm (t ) cos0t
由于调 幅信号的振幅与调制信号成线性关系,即有:
Vm (t ) V0 kaV cost ,式中 ka 为比例常数
3. 调制的方式和分类 调幅 连续波调制 调频 调相 振幅调制 脉宽调制 脉冲波调制 脉位调制 编码调制
8/136
调制
2015年5月2日
贺州学院机械与电子工程学院
高频电子线路
4. 调幅的方法
低电平调幅
平方律调幅 斩波调幅
集电极调幅
调幅方法
高电平调幅 基极调幅
2015年5月2日
End
9/136
贺州学院机械与电子工程学院
21/136
贺州学院机械与电子工程学院
高频电子线路
v V cosΩt
v 0 V0 cos0t
ma 0
0 ma 1
maa 1
2015年5月2日
22/136
贺州学院机械与电子工程学院
u 0 uC 0 (a ) t
高频电子线路
t (b ) m<1 t

u A M(t )
5/136
贺州学院机械与电子工程学院
高频电子线路
2. 调制的原因 便于不同电台相同频段基带信号的同时接收

c1
c 2

频谱搬移
2015年5月2日 6/136
贺州学院机械与电子工程学院
高频电子线路
2. 调制的原因 可实现的回路带宽
基带信号特点:频率变化范围很大。 f max BW 20k 1000 2 低频(音频): 20Hz~20kHz f f0 10k min

u (t ) Un cos nt
n 1
nmax
2015年5月2日
35/136
贺州学院机械与电子工程学院
高频电子线路

则输出调幅信号电压为
nmax
uo(t ) [U om ka u (t )]cos ct [U om ka U n cos nt ]cos c t
U cm (1 ma cost )cosct
为了使已调波不失真,即高频振荡波的振幅能真实地反映
出调制信号的变化规律,调幅度m应小于或等于1,当
m>1时,称为过调幅。
2015年5月2日
25/136
贺州学院机械与电子工程学院
高频电子线路
(3)调制电路框图
要完成AM调制,可以用图6-3所示的原理框图实现, 其关键在于实现调制信号和载波信号的相乘。
调制信号 Ω
1 1 ma cos(0 Ω )t ma cos(0 Ω )t 2 2

载波
调幅波
ω0
下边频 上边频
ω0 - Ω
2015年5月2日
ω0+Ω
29/136
贺州学院机械与电子工程学院
高频电子线路
显然:
1) 频谱的中心分量就是载波分量,它与调制信号无关, 不含消息; 2) 两个边频分量分量ωc+Ω及ωc - Ω则以载频为中心对 称分布,两个边频信号的幅度相等并与调制信号幅度成正比。 3) 边频相对于在品的位置仅取决于调制信号的频率。 因此调制信号的幅度、频率消息只包含在边频分量中。 在多频调制的情况下,各个低频频率分量所引起的边频 对组成了已调波的上下两个边带。如图所示。
End
2/136
贺州学院机械与电子工程学院
高频电子线路
9.1.1 9.1.2
2015年5月2日
振幅调制简述 检波简述
3/136
贺州学院机械与电子工程学院
高频电子线路
1.定义
高频振荡
缓冲
倍频
高频放大
调制
发 射 天 线
声音
话筒
音频放大
2015年5月2日
将要传送的信息装载到某一高频 载频信号上去的过程。
贺州学院机械与电子工程学院
高频电子线路
9.1 9.2 9.3 9.4 9.5 9.6
2015年5月2日
概述 调幅波的性质 平方律调幅 斩波调幅 模拟乘法器调幅 单边带信号的产生
1/136
贺州学院机械与电子工程学院
高频电子线路
9.7 9.8 9.9 9.10 9.11
2015年5月2日
残留边带调幅 高电平调幅 包络检波 同步检波 单边带信号的接收
4/136
贺州学院机械与电子工程学院
高频电子线路
2. 调制的原因 从切实可行的天线出发 为使天线能有效地发送和接收电磁波,天线的几何 尺寸必须和信号波长相比拟,一般不宜短于1/4波长。 音频信号: 20Hz~20kHz 波长:15 ~15000 km
天线长度: 3.75 ~3750km
2015年5月2日

6.振幅调制:是指利用调制信号去控制载波的振 幅,使载波信号的振幅按调制信号的规律变化。

7.振幅调制的分类:
(1) 普通调幅方式( AM ):其输出的已调信 号称为调幅波。 (2) 抑制载波的双边带调制:其输出的已调信 号称为双边带信号(DSB)。

2015年5月2日
(3) 抑制载波的单边带调制:其输出的已调信
n 1
ka U om cos c t 2
nmax
U
n 1
n
[cos(c n)t cos(c n)t ]
2015年5月2日
36/136
贺州学院机械与电子工程学院
高频电子线路
可以看到, uo(t) 的频谱结构中,除 载波分量外,还有由相乘器产生的上、 下边频分量,其角频率为( ωc±Ω )、 (ωc+2Ω)…(ωc±nmaxΩ)。这些上、 下边频分量是将调制信号频谱不失真地 搬移到 ωc 两边,如图所示。不难看出, 调幅信号的频谱宽度为调制信号频谱宽 度的两倍,即 BWAM=2Fmax
17/136
号称为单边带信号(SSB)。
贺州学院机械与电子工程学院
高频电子线路
信号变换概述
非线性 器件 输入 滤波器 输出
图 频率变换电路的一般组成模型
2015年5月2日
18/136
贺州学院机械与电子工程学院
相关文档
最新文档