2013海淀高三上期末数学理科(无答案)
北京市海淀区高三数学上学期期末考试试题 理 北师大版
北京市海淀区2013届高三第一学期期末考试数学(理)试题2013.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i --2.已知直线2,:2x t l y t =+⎧⎨=--⎩(t 为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是A.π,(1,0)4 B.π,(1,0)4- C.3π,(1,0)4 D.3π,(1,0)4- 3.向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为 A.1- B.12-C.13- D.1 4.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A.4,30n S ==B.5,30n S ==C.4,45n S ==D.5,45n S ==5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是 A.BEC ∆∽DEA ∆ B.ACE ACP ∠=∠ C.2DE OE EP =⋅ D.2PC PA AB =⋅6.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为A. 144B.120C. 108D.72B8. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:本大题共6小题,每小题5分,共30分.9. 以y x =±为渐近线且经过点(2,0)的双曲线方程为______.10.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.11. 在261(3)x x+的展开式中,常数项为______.(用数字作答) 12. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.13. 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为___.k =14. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<,记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值).三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数21()cos cos 2222x x x f x +-,ABC ∆三个内角,,A B C 的对边分别为,,a b c .(I )求()f x 的单调递增区间;(Ⅱ)若()1,f B C +=1a b ==,求角C 的大小.DABC左视图16.(本小题满分13分)汽车租赁公司为了调查A,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:(I )从出租天数为3天的汽车(仅限A,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点.(I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.18. (本小题满分13分)EC 1B 1A 1CBA已知函数e ().1axf x x =- (I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.19. (本小题满分14分)已知()2,2E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交于,A B 两点(不同于点E ),直线,EA EB 分别交直线2x =-于点,M N . (Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O 为原点,求证:MON ∠为定值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”. 我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) 三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为21()cos cos 2222x x x f x +-cos 122cos 121x x x x =+-=++ πsin()6x =+ ………………6分又sin y x =的单调递增区间为ππ2π,2π 22k k -+(),()Z k ∈ 所以令πππ2π2π262k x k -<+<+ 解得2ππ2π2π 33k x k -<<+ 所以函数()f x 的单调增区间为2ππ(2π,2π) 33k k -+,()Z k ∈ ………………8分 (Ⅱ) 因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈所以πππ,623B C B C ++=+=,所以2π3A =………………10分由正弦定理sin sin B Ab a=把1a b ==代入,得到1s i n 2B =………………12分又,b a <B A <,所以π6B =,所以π6C =………………13分16.(本小题满分13分) 解:(I )这辆汽车是A 型车的概率约为3A 3A,B =出租天数为天的型车辆数出租天数为天的型车辆数总和300.63020=+这辆汽车是A 型车的概率为0.6 (3)分(II )设“事件i A 表示一辆A型车在一周内出租天数恰好为i 天”,“事件j B 表示一辆B型车在一周内出租天数恰好为j 天”,其中,1,2,3,...,7i j = 则该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为132231132231()()()()P A B A B A B P A B P A B P A B ++=++ ………………5分132231()()()()()()P A P B P A P B P A P B =++ ………………7分520102030141001001001001001009125=⋅+⋅+⋅=该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为9125………………9分设Y 为B 型车出租的天数,则Y 的分布列为()10.0520.1030.3040.3550.1560.0370.02=3.62E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯()10.1420.2030.2040.1650.1560.1070.05E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=3.48………………12分一辆A 类型的出租车一个星期出租天数的平均值为3.62天,B 类车型一个星期出租天数的平均值为3.48天. 从出租天数的数据来看,A 型车出租天数的方差小于B 型车出租天数的方差,综合分析,选择A 类型的出租车更加合理 . ………………13分17.(本小题满分14分)(I) 连接A C 1交AC 1于点O ,连接EO因为1ACC A 1为正方形,所以O 为A C 1中点, 又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B………………2分又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC………………4分(Ⅱ)以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系 所以111(0,0,0),(0,0,2),(2,0,0),(2,0,2),(0,2,0),(0,2,2),(1,1,0),A A B B C C E 设(0,0,)(02)M m m ≤≤,所以11(2,0,2),(1,1,2)B M m C E =--=--,因为11B M C E ⊥,所以 110B M C E ⋅=,解得1m =,所以1AM = ………………8分(Ⅲ)因为1(1,1,0),(0,2,2)AE AC ==, 设平面1AEC 的法向量为(,,)n x y z =,则有10AE n AC n ⎧⋅=⎪⎨⋅=⎪⎩,得00x y y z +=⎧⎨+=⎩,令1,y =-则1,1x z ==,所以可以取(1,1,1)n =-, ………………10分因为AC ⊥平面1A B B A 1,取平面1ABB A 1的法向量为(0,2,0)AC = ………………11分所以c o||A CAC A C ⋅<>………………13分平面1AEC 与平面1A B B A 1所成锐二面角的余弦值为………………14分 18. (本小题满分13分)解:当1a =时,e ()1axf x x =-,2e (2)'()(1)x x f x x -=- ………………2分 又(0)1f =-,'(0)2f =-, 所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………………4分(II )2e [(1)]'()(1)ax ax a f x x -+=-当0a =时,21'()0(1)f x x -=<-又函数的定义域为{|1}x x ≠ 所以()f x 的单调递减区间为(,1-∞+∞ ………………6分当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+= ………………7分当0a >时,11a x a+=>, 所以()f x ',()f x 随x 的变化情况如下表所以()f x 的单调递减区间为(,1)-∞,1(1,)a a+, 单调递增区间为1(,)a a++∞ ………………10分 当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞, 单调递减区间为1(,1)a a+,(1,)+∞ ………………13分 19. (本小题满分14分)解:(Ⅰ)将()2,2E 代入22y px =,得1p =所以抛物线方程为22y x=,焦点坐标为1(,0)2………………3分(Ⅱ)设211(,)2y A y ,222(,)2y B y ,(,),(,)M M N N M x y N x y ,法一:因为直线l 不经过点E ,所以直线l 一定有斜率 设直线l 方程为(2)y k x =-与抛物线方程联立得到 2(2)2y k x y x=-⎧⎨=⎩,消去x ,得:2240ky y k --=则由韦达定理得:121224,y y y y k=-+=………………6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+………………9分 同理可得:22242N y y y -=+………………10分 又 4(2,),(2,)m mOM y ON y -=-=-, 所以121224244422M N y y OM ON y y y y --⋅=+=+⋅++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++44(44)444(44)k k--+=+-++0= ………………13分 所以OM ON ⊥,即MON ∠为定值π2………………14分 法二:设直线l 方程为2x my =+与抛物线方程联立得到 222x my y x=+⎧⎨=⎩,消去x ,得:2240y my --=则由韦达定理得:12124,2y y y y m=-+=………………6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+………………9分 同理可得:22242N y y y -=+………………10分 又 4(2,),(2,)m mOM y ON y -=-=-, 12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++121212124[2()4]4[2()4]y y y y y y y y -++=++++4(424)44(424)m m --+=+-++=………………12分所以OM ON ⊥,即MON ∠为定值π2………………13分20. (本小题满分14分)解:(I )因为1(),f x ∈Ω且2()f x ∉Ω, 即2()()2f x g x x hx h x==--在(0,)+∞是增函数,所以0h ≤ ………………1分 而2()()2f x h h x x h x x ==--在(0,)+∞不是增函数,而2'()1hh x x =+ 当()h x 是增函数时,有0h ≥,所以当()h x 不是增函数时,0h < 综上,得h <………………4分(Ⅱ) 因为1()f x ∈Ω,且0a b c a b c <<<<++ 所以()()4=f a f a b c a a b c a b c++<++++, 所以4()af a d a b c=<++,同理可证4()b f b d a b c =<++,4()cf c t a b c=<++三式相加得4()()()()24,a b c f a f b f c d t a b c++++=+<=++所以2d t +-<………………6分 因为,d d a b <所以()0,b a d ab-< 而0a b <<, 所以0d < 所以(d d +-………………8分(Ⅲ) 因为集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取, 所以()f x ∀∈ψ,存在常数k ,使得 ()f x k < 对(0,)x ∈+∞成立我们先证明()0f x ≤对(0,)x ∈+∞成立 假设0(0,),x ∃∈+∞使得0()0f x >, 记020()0f x m x => 因为()f x 是二阶比增函数,即2()f x x 是增函数. 所以当0x x >时,022()()f x f x m x x >=,所以2()f x mx > 所以一定可以找到一个10x x >,使得211()f x mx k >> 这与()f x k< 对(0,)x ∈+∞成立矛盾 ………………11分()0f x ≤对(0,)x ∈+∞成立所以()f x ∀∈ψ,()0f x ≤对(0,)x ∈+∞成立 下面我们证明()0f x =在(0,)+∞上无解 假设存在20x >,使得2()0f x =,则因为()f x 是二阶增函数,即2()f x x 是增函数 一定存在320x x >>,322232()()0f x f x x x >=,这与上面证明的结果矛盾 所以()0f x =在(0,)+∞上无解综上,我们得到()f x ∀∈ψ,()0f x <对(0,)x ∈+∞成立所以存在常数0M ≥,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立又令1()(0)f x x x=->,则()0f x <对(0,)x ∈+∞成立,又有23()1f x x x-=在(0,)+∞上是增函数 ,所以()f x ∈ψ, 而任取常数0k <,总可以找到一个00x >,使得0x x >时,有()f x k >所以M的最小值 为0 ………………13分。
2013年海淀区高三年级第一学期期末试题(理科)-推荐下载
数 学 (理科)
本试卷共 4 页,150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷
作答无效。考试结束后,将本试卷和答题卡一并交回。
上
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项
中,选出符合题目要求的一项.
2 1. 复数 1 i 化简的结果为
A.1 i
2.已知直线
l
:
x 2 t,
y
斜角及圆心 C 的直角坐标分别是
π , (1, 0)
A. 4
2
t
(
B. 1 i
t
为参数)与圆
π ,(1,0) B. 4
3.向量 a (3,4),b (x,2) , 若 a b | a | ,则实数 x 的值为
A. 1
过程.
15. (本小题满分 13 分)
已知函数 f (x) 3 sin x cos x cos2 x 1 , ABC 三个内角 A, B,C 的对边分别
22
22
高三数学(理科)试题第 2 页(共 4 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
北京市海淀区2013届高三上学期期末考试(解析版) 数学文
北京市海淀区2013届高三第一学期期末考试数学(文)试题2013.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为A.1i +B.1i -+C. 1i -D.1i -- 【答案】A 【解析】22(1)2(1)11(1)(1)2i i i ii i ++===+--+,选A.2. 向量(1,1),(2,)t ==a b , 若⊥a b , 则实数t 的值为A. 2-B. 1-C. 1D. 2 【答案】A【解析】由⊥a b 得0= a b 即120t ⨯+=,解得2t =-,选A. 3. 在等边ABC ∆的边B C 上任取一点P ,则23ABP ABC S S ∆∆≤的概率是A. 13 B.12C.23D.56【答案】C【解析】当23A B P A B CS S ∆∆=时,有121232A B P D A B C O =⨯,即23P D C O =,则有23B P BC =,要使23A B P A B CS S ∆∆≤,则点P 在线段B P 上,所以根据几何概型可知23A B P A B CS S ∆∆≤的概率是23B P B C=,选C.4.点P 是抛物线24y x =上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为A .2 B. 3 C. 4 D.5 【答案】B【解析】抛物线的准线为1x =-,根据抛物线的对应可知,P 到该抛物线焦点的距离等于P 到该准线的距离,即(1)4x --=,所以3x =,即点P 的横坐标为3,选B.5.某程序的框图如图所示, 执行该程序,若输入的p 为24的,n S 的值分别为A. 4,30n S ==B. 4,45n S ==C. 5,30n S ==D. 5,45n S == 【答案】C【解析】第一次循环,24,3,2S S n <==;第二次循环,24,3329,3S S n <=+⨯==;第三次循环,24,93318,4S S n <=+⨯==;第四次循环,24,183430,5S S n <=+⨯==;第五次循环,3024,S =<不满足条件,输出30,5S n ==,选C. 6.已知点(1,0),(cos ,sin )A B αα-, 且||AB =则直线AB 的方程为A.y =+y =-33y =+或33y =--C. 1y x =+或1y x=--D. y =+或y =-【答案】B【解析】||AB ===,所以1co s 2α=,所以t a n 3α=±(1)3y x =±+,所以直线的方程为33y x =+或者33y x =--,选B.7. 已知函数sin , sin cos ,()cos , sin cos ,x x x f x x x x ≥⎧=⎨<⎩ 则下面结论中正确的是A. ()f x 是奇函数B. ()f x 的值域是[1,1]-C. ()f x 是偶函数D. ()f x的值域是[2-【答案】D【解析】在坐标系中,做出函数()fx 的图象如图,由图象可知选D.8. 如图,在棱长为1的正方体1111ABCD A B C D -中,点, E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面,A E F则线段1A P 长度的取值范围是A .2B. 42C. 2D.【答案】B【解析】取11B C 的中点M,1B B 的中点N,连结11,,A M A N M N ,可以证明平面1//A M N 平面AEF ,所以点P 位于线段M N 上,把三角形1A M N 拿到平面上,则有112A M A N ===2M N ==P 位于,M N 时,1A P 最大,当P 位于中点O 时,1A P 最小,此时14A O ==,所以B 1C 1D1A 1FE BC DA111A O A P A M ≤≤,142A P ≤≤所以线段1A P长度的取值范围是42,选B.二、填空题:本大题共6小题,每小题5分,共30分. 9. tan 225 的值为________. 【答案】1【解析】tan 225tan(18045)tan 451=+== 。
海淀区高三年级第一学期理科数学期末测试及答案
海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则( )A .257 B .257-C .2524D .2524-2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=nym xA n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为0.6,要使两个元件中至少有一个的使用寿命超过1年的概率至少为0.9,则乙元件的使用寿命超过1年的概率至少为 ( )A .0.3B .0.6C .0.75D .0.96.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)s i n ()c o s (021s i n c o s 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by ax 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知双曲线1422=-xy,则其渐近线方程是 ,离心率e= .10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=. 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b c o s )2(c o s -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by ax 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x 轴于点A ,且.221AF AF =(Ⅰ)试求椭圆的方程; (Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8答案B C A D C B C A二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-912.4π13.π48+,122- 14.92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==ac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆43323321=⨯⨯=∴∆ABC S …………………………………………………13分16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴kk ,43=k ,………………………………………………………4分故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,ON OM OQ +=2,)2,(),(0000y y x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y yx y x ……………………………………………11分∴Q 点的轨迹方程是)0(,116422≠=+y yx…………………………………………12分轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分注:多端点时,合计扣1分.17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB ,11A A C C BC 面⊥∴,……………………………………………………………2分 11A A C C AM 面⊆ AM BC ⊥∴B BA BC BA AM =⊥11 ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可 知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ²AA 1 ∴26=MC ……………………………………7分∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅21211=∴CO∴在Rt △BCO 中,1tan ==COBC BOC .︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分A B C M A B M C V V --= ………………………………………………………………11分 A B C A B MS MC hS∆∆⋅=∴313122232326=⨯=⋅=∴∆∆A B MA B CS S MC h∴点C 到平面ABM 的距离为22………………………………………………13分解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1) 1BA AM ⊥ .01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则 ⎪⎩⎪⎨⎧=⋅=⋅00AB m AM m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为m =)2,3,1(,……………………………………………………………………8分 显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m CB m CB m易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分 (Ⅲ)所求距离为:2263||==⋅m CB m即点C 到平面ABM 的距离为22………………………………………………13分18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f …………………………2分由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f 定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞) 1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分0202,20>->-∴<<aa a a 且由0)('>x g 得aa x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a上单调递增;由0)('<x g 得aa x -<<-21,即)(x g 在⎪⎭⎫⎝⎛--a a2,1上单调递减…………8分 ①时 )(,320x g a a<-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana aa g x g --=-=2221)2()(min ; (2)30<<a …10分②当)(,32,223x g aa a ≥-<≤时在(0,3)上单调递减,∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,ana aa g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF = 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+yx……………………………………………………5分(Ⅱ)当直线DE 与x 轴垂直时,342||2==abDE ,此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kkx x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-kkx x x x x x ,所以,2221232)1(34||1||kk x x kDE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kkkkMN ++=-++-=………………………………10分所以,四边形的面积222232)11(3432)1(34212||||kkkk MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=kkkk ,…………………………………12分 令uuu S kk u 61344613)2(24,122+-=++=+=得因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分 .3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤-- (1)当n =1时,331314)1()31(+=+===f f ,不等式成立;(2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-kkkkkkkkkk f f f f f f f得≤)31(3kf 9316)31(11+≤+--k k f331)31(+≤∴kkf即当n=k+1时,不等式成立. 由(1)(2)可知,不等式331)31(+≤∴kkf 对一切正整数都成立.于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n nn nf x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n nf f 所以33)31()31(1+<<∴-x f f n n……………………………………13分。
北京市2013届高三上学期期末考试理科数学试
x y O π2π1-1北京市东城区普通校2013届高三第二学期3月联考 数学(理科)命题校:北京27中学 2013年3月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试时间120 分钟。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利! 第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的. 1.已知平面向量(1,2)=a , (2,)m =-b , 且a ∥b , 则m 的值为( ) (A )1- (B ) (C )4- (D )4 2.极坐标方程4cos ρθ=化为直角坐标方程是( )(A )22(2)4x y -+= (B )224x y += (C )22(2)4x y +-= (D )22(1)(1)4x y -+-= 3.平面α∥平面β的一个充分条件是( ) (A )存在一条直线a a ααβ,∥,∥(B )存在一条直线a a a αβ⊂,,∥(C )存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ (D )存在两条异面直线a b a b a b αββα⊂⊂,,,,∥,∥ 4. 执行如图所示的程序,输出的结果为20, 则判断框中应填入的条件为( ) (A )2a ≥ (B )3a ≥ (C )4a ≥(D )5a ≥第4题图5. 如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,则PC 的长是( )(A )3 (B) (C )2 (D第5题图 6.已知函数sin()y A x ωϕ=+的图象如图所示,则该函数的解析式可能是( ) 第6题图ABCOP40 50 60 70 80 90 分数(分)频率(A)41sin(255y x =+ (B) 31sin(225y x =+ (C)441sin()555y x =- (D) 441sin()555y x =+ 7. 设0,0.a b >>1133a b a b +与的等比中项,则的最小值为( ) (A) 8 (B) 4 (C) 1 (D) 148.对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的零点恰有两个,则实数c 的取值范围是( )(A) (]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ (B)(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭ (C) 11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ (D)第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在6)11(x+的展开式中,含1x 项的系数是________.(用数字作答)10.由1、2、3、4、5组成的无重复数字的五位数中奇数有 个. 11.从某校高三学生中随机抽取100名同学,将他们的考试成绩(单位:分)绘制成频率分布直方图(如图).则图中a= ,由图中数据可知此次成绩平均分为 . 第11题图12.已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .13.如图,1F 和2F 分别是双曲线22221(00)x y a b a b -=>>,311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该双曲线左支的两个交点,且2F AB △是等边三角形,则双曲线的离心率为 . 第13题图 14.设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈, 则称S 为封闭集。
北京市海淀区2013届高考一模数学理试题(WORD解析版)
2013年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•甘肃三模)集合A={x∈N|x≤6},B={x∈R|x2﹣3x>0},则A∩B()A.{3,4,5} B.{4,5,6} C.{x|3<x≤6 D.{x|3≤x<6}考点:交集及其运算.专题:计算题.分析:根据所给的两个集合,整理两个集合,写出两个集合的最简形式,再求出两个集合的交集.解答:解:∵集合A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈R|x2﹣3x>0}={x∈R|x<0或x>3}∴A∩B={4,5,6}.故选B.点评:本题考查集合的表示方法,两个集合的交集的定义和求法.化简A、B两个集合,是解题的关键.2.(5分)(2013•海淀区一模)在极坐标系中,曲线ρ=4cosθ围成的图形面积为()A.πB.4C.4πD.16考点:点的极坐标和直角坐标的互化.专题:计算题.分析:先将原极坐标方程两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解圆的面积即可.解答:解:将原极坐标方程为ρ=4cosθ,化成:ρ2=4ρcosθ,其直角坐标方程为:∴x2+y2=4x,是一个半径为2的圆,其面积为4π.故选C.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.3.(5分)(2013•海淀区一模)某程序的框图如图所示,执行该程序,若输入的x值为5,则输出的y值()A.﹣2 B.﹣1 C.D.2考点:程序框图.专题:图表型.分析:按照程序框图的流程写出前几次循环的结果,并判断每次得到的结果是否满足判断框中的条件,直到满足,执行输出y,可得答案.解答:解:经过第一次循环得到x=3,不满足判断框中的条件;经过第二次循环得到x=1,不满足判断框中的条件;经过第三次循环得到x=﹣1,满足判断框中的条件;执行“是”,y=2﹣1=,输出y值为.故选C.点评:本题考查解决程序框图中的循环结构时,常采用的方法是:写出前几次循环的结果,找规律.4.(5分)(2013•海淀区一模)不等式组表示面积为1的直角三角形区域,则k的值为()A.﹣2 B.﹣1 C.0D.1考点:简单线性规划.专题:不等式的解法及应用.分析:先作出不等式组表示的平面区域,根据已知条件可表示出平面区域的面积,然后结合已知可求k.解答:解:作出不等式组表示的平面区域,如图所示,由题意可得A(1,3),B(,),C(1,k)∴S△ABC=AC•d(d为B到AC的距离)=×(3﹣k)×(﹣1)=1,∴k=1.故选D.点评:本题主要考查了二元一次不等式组表示平面区域,属于基础试题.5.(5分)(2013•甘肃三模)若向量,满足||=||=|+|=1,则•的值为()B.C.﹣1 D.1A.﹣考点:向量的模.专题:平面向量及应用.分析:利用即可得到.解答:解:∵,∴,∴,∴.∴.故选A.点评:熟练掌握向量的运算法则是解题的关键.6.(5分)(2013•海淀区一模)一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A.12种B.15种C.17种D.19种考点:排列、组合及简单计数问题.专题:计算题.分析:由分步计数原理可得总的取法由27种,列举可得不合题意得有8种,进而可得符合题意得方法种数.解答:解:由题意结合分部计数原理可得,总的取球方式共3×3×3=27种,其中,(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,1,2),(2,2,1),(2,2,2)共8种不符合题意,故取得小球标号最大值是3的取法有27﹣8=19种,故选D点评:本题考查计数原理的应用,采用间接的方式结合列举法是解决问题的关键,属中档题.7.(5分)(2013•海淀区一模)抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(﹣1,0),则的最小值是()A.B.C.D.考点:直线与圆锥曲线的关系;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:通过抛物线的定义,转化PF=PN,要使有最小值,只需∠APN最大即可,作出切线方程即可求出比值的最小值.解答:解:由题意可知,抛物线的准线方程为x=﹣1,A(﹣1,0),过P作PN垂直直线x=﹣1于N,由抛物线的定义可知PF=PN,连结PA,当PA是抛物线的切线时,有最小值,则∠APN 最大,即∠PAF最大,就是直线PA的斜率最大,设在PA的方程为:y=k(x+1),所以,解得:k2x2+(2k2﹣4)x+k2=0,所以△=(2k2﹣4)2﹣4k4=0,解得k=±1,所以∠NPA=45°,=cos∠NPA=.故选B.点评:本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,题目新颖.8.(5分)(2013•海淀区一模)设l1,l2,l3为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:①∃A i∈l i(i=1,2,3),使得△A1A2A3是直角三角形;②①∃A i∈l i(i=1,2,3),使得△A1A2A3是等边三角形;③三条直线上存在四点A i(i=1,2,3,4),使得四面体A1A2A3A4为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的序号是()A.①B.①②C.①③D.②③考点:命题的真假判断与应用.专题:空间位置关系与距离.分析:本题利用画图结合运动变化的思想进行分析.我们不妨先将A、B、C 按如图所示放置,容易看出此时BC<AB=AC.现在,我们将A 和 B 往上移,并且总保持AB=AC(这是可以做到的,只要A、B 的速度满足一定关系),而当A、B 移得很高很高时,就得到①和②都是正确的.至于③,结合条件利用反证法的思想方法进行说明即可.解答:解:我们不妨先将A、B、C 按如图所示放置.容易看出此时BC<AB=AC.现在,我们将A 和 B 往上移,并且总保持AB=AC(这是可以做到的,只要A、B 的速度满足一定关系),而当A、B 移得很高很高时,不难想象△ABC 将会变得很扁,也就是会变成顶角A“非常钝”的一个等腰钝角三角形.于是,在移动过程中,总有一刻,使△ABC 成为等边三角形,亦总有另一刻,使△ABC 成为直角三角形(而且还是等腰的).这样,就得到①和②都是正确的.至于③,如图所示.为方便书写,称三条两两垂直的棱所共的顶点为⊤.假设A 是⊤,那么由AD⊥AB,AD⊥AC 知L3⊥△ABC,从而△ABC 三边的长就是三条直线的距离4、5、6,这就与AB⊥AC 矛盾.同理可知D 是⊤时也矛盾;假设C 是⊤,那么由BC⊥CA,BC⊥CD 知BC⊥△CAD,而l1∥△CAD,故BC⊥l1,从而BC 为l1与l2的距离,于是EF∥BC,EF=BC,这样就得到EF⊥FG,矛盾.同理可知B 是⊤时也矛盾.综上,不存在四点A i(i=1,2,3,4),使得四面体A1A2A3A4为在一个顶点处的三条棱两两互相垂直的四面体.故选B.点评:本小题主要考查命题的真假判断与应用,考查空间想象能力、化归与转化思想.属于难题.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•海淀区一模)在复平面上,若复数a+bi(a,b∈R)对应的点恰好在实轴上,则b= 0.考点:复数的代数表示法及其几何意义.专题:计算题.分析:利用复数的几何意义和点在实轴上的特点即可得出.解答:解:由复数的几何意义可知:复数a+bi(a,b∈R)对应的点为(a,b),∵此点恰好在实轴上,∴b=0.故答案为0.点评:正确理解复数的几何意义是解题的关键.10.(5分)(2013•海淀区一模)等差数列{a n}中,a3+a4=9,a2a5=18,则a1a6=14.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的性质可得得a2+a5=a3+a4=9,结合a2a5=18,可解得a2,a5的值,可得公差,进而可得a1,a6,相乘可得.解答:解:由等差数列的性质可得a2+a5=a3+a4=9,又a2a5=18,解得,或,故可得数列的公差d==﹣1,或1故可得,或,故a1a6=14故答案为:14点评:本题考查等差数列的通项公式和性质,属基础题.11.(5分)(2013•海淀区一模)如图,AP⊙O切于点A,交弦DB的延长线于点P,过点B作圆O的切线交AP于点C.若∠ACB=90°,BC=3,CP=4,则弦DB的长为.考点:圆的切线的性质定理的证明;与圆有关的比例线段.专题:选作题.分析:在Rt△BCP中,由勾股定理可得BP,由切线长定理可得AC=BC,再利用切割线定理可得DB.解答:解:∵BC⊥AP,∴BP2=BC2+CP2=32+42=25,∴BP=5.又AC与BC都是⊙O的切线,∴AC=BC=3,由切割线定理可得PA2=PB•PD,∴72=5×(5+DB),解得.∴弦DB的长为.故答案为.点评:熟练掌握勾股定理、切线长定理、切割线定理是解题的关键.12.(5分)(2013•海淀区一模)在△ABC中,若a=4,b=2,cosA=﹣,则c=3,sinC=.考点:正弦定理;同角三角函数间的基本关系.专题:计算题;解三角形.分析:由余弦定理可得,cosA==可求c,然后由cosA可求sinA,然后由正弦定理可得,可求sinC解答:解:由余弦定理可得,cosA==∴即c2+c﹣12=0∴c=3∵cosA=﹣∴sinA=由正弦定理可得,∴sinC==故答案为:3,点评:本题主要考查余弦定理及正弦定理在求解三角形中的应用,解题的关键是公式的灵活应用.13.(5分)(2013•海淀区一模)已知函数f(x)=有三个不同的零点,则实数a的取值范围是<a≤1.考点:根的存在性及根的个数判断.专题:数形结合.分析:由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,由函数图象的平移和二次函数的顶点可得关于a的不等式,解之可得答案.解答:解:由题意可知:函数图象的左半部分为单调递增指数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由指数函数过点(0,1),故需下移至少1个单位,故a≤1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得<a≤1,故答案为:<a≤1点评:本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.14.(5分)(2013•海淀区一模)已知函数f(x)=sin x,任取t∈R,定义集合:A t={y|y=f(x),点P(t,f(t)),Q(x,f(x))满足|PQ|≤}.设M t,m t分别表示集合A t中元素的最大值和最小值,记h(t)=M t﹣m t.则(1)函数h(t)的最大值是2;(2)函数h(t)的单调递增区间为(2k﹣1,2k),k∈Z.考点:函数的值域.专题:综合题;函数的性质及应用.分析:(1)理清A t={y|y=f(x),点P(t,f(t)),Q(x,f(x))满足|PQ|≤}的含义为:表示以P点为圆心,为半径的圆及其内部函数y=sin的图象上所有的点的纵坐标的集合,再利用正弦函数的周期性、单调性与最值可求得M t,m t,从而可求得函数h(t))=M t﹣m t的最大值;(1)由(1)结合正弦函数的周期性与单调性即可求得函数h(t)的单调递增区间.解答:解:A t={y|y=f(x),点P(t,f(t)),Q(x,f(x))满足|PQ|≤}表示以P点为圆心,为半径的圆及其内部函数y=sin的图象上所有的点的纵坐标的集合,∵f(﹣2)=f(0)=f(2)=0,f(1)=1,f(﹣1)=﹣1,设O(0,0),A(1,1),B(2,0),则AO=AB=,∴M t=,其中x0是最高点Q的横坐标,同理,m t=;其中x1是最低点Q的横坐标.∴函数h(t)的最大值是2(t=4k或4k+2时取得),单调增区间是(2k﹣1,2k).点评:本题考查函数的值域,着重考查抽象函数的理解与应用,明确A t={y|y=f(x),点P(t,f(t)),Q(x,f(x))满足|PQ|≤√2}的含义是难点,也是解决问题的关键,考查抽象思维能力与综合运算能力,属于难题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•海淀区一模)已知函数f(x)=2﹣(sinx﹣cosx)2.(Ⅰ)求f()的值和f(x)的最小正周期;(Ⅱ)求函数f(x)在区间[﹣,]上的最大值和最小值.考点:两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的图像与性质.分析:(I)利用三角函数的恒等变换化简函数f(x)的解析式为2sin(2x+),由此求得f(x)的周期.(II)当x∈[﹣,]时,根据正弦函数的定义域和值域,求得函数的最值.解答:解:(I)因为函数f(x)=2﹣(sinx﹣cosx)2 =2﹣(3sin2x+cos2x﹣2sinxcosx)=2﹣(1+2sin2x﹣sin2x)=1﹣2sin2x+sin2x=cos2x+sin2x=2sin(2x+).所以,f()=2sin(2×+)=2sin=,所以,f(x)的周期为T==π.(II)当x∈[﹣,]时,2x∈[﹣,],2x+∈[﹣,],所以,当2x+=,即当x=﹣时,函数取得最小值f(﹣)=﹣1,当2x+=,即当x=时,函数取得最大值f()=2.点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,正弦函数的定义域和值域,属于中档题.16.(13分)(2013•海淀区一模)在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(I)求该考场考生中“阅读与表达”科目中成绩为A的人数;(II)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.(i)求该考场考生“数学与逻辑”科目的平均分;(ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分.从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望.考点:离散型随机变量及其分布列;频率分布直方图;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(I)由数学与逻辑中成绩等级为B的考生有10人,频率为,可求考场中的人数,然后结合其频率可求(II)结合频率分布直方图可求该考场考生“数学与逻辑”科目的平均分为(Ⅲ)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20,然后求出ξ去每个值对应的概率,即可求解出ξ的分布列及ξ的数学期望解答:解:(I)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有=40人…(1分)所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=3…(3分)(II)求该考场考生“数学与逻辑”科目的平均分为=2.9(7分)(Ⅲ)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20…(8分)P(ξ=16)=,P(ξ=17)==P(ξ=18)==P(ξ=19)=P(ξ=20)==所以ξ的分布列为X 16 17 18 19 20P…(11分)所以Eξ=16×=所以ξ的数学期望为…(13分)点评:本题主要考查了离散型随机变量的分布列及期望值的求解,解题的关键是熟练掌握基本公式的应用.17.(14分)(2013•海淀区一模)在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=.(Ⅰ)求证:BD⊥PC;(Ⅱ)求证:MN∥平面PDC;(Ⅲ)求二面角A﹣PC﹣B的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由正三角形的性质可得BD⊥AC,利用线面垂直的性质可知PA⊥BD,再利用线面垂直的判定定理即可证明BD⊥PC;(Ⅱ)利用已知条件分别求出BM、MD、PB,得到,即可得到MN∥PD,再利用线面平行的判定定理即可证明;(Ⅲ)通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角的平面角.解答:证明:(I)∵△ABC是正三角形,M是AC中点,∴BM⊥AC,即BD⊥AC.又∵PA⊥平面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC.∴BD⊥PC.(Ⅱ)在正△ABC中,BM=.在△ACD中,∵M为AC中点,DM⊥AC,∴AD=CD.∠ADC=120°,∴,∴.在等腰直角△PAB中,PA=AB=4,PB=,∴,∴,∴MN∥PD.又MN⊄平面PDC,PD⊂平面PDC,∴MN∥平面PDC.(Ⅲ)∵∠BAD=∠BAC+∠CAD=90°,∴AB⊥AD,分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,∴B(4,0,0),C,,P(0,0,4).由(Ⅱ)可知,为平面PAC的法向量.,.设平面PBC的一个法向量为,则,即,令z=3,得x=3,,则平面PBC的一个法向量为,设二面角A﹣PC﹣B的大小为θ,则.所以二面角A﹣PC﹣B余弦值为.点评:熟练掌握正三角形的性质、线面垂直的判定与性质定理、平行线分线段成比例在三角形中的逆定理应用、通过建立空间直角坐标系并利用两个平面的法向量的夹角得到二面角的平面角是解题的关键.18.(13分)(2013•海淀区一模)已知函数f(x)=lnx+ax2+bx(其中a,b)为常数且a≠0)在x=1处取得极值.(I)当a=1时,求f(x)的单调区间;(II)若f(x)在(0,e]上的最大值为1,求a的值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(I)由函数的解析式,可求出函数导函数的解析式,进而根据x=1是f(x)的一个极值点f′(1)=0,可构造关于a,b的方程,根据a=1求出b值;可得函数导函数的解析式,分析导函数值大于0和小于0时,x的范围,可得函数f(x)的单调区间;(II)对函数求导,写出函数的导函数等于0的x的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于a的方程求得结果.解答:解:(I)因为f(x)=lnx+ax2+bx所以f′(x)=+2ax+b,…(2分)因为函数f(x)=lnx+ax2+bx在x=1处取得极值f′(1)=1+2a+b=0…(3分)当a=1时,b=﹣3,f′(x)=,f′(x),f(x)随x的变化情况如下表:1 (1,+∞)x(0,)(,1)f′(x)+ 0 ﹣0 +f(x)增极大值减极小值增…(5分)所以f(x)的单调递增区间为(0,),(1,+∞)单调递减区间为(,1)…(6分)(II)因为f′(x)=令f′(x)=0,x1=1,x2=…(7分)因为f(x)在x=1处取得极值,所以x2=≠x1=1,当<0时,f(x)在(0,1)上单调递增,在(1,e]上单调递减所以f(x)在区间(0,e]上的最大值为f(1),令f(1)=1,解得a=﹣2…(9分)当a>0,x2=>0当<1时,f(x)在(0,)上单调递增,(,1)上单调递减,(1,e)上单调递增所以最大值1可能在x=或x=e处取得而f()=ln+a()2﹣(2a+1)=ln﹣<0所以f(e)=lne+ae2﹣(2a+1)e=1,解得a=…(11分)当1≤<e时,f(x)在区间(0,1)上单调递增,(1,)上单调递减,(,e)上单调递增所以最大值1可能在x=1或x=e处取得而f(1)=ln1+a﹣(2a+1)<0所以f(e)=lne+ae2﹣(2a+1)e=1,解得a=,与1<x2=<e矛盾…(12分)当x2=≥e时,f(X)在区间(0,1)上单调递增,在(1,e)单调递减,所以最大值1可能在x=1处取得,而f(1)=ln1+a﹣(2a+1)<0,矛盾综上所述,a=或a=﹣2.…(13分)点评:本题考查的知识点是利用导数研究函数的极值,利用导数研究函数的单调性,以及利用导数研究函数在闭区间上的最值,其中根据已知条件确定a,b值,得到函数导函数的解析式并对其符号进行分析,是解答的关键.属于中档题.19.(14分)(2013•海淀区一模)已知圆M:(x﹣)2+y2=r2=r2(r>0).若椭圆C:+=1(a >b>0)的右顶点为圆M的圆心,离心率为.(I)求椭圆C的方程;(II)若存在直线l:y=kx,使得直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点,点G在线段AB上,且|AG|=|BH|,求圆M半径r的取值范围.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;分类讨论;圆锥曲线的定义、性质与方程.分析:(I)设椭圆的焦距为2c,由椭圆右顶点为圆心可得a值,进而由离心率可得c值,根据平方关系可得b值;(II)由点G在线段AB上,且|AG|=|BH|及对称性知点H不在线段AB上,所以要使|AG|=|BH|,只要|AB|=|GH|,设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程消掉y得x的二次方程,利用韦达定理及弦长公式可得|AB|,在圆中利用弦心距及勾股定理可得|GH|,根据|AB|=|GH|得r,k的方程,分离出r后按k是否为0进行讨论,借助基本函数的范围即可求得r范围;解答:解:(I)设椭圆的焦距为2c,由椭圆右顶点为圆M的圆心(,0),得a=,又,所以c=1,b=1.所以椭圆C的方程为:.(II)设A(x1,y1),B(x2,y2),由直线l与椭圆C交于两点A,B,则,所以(1+2k2)x2﹣2=0,则x1+x2=0,,所以=,点M(,0)到直线l的距离d=,则|GH|=2,显然,若点H也在线段AB上,则由对称性可知,直线y=kx就是y轴,矛盾,所以要使|AG|=|BH|,只要|AB|=|GH|,所以=4,==2,当k=0时,r=,当k≠0时,<2(1+)=3,又显然>2,所以,综上,.点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查分类讨论思想,考查学生分析问题解决问题的能力,弦长公式、韦达定理是解决该类问题的基础知识,要熟练掌握.20.(13分)(2013•海淀区一模)设A(x A,y A),B=(x B,y B)为平面直角坐标系上的两点,其中x A,y A,x B,y B∈Z.令△x=x B﹣x A,△y=y B﹣y A,若|△x|+|△Y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).已知0(x0,y0)(x0y0∈Z)为平面上一个定点,平面上点列{P i}满足:P i=i(P i﹣1),且点P i的坐标为(x i y i),其中i=1,2,3,…n.(Ⅰ)请问:点p0的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;(Ⅱ)求证:若P0与P n重合,n一定为偶数;(Ⅲ)若p0(1,0),且y n=100,记T=,求T的最大值.考点:数列的求和;圆的标准方程.专题:计算题;证明题;综合题;等差数列与等比数列;直线与圆.分析:(I)根据绝对值的意义,可得整数△x与△Y在{±1,±2}中取值,满足绝对值的和等于3,由此可得点P0的相关点有8个,再根据圆的标准方程可得这些可能值对应的点在以P0(x0,y0)为圆心,为半径的圆上;(II)因为P n(x n,y n)与P0(x0,y0)重合,用逐项作差再累加的方法得到等式,再将所得等式相加证出[(x i﹣x i﹣1)+(y i﹣y i﹣1)]=0,结合题意(x i﹣x i﹣1)+(y i﹣y i﹣1)(i=1,2,3,…,n)为奇数,可得左边是n个奇数的和,根据整数加减法的奇偶性质即可得到n一定为偶数;(II)令△x i=x i﹣x i﹣1,△y i=y i﹣y i﹣1(i=1,2,3,…,n),依题意可得(y i﹣y i﹣1)=100.由|△x i|+|△y i|=3且|△x i|的|△y i|都是非零整数,可得当△x i=2的个数越多,且在△x1,△x2,△x3,…,△x n﹣1,△x n这个序列中,数字2的位置越靠前,应的T值越大,从而得到当△y i 取值为1或﹣1的次数最多时,相应地△x i取2的次数最多,可使T的值最大.然后分n=100、n>100和50≤n≤100时三种情况加以讨论,分别根据式子中1、2的个数,结合等差数列求和公式算出T关于n的表达式,即可得到T达到最大值时,T关于n的分段函数的表达式,得到本题答案.解答:解:(Ⅰ)∵|△x|+|△Y|=3,(|△x|•|△y|≠0)∴|△x|=1且|△Y|=2,或|△x|=2且|△Y|=1,所以点P0的相关点有8个…(2分)又∵(△x)2+(△Y)2=3,即(x1﹣x0)2+(y1﹣y0)2=5∴这些可能值对应的点在以P0(x0,y0)为圆心,为半径的圆上…(4分)(Ⅱ)依题意P n(x n,y n)与P0(x0,y0)重合则x n=(x n﹣x n﹣1)+(x n﹣1﹣x n﹣2)+(x n﹣2﹣x n﹣3)+…+(x3﹣x2)+(x2﹣x1)+(x1﹣x0)+x0,y n=(y n﹣y n﹣1)+(y n﹣1﹣y n﹣2)+(y n﹣2﹣y n﹣3)+…+(y3﹣y2)+(y2﹣y1)+(y1﹣y0)+y0,因此,可得(x n﹣x n﹣1)+(x n﹣1﹣x n﹣2)+(x n﹣2﹣x n﹣3)+…+(x3﹣x2)+(x2﹣x1)+(x1﹣x0)=0,且(y n﹣y n﹣1)+(y n﹣1﹣y n﹣2)+(y n﹣2﹣y n﹣3)+…+(y3﹣y2)+(y2﹣y1)+(y1﹣y0)=0 两式相加得[(x n﹣x n﹣1)+(y n﹣y n﹣1)]+[(x n﹣1﹣x n﹣2)+(y n﹣1﹣y n﹣2)]+…+[(x1﹣x0)+(y1﹣y0)]=0(*)∵x i,y i都是整数,且|x i﹣x i﹣1|+|y i﹣y i﹣1|=3(i=1,2,3,…,n)∴(x i﹣x i﹣1)+(y i﹣y i﹣1)(i=1,2,3,…,n)为奇数,于是(*)的左边就是n个奇数的和,因为奇数个奇数的和还是奇数,所以左边不可能是奇数项,可得n一定为偶数…(8分)(Ⅲ)令△x i=x i﹣x i﹣1,△y i=y i﹣y i﹣1,(i=1,2,3,…,n)依题意(y n﹣y n﹣1)+(y n﹣1﹣y n﹣2)+…+(y2﹣y1)+(y1﹣y0)=100,∵T==x0+x1+x2+…+x n=1+(1+△x1)+(1+△x1+△x2)+…+(1+△x1+△x2+…+△x n)=n+1+n△x1+(n﹣1)△x2+…+2△x n﹣1+△x n)…(10分)∵|△x i|+|△y i|=3,且|△x i|的|△y i|都是非零整数,∴当△x i=2的个数越多,则T的值越大,∵在△x1,△x2,△x3,…,△x n﹣1,△x n这个序列中,数字2的位置越靠前,相应的值越大且当△y i取值为1或﹣1的次数最多时,△x i取2的次数才能最多,T的值才能最大.∴①当n=100时,令所有的△y i都为1,且△x i都取2,得T=101+2(1+2+…+100)=10201.②当n>100时,(i)若n=2k(k≥50,k∈N+),此时△y i可取k+50个1,k﹣50个﹣1,且△x i可都取2,S(n)达到最大值从而T=n+1+2[n+(n﹣1)+…+2+1]=n2+2n+1.(ii)若n=2k+1(k≥50,k∈N+),令△y n=2,其余的△y i中有k﹣49个﹣1,k+49个1.相应的,对于△x i,有△x n=1,其余的都为2,可得T=n+1+2[n+(n﹣1)+…+2+1]﹣1=n2+2n③当50≤n≤100时,令△y i=1,i≤2n﹣100,△y i=2,2n﹣100<i≤n,则相应地取△x i=2,i≤2n﹣100,△y i=1,2n﹣100<i≤n,可得T=n+1+2[n+(n﹣1)+…+(101﹣n)]+[(100﹣n)+(99﹣n)+…+2+1]=(n2+205n﹣10098)综上所述,得T=…(13分)点评:本题给出平面坐标系内“相关点”的定义,讨论了T=的最大值问题.着重考查了绝对值的意义、等差数列的求和公式、方程的整数解和圆的标准方程等知识,属于难题.请同学们注意答过程中逐项作差再累加求和、分类讨论思想和转化化归方法的运用.。
北京市海淀区2013届高三下学期期末练习数学理试题(Word解析版)
海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 【答案】B【解析】{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以A B = {1}x x ≤,即选B.2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3- 【答案】D【解析】由134a a ⋅=,48a =得2214a q =,318a q =,解得2q =±。
当2q =时,11a =,此时13a q +=。
当2q =-时,11a =-,此时13a q +=-。
选D.3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m【答案】C【解析】设图形Ω面积的为S ,则由实验结果得2S m a n=,解2ma S n =,所以选C.4.某空间几何体的三视图如右图所示,则该几何体的表面积为666左视图5俯视图主视图A.180B.240C.276D.300【答案】B【解析】由三视图可知,该几何体的下面部分是边长为6的正方体。
上部分为四棱锥。
四棱锥的底Ω面为正方形,边长为6.侧面三角形的斜高为5.所以该几何体的表面积为21656542402⨯+⨯⨯⨯=,选B.5.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】若,AB DC AD BC λλ== ,则//,//AB DC AD BC ,即//,//AB DC AD BC ,所以四边形ABCD 为平行四边形。
北京市海淀区2013届高三第二学期期末考试(二模)数学理科 带解析
海淀区高三年级第二学期期末练习数学(理科)2013.5本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一个. 1、 集合()(){}|120A x x x =-+≤,{}|0B x x =<,则A B = ( )A .(]0-∞,B .(]1-∞,C .[]12,D .[)1+∞,2、 已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为( ) A .3 B .2 C .3或2- D .3或3-3、 如图,在边长为a 的正方形内有不规则图形Ω,向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m ,n ,则图形Ω面积的估计值为( ) A .ma n B .namC .2ma nD .2na m4、 某空间几何体的三视图如右图所示,则该几何体的表面积为( )A .180B .240C .276D .3005、 在四边形ABCD 中,“λ∃∈R ,使得AB DC λ= ,AD BC λ=”是“四边形ABCD 为平行四边形”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6、 用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( ) A .32 B .36 C .42 D .487、 双曲线C 的左右焦点分别为1F ,2F ,且2F 恰好为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F △是以1AF 为底边的等腰三角形,则双曲线的离心率为( ) AB.1 C.1+ D.2 8、 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足1a m =(0m >),111101n n n n na a a a a +->⎧⎪=⎨<⎪⎩,,≤.则下列结论中错误的是( )A .若34a =,则m 可以取3个不同的值 B.若m {}n a 是周期为3的数列C .*T ∀∈N 且2T ≥,存在1m >,使得{}n a 是周期为T 的数列D .m ∃∈Q 且2m ≥,使得数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.俯视图10、 已知1ln 2a =,1sin 2b =,122c -=,则a ,b ,c 按照从大到小排列为________.11、 直线1l 过点()20-,且倾斜角为30︒,直线2l 过点()20,且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为________.12、 在ABC △中,30A ∠=︒,45B ∠=︒,a b =________;ABC S =△________.13、 正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是________.14、 在平面直角坐标系中,动点()P x y ,到两条坐标轴的距离之和等于它到点()11,的距离,记点P 的轨迹为曲线W .⑴给出下列三个结论:①曲线W 关于原点对称;②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是________.⑵曲线W 上的点到原点距离的最小值是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15、 (本小题满分13分)已知函数()cos 21π4xf x x =-⎛⎫- ⎪⎝⎭.⑴ 求函数()f x 的定义域; ⑵ 求函数()f x 的单调递增区间.16、 (本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:①该福利彩票中奖率为50%;②每张中奖彩票的中奖金额有5元,50元和150元三种;③顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.⑴ 假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; ⑵ 为了能够筹得资金资助福利事业,求p 的取值范围.17、 (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=︒,30CAB ∠=︒,2BC =,4AD =,把D A C △沿对角线AC 折起到PAC △的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点E ,F 分别为线段PA ,AB 的中点.⑴ 求证:平面EFH ∥平面PBC ;⑵ 求直线HE 与平面PHB 所成角的正弦值;⑶ 在棱PA 上是否存在一点M ,使得M 到P ,H ,A ,F 四点的距离相等?请说明理由.DCBAAP HFE图1 图218、 (本小题满分13分)已知函数()e x f x =,()0A a ,为一定点,直线x t =(t a ≠)分别与()f x 的图象和x 轴交于点M ,N ,记AMN △得面积为()S t . ⑴ 当0a =时,求函数()S t 的单调区间;⑵ 当2a >时,若[]002t ∃∈,,使得()0e S t ≥,求a 的取值范围.19、 (本小题满分14分)已知椭圆2222:1x y M a b+=(0a b >>)的四个顶点恰好是一边长为2,一内角为60︒的菱形的四个顶点.⑴ 求椭圆M 的方程;⑵ 直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点102⎛⎫- ⎪⎝⎭,,求A O B △(O为原点)面积的最大值.20、 (本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.⑴ 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);⑵ 数表A 如表2所示,若必须经过两次“操作”才可使得到的数表每行的各数之和与每列的各数之和均为非负实数,求整数a 的所有可能值;⑶ 对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数?请说明理由.参考答案一、选择题【解析】 C ;对于A ,当34a =时,21,54a =,151,,645a m ==;m 可取3个不同的值,正确. 对于B ,数列{}n a ,1,1,1,1,...于是{}n a 周期为3,正确.对于C ,为构造这样的数列,仅需()11m m T =--即可,解得1m =>,满足题意,C 正确.对于D ,若为周期数列,则存在,,,p q p q m ∈Z ≤,有1m q m p=--.化简得 ()()210m p q m pq -++-=.解得m =()24p q -+不是完全平方数(任意两个平方数的差不是4),于是m ∉Q .D 错误.二、填空题【解析】 ②③,2不妨设(),P x y,有x y +=,化简得曲线方程为:1,0,011,01,01,0,01x y x y x y x x y xy x y x -⎧=⎪+⎪=⎪⎨=⎪⎪-=<<⎪+⎩≥≥≤≤,图像如下:其余过程略.三、解答题 15、【解析】 ⑴π04x ⎛⎫-≠ ⎪⎝⎭知ππ,4x k k -≠∈Z ,于是函数的定义域为ππ,4x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z .⑵22cos 2cos sin ππ111πsin cos 44x x x y x x x x -⎛⎫=-=-=++ ⎪-⎛⎫⎝⎭- ⎪⎝⎭.于是()f x 的单调递增区间为πππ3π2π2ππ2π,2π,24244k x k x k k k ⎡⎤+++⇒∈-++∈⎢⎥⎣⎦Z -≤≤由因为ππ4x k ≠+,知单调增区间为3ππ2π,2π,44k k k ⎛⎫-++∈ ⎪⎝⎭Z .16、【解析】 ⑴考虑反面的情形,两张彩票均不中的概率为211124⎛⎫-= ⎪⎝⎭.于是至少有一张彩票中奖的概率为13144-=. ⑵不妨设顾客购买一张彩票中奖所得钱数为X ,于是X 的分布列如下:()800.550.48500.021505725p p p ⋅+-+⋅+⋅<⇒< 于是,p 的取值范围为80,725⎛⎫ ⎪⎝⎭.17、 【解析】 ⑴EH PC FH BC ⎫⇒⎬⎭∥∥平面EFH ∥平面PBC⑵由PC EH ∥,知EH 与面PHB 所成角即PC 与面PHB 所成角,不妨设为α,设点C 到平面PHB 的距离为d ,则sin 4d dPC α==.而1133C PHB PHB BCHV S d S -=⋅⋅=⋅⋅△△而1122BCH ABC PHB S S S PH HB ==⋅⋅=△△△d所以sin α.即EH 与平面PHB .⑶不妨设这样的点M 存在,则PM MH =,于是M 在线段PH 的垂直平分线与PA 的交点处, 于是M 位于PA 的中点.由PHA △为直角三角形,此时有MP MH MA ==.又122MF PB MA ==,有MP MH MA MF ===.18、【解析】 ()1,2t S t t a e t a =-≠. ⑴当0a =时,()1,021,02t t te t S t te t ⎧>⎪⎪=⎨⎪-<⎪⎩,于是()()()11,0211,02t t t e t S t t e t ⎧+>⎪⎪'=⎨⎪-+<⎪⎩.则在(),1-∞-,()0,+∞上,有()0S t '>,此时()S t 单调增;在()1,0-上,()0S t '<,此时()S t 单调减. ⑵当2a >时,若[]00,2t ∃∈,有()00012t S t t a e e -=≥, 即存在[]00,2t ∈,有0102t a t e ->+.设()12t g t t e -=+,仅需()min a g t >,[]0,2t ∈即可. 由()112t g t e -'=-,知min 于是a 的取值范围是()2ln 2,++∞.19、【解析】 ⑴2213x y +=.⑵易知直线l 斜率存在.①当直线l 斜率为0时,不妨设:l y m =,则22111222m m S AB m -+=⋅=⋅,当且仅当m = ②当直线l 斜率不为0时,不妨设:l y kx b =+,联立直线与椭圆方程,有 2213y kx b x y =+⎧⎪⎨+=⎪⎩,有()22212103k x kbx b ⎛⎫+++-= ⎪⎝⎭, 设()()1122,,,A x y B x y ,l 与x 轴交于H ,线段AB 的中点为M .则 122213kb x x k -+=+,2122113b x x k -=+,2213,1133b kb M k k ⎛⎫ ⎪- ⎪ ⎪++ ⎪⎝⎭. 且22110033k b ∆>⇒+->线段AB 的垂直平分线方程为221131133bkb y x k k k ⎛⎫ ⎪-=-+ ⎪ ⎪++ ⎪⎝⎭,由其过10,2⎛⎫- ⎪⎝⎭,知21433k b +=,由0∆>知1,44b ⎛⎫∈ ⎪⎝⎭. 12121122AOB bS OH y y k x x k =⋅-=⋅⋅⋅-△22142333b b b k k b=⋅===++于是当2b =时,max S 由①②知,AOB △,此时直线AB的方程为y =或2y =+.20、【解析】 ⑴⑵ 原数表第一行与第三列和为负数. 一次操作后数表变为①或②①不满足题意,仅需1a ≠即可;对于表②,仅需210a -<或520a -<即可,解得12a <或52a >.所以,为使一步调整不能到位,仅需0a ≤或3a ≥.由题意知,表①或者表②再进行一次调整后即可满足题意.对于表①,由第二列和非负,知[)1,1a ∈-,此时第一列非负,第二次调整必须为第三列, 表①变为0,520a -≥,知0,1a =-.对于表②,第二步调整不能为第二行(否则第4列和第2列至少一个为负), 调整第一行后表②变为1,0-.综上有,1,0a =-.⑶ 能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数. 设数表中第i 行第j 列的数为ij a ,行和分别为12,,,m a a a ,列和分别为12,,,n b b b , 数表中所有数的和1212m n S a a a b b b =+++=+++记集合{}{}112212|,,,1,1,1,2,,i i n in n M a a a i m λλλλλλ=+++∈-= {}{}112212|,,,1,1,1,2,,j j m mj m N a a a j n μμμμμμ=+++∈-=δ为集合()(){}|,0x x M x N x ∈∨∈≠中的最小数.则① 每次操作必然使得S 增加2δ;② S 有上界(最初数表中所有数的绝对值之和).因此经过有限次操作后必然停止,此时所有行和和列和均为非负数.。
北京市海淀区2013届高三上学期期末考试理科数学试题
B. π ,(1,0) 4
3.向量 , a (3,4),b (x,2) 若 a b | a |,则实数 x 的值为
A. 1
C.
1 3
D.1
B.
1 2
4.某程序的框图如图所示, 执行该程
C. 3π ,(1,0) 4
序,若输入的 p 为24 ,则输出
的 n,S 的值分别为
A. n 4, S 30
表:
A 型车
出租 1 2 3 4 5 6 7
天数
车辆 5 1 3 3 1 3 2
数
0055
B 型车
出租 1 2 3 4 5 6 7 天数 车辆 1 2 2 1 1 1 5 数 400650
(I)从出租天数为 3 天的汽车(仅限 A,B 两种车型) 中随机抽取一辆,估计这辆汽车恰好是 A 型车的概 率; (Ⅱ)根据这个星期的统计数据,估计该公司一辆 A 型车,一辆 B 型车一周内合计出租天数恰好为 4 天 的概率; (Ⅲ)如果两种车型每辆车每天出租获得的利润相 同,该公司需要从 A,B 两种车型中购买一辆,请你 根据所学的统计知识,给出建议应该购买哪一种车 型,并说明你的理由.
A, B,C
22
22
的对边分别பைடு நூலகம்
为 a,b,c .
(I)求 f (x)的单调递增区间;
(Ⅱ)若 f (B C) 1, a 3,b 1,求角 C 的大小.
16.(本小题满分 13 分)
汽车租赁公司为了调查 A,B 两种车型的出租情
况,现随机抽取了这两种车型各 100 辆汽车,分别统
计了每辆车某个星期内的出租天数,统计数据如下
北京市海淀区 2013 届高三上学 期期末考试理科数学试题
2013.1
2013年北京市-海淀区高三二模数学(理科)考试试题和答案
2013年北京市海淀区高三年级二摸试题数 学(理科)2013. 5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{|(1)(2)0}A x x x =-+≤,{|0}B x x =<,则A B =A.(,0]-∞B.(,1]-∞C.[1,2]D.[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为A.3B.2C.3或2-D.3或3-3.如图,在边长为a 的正方形内有不规则图形W .若撒在图形W 内和正方形内的豆子数分别为,m n ,则图形W 面积的估计值为A.manB.na mC.2ma nD.2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为A.180B.240C.276D.3005.在四边形ABCD 中,“∃∈R l ,使得AD BC =l ,AD BC =l ”是“四边形ABCD 为平行四边形”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个 位和万位,则这样的五位数个数为 A.32B.36C.42D.48俯视图7.双曲线C 的左右焦点分别为1F ,2F ,且2F 恰好为抛物线24y x =的焦点,设双曲线C 与 该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心 率为B.1C.1+D.2+8.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足1(0)a m m =>,11,1,1,0 1.n n n n na a a a a +->=<⎧⎪⎨⎪⎩≤则下列结论中错误..的是 A.若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列C.T *∀∈N 且2T ≥,存在1m >,使得{}n a 是周期为T 的数列 D.m ∃∈Q 且2m ≥,使得数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9.在极坐标系中,极点到直线cos 2ρθ=的距离为 .10.已知1ln 2a =,1sin 2b =,122c -=,则a ,b ,c 按照从大到小...排列为 . 11.直线1l 过点(2-,0)且倾斜角为30︒,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为 .12.在ABC ∆中,30A ∠︒=,45B ∠︒=,a =则b = ;ABC S ∆= . 13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是 .14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线为W . (Ⅰ)给出下列三个结论:①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是 ;(Ⅱ)曲线W 上的点到原点距离的最小值为 .图 2图 1B H CF PEADCBA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数cos2()1)4x f x x =-π-.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一 种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50 %; (2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获 得150元奖金的概率为p ,获得50元奖金的概率为2 %.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (Ⅱ)为了能够筹得资金资助福利事业,求p 的取值范围.17.(本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=︒,30CAB ∠=︒,2BC =, 4AD =.把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面 ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点E ,F 分别为线段PA ,PB 的中 点.(Ⅰ)求证:平面EFH ∥平面PBC ;(Ⅱ)求直线HE 与平面PHB 所成角的正弦值;(Ⅲ)在棱PA 上是否存在一点M ,使得M 到P ,H ,A ,F 四点的距离相等?请说明理 由.18.(本小题满分13分)已知函数()e xf x =,(,0)A a 为一定点,直线(0)x t t =≠分别与函数()f x 的图象 和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (Ⅰ)当0a =时,求函数()S t 的单调区间;(Ⅱ)当2a >时,若0[0,2]t ∃∈,使得0()e S t ≥,求a 的取值范围.19.(本小题满分14分)已知椭圆2222:1(0)y x M a b a b+=>>的四个顶点恰好是一边长为2,一内角为60︒ 的菱形的四个顶点. (Ⅰ)求椭圆M 的方程;(Ⅱ)直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求(AOB O ∆为原点)面积的最大值.20.(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之 和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ)数表A 如表1所示,若经过两次“操作”,使得 到的数表每行的各数之和与每列的各数之和均为非负 实数,请写出每次“操作”后所得的数表(写出一种 方法即可);(Ⅱ)数表A 如表2所示,若必须经过两次“操作”, 才可使得到的数表每行的各数之和与每列的各数之和 均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作” 以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数? 请说明理由.a 2-a 2a -2-a 1-a 2a 2-12-aa 表 2表 11312-7-212013海淀区高三年级二摸试题数 学 (理科)参考答案及评分标准 2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- ……………………6分= 1(cos sin )x x ++1sin cos x x =++π= 1)4x + (8)分又sin y x=的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+ 解得 3ππ2π2π44k x k -<<+ ……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11. 12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯ 2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =所以4AC =,60CAB ∠=,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分 同理可证//EF PB 又,HEEF E CP PB P ==所以平面//EFH 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =- 设平面PHB 的法向量为(,,)n x y z =因为(3,1,0)HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以(3,3,0)n =- …………………8分cos ,||||22n HE n HE n HE ⋅<>===⋅⋅…………………10分所以直线HE 与平面P H 所成角的正弦值为…………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====,…………………13分在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'(S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分 综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2tS t t a =---,令'(S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , 所以3a ≥…………………10分当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln22a ≥+所以l a +≤…………………12分综上所述,ln22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以,1a b ==,椭圆M 的方程为2213x y += …………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆===2211(3)322x x +-≤=,所以AOB S ∆≤1||x =AOB S ∆………………7分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解 又122631kt x x k -+=+,1223231x x ktk +-=+ …………………8分所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到3(4A OBS tt ∆…………………12分因为04t <<,所以当2t =时,即k =AOB S ∆ 综上,A O ∆面积的最大值为…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行,22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a ---必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a a a a a ----- 则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求综上:0a =-…………………9分 (III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
北京市海淀区2013届高三第一学期期末考试数学(理科)
北京市海淀区2013届高三第一学期期末考试数学(理)试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i --2.已知直线2,:2x t l y t =+⎧⎨=--⎩(t 为参数)与圆2cos 1,:2sin x C y θθ=+⎧⎨=⎩(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是A.π,(1,0)4B.π,(1,0)4-C.3π,(1,0)4D.3π,(1,0)4-3.向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为A.1-B.12-C.13- D.14.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A.4,30n S ==B.5,30n S ==C.4,45n S ==D.5,45n S ==5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是 A.BEC ∆∽DEA ∆ B.ACE ACP ∠=∠ C.2DE OE EP =⋅ D.2PC PA AB =⋅6.数列{}n a 满足111,n n a a r a r +==⋅+(*,n r ∈∈N R 且0r ≠),则“1r =”是“数列{}n a 成等差数列”的A.充分不必要条件B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件7. 用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为 A. 144 B.120 C. 108 D.728. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P∆为等腰三角形,则椭圆C 的离心率的取值范围是A.12(,)33B.1(,1)2C. 2(,1)3D.111(,)(,1)322二、填空题:本大题共6小题,每小题5分,共30分.9. 以y x =±为渐近线且经过点(2,0)的双曲线方程为______.10.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.BP11. 在261(3)x x+的展开式中,常数项为______.(用数字作答)12. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.13. 点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为则___.k =14. 已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<,记点P 的轨迹的长度为()f r ,则1()2f =____;关于r 的方程()f r k =的解的个数可以为_.(填上所有可能的值).三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数21()cos cos 2222x x x f x =+-,ABC ∆三个内角,,A B C 的对边分别为,,a b c .(I )求()f x 的单调递增区间;(Ⅱ)若()1,f B C +=1a b =,求角C 的大小. 16.(本小题满分13分)汽车租赁公司为了调查A,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A 型车(I )从出租天数为3天的汽车(仅限A,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率; (Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.DABC左视图17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,12,AB AC AA ===E 是BC 中点. (I )求证:1//A B 平面1AEC ;(II )若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.18. (本小题满分13分)已知函数e ().1axf x x =- (I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.19. (本小题满分14分)已知()2,2E 是抛物线2:2C y px =上一点,经过点(2,0)的直线l 与抛物线C 交于,A B 两点(不同于点E ),直线,EA EB 分别交直线2x =-于点,M N . (Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O 为原点,求证:MON ∠为定值. 20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x =在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”. 我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.EC 1B 1A 1CBA海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准 2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I )因为21()cos cos 2222x x x f x =+-cos 122cos 121x x x x =+-=++ πsin()6x =+ ………6分又sin y x =的单调递增区间为ππ2π,2π 22k k -+(),()Z k ∈ 所以令πππ2π2π262k x k -<+<+ 解得2ππ2π2π 33k x k -<<+ 所以函数()f x 的单调增区间为2ππ(2π,2π) 33k k -+,()Z k ∈ ………………8分 (Ⅱ) 因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈所以πππ,623B C B C ++=+=,所以2π3A = ……10分 由正弦定理sin sin B A b a= 把1a b =代入,得到1sin 2B = …………12分 又,b a <B A <,所以π6B =,所以π6C = …………13分16.(本小题满分13分) 解:(I )这辆汽车是A 型车的概率约为3A 3A,B =出租天数为天的型车辆数出租天数为天的型车辆数总和300.63020=+这辆汽车是A 型车的概率为0.6 …………3分 (II )设“事件i A 表示一辆A型车在一周内出租天数恰好为i 天”,“事件j B 表示一辆B型车在一周内出租天数恰好为j 天”,其中,1,2,3,...,7i j = 则该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为132231132231()()()()P A B A B A B P A B P A B P A B ++=++ ………………5分132231()()()()()()P A P B P A P B P A P B =++ ………………7分520102030141001001001001001009125=⋅+⋅+⋅=该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为9125………………9分(Ⅲ)设设Y 为B 型车出租的天数,则Y 的分布列为()10.0520.1030.3040.3550.1560.0370.02=3.62E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯()10.1420.2030.2040.1650.1560.1070.05E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=3.48………………12分 一辆A 类型的出租车一个星期出租天数的平均值为3.62天,B 类车型一个星期出租天数的平均值为3.48天. 从出租天数的数据来看,A 型车出租天数的方差小于B 型车出租天数的方差,综合分析,选择A 类型的出租车更加合理 . ………………13分17.(本小题满分14分)(I) 连接A C 1交AC 1于点O ,连接EO因为1ACC A 1为正方形,所以O 为A C 1中点,又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B ………………2分又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC…4分(Ⅱ)以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系 所以111(0,0,0),(0,0,2),(2,0,0),(2,0,2),(0,2,0),(0,2,2),(1,1,0),A A B B C C E 设(0,0,)(02)M m m ≤≤,所以11(2,0,2),(1,1,2)B M m C E =--=--,因为11B M C E ⊥,所以 110B M C E ⋅=,解得1m =,所以1AM = ………………8分 (Ⅲ)因为1(1,1,0),(0,2,2)AE AC ==,设平面1AEC 的法向量为(,,)n x y z =, 则有100AE n AC n ⎧⋅=⎪⎨⋅=⎪⎩ ,得00x y y z +=⎧⎨+=⎩,令1,y =-则1,1x z ==,所以可以取(1,1,1)n =-, ………10分因为AC ⊥平面1ABB A 1,取平面1ABB A 1的法向量为 (0,2,0)AC =………11分所以cos ,||||AC n AC n AC n ⋅<>==………………13分平面1AEC 与平面1ABB A 1………………14分 18. (本小题满分13分)解:当1a =时,e ()1axf x x =-,2e (2)'()(1)x xf x x -=- ………………2分 又(0)1f =-,'(0)2f =-,所以()f x 在(0,(0))f 处的切线方程为21y x =-- ………4分(II )2e [(1)]'()(1)ax ax a f x x -+=- 当0a =时,21'()0(1)f x x -=<- 又函数的定义域为{|1}x x ≠ 所以 ()f x 的单调递减区间为(,1),(1,)-∞+∞ ………6分 当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a+=………………7分 当0a >时,11a x a+=>,所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递减区间为(,1)-∞,1(1,)a a +, 单调递增区间为1(,)a a++∞ ……10分 当0a <时,11a x a+=< 所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a+-∞,单调递减区间为1(,1)a a +,(1,)+∞ ………13分19. (本小题满分14分)解:(Ⅰ)将()2,2E 代入22y px =,得1p = 所以抛物线方程为22y x =,焦点坐标为1(,0)2…3分(Ⅱ)设211(,)2y A y ,222(,)2y B y ,(,),(,)M M N N M x y N x y ,法一:因为直线l 不经过点E ,所以直线l 一定有斜率 设直线l 方程为(2)y k x =-与抛物线方程联立得到 2(2)2y k x y x=-⎧⎨=⎩,消去x ,得:2240ky y k --=则由韦达定理得:121224,y y y y k=-+= …6分 直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++,令2x =-,得11242M y y y -=+ …………9分 同理可得:22242N y y y -=+ …10分又 4(2,),(2,)m m OM y ON y -=-=- ,所以121224244422M N y y OM ON y y y y --⋅=+=+⋅++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++ 44(44)444(44)k k--+=+-++ 0= …13分所以OM ON ⊥,即MON ∠为定值π2…………14分 法二:设直线l 方程为2x my =+ 与抛物线方程联立得到 222x my y x=+⎧⎨=⎩,消去x ,得:2240y my --= 则由韦达定理得:12124,2y y y y m =-+= ……6分直线AE 的方程为:()12122222y y x y --=--,即()12222y x y =-++, 令2x =-,得11242M y y y -=+ ………………9分 同理可得:22242N y y y -=+ …10分又 4(2,),(2,)m m OM y ON y -=-=- ,12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++ 121212124[2()4]4[2()4]y y y y y y y y -++=++++ 4(424)44(424)m m --+=+-++ 0= ……12分所以OM ON ⊥,即MON ∠为定值π2………………13分 20. (本小题满分14分)解:(I )因为1(),f x ∈Ω且2()f x ∉Ω, 即2()()2f x g x x hx h x==--在(0,)+∞是增函数,所以0h ≤ ………………1分而2()()2f x h h x x h x x ==--在(0,)+∞不是增函数,而2'()1hh x x =+ 当()h x 是增函数时,有0h ≥,所以当()h x 不是增函数时,0h < 综上,得0h < …4分(Ⅱ) 因为1()f x ∈Ω,且0a b c a b c <<<<++ 所以()()4=f a f a b c a a b c a b c++<++++, 所以4()a f a d a b c =<++,同理可证4()b f b d a b c =<++,4()cf c t a b c=<++三式相加得4()()()()24,a b c f a f b f c d t a b c++++=+<=++ 所以240d t +-< ……6分因为,d d a b <所以()0,b a d ab-<而0a b <<, 所以0d < 所以(24)0d d t +-> ……8分 (Ⅲ) 因为集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取, 所以()f x ∀∈ψ,存在常数k ,使得 ()f x k < 对(0,)x ∈+∞成立我们先证明()0f x ≤对(0,)x ∈+∞成立 假设0(0,),x ∃∈+∞使得0()0f x >, 记020()0f x m x => 因为()f x 是二阶比增函数,即2()f x x是增函数. 所以当0x x >时,0220()()f x f x m x x >=,所以2()f x mx > 所以一定可以找到一个10x x >,使得211()f x mx k >> 这与()f x k < 对(0,)x ∈+∞成立矛盾……11分()0f x ≤对(0,)x ∈+∞成立 所以()f x ∀∈ψ,()0f x ≤对(0,)x ∈+∞成立下面我们证明()0f x =在(0,)+∞上无解假设存在20x >,使得2()0f x =,则因为()f x 是二阶增函数,即2()f x x 是增函数 一定存在320x x >>,322232()()0f x f x x x >=,这与上面证明的结果矛盾 所以()0f x =在(0,)+∞上无解 综上,我们得到()f x ∀∈ψ,()0f x <对(0,)x ∈+∞成立 所以存在常数0M ≥,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立又令1()(0)f x x x=->,则()0f x <对(0,)x ∈+∞成立,又有23()1f x x x-=在(0,)+∞上是增函数 ,所以()f x ∈ψ,而任取常数0k <,总可以找到一个00x >,使得0x x >时,有()f x k >所以M 的最小值 为0 ……13分。
北京市海淀区2013届高三第一学期期末考试数学(文)试题
北京市海淀区2013届高三第一学期期末考试数学(文)试题开始 10n S ==,S p <是输入p否北京市海淀区2013届高三第一学期期末考试数学(文)试题2013.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为A.1i +B.1i -+C. 1i -D.1i --2. 向量(1,1),(2,)t ==a b , 若⊥a b , 则实数t 的值为A.2- B.1- C.1D. 23. 在等边ABC∆的边BC上任取一点P,则23ABP ABC S S ∆∆≤的概率是A. 13B. 12C. 23D. 564.点P 是抛物线24yx=上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为A .2 B. 3C.4 D.55.某程序的框图如图所示, 执行该程序,若输入的p为24,则输出 的,n S 的值分别为 A. 4,30n S == B. 4,45n S == C.5,30n S == D.5,45n S ==6.已知点(1,0),(cos ,sin )A B αα-, 且||3AB =, 则直线AB 的方程为A.33y x =或33y x =-- B.33y =+或33y =-C.1y x =+或1y x =-- D.22y x =+或22y x =-7. 已知函数sin , sin cos ,()cos , sin cos ,x x x f x x x x ≥⎧=⎨<⎩ 则下面结论中正确的是 A. ()f x 是奇函数 B. ()f x 的值域是[1,1]-C.()f x 是偶函数 D. ()f x 的值域是2[8. 如图,在棱长为1的正方体1111ABCD A B C D -中,点, E F分别是B 1C 1D 1A 1FE CDA棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面,AEF则线段1A P 长度的取值范围是A .5] B.325[4 C.5[2] D. [2,3]二、填空题:本大题共6小题,每小题5分,共30分. 9.tan225o的值为________.10. 双曲线22133x y -=的渐近线方程为_____;离心率为______.11. 数列{}na 是公差不为0的等差数列,且268aa a +=,则55_____.S a =12. 不等式组0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域为Ω,直线1y kx =-与区域Ω有公共点,则实数k的取值范围为_________.13. 三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为______. 14. 任給实数,,a b 定义, 0,, 0.a b a b a b aa b b⨯⨯≥⎧⎪⊕=⎨⨯<⎪⎩ 设函数DABC22234()ln f x x x=⊕,则1(2)()2f f +=______;若{}na 是公比大于0的等比数列,且51a=,123781()()()()(=,f a f a f a f a f a a +++++L )则1___.a =三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题满分13分)已知函数21()3sin cos cos2f x x x x =-+,ABC ∆三个内角,,A B C的对边分别为,,,a b c 且()1f A =.(I ) 求角A 的大小;(Ⅱ)若7a =,5b =,求c 的值.16. (本小题满分13分)某汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:A 型车 出租天数3 4 5 6 7 车辆数3 305 7 5B 型车出租天数3 4 5 6 7 车辆数10 10 15 10 5 (I ) 试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);(Ⅱ)现从出租天数为3天的汽车(仅限A ,B 两种车型)中随机抽取一辆,试估计这辆汽车是A 型车的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,1AB AC AA ==,且E 是BC 中点.(I )求证:1//A B 平面1AEC ;(Ⅱ)求证:1B C ⊥平面1AEC .EC 1B 1A 1CBA18.(本小题满分13分)已知函数211()22f x x=-与函数()ln g x a x =在点(1,0)处有公共的切线,设()()()F x f x mg x =-(0)m ≠.(I ) 求a 的值;(Ⅱ)求()F x 在区间[1,e]上的最小值. .19. (本小题满分14分)已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆方程;(Ⅱ)当直线l 的倾斜角为45o时,求线段CD 的长;(Ⅲ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x =在(0,)+∞上为增函数,则称()f x 为 “一阶比增函数”. (Ⅰ) 若2()f x axax=+是“一阶比增函数”,求实数a 的取值范围;(Ⅱ) 若()f x 是“一阶比增函数”,求证:12,(0,)x x ∀∈+∞,1212()()()f x f x f x x +<+;(Ⅲ)若()f x 是“一阶比增函数”,且()f x 有零点,求证:()2013f x >有解.海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准 2013.1 说明:合理答案均可酌情给分,但不得超过原题分数.一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8答案 A A C B C B D B二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.110.;2y x =± 11. 312.[3,)+∞ 13. 4214.0;e三、解答题(本大题共6小题,共80分)15.(本小题满分13分) 解:(I )因为21()3sin cos cos 2f x x x x -+312cos22x x=- πsin(2)6x =- ………………6分 又π()sin(2)16f A A =-=,(0,)A π∈, ………………7分 所以ππ7π2(,)666A -∈-,πππ2,623A A -== ………………9分(Ⅱ)由余弦定理2222cos ab c bc A=+- 得到2π492525cos3c c =+-⨯,所以25240c c --= ………………11分解得3c =-(舍)或8c = ………………13分 所以8c =16. (本小题满分13分)解:(I )由数据的离散程度可以看出,B 型车在本星期内出租天数的方差较大 ……………3分(Ⅱ)这辆汽车是A 类型车的概率约为3A 333A,B 10313==+出租天数为天的型车辆数出租天数为天的型车辆数总和这辆汽车是A 类型车的概率为313………………7分(Ⅲ)50辆A 类型车出租的天数的平均数为3343051567754.6250A x ⨯+⨯+⨯+⨯+⨯==………………9分50辆B 类型车出租的天数的平均数为310410515610754.850B x ⨯+⨯+⨯+⨯+⨯==………………11分答案一:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为4.8,选择B 类型的出租车的利润较大,应该购买B 型车………………13分答案二:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为4.8,而B 型车出租天数的方差较大,所以选择A 型车 ………………13分 17. (本小题满分14分)解:(I) 连接A C 1交AC 1于点O ,连接EO因为1ACC A 1为正方形,所以O 为A C 1中点又E 为CB 中点,所以EO 为1A BC ∆的中位线,所以1//EO A B………………3分又EO ⊂平面1AEC ,1A B ⊄平面1AEC所以1//A B 平面1AEC………………6分 (Ⅱ)因为AB AC=,又E为CB中点,所以AE BC⊥ ………………8分又因为在直三棱柱111ABC A B C -中,1BB ⊥底面ABC , 又AE ⊂底面ABC , 所以1AE BB ⊥,又因为1BB BC B =I ,所以AE ⊥平面11BCC B ,又1B C ⊂平面11BCC B ,所以AE ⊥1B C (1)0分在矩形11BCC B 中,1112tan tan CB C EC C ∠=∠=,所以111CB C EC C∠=∠,所以11190CB C EC B ∠+∠=o,即11B C EC ⊥ ………………12分 又1AE EC E=I ,所以1B C⊥平面11BCC B ………………14分18. (本小题满分13分)解:(I )因为(1)(1)0,f g ==所以(1,0)在函数(),()f x g x 的图象上又'(),'()af x xg x x==,所以'(1)1,'(1)f g a ==所以1a =………………3分(Ⅱ)因为211()ln 22F x xm x =--,其定义域为{|0}x x >2'()m x mF x x x x-=-=………………5分当0m <时,2'()0m x mF x x x x -=-=>, 所以()F x 在(0,)+∞上单调递增, 所以()F x 在[1,e]上最小值为(1)0F = ………………7分当0m >时,令2'()0m x mF x x x x-=-==,得到120,0x m x m =>=-< (舍)1m 时,即01m <≤时,'()0F x >对(1,e)恒成立,所以()F x 在[1,e]上单调递增,其最小值为(1)0F = ………………9分 em ≥时,即2e m ≥时, '()0F x <对(1,e)成立,所以()F x 在[1,e]上单调递减,其最小值为211(e)e 22F m =-- ………………11分当1em <<,即21e m <<时, '()0F x <对)m 成立,'()0F x >对(,e)m 成立所以()F x 在m 单调递减,在(,e)m 上单调递增其最小值为1111)ln 22222mF m m m m m m =--=--………13分 综上,当1m ≤时, ()F x 在[1,e]上的最小值为(1)0F =当21e m <<时,()F x 在[1,e]上的最小值为11)ln 222mF m m m =-- 当2e m ≥时, ()F x 在[1,e]上的最小值为211(e)e 22F m =--. 19. (本小题满分14分)解:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y += ………………3分 (Ⅱ)因为直线的倾斜角为45o,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y,得到27880x x +-= (5)分所以121288288,,77x xx x ∆=+=-=所以21224||1|7CD k x x =+-=………………7分(Ⅲ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---, ,ABD ABC ∆∆面积相等,12||0S S -= ………………8分当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠,设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-=显然∆>,方程有根,且221212228412,3434k k x x x x k k -+=-=++ ………………10分此时122121|||2||||||2||S Sy y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k =++=+ ………………12分因为k ≠,上式123332124||24||||||k k k k =≤==+g ,(3k =所以12||S S -的最大值为3………………14分20. (本小题满分13分) 解:(I )由题2()f x ax axy ax ax x+===+在(0,)+∞是增函数,由一次函数性质知当0a >时,y ax a =+在(0,)+∞上是增函数, 所以a >………………3分(Ⅱ)因为()f x 是“一阶比增函数”,即()f x x 在(0,)+∞上是增函数,又12,(0,)x x ∀∈+∞,有112x x x <+,212xx x <+所以112112()()f x f x x x x x +<+,212212()()f x f x x x x x +<+ ………………5分所以112112()()x f x x f x x x+<+,212212()()x f x x f x x x +<+所以11221212121212()()()()()x f x x xf x x f x f x f x x x xx x +++<+=+++所以1212()()()f x f x f x x +<+………………8分(Ⅲ)设0()0f x =,其中0x>.因为()f x 是“一阶比增函数”,所以当0x x >时,00()()0f x f x x x >=法一:取(0,)t ∈+∞,满足()0f t >,记()f t m =由(Ⅱ)知(2)2f t m >,同理(4)2(2)4f t f t m >>,(8)2(4)8f t f t m >> 所以一定存在*n ∈N ,使得(2)22013nnf t m >⋅>, 所以()2013f x > 一定有解 ………………13分法二:取(0,)t ∈+∞,满足()0f t >,记()f t k t = 因为当x t >时,()()f x f t k x t>=,所以()f x kx >对x t >成立只要 2013x k >,则有()2013f x kx >>, 所以()2013f x > 一定有解 ………………13分。
【2013海淀一模】北京市海淀区2013届高三上学期期中练习 理科数学 扫描版试题 Word版答案
海淀区高三年级第二学期期中练习数 学 (理)参考答案及评分标准 2013.4说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为2()2cos )fx x x =--22= 2(3sin cos cos )x x x x -+-22(12sin )x x =-+ ………………2分 2= 12sin x x -cos2x x = ………………4分 π= 2sin(2)6x + ………………6分所以πππ2π()2sin(2)2sin 4463f =⋅+==………………7分 所以 ()f x 的周期为2π2π= π||2T ω== ………………9分 9. 0 10. 14 11.24512.3, 13.491a <≤ 14. 2,(21,2), Z k k k -∈(II )当ππ[,]63x ∈-时,π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当π6x =-时,函数取得最小值π()16f -=- ………………11分 当π6x =时,函数取得最大值π()26f = ………………13分 16.解:(I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有10÷=人 ………………1分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯= ………………3分(II) 求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=………………7分 (Ⅲ)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20 ………………8分2621015(16)45C P C ξ===, 116221012(17)45C C P C ξ===11262222101013(18)45C C C P C C ξ==+=, 11222104(19)45C C P C ξ=== 222101(20)45C P C ξ===所以ξ的分布列为………………11分所以1512134186161718192045454545455E ξ=⨯+⨯+⨯+⨯+⨯= 所以ξ的数学期望为865………………13分17.证明:(I) 因为ABC ∆是正三角形,M 是AC 中点,所以BM AC ⊥,即BD AC ⊥ ………………1分 又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥ ………………2分 又PAAC A =,所以BD ⊥平面PAC ………………3分又PC ⊂平面PAC ,所以BD PC ⊥ ………………4分(Ⅱ)在正三角形ABC中,BM = ………………5分 在ACD ∆中,因为M 为AC 中点,DM AC ⊥,所以AD CD =120CDA ∠=,所以DM =:3:1BM MD = ………………6分 在等腰直角三角形PAB 中,4PA AB ==,PB =所以:3:1BN NP =,::BN NP BM MD =,所以//MN PD ………………8分 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以//MN 平面PDC ………………9分 (Ⅲ)因为90BAD BAC CAD ∠=∠+∠=,所以AB AD ⊥,分别以,AB AD AP , 为x 轴, y 轴, z 轴建立如图的空间直角坐标系,所以(4,0,0),(0,(0,0,4)3B C D P由(Ⅱ)可知,(4,DB =为平面PAC 的法向量 ………………10分4)PC =-,(4,0,4)PB =-设平面PBC 的一个法向量为(,,)n x y z =,yx则00n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即240440x z x z ⎧+-=⎪⎨-=⎪⎩,令3,z =则平面PBC 的一个法向量为(3,3,3)n = ………………12分 设二面角A PC B --的大小为θ, 则7cos 7n DB n DBθ⋅==⋅ 所以二面角A PC B --………………14分 18. 解:(I )因为2()ln ,f x x ax bx =++所以1()2f x ax b x'=++ ………………2分 因为函数2()ln f x x ax bx =++在1x =处取得极值(1)120f a b '=++= ………………3分 当1a =时,3b =-,2231()x x f x x-+'=,'(),()f x f x 随x 的变化情况如下表:………………5分所以()f x 的单调递增区间为1(0,)2,1+∞(,)单调递减区间为1(,1)2………………6分(II)因为222(1)1(21)(1)()ax a x ax x f x x x-++--'==令()0f x '=,1211,2x x a==………………7分因为()f x 在 1x =处取得极值,所以21112x x a=≠= 当102a<时,()f x 在(0,1)上单调递增,在(1,e]上单调递减 所以()f x 在区间(]0,e 上的最大值为(1)f ,令(1)1f =,解得2a =-………………9分 当0a >,2102x a=> 当112a <时,()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,e)上单调递增 所以最大值1可能在12x a=或e x =处取得 而2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--< 所以2(e)lne+e (21)e 1f a a =-+=,解得1e 2a =- ………………11分 当11e 2a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,e)2a上单调递增 所以最大值1可能在1x =或e x =处取得 而(1)ln1(21)0f a a =+-+< 所以2(e)lne+e (21)e 1f a a =-+=, 解得1e 2a =-,与211e 2x a<=<矛盾 ………………12分 当21e 2x a=≥时,()f x 在区间(0,1)上单调递增,在(1,e)单调递减, 所以最大值1可能在1x =处取得,而(1)ln1(21)0f a a =+-+<,矛盾综上所述,12a e =-或 2a =-.ABG H ………………13分 19.(本小题满分14分) 解:(I )设椭圆的焦距为2c ,因为a =,c a =1c =, 所以1b =. 所以椭圆C :2212x y += ………………4分(II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩所以22(12)20k x +-= ,则120x x +=,122212x x k=-+ ………………6分所以AB ==………………7分 点M0)到直线l的距离d =则GH =………………9分显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾,所以要使AG BH =,只要AB GH =所以222228(1)24()121k k r k k+=-++ 22424222424222(1)2(331)2(1)112231231k k k k k r k k k k k k +++=+==+++++++ ………………11分当0k =时,r =………………12分当0k ≠时,242112(1)2(1)31322r k k =+<+=++ 又显然24212(1)2132r k k =+>++,<综上,r ≤< ………………14分20. 解:(Ⅰ)因为 x ∆+=3(,y x y ∆∆∆为非零整数)故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点0P 的相关点有8个 ………………2分又因为22()()5x y ∆+∆=,即221010()()5x x y y -+-=所以这些可能值对应的点在以0P上 ………………4分(Ⅱ)依题意(,)n n n P x y 与000(,)P x y 重合则 1-12211000()()...()()n n n n n x x x x x x x x x x x --=-+-++-+-+=,1-1221100()()...()()n n n n n y y y y y y y y y y y --=-+-++-+-+= 即1-122110()+()+...+()+()=0n n n n x x x x x x x x ------,1-122110()+()+...+()+()=0n n n n y y y y y y y y ------ 两式相加得 1112-121010[()+()]+[()+()]+...+[()+()]=0n n n n n n n n x x y y x x y y x x y y -----------(*) 因为11,3(1,2,3,...,)Z i i i i i i x y x x y y i n --∈-+-==,故11()+()(=1,2,3,...,)i i i i x x y y i n ----为奇数,于是(*)的左边就是n 个奇数的和,因为奇数个奇数的和还是奇数,所以n 一定为偶数………………8分 (Ⅲ)令11,,i i i i i i x x x y y y --∆=-∆=-(1,2,3,...,)i n =, 依题意11210()()...()100n n n n y y y y y y ----+-++-=, 因为0n i i T x===∑012n x x x x ++++112121(1)(1)(1)n x x x x x x =++∆++∆+∆+++∆+∆++∆ 121(1)n n n x n x x =++∆+-∆++∆………………10分 因为有3i i x y ∆∆=+,且 i i x y ∆∆,为非零整数, 所以当2i x ∆=的个数越多,则 T 的值越大,而且在123,,,..,n x x x x ∆∆∆∆ 这个序列中,数字2的位置越靠前,则相应的T 的值越大 而当i y ∆取值为1或1-的次数最多时,i x ∆取2的次数才能最多,T 的值才能最大. 当 100n =时,令所有的i y ∆都为1,i x ∆都取2, 则1012(12100)10201T =++++=. 当100n >时,若*2(50,)n k k k =>∈N ,此时,i y ∆可取50k +个1,50k -个1-,此时i x ∆可都取2,()S n 达到最大 此时T =212((1)1)21n n n n n +++-++=++. 若*21(50,)n k k k =+≥∈N ,令2n y ∆=,其余的i y ∆中有49k -个1-,49k +个1.相应的,对于i x ∆,有1n x ∆=,其余的都为2,则212((1)1)12T n n n n n =+++-++-=+当50100n ≤<时,令 1,2100,2,2100,i i y i n y n i n ∆=≤-∆=-<≤ 则相应的取2,2100,1,2100,i i x i n y n i n ∆=≤-∆=-<≤ 则T =1n ++2((1)(101))n n n +-+-((100)(99)1)n n +-+-+2205100982n n +-= 综上,22220510098, 50100,2(1), 100+2, 100n n n T n n n n n ⎧+-≤<⎪⎪⎪=+≥⎨⎪≥⎪⎪⎩且为偶数,且为奇数. ………………13分。
北京市海淀区2012 - 2013学年度高三第一学期期末考试
北京市海淀区2012 - 2013学年度高三第一学期期末考试数学(理科)(时间:120分钟总分:150分)第1卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.化简复数i-12的结果为 ( ) i A +1. i B +-1. i C -1. i D --1.2.已知直线t t y t x l (⎪⎩⎪⎨⎧--=+=2,2:为参数)与圆⎩⎨⎧=+=θθsin 2,1cos 2:y x C θ(为参数),则直线L 的倾斜角及圆心C 的直角坐标分别是 ( ))0,1(,4.πA )0,1(,4-⋅πB )0,1(,43.πC )0,1(,43.-πD 3.向量),2,(),4,3(x b a =-若|,|a b a =⋅则实数x 的值为 ( )1.-A 21.-B 31.-C 1.D 4.某程序的框图如图所示,执行该程序,若输入的p 为24,则输出的n ,S 的值分别为( )30,4.==S n A 30,5.==S n B 45,4.==S n C 45,5.==S n D5.如图,PC 与圆0相切于点C ,直线PO 交圆0于A ,B 两 点,弦CD ⊥AB 于点E .则下面结论中,错误的是( )DEA BEC A ∆∆~. ACP ACE B ∠=∠. EP OE DE C ⋅=2. AB PA PC D ⋅=2.6.数列}{n a 满足R r N n r a r a a n n ∈∈+⋅==*+,(,111且=/r ),0则,“”1=r 是“数列}{n a 成等差数列”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D .既不充分也不必要条件7.用数字0,1,2,3组成数字可以重复的四位数,其中有且只有一个数字出现两次的四位数的个数为( )144.A 120.B 108.C 72.D8.椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为,,21F F 若椭圆C 上恰好有6个不同的点P ,使得 P F F 21∆为等腰三角形,则椭圆C 的离心率的取值范围是 ( ))32,31.(A )1,21.(B )1,32.(C )1,21()21,31.( D 第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.以y=±x 为渐进线 且经过 点(2,O)的双曲线方程为 .10.数列}{n a 满足,21=a 且对任意的*,,N n m ∈都有=+m m n a a,n a 则=3a }{;n a 的前n 项和=n s 11.在62)31(x x+的展开式中,常数项为 .(用数字作答) 12.三棱锥D-ABC 及其三视图中的主视图和左视图如图所示,则棱BD 的长为13.点P(x ,y)在不等式组⎪⎩⎪⎨⎧+≥≤+⋅≥1,3,0x y y x x 表示的平面区域内,若点P(x ,y)到直线1-=kx y 的最大距离为,22则=k14.已知正方体1111D C B A ABCD -的棱长为1,动点P 在正方体1111D C B A ABCD -表面上运动,且r PA =),30(<<r 记点P 的轨迹的长度为),(r f 则)21(f = ;关于r 的方程k r f =)(的解的个数可以为 .(填上所有可能的值)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数+=2cos 2sin 3)(x x x f ,212cos 2-x △ABC 三个内角A ,B ,C 的对边分别为a ,b,c .(I)求)(x f 的单调递增区间; (Ⅱ)若,1,3,1)(===+b a C B f 求角C 的大小.16.(本小题共13分)汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:(I)从出租天数为3天的汽车(仅限A ,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17.(本小题共14分)如图,在直三棱柱111C B A ABC -中,E AA AC AB BAC ,2,901====∠ 是BC中点.(I)求证://1B A 平面;1AEC(Ⅱ)若棱1AA 上存在一点M ,满足,11E C M B ⊥求AM 的长;(Ⅲ)求平面1AEC 与平面11A ABB 所成锐二面角的余弦值18.(本小题共13分)已知函数⋅-=1)(x e x f ax(I )当a=l 时,求曲线)(x f 在))0(,0(f 处的切线方程;(Ⅱ)求函数)(x f 的单调区间.19.(本小题共14分)已知点E(2,2)是抛物线Px y C 2:2=上一点,经过点(2,O)的直线L 与抛物线C交于A ,B 两点(不同于点E),直线EA ,EB 分别交直线x=-2于点 M,N .(I)求抛物线方程及其焦点坐标;(Ⅱ)已知0为原点,求证:∠MON 为定值.20.(本小题共13分)已知函数)(x f 的定义域为),,0(+∞ 若),0()(+∞=在x x f y 上为增函数,则称)(x f 为“一阶比增函数”;若2)(x x f y =在),0(+∞上为增函数,则称)(x f 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,1Ω所有“二阶比增函数”组成的集合记为⋅Ω2(I)已知函数,2)(23hx hx x x f --=若,)(1Ω∈x f 且,)(2Ω∉x f 求实数h 的取值范围.(Ⅱ)已知1)(,0Ω∈<<<x f c b a 且)(x f 的部分函数值由下表给出,求证:.0)42(>-+t d d(Ⅲ)定义集合,)(|)({2Ω∈=ψx f x f 且存在常数k ,使得任意}.)(),,0(k x f x <+∞∈请问:是否存在常数M ,使得,0,)((∈∀ψ∈∀x x f ),∞+有M x f <)(成立?若存在,求出M 的最小值;若不存在,说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第一学期期末考试
数学(理科) 2013.1
本试卷共4页,150分.考试时长120分钟
一、
1.复数21i
−化简的结果为 A .1i + B .1i −+ C .1i − D .1i −−
2.已知直线2:2x t l y t =+⎧⎨=−−⎩(t 为参数)与圆2cos 1:2sin x C y θθ=+⎧⎨=⎩
(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是
A .
π4,()10, B .π4,()10−, C .3π4,()10, D .3π4
,()10−, 3.向量()34a =r ,,()2b x =r ,,若a b a ⋅=r r r ,则实数x 的值为 A .1− B .12− C .13
− D .1 4.某程序的框图如图所示,执行该程序,若输入的p 为24,则输出的n S ,的值分别为
A .430n S ==,
B .530n S ==,
C .445n S ==,
D .545n S ==,
5.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于A B ,两点,弦CD 垂直AB 于E ,则下面结论中,错误的结论是
A .BEC DEA △△
B .ACE ACP ∠=∠
C .2DE OE EP =⋅
D .2PC PA AB =⋅
B
6.数列{}n a 满足11a =,1n n a r a r +=⋅+(*n ∈N ,r ∈R 且0r ≠)
,则“1r =”是“数列{}n a 成等差数列”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
7.用数字0123,,,组成数字可以重复的四位数,其中有且仅有一个数字出现两次的个数为
A .144
B .120
C .108
D .72
8.椭圆22
22:1x y C a b
+=(0a b >>)的左右焦点分别为1F ,2F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P △为等腰三角形,则椭圆C 的离心率的取值范围是
A .1233⎛⎞⎜⎟⎝⎠,
B .112⎛⎞⎜⎟⎝⎠,
C .213⎛⎞⎜⎟⎝⎠,
D .1111322⎛⎞⎛⎞⎜⎟⎜⎟⎝⎠⎝⎠
U ,, 二、
9.以y x =±为渐近线且经过()20,的双曲线方程为________.
10.数列{}n a 满足12a =,且对任意的*m n ∈N ,,都有
m n n m
a a a +=,则3a =________;{}n a 的前n 项和n S =________. 11.在6
213x x ⎛⎞+⎜⎟⎝⎠
的展开式中,常数项为________.(用数字作答) 12.三棱锥D ABC −及其三视图中的主视图和左视图如图所示,则棱BD 的长为________.
左视图主视图A
D C
13.点()P x y ,在不等式组31x x y y x ⎧⎪⎨⎪⎩
++≥0≤≥,表示的平面区域内,若点()P x y ,到直线1y kx =−的最大距
离为k =________.
14.已知正方体1111ABCD A B C D −的棱长为1,动点P 在正方体1111ABCD A B C D −表面上运动,且PA r
=
(0r <<),记点P 的轨迹的长度为()f r ,则12f ⎛⎞=⎜⎟⎝⎠
________;关于r 的方程()f r k =的解得个数可以为________.
(填上所有可能的值)
三、
15.(本小题满分13分)
已知函数(
)21cos cos 2222
x x x f x =+−,ABC △三个内角A B C ,,的对边分别为a b c ,,. ⑴ 求()f x 的单调区间;
⑵ 若()1f B C +=
,a =1b =,求角C 的大小.
16.
(本小题满分13分) 某汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,数据统计如下表: A 型车
出租天数
1 2 3 4 5 6 7 车辆数
5 10 30 35 15 3 2
B 型车 出租天数 1 2 3 4
5 6 7 车辆数
14 20 20 16 15 10 5 ⑴ 从出租天数为3天的汽车(仅限A ,B 两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;
⑵ 根据这个星期的统计数据,估计该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率;
⑶ 如果两种车型每辆车每天出租获得的利润相同,该公司需要从A ,B 两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.
17.
(本小题满分14分) 如图,在直三棱柱111ABC A B C −中,90BAC ∠=°,12AB AC AA ===,E 是BC 中点. ⑴ 求证:1A B ∥平面1AEC ;
⑵ 若棱1AA 上存在一点M ,满足11B M C E ⊥,求AM 的长;
⑶ 求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.
C 1
B 1A 1
A
B C
18.
(本小题满分13分) 已知函数()e 1
ax
f x x =−. ⑴ 当1a =时,求曲线()f x 在()()00f ,处的切线方程; ⑵ 求函数()f x 的单调区间.
19.
(本小题满分14分) 已知()22E ,是抛物线2:2C y px =上一点,经过点()20,的直线l 与抛物线C 交于A B ,两点(不同于
点E )
,直线EA ,EB 分别交直线2x =−于点M ,N . ⑴ 求抛物线方程及其焦点坐标; ⑵ 已知O 为原点,求证:MON ∠为定值.
20.
(本小题满分13分) 已知函数()f x 的定义域为()0+∞,,若()f x y x =在()0+∞,上为增函数,则称()f x 为“一阶比增函数”;若()
2f x y x =在()0+∞,上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”
组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. ⑴ 已知()322f x x hx hx =−−,若()1f x ∈Ω,且()2f x ∉Ω,求实数h 的取值范围; ⑵ 已知0a b c <<<,()1f x ∈Ω,且()f x 的部分函数值由下表给出: x
a b c a b c ++ ()f x d d t 4 求证:()240d d t +−>;
⑶ 定义集合()(){2ψ|f x f x =∈Ω,且存在常数k ,使得任取()0x ∈+∞,,()}f x k <,请问:是否存在常数M ,使得()ψf x ∀∈,()0x ∀∈+∞,,有()f x M <成立?若存在,求出M 的最小值,若不存在,说明理由.。