正确使用a×b,ab
北师大版七年级数学上册专题2.5 新定义问题(压轴题专项讲练)(学生版)
专题2.5 新定义问题【典例1】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f (3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f (4,﹣2).(1)直接写出计算结果,f (4,12)= ,f (5,3)= ;(2)关于“有理数的除方”下列说法正确的是 .(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算:f (5,3)×f (4,13)×f (5,﹣2)×f (6,12).【思路点拨】(1)根据题意计算即可;(2)①分别计算f (6,3)和f (3,6)的结果进行比较即可; ②根据题意计算即可判断;③分为n 为偶数和奇数两种情况分别计算即可判断; ④2n 为偶数,偶数个a 相除,结果应为正;(3)推导f (n ,a )(n 为正整数,a ≠0,n ≥2),按照题目中的做法推到即可; (4)按照上题的推导式可以将算式中的每一部分表示出来再计算. 【解题过程】解:(1)f (4,12)=12÷12÷12÷12=4,f (5,3)=3÷3÷3÷3÷3=127;故答案为:4;127.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16, ∴f (6,3)≠f (3,6),故错误;②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误;④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为:②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(1a)n ﹣2(n 为正整数,a ≠0,n ≥2).(4)f (5,3)×f (4,13)×f (5,﹣2)×f (6,12)=127×9×(−18)×16 =−23.1.(2022•长安区模拟)用“☆”定义一种新运算:对于任何不为零的整数a 和b ,规定a ☆b =a b ﹣b 2.如(﹣1)☆2=(﹣1)2﹣22=﹣3,则(﹣2)☆(﹣1)的值为( ) A .﹣3B .1C .32D .−322.(2023秋•东港区期末)已知a 、b 皆为正有理数,定义运算符号为※:当a >b 时,a ※b =2a ;当a <b 时,a ※b =2b ﹣a ,则3※2﹣(﹣2※3)等于( ) A .﹣2B .5C .﹣6D .103.(2022•武威模拟)用“*”定义新运算,对于任意有理数a 、b ,都有a *b =b 3﹣1,则12*[3*(﹣1)]的值为( ) A .﹣1B .﹣9C .−12D .04.(2023秋•洪山区期末)定义:如果a 4=N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:因为72=49,所以log 749=2;因为53=125,所以log 5125=3.则下列说法中正确的有( )个.①log 66=36;②log 381=4;③若log 4(a +14)=4,则a =50;④log 2128=log 216+log 28; A .4B .3C .2D .15.(2023秋•顺城区期末)观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1,给出定义如下:我们称使等式a ﹣b =2ab ﹣1成立的一对有理数a ,b 为“同心有理数对”,记为(a ,b ),如:数对(1,23),(2,35)都是“同心有理数对”下列数对是“同心有理数对”的是( )A .(﹣3,47)B .(4,49)C .(﹣5,611) D .(6,713)6.(2023秋•旌阳区期末)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为n 2k;(其中k 是使n2k为奇数的正整数),并且运算可以重复进行,例如,取n =26.则:若n =49,则第2021次“F ”运算的结果是( ) A .68B .78C .88D .987.(2023秋•大连月考)我们对任意四个有理数a ,b ,c ,d 定义一种新的运算:|abcd|=ad ﹣bc .则|−4−231|的值为 .8.(2023秋•郧西县月考)我们定义一种新运算,规定:图表示a ﹣b +c ,图形表示﹣x +y ﹣z ,则+的值为 .9.(2023秋•青浦区期中)若定义新的运算符号“*”为a *b =a+1b ,则(13*12)*2= . 10.(2023秋•西城区校级期中)用“△”定义新运算:对于任意有理数a 、b ,当a ≤b 时,都有a △b =a 2b ;当a >b 时,都有a △b =ab 2,那么,2△6= ;(−23)△(−3)= .11.(2023秋•绵阳期中)定义一种新的运算:x ⨂y ={x 2−2y ,x >y1,x =y−2xy ,x <y,例如2⨂1=22﹣2×1=2,2⨂3=﹣2×2×3=﹣12,1⨂1=1.计算:[(﹣3)⨂(﹣1)]+[4⨂(﹣2)]﹣(2021⨂2021)= .12.(2023•越秀区校级开学)定义两种新运算,观察下列式子:(1)x Θy =4x +y ,例如,1Θ3=4×1+3=7;3Θ(﹣1)=4×3+(﹣1)=11; (2)[x ]表示不超过x 的最大整数,例如,[2.2]=2;[﹣3.24]=﹣4; 根据以上规则,计算[1Θ(−12)]+[(−2)Θ194]= .13.(2023秋•西城区校级期中)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b= a+b+|a−b|2.(1)计算:(﹣6)☆5=.(2)从﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,9中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是.14.(2023秋•封丘县期末)对于有理数a,b,定义一种新运算“⨂”,规定a⨂b=|a+b|﹣|a ﹣b|.如3⨂5=|3+5|﹣|3﹣5|=8﹣2=6.(1)计算3⨂(﹣5)的值.(2)若(a+2)2+|b﹣1|=0,求a⨂b.15.(2023秋•茂名期中)已知a、b均为有理数,现定义一种新的运算,规定:a⨂b=a2+ab ﹣5,例如1⨂1=12+1×1﹣5.求:(1)(﹣3)⨂6的值;(2)[2⨂(−32)]﹣[(﹣5)⨂9]的值.16.(2023秋•沁阳市期中)同学们刚学完有理数相关运算后,老师又定义了一种新的“※(加乘)”运算,以下算式就是按照“※(加乘)”运算法则进行的运算:(+3)※(+4)=+7;(﹣6)※(﹣3)=+9;(+4)※(﹣3)=﹣7;(﹣1)※(+1)=﹣2;0※(+8)=+8;(﹣9)※0=+9;0※0=0.(1)综合以上情形,有如下有理数“※(加乘)”运算法则:两数进行“※(加乘)”运算,同号,异号,并把绝对值;特别地,一个数与0进行“※(加乘)”运算,都得.(2)计算:(﹣7)※(﹣4)=.(3)若(1﹣a)※(b﹣3)=0.计算:1a×b +1(a+2)×(b+2)+1(a+4)×(b+4)+1(a+6)×(b+6)+1(a+8)×(b+8)的值.17.(2023秋•晋江市期中)给出如下定义:如果两个不相等的有理数a ,b 满足等式a ﹣b =ab .那么称a ,b 是“关联有理数对”,记作(a ,b ).如:因为3−34=124−34=94,3×34=94.所以数对(3,34)是“关联有理数对”.(1)在数对①(1,12)、②(﹣1,0)、③(52,57)中,是“关联有理数对”的是 (只填序号);(2)若(m ,n )是“关联有理数对”,则(﹣m ,﹣n ) “关联有理数对”(填“是”或“不是”);(3)如果两个有理数是一对“关联有理数对”,其中一个有理数是5,求另一个有理数.18.(2022春•邗江区校级期中)阅读材料:如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.如:102=100,则d (100)=2. 理解运用:(1)根据“劳格数”的定义,填空:d (10﹣3)= ,d (1)= ;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn )=d (m )﹣d (n );根据运算性质,填空:d(a 3)d(a)= ;(a 为正数)(3)若d (2)=0.3010,计算:d (4)、d (5);(4)若d (2)=2m +n ,d (4)=3m +2n +p ,d (8)=6m +2n +p ,请证明m =n =p .19.(2022春•衡阳县期末)定义:对于确定位置的三个数:a ,b ,c ,计算a ﹣b ,a−c 2,b−c 3,将这三个数的最小值称为a ,b ,c 的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,1−32=−1,−2−33=−53,所以1,﹣2,3的“分差”为−53.(1)﹣2,﹣4,1的“分差”为 ;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是 ;(3)调整﹣1,6,x 这三个数的位置,得到不同的“分差”,若其中的一个“分差”为2,求x 的值.20.(2022春•房山区期中)现将偶数个互不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组:第一列第二列第一排 1 2第二排4 3然后把每列两个数的差的绝对值进行相加,定义为该分组方式的“M值”.例如,以上分组方式的“M值”为M=|1﹣4|+|2﹣3|=4.(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”;(2)将4个自然数“a,6,7,8”按照题目要求分为两排,使其“M值”为6,则a的值为.(3)已知有理数c,d满足c+d=2,且c<d.将6个有理数“c,d,﹣5,﹣2,2,4”按照题目要求分为两排,使其“M值”为18,求d的值.。
正确使用a×b,a·b,ab
正确使用a×b,a·b,ab初中数学在首次引用“a·b”和“ab”时,特别指出:“在不引起误会的时候,乘号可以用‘·’,或者省略不写(见初中代数第一册第37页,人民教育出版社),也就是说a×b,a·b 和ab在不引起误会的时候是等价的,但有时也会引起误会,产生错误.1.在使用计算器(机)时,只有“×”乘,没有“·”乘.在初等数学中点乘与叉乘是等价的,但计算器(机)只“认识”叉乘“×”,而对“·”的“理解”只是小数点.宁波市96年中考是试用浙江省编九年制义务教育教材后的首次中考,该教材纳入了计算器的使用.试题中第一题第4小题是:用计算器计算:本题在考生中引起了不小的误会,很多考生把误认为“乘”了.在北仑区考生试卷中随机抽取150份样卷.结果有67人得-1,占44.7%.2.在进行数字运算时,不可省略乘号.如a=3,b=5时a×b=3×5=3·5=15,而ab很容易误为35.3.在有除法运算时,不可以随意省略或添加乘号“×”或“·”.在数式的运算中a×b和a·b只表示运算,即a乘以b的运算,而ab表a乘以b的积,是运算后的结果.对算式12a3b2x3÷3ab2(见初中代数第二册第80页,人民教育出版社),教材中作了说明:“这个式子就是(12a3b2x3)÷(3ab2)的意思”.也就是说3ab2是单项式,是运算后的结果,而不是乘法运算3×a×b2省略了“×”号,所以对于式中的3ab2不能添加“·”或“×”号.而对算式4a-1b3÷3-1·a2·b-2(见北京师大附属实验中学编《初中总复习自学指导》P142.1(3),中国和平出版社)不能省略“·”,应按初等运算顺序计算:原式=12a-1b3·a2·b-2=12ab.而原书给出的答案是12a-3b5,显然是由于“误会”把“·”省略了而导致错误.(安凤吉)。
武汉市东西湖区2024-2025学年度上学期期中考试七年级数学试卷
武汉市东西湖区2024-2025学年度上学期期中考试七年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号抹黑.1.若水位升高5米记作+5米,则水位下降6米记作( )A.-6米B.-8米C.+6米D.6米2.一个数的相反数是它本身,则这个数( )A.0B.1C.-1D.不存在3.(-3)8的底数是( )A.3B.8C.-3D.-84.单项式-4a2b4的系数和次数分别是( )A.-4和6B.6和-4C.-4和2D.6和45.下列各式中正确的是( )A.-42=16B.(-4)2=16C.|-4|=-4D.|-(-4)|=-46.用代数式表示“a的2倍与b的差的平方”,正确的是( )A.2(a-b)2B.2a-b2C.(2a-b)2D.(a-2b)27.下列整式中,不是同类项的是( )A.m2n与-nm2B.1与-2C.3xy2和−13x2y D.13a2b与13b2a8.下列各对相关联的量中,不成反比例关系的是( )A.车间计划加工800个零件,加工时间与每天加工的零件个数B.社团共有50名学生,按各组人数相等的要求分组,组数与每组的人数C.圆柱的体积为6m3,圆柱的底面积与高D.计划用100元购买苹果和香蕉两种水果,购买苹果的金额与购买香蕉的金额9.若x2=9,|-y|=4,且x>y,则x+y的值是( )A.-1B.1C.-1或7D.-1或-710.图1是我国古代传说中的“洛书”,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之“.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3中:若A=a,B=2a-1,C=9a+7,整式F是( )A.-4a+5B.-4a-5C.-5a-4D.-5a+4二、填空题(共6小题,每小题3分,共18分)11.-2的相反数是________,倒数是__________,绝对值是__________.12.2024年6月2日6时23分,“嫦娥六号”着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为__________.13.比较大小:−56−−67.14.德国数学家莱布尼茨是世界上第一个提出二进制记数法的人.计算机和依赖计算机设备里都使用二进制,二进制数只使用数字0,1,计数的进位方法是“途二进一”,如,二进制数1101记为(1101),(1101)通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿上面的转换,将二进制数(100111)转换为十进制数是______.15.在新年联欢会上,小明和小亮表演了一个扑克牌游戏:小明背对着小亮,让小亮把一副扑克牌按下列四个步骤操作:第一步,把部分扑克牌分发为左、中、右三堆,每堆不少于2张牌,且各堆牌的张数相同;第二步,从左边一堆中拿出两张,放入中间一堆;第三步,从右边一堆中拿出一张,放入中间一堆;第四步,从中间一堆中拿出与左边一堆张数相等的牌放入左边一堆.这时小明准确说出了中间一堆牌现有的张数,这个张数是__________.16.有下列说法:①若单项式2a3b(m+1)与-3anb3是同类项,则(-m)n=-8.②已知a,b,c是不为0的有理数且a<0,abc<0,则|a|a +|b|b+|c|c−3的值为-2或-6.③已知有理数a,b满足ab≠0,且|a-b|=4a-3b,则ab 的值为23.④若|a+3|=-3-a,|b-2|=b-2,则化简|b+3|-|a-2|的结果为a+b+1.其中正确的说法有_________.(请填写序号)三、解答题(共6小题,共72分)17.(本题满分8分)计算:(1)16+(-25)+24+(-35)(2)-12022×[2-(-)2]+3÷(3/4)18.(本题满分8分)先化简,再求值:x2-5xy-3x2-2(1-2xy-x2),其中x=−19,y=92.19.(本题满分8分)已知a,b互为相反数,c,d互为倒数,m是绝对值最小的数,且(x-2)2+|y-4|=0.求3(a+b)+6cd-5xy+m的值.20.(本题满分8分)如图是某居民小区的一块长为a米,宽为2b米的长方形空地为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)求美化这块空地共需多少元?(用含有a,b,π的式子表示)(2)当a=7,b=2,π取3时,美化这块空地共需多少元?21.(本题满分8分)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a+b_______0,c-a______0,b+2______0.(2)化简:3|a+b|-2|c-a|-|b+2|.22.(本题满分10分)出租车司机刘师傅某天上午从A 地出发,在东西方向的公路上行驶营运,如表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).(1)刘师傅走完第6次里程后,他在A 地的什么方向?离A 地有多少千米?(2)已知出租车每千米耗油约0.08升,刘师傅开始营运前油箱里有8升油,若少于3升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油;(3)已知载客时3千米以内收费10元,超过3千米后每千米收费1.8元,问刘师傅这天上午走完6次里程后的营业额为多少元?次数123456里程-3-15+16-1+5-12载客×○O ×O O23.(本题满分10分)观察下面有规律排列的三行数:第一行数:-2,4,-8,16,-32,64,…,第二行数:1-3,3,-9,15,-33,63,…,第三行数:6,|-6,18,|-30,66,-126,…(1)第一行数中,第7个数是_____,第二行数中,第7个数是_____,第三行数中,第7个数是_____;(2)取每行数的第2024个数,计算这三个数的和是多少?(3)如图,在第二行、第三行数中,用两个长方形组成“阶梯形”方框,框住4个数,左右移动“阶梯形”方框,是否存在框住的4个数的和为-5118,若存在,求这四个数,若不存在,请说明理由.24.(本题满分12分)[阅读材料]在数轴上点A表示的数为a,B点表示的数为b,则点A到点B的距离记为AB,若a>b,线段AB的长度可以表示为AB=a-b;若a<b,线段AB的长度可以表示为AB=b-a.[问题探究](1)如图,点A在数轴上表示的数是8,点B在数轴上表示的数是-10,则AB=_____;(2)在(1)的条件下,动点P从点A出发,以每秒2个单位长度的速度沿数轴匀速向右运动;同时动点O从点B出发,以每秒4个单位长度的速度沿数轴匀速向右运动,设P,Q两点的运动时间为t秒,当PQ=10时,求t的值;(3)在(1)的条件下,动点M从点A出发,以每秒2个单位长度的速度向点B匀速运动;同时点N从点B出发,以每秒3个单位长度的速度向点A运动.当点M到达点B后,立即以原速返回,到达点A停止运动,当点N到达点A后,立即速度变为原速的一半返回,到达点B停止运动,请问:当点M运动时间为多少秒时,MN=7.。
初中数学勾股定理教案 初中数学勾股定理教案优秀3篇
初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。
初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。
它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。
难点解析华东师大版七年级数学下册第6章一元一次方程专项攻克试题(含解析)
七年级数学下册第6章一元一次方程专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设一列数a 1,a 2,a 3,……,a 2022,……中任意三个相邻的数之和都相等,已知a 2=x ,a 99=2+x ,a 2021=6﹣x ,那么a 2022的值是( )A .3B .5C .10D .122、已知a ,x 为正整数,若ax ﹣1=x +7,则满足条件的所有a 的值之和为( )A .15B .17C .19D .213、一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x 人,可列得方程( )A .8354x x +-= B .8345x x -+= C .8345xx -=+ D .4853x x +=-4、下列利用等式的性质,错误的是( )A .由a b =,得到11a b +=+B .由ac bc =,得到a b =C .由a b =,得到ac bc =D .由22ab =,得到a b =5、下列说法中,一定正确的是( )A .若a b c c =,则ac bc =B .若ac bc =,则a b =C .若22a b =,则a b =D .若a b =,则a c b c +=- 6、在解方程123123x x -+-=时,去分母正确的是( ) A .()()312231x x --+=B .()()312231x x --+=C .()()312236x x -++=D .()()312236x x --+= 7、2x =是下列( )方程的解.A .()216x -=B .1022xx += C .12xx += D .2113x x +=- 8、下列等式变形中,不正确的是( )A .若a b =,则55a b +=+B .若a b =,则33a b =C .若23ab =,则32a b = D .若a b =,则a b =9、已知下列方程:①1123y y -=+;②x +y ;③x =0; ④x 2+4x ;⑤﹣35x=;⑥x (1﹣2x )=3x ﹣1.其中是一元一次方程的是( )A .①⑤B .①③C .①③⑥D .⑤⑥10、若2x =是关于x 的方程2310x m +-=的解,则m 的值为( )A .3B .-3C .1D .-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x 的一元一次方程2x +m =6的解为x =2,则m 的值为______.2、我们知道,111122=-⨯,1112323=-⨯,1113434=-⨯,……因此关于x 的方程120122334x x x ++=⨯⨯⨯的解是_________;关于x 的方程()202112231x x xn n ++⋅⋅⋅⋅⋅⋅+=⨯⨯+的解是_________(用含n 的式子表示).3、定义:如果一个一元一次方程的一次项系数与常数项的差刚好是这个方程的解的2倍,则称这个方程为妙解方程.如:方程390x +=中,396-=-,方程的解为3x =-,则方程390x +=为妙解方程.请根据上述定义解答:关于x 的一元一次方程30x a b +-=是妙解方程,则b a -=______.4、整式2mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式值,那么关于x 的方程24mx n --= 的解为_____________.5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是: 12 x - 3 = 2(x + 1)- ,怎么办呢?小明想了想,便翻看书后答案,此方程的解是 x = -5 ,于是很快就补好了这个常数,他补出的这个常数是____.三、解答题(5小题,每小题10分,共计50分)1、如图,在数轴上有三点A ,B ,C ,A 点表示的数为-12,B 点表示的数为6,C 点表示的数为18,点P 为数轴上一动点,其对应的数为x .(1)求点A 到点B 的距离;(2)数轴上是否存在点P ,使得点P 到点A 、点B 的距离之和为24个单位长度?若存在,请求出x 的值;若不存在,说明理由;(3)设点P 到A ,B ,C 三点的距离之和为S .在动点P 从点A 开始沿数轴的正方向运动到达点C 这一运动过程中,直接写出S 的最大值与S 的最小值的和.2、某车间每天能生产A 零件50个,或者生产B 零件25个.A ,B 两种零件各取一个配成一套产品.现要在60天内生产的零件刚好全部配套,则A ,B 两种零件各生产多少天?3、解方程:()()221152x x +=--.4、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB .(1)=a ______,b =______;(2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数;(3)动点M 从A 出发,以每秒1个单位的速度沿数轴在A ,B 之间运动,同时动点N 从B 出发,以每秒2个单位的速度沿数轴在A ,B 之间往返运动,当点M 运动到B 时,M 和N 两点停止运动.设运动时间为t 秒,是否存在t 值,使得OM ON =?若存在,请直接写出t 值;若不存在,请说明理由.5、某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?-参考答案-一、单选题1、B【解析】由题可知,a1,a2,a3每三个循环一次,可得a99=a3,a2021=a2,得出x=6﹣x,即可求a2=3,a3=5,可求a2022=a3=5.【详解】解:由题可知,∵a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a3+a4+a5=a4+a5+a6,∴a3=a6,……∴a1,a2,a3每三个循环一次,∵99÷3=33,∴a99=a3,∵2021÷3=673…2,∴a2021=a2,∴x=6﹣x,∴x=3,∴a2=3,a3=a99=2+x=5,∵2022÷3=674,∴a2022=a3=5,【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,利用有理数的运算与解一元一次方程等知识解题是关键.2、C【解析】【分析】移项,合并同类项,系数化为1,解原方程,根据x为正整数,得到几个关于a的一元一次方程,解之,求出a的值,相加求和即可得到答案.【详解】解:ax−1=x+7,移项得:ax−x=7+1,合并同类项得:(a−1)x=8,若a=1,则0=8,(无意义,舍去),若a≠1,则x=81a,∵x为正整数,∴a−1=1或2或4或8,解得:a=2或3或5或9,∴a的值的和为:2+3+5+9=19,故选C.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.3、B【分析】设这队同学共有x 人,根据“如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,”即可求解.【详解】解:设这队同学共有x 人,根据题意得:8345x x -+= . 故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.4、B【解析】【分析】根据等式的性质逐项分析即可.【详解】A.由a b =,两边都加1,得到11a b +=+,正确;B.由ac bc =,当c ≠0时,两边除以c ,得到a b =,故不正确;C.由a b =,两边乘以c ,得到ac bc =,正确;D.由22ab =,两边乘以2,得到a b =,正确; 故选B .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.5、A【解析】【分析】根据等式两边同时乘以2c 可对A 进行判断;利用等式两边同时除以c 可对B 进行判断;利用平方根的定义对C 进行判断;根据等式的性质对D 进行判断.【详解】解:A .若a b c c =,则ac bc =,所以A 选项符合题意;B .若ac bc =,当0c ≠时,a b =,所以B 选项不符合题意;C .若22a b =,则a b =或a b =-,所以C 选项不符合题意;D .若a b =,则a c b c +=+,所以D 选项不符合题意.故选:A .【点睛】本题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.6、D【解析】【分析】方程两边乘以6去分母得到结果,即可作出判断.【详解】解:方程的两边同时乘以6,得3(x -1)-2(2+3x )=6.故选:D【点睛】此题考查了解一元一次方程中的去分母,熟练掌握去分母的方法是解题的关键.7、C【解析】【分析】把2x =分别代入每个每个方程的左右两边验证即可.【详解】解:A. 当2x =时,左=()2212-=,右=6,故不符合题意;B. 当2x =时,左=210112+=,右=1,故不符合题意;C. 当2x =时,左=2122+=,右=2,故符合题意;D. 当2x =时,左=41533+=,右=1-2=-1,故不符合题意; 故选C .【点睛】本题考查了一元一次方程的解,熟练掌握解的定义是解答本题的关键,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.8、D【解析】【分析】根据等式的性质即可求出答案.【详解】解:A.a =b 的两边都加5,可得a +5=b +5,原变形正确,故此选项不符合题意;B.a =b 的两边都除以3,可得33a b =,原变形正确,故此选项不符合题意;C.23ab =的两边都乘6,可得32a b =,原变形正确,故此选项不符合题意;D.由|a |=|b |,可得a =b 或a =−b ,原变形错误,故此选项符合题意.故选:D .【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9、B【解析】【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【详解】解::①1123y y -=+是一元一次方程; ②x +y 不是方程;③x =0 是一元一次方程④x 2+4x 不是方程;⑤﹣35x=不是一元一次方程; ⑥x (1﹣2x )=3x ﹣1,不是一元一次方程故①③是一元一次方程,故选B本题考查了一元一次方程的概念,理解一元一次方程的概念是解题的关键.10、D【解析】【分析】根据方程的解的定义,将2x =代入方程得到关于m 的一元一次方程,解方程求解即可.【详解】解:∵2x =是关于x 的方程2310x m +-=的解,∴22310m ⨯+-=解得1m =-故选D【点睛】本题考查了一元一次方程的解,解一元一次方程,掌握方程的解的定义是解题的关键.使方程左右两边的值相等的未知数的值是该方程的解.二、填空题1、2【解析】【分析】将2x =代入方程可得一个关于m 的一元一次方程,解方程即可得.【详解】解:由题意,将2x =代入方程26x m +=得:46m +=,解得2m =,故答案为:2.本题考查了一元一次方程的解、解一元一次方程,掌握理解方程的解的概念(使方程中等号左右两边相等的未知数的值叫做方程的解)是解题关键.2、 160x = 2021(1)n x n +=(或20212021x n=+) 【解析】【分析】(1)根据题意将方程的左边变形,进而即可求解;(2)同(1)的方法解一元一次方程即可【详解】(1)120122334x x x ++=⨯⨯⨯ 可化为:11111(1)12022334x -+-+-= 即31204x = 解得160x =(2)()202112231x x xn n ++⋅⋅⋅⋅⋅⋅+=⨯⨯+ 111(1)202121x n n -+⋅⋅⋅+-=+ 即20211n x n =+ 解得2021(1)n x n +=(或20212021x n =+) 【点睛】本题考查了解一元一次方程,仿照例题解决问题是解题的关键.3、9-【分析】 先解出方程,可得()13x b a =- ,再由妙解方程的定义,可得()()1323a b b a --=⨯- ,即可求解. 【详解】解:30x a b +-=, 解得:()13x b a =- , 根据题意得:()()1323a b b a --=⨯- , 解得:9b a -=- .故答案为:9-【点睛】本题主要考查了解一元一次方程,理解新定义是解题的关键.4、0x =【解析】【分析】24mx n --=即24mx n +=-,根据表即可直接写出x 的值.【详解】解:24mx n --=,24mx n ∴+=-,根据表可以得到当0x =时,24mx n +=-,即24mx n --=.故答案为:0x =.【点睛】本题考查了方程的解的定义,解题 关键是正确理解24mx n --=即24mx n +=-.5、52- 【解析】【分析】设这个常数为a ,将x =-5代入方程中求解关于a 的方程即可.【详解】解:设这个常数为a ,将x =-5代入方程中得:12×(-5)-3=2(-5+1)-a ,解得:a =52-, 故答案为:52-. 【点睛】本题考查方程的解、解一元一次方程,理解方程的解是解答的关键.三、解答题1、 (1)18(2)数轴上存在x =-15、x =9,使得点P 到点A 、点B 的距离之和为24单位长度(3)78【解析】【分析】(1)根据两点之间的距离公式求解即可;(2)分点P 在点A 的左侧和点P 在点B 右侧两种情况讨论,列方程计算即可求解;(3)分情况讨论,列式计算得到S 的最大值与最小值,即可求解.(1)解:AB=6-(-12)=18;∴点A到点B的距离为18;(2)解:∵AB=18,∴点P不可能在线段AB上,当点P在点A的左侧时,根据题意得:(-12)-x+6-x=24,解得:x=-15;当点P在点B右侧时,根据题意得:x-(-12)+x-6=24,解得:x=9;综上,数轴上存在x=-15、x=9,使得点P到点A、点B的距离之和为24单位长度;(3)解:当点P与点A重合时,S=PA+PB+PC=0+(6+12)+(18+12)=48;当点P与点A、B之间,即-12<x<6时,S=PA+PB+PC=(x+12)+(6-x)+(18-x)=36-x,∴30<x<48;当点P与点B重合时,S=PA+PB+PC= (6+12)+0+(18-6)=30;当点P与点B、C之间,即6<x<18时,S =PA +PB +PC =(x +12)+(x -6)+(18-x )=24+x ,∴30<x <42;当点P 与点C 重合时,S =PA +PB +PC = (18+12)+(18-6)+0=42;综上,S 的最大值为48,最小值为30,∴S 的最大值与S 的最小值的和为78.【点睛】本题考查了一元一次方程的应用,数轴上两点间的距离公式,理解题意能够正确分类讨论是解题的关键.2、生产A 零件为20天,生产B 零件为40天【解析】【分析】设生产A 零件为x 天,生产B 零件为60x -天,由题意可列方程()502560x x =⨯-,计算求解即可.【详解】解:设生产A 零件为x 天,生产B 零件为60x -天由题意知:()502560x x =⨯-解得x =2060602040x -=-=天∴生产A 零件为20天,生产B 零件为40天.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意列方程.3、x =1【解析】【详解】去括号,得:4x+2=1−5x+10移项,得:4x+5x=1+10−2合并同类项,得:9x=9系数化为1,得:x=1【点睛】本题考查了解一元一次方程,运用乘法分配律时不要漏乘项.4、 (1)5,6-(2)点R行驶的总路程为25.5;R停留的最后位置在数轴上所对应的有理数为17(3)13t=或113或7或11【解析】【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R三点重合,则只需计算P点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1)()2560a b++-=5,6a b∴=-=故答案为:5,6-(2)当点P 到达原点O 时,动点R 从原点O 出发,则P 到达O 点需要:52 2.5÷=秒则此时Q 点的位置为2.568.5+=设t 秒后停止运动,则28.5t t =+解得8.5t =此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON =M 表示的有理数为5t -+,N 表示的有理数为62t -5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图,则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=-若此时点M 未经过点O ,则5t <则2165t t -=-+解得11t =,则此种情况不存在则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+=解得7t =④当,M N 在O 点右侧重合时,如图,则2165t t -=-+解得11t =此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键.5、 (1)该店买卖这两件商品不可能盈利260元,原因见解析(2)甲商品的原进价为300元,乙商品的原进价为200元【解析】【分析】(1)利用获得的总利润=两件商品的进价之和×50%,可求出两件商品均按50%的利润销售可获得的利润,由该值小于260即可得出结论;(2)设甲商品的原进价为x 元,则乙商品的原进价为(500-x )元,根据某顾客按八折购买共付款584元,即可得出关于x 的一元一次方程,解之即可得出结论.(1)50050%250⨯=(元),250260<,∴该店买卖这两件商品不可能盈利260元.(2)设甲商品的原进价为x 元,则乙商品的原进价为(500)x -元,依题意得:()()()80%150%140%500584x x ⎡⎤⨯+++-=⎣⎦,解得:300x =,500200x ∴-=.答:甲商品的原进价为300元,乙商品的原进价为200元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
《信息化应用能力实训》章节测试题
单选题(共10题,每题5分)1 .以下哪个函数可以用来对数据进行序号的编排()。
A.RankB.AverageC.CountifD.Countifs参考答案:A答案解析:rank可以排序。
2 .公式=OFFSET(A5,2,2,5,3)的运算结果是()。
A.A5:C11B.C11:E7C.C7:E11D.C5:E5参考答案:C答案解析:将A5单元格先向下移动2个单元格,再向右移动2个单元格,变成了C7,然后选择5*3的矩阵,即,7+5-1=11, C+3-1=E,最终区域为C7:E11。
3 .公式=OFFSET(A5:C5,2,2)的运算结果是()。
A.A5:C5B.C7:E7C.A5:C7D.C5:E5参考答案:B答案解析:将A5:C5区域向下移动2个单元格,再向右移动2个单元格变成了C7:E7。
4 .公式=VLOOKUP("C",{"A",23;"B",68;"D",91;"E",32},2,False)的结果是()。
A.#N/AB.68C.91D.23参考答案:A答案解析:查找给定数据的C所在的数据值,查找要求为精确查找,没找到返回N/A。
5 .公式=OFFSET(A5,2,2,,3)的运算结果是()。
A.A5:C5B.C7:E7C.A5:C7D.C5:E5参考答案:B答案解析:将A5单元格向下向右各移动2个单元格,变长C7,然后选择3列,变成了C7:E7。
选B。
6 .VLookup查表时,是在Table_Array的第()列中进行查表。
A.1B.2C.用户指定D.任意答案解析:vlookup函数的table_array是标注了查表的数据范围,lookup_value的值必须在table_array中处于第一列。
7 .Excel中字符串的连接符号是()。
A.+B.||C.&D.@参考答案:C答案解析:连字符为&。
乘法公式
乘法公式一、平方差公式:(a+b)(a-b)=a2-b2要注意等式的特点:(1)等式的左边是两个二项式的乘积,且这两个二项式中,有一项相同,另一项互为相反数;(2)等式的右边是一个二项式,且为两个因式中相同项的平方减去互为相反数的项的平方.值得注意的是,这个公式中的字母a,b可以表示数,也可以是单项式或多项式.平方差公式可以作为多项式乘以多项式的简便公式,也可以逆用做为快速计算的工具.例1下列各式中不能用平方差公式计算的是().A.(a-b)(-a-b)B.(a2-b2)(a2+b2)C.(a+b)(-a-b)D.(b2-a2)(-a2-b2)解:C.根据上面平方差公式的结构特点,A中,-b是相同的项,a与-a 是性质符号相反的项,故可使用;B中a2是相同项,-b2与b2是互为相反数符合公式特点;同样D也符合.而C中的两个二项式互为相反数,不符合上述的等式的特征,因此不可使用平方差公式计算.例2运用平方差公式计算:(1)(x2-y)(-y-x2);(2)(a-3)(a2+9)(a+3).解:(1)(x2-y)(-y-x2)=(-y +x2)(-y-x2)=(-y)2-(x2)2=y2-x4;(2)(a-3)(a2+9)(a+3)=(a-3)(a+3)(a2+9)=(a2-32)(a 2+9)=(a2-9)(a2+9)=a4-81 .例3计算:(1)54.52-45.52;(2)(2x2+3x+1)(2x2-3x+1).分析:(1)中的式子具有平方差公式的右边的形式,可以逆用平方差公式;(2)虽然没有明显的符合平方差公式的特点,值得注意的是,平方差公式中的字母a,b可以表示数,也可以是单项式或多项式,我们可以把2x2+1看做公式中字母a,以便能够利用公式.正如前文所述,利用平方差可以简化整式的计算.解:(1)54.52-45.52=(54.5+45.5)(54.5-45.5)=100×9=900 ;(2)(2x2+3x+1)(2x2-3x+1)=(2x2+1)2-(3x)2=4x4+4x2+1-9x2 =4x4-5x2+1二、完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2.二项式的平方,等于其中每一项(连同它们前面的符号)的平方,加上这两项积的两倍.完全平方公式是计算两数和或差的平方的简算公式,在有关代数式的变形和求值中应用广泛.正确运用完全平方公式就要抓住公式的结构特点,通过与平方差公式的类比加深理解和记忆.运用中要防止出现(a±b)2=a2±b2,或(a-b)2=a2-2ab-b2等错误.需要指出的是,如同前面的平方差公式一样,这里的字母a,b可以表示数,也可以是单项式或多项式.例1利用完全平方公式计算:(1)(-3a-5)2;(2)(a-b+c)2.分析:有关三项式的平方可以看作是二项式的平方,如(a-b+c)2=[(a -b)+c]2或[a-(b-c)]2,通过两次应用完全平方公式来计算.解:(1)(-3a-5)2=(-3a)2-2×(-3a)×5 + 5 2=9a2 + 30a + 25(2)(a-b+c)2=[(a-b)+c]2=(a-b)2 + 2(a-b)c + c2=a 2-2ab+b 2+2ac-2bc + c2=a 2+b 2+ c2+2ac-2ab-2bc .例2利用完全平方公式进行速算.(1)1012 (2)992解: (1)1012分析:将1012变形为(100+1)2原式可=(100+1)2利用完全平方公式来速算. =1002+2×100×1+12=10201解: (2)992分析:将992变形为(100-1)2原式可=(100-1)2利用完全平方公式来速算. =1002-2×100×1+12=9801例3计算:(1)992-98×100 ;(2)49×51-2 499 .解:(1)992-98×100=(100-1)2-98×100=1002-2×100+1-9800=10000 -200-9800+1=1;(2)49×51-2499=(50-1)(50+1)-2499=2500-1-2499=0.例4已知a+b=8,ab=10,求a2+b2,(a-b)2的值.分析:由前面的公式变形可以知道:a 2+ b 2=(a+b)2-2ab,(a-b)2=(a +b)2-4ab.解:由于a 2+ b 2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.而a+b=8,ab=10所以a 2+b 2=(a+b)2-2ab= 82 - 2× 10= 44(a-b)2=(a+b)2-4ab=82 - 4× 10= 24 .三:练习1.利用乘法公式进行计算:(1) (x-1)(x+1)(x2+1)(x4+1) (2) (3x+2)2-(3x-5)2 (3)(x-2y+1)(x+2y-1)(4) (2x+3y)2(2x-3y)2 (5) (2x+3)2-2(2x+3)(3x-2)+(3x-2)2(6) (x2+x+1)(x2-x+1)解:(1) 原式=(x2-1)(x2+1)(x4+1)=(x4-1)(x4+1)=x8-1.(2)解法1:原式=(9x2+12x+4) -(9x2-30x+25)=9x2+12x+4-9x2+30x-25=42x-21解法2:原式=[(3x+2)+(3x-5)][(3x+2) -(3x-5)] =(6x-3)×7=42x-21.(3)原式=[x-(2y-1)][x+(2y-1)]=x2-(2y-1)2=x2-(4y2-4y+1)=x2-4y2+4y-1(4)原式=[(2x+3y)(2x-3y)]2=(4x2-9y2)2=16x4-72x2y2+81y4(5) 原式=[(2x+3) -(3x-2)]2=(-x+5)2=x2-10x+25(6) 原式=[(x2+1)+x][(x2+1) -x]=(x2+1)2-x2=(x4+2x2+1) -x2=x4+x2+12.已知:a+b=5, ab=3,求:(1) (a-b)2;(2) a2+b2;解:(1) (a-b)2=(a+b)2-4ab=52-4×3=13(2) a2+b2=(a+b)2-2ab=52-2×3=19.在线测试选择题1.在下列多项式的乘法中,可以用平方差公式计算的是()A、(x+1)(1+x)B、( a+b)(b- a)C、(-a+b)(a-b)D、(x2-y)(x+y2)2.下列各式计算正确的是()A、(a+4)(a-4)=a2-4B、(2a+3)(2a-3)=2a2-9C、(5ab+1)(5ab-1)=25a2b2-1D、(a+2)(a-4)=a2-83.(- x+2y)(- x-2y)的计算结果是()A、x2-4y2B、4y2- x2C、x2+4y2D、- x2-4y24.(abc+1)(-abc+1)(a2b2c2+1)的结果是()。
ab向量积运算公式
a×b向量积运算公式是一种在几何中常见的运算公式,用来计算两个向量的积。
它是
一种数学运算,也叫叉乘或者外积,在物理学中也有所使用。
a×b向量积运算公式可以用来计算两个向量的积,其公式如下:
a×b= |a| |b| sinθ
其中,|a|和|b|分别表示向量a和向量b的模,而θ是两个向量之间的夹角。
其实,a×b向量积运算公式计算出来的结果是一个向量,而不是一个数,它的方向和
大小取决于两个向量的模和夹角,所以它又叫外积。
它的大小有下面的公式:
|a×b|= |a| |b| |sinθ|
如果两个向量的方向相同,则夹角θ的值为0,此时,a×b向量积运算公式的结果就
是0,也就是说,两个向量的积为0;而如果两个向量的方向相反,则夹角θ的值为180°,此时,a×b向量积运算公式的结果就是它们的乘积,也就是说,两个向量的积为它们的乘积。
综上所述,a×b向量积运算公式是一种常见的计算两个向量积的数学公式,它的结果
取决于两个向量的模和夹角,可以用来判断两个向量的方向和大小。
2.2.4 均值不等式及其应用 Word版含解析2020年新人教B版
2.2.4均值不等式及其应用【教材分析】课程标准:1.理解均值不等式的内容及其证明过程.2.能熟练地运用均值不等式来比较两个实数的大小.3.能初步运用均值不等式来证明简单的不等式.4.熟练掌握均值不等式及变形的应用.5.会用均值不等式解决简单的最大(小)值问题.教学重点:1.均值不等式的内容及其证明过程.2.运用均值不等式来比较两个实数的大小及进行简单的证明.3.运用均值不等式解决简单的最大值或最小值问题.教学难点:均值不等式条件的创造.【情境导学】如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(如图中阴影部分),这两栏的面积之和为18000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?【知识导学】知识点一数轴上两点之间的距离公式和中点坐标公式(1)一般地,如果A(a),B(b),则线段AB的长为AB=|a-b|,这是数轴上两点之间的距离公式.(2)如果线段AB的中点M的坐标为x.若a<b,则a<x<b.因为M为中点,所以AM=MB,即x-a=b-x,因此x=a+b2.不难看出,当a≥b时,上式仍成立.这就是数轴上两点之间的中点坐标公式.知识点二算术平均值与几何平均值给定两个正数a,b,数a+b2称为a,b的算术平均值;数ab称为a,b的几何平均值.知识点三均值不等式如果a,b都是正数,那么a+b2≥ab,当且仅当a=b时,等号成立.我们把这个不等式称为均值不等式.均值不等式也称为基本不等式,其实质是:两个正实数的算术平均值不小于它们的几何平均值.知识点四 均值不等式与最大(小)值 当x ,y 均为正数时,下面的命题均成立:(1)若x +y =s (s 为定值),则当且仅当x =y 时,xy 取得最大值s 24(简记:和定积有最大值). (2)若xy =p (p 为定值),则当且仅当x =y 时,x +y 取得最小值2p (简记:积定和有最小值).【新知拓展】1.由均值不等式变形得到的常见的结论 (1)ab ≤⎝⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ); (2)ab ≤a +b2≤a 2+b 22(a ,b 均为正实数);(3)b a +ab ≥2(a ,b 同号); (4)(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4(a ,b 同号);(5)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ). 2.利用均值不等式证明不等式时应注意的问题 (1)注意均值不等式成立的条件;(2)多次使用均值不等式,要注意等号能否成立;(3)对不能直接使用均值不等式证明的可重新组合,形成均值不等式模型,再使用. 3.利用均值不等式的解题技巧与易错点 (1)利用均值不等式求最值常用构造定值的技巧 ①加项变换; ②拆项变换; ③统一换元;④平方后再用均值不等式. (2)易错点①易忘“正”,忽略了各项均为正实数;②易忘“定”,用均值不等式时,和或积为定值; ③易忘“等”,用均值不等式要验证等号是否可以取到;④易忘“同”,多次使用均值不等式时,等号成立的条件应相同.【课堂自测】1.判一判(正确的打“√”,错误的打“×”)(1)a+b2≥ab对于任意实数a,b都成立.()(2)若a>0,b>0,且a≠b,则a+b>2ab.()(3)当x>1时,函数y=x+1x-1≥2xx-1,所以函数y的最小值是2xx-1.()(4)式子x+1x的最小值为2.()(5)若x∈R,则x2+2+1x2+2的最小值为2.()答案(1)×(2)√(3)×(4)×(5)×2.做一做(请把正确的答案写在横线上)(1)不等式m2+1≥2m等号成立的条件是________.(2)ba+ab≥2成立的条件是________.(3)x>1,则x+1x-1的最小值为________.(4)若a>0,b>0,且a+b=2,则1a+1b的最小值为________.答案(1)m=1(2)a与b同号(3)3(4)2【典型例题】题型一对均值不等式的理解例1给出下面三个推导过程:①因为a,b∈(0,+∞),所以ba+ab≥2ba·ab=2;②因为a∈R,a≠0,所以4a+a≥24a·a=4;③因为x,y∈R,xy<0,所以xy+yx=-⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-xy+⎝⎛⎭⎪⎫-yx≤-2 ⎝⎛⎭⎪⎫-xy⎝⎛⎭⎪⎫-yx=-2.其中正确的推导过程为()A.①②B.②③C.②D.①③[解析]从均值不等式成立的条件考虑.①因为a ,b ∈(0,+∞),所以b a ,ab ∈(0,+∞),符合均值不等式成立的条件,故正确; ②因为a ∈R ,a ≠0不符合均值不等式成立的条件,所以4a +a ≥24a ·a =4是错误的; ③由xy <0得x y ,y x 均为负数,但在推导过程中将x y +y x 看成一个整体提出负号后,⎝ ⎛⎭⎪⎫-x y ,⎝ ⎛⎭⎪⎫-y x 均变为正数,符合均值不等式成立的条件,故正确.[答案] D 【典例分析】均值不等式a +b2≥ab (a ≥0,b ≥0)的两个关注点(1)不等式成立的条件:a ,b 都是非负实数. (2)“当且仅当”的含义:①当a =b 时,a +b2≥ab 的等号成立, 即a =b ⇒a +b2=ab ;②仅当a =b 时,a +b2≥ab 的等号成立, 即a +b2=ab ⇒a =b .【跟踪训练】 下列命题中正确的是( ) A .当a ,b ∈R 时,a b +ba ≥2a b ·b a =2B .当a >0,b >0时,(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4C .当a >4时,a +9a 的最小值是6 D .当a >0,b >0时,2aba +b≥ab 答案 B解析 A 中,可能b a <0,所以不正确;B 中,因为a +b ≥2ab >0,1a +1b ≥21ab >0,相乘得(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4,当且仅当a =b 时等号成立,所以正确;C 中,a +9a ≥2a ·9a =6中的等号不成立,所以不正确;D 中,由均值不等式知,2aba +b≤ab (a >0,b >0),所以不正确.题型二 利用均值不等式比较大小例2 已知a >1,则a +12,a ,2aa +1三个数的大小关系是( )A.a +12<a <2a a +1B.a <a +12<2a a +1C.2a a +1<a <a +12 D.a <2aa +1≤a +12 [解析] 当a ,b 是正数时, 2aba +b≤ab ≤a +b 2≤ a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C. [答案] C[题型探究] 对一切正数m ,不等式n <4m +2m 恒成立,求常数n 的取值范围. 解 当m ∈(0,+∞)时,由均值不等式,得4m +2m ≥24m ·2m =42,且当m =2时,等号成立,故n 的取值范围为n <4 2.【典例分析】利用均值不等式比较大小在利用均值不等式比较大小时,应创设应用均值不等式的使用条件,合理地拆项、配凑或变形.在拆项、配凑或变形的过程中,首先要考虑均值不等式使用的条件,其次要明确均值不等式具有将“和式”转化为“积式”或者将“积式”转化为“和式”的放缩功能.【跟踪训练】已知:a ,b ∈(0,+∞)且a +b =1,试比较1a +1b ,2a 2+b 2,4的大小. 解 ∵a >0,b >0,a +b ≥2ab ,∴ab ≤14. ∴1a +1b =a +b ab =1ab ≥4,a 2+b 22=(a +b )2-2ab 2=12-ab ≥12-14=14,即2a 2+b 2≤4.∴1a +1b ≥4≥2a 2+b 2. 题型三 利用均值不等式求代数式的最值例3 (1)已知x >0,y >0,且1x +9y =1,求x +y 的最小值; (2)已知正实数x ,y 满足2x +y +6=xy ,求xy 的最小值; (3)已知实数x ,y 满足x 2+y 2+xy =1,求x +y 的最大值. [解] (1)∵x >0,y >0,1x +9y =1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y +10≥6+10=16,当且仅当y x =9x y ,1x +9y =1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16. (2)∵2x +y +6=xy ,∴y =2x +6x -1,x >1,xy =x (2x +6)x -1=2(x 2+3x )x -1=2[x 2-1+3(x -1)+4]x -1=2⎝ ⎛⎭⎪⎫x +1+4x -1+3=2⎝ ⎛⎭⎪⎫x -1+4x -1+5≥2×⎝⎛⎭⎪⎫2 x -1·4x -1+5=18.当且仅当x =3时,等号成立,∴xy 的最小值为18.(3)因为1=x 2+y 2+xy =(x +y )2-xy ≥(x +y )2-⎝⎛⎭⎪⎫x +y 22,所以(x +y )2≤43, 即x +y ≤233,当且仅当x =y >0,且x 2+y 2+xy =1, 即x =y =33时,等号成立,∴x +y 的最大值为233. [结论探究] 若本例(1)中的条件不变,如何求xy 的最小值? 解 1x +9y =y +9x xy ≥2y ·9x xy =6xy xy =6xy ,又因为1x +9y =1,所以6xy ≤1,xy ≥6,xy ≥36,当且仅当y =9x ,即x =2,y =18时,等号成立. 所以(xy )min =36. 【典例分析】利用均值不等式求代数式的最值(1)利用均值不等式求代数式的最值,要通过恒等变形以及配凑,使“和”或“积”为定值,从而求得代数式的最大值或最小值.(2)若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,解答技巧都是恰当变形,合理拆分项或配凑因式.【跟踪训练】(1)已知正数x,y满足x+2y=1,求1x+1y的最小值;(2)已知x>0,y>0,且满足x3+y4=1,求xy的最大值.解(1)∵x,y为正数,且x+2y=1,∴1x+1y=(x+2y)⎝⎛⎭⎪⎫1x+1y=3+2yx+xy≥3+22,当且仅当2yx=xy,即当x=2-1,y=1-22时等号成立.∴1x+1y的最小值为3+2 2.(2)∵x3+y4=1,∴1=x3+y4≥2xy12=33xy.∴xy≤3,当且仅当x3=y4=12,即x=32,y=2时等号成立.∴xy≤3,即xy的最大值为3.题型四利用均值不等式求函数的最值例4(1)求y=1x-3+x(x>3)的最小值;(2)已知0<x<13,求y=x(1-3x)的最大值;(3)已知x>-1,求y=x2+3x+4x+1的最小值.[解](1)∵y=1x-3+x=1x-3+(x-3)+3,又∵x>3,∴x-3>0,1x-3>0,∴y≥21x-3·(x-3)+3=5.当且仅当1x-3=x-3,即x=4时,y取得最小值5.(2)∵0<x <13,∴1-3x >0, y =x (1-3x )=13·3x ·(1-3x ) ≤13⎣⎢⎡⎦⎥⎤3x +(1-3x )22=112. 当且仅当3x =1-3x ,即x =16时,取等号, ∴当x =16时,函数取得最大值112. (3)∵x >-1,∴x +1>0, y =x 2+3x +4x +1=(x +1)2+(x +1)+2x +1=x +1+2x +1+1≥22+1, 当且仅当x +1=2x +1, 即x =2-1时,函数y 取得最小值22+1. [条件探究] 在本例(1)中把“x >3”改为“x <3”,y =1x -3+x 的最值又如何? 解 ∵x <3,∴x -3<0,∴y =1x -3+x =-13-x -(3-x )+3=-⎣⎢⎡⎦⎥⎤13-x +(3-x )+3≤-213-x·(3-x )+3 =-2+3=1.当且仅当13-x =3-x ,即x =2时,取等号.故函数y =1x -3+x (x <3)有最大值1,没有最小值.【典例分析】利用均值不等式求函数的最值(1)利用均值不等式求函数最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用均值不等式的条件.(2)等号取不到时,注意利用求函数最值的其他方法.【跟踪训练】 (1)已知x <54,则y =4x -2+14x -5的最大值为________;(2)若x >1,则y =x 2x -1的最小值为________.答案 (1)1 (2)4解析 (1)∵x <54,∴5-4x >0.∴y =4x -2+14x -5=-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x +3 ≤-2(5-4x )×15-4x+3=-2+3=1, 当且仅当5-4x =15-4x, 即x =1时,上式等号成立. 故当x =1时,y 的最大值为1.(2)∵x >1,∴y =x 2x -1=x 2-1+1x -1=x +1+1x -1=x -1+1x -1+2≥2+2=4, 当且仅当1x -1=x -1,即(x -1)2=1时,等号成立,∴当x =2时,y 的最小值为4. 题型五 利用均值不等式证明不等式 例5 已知a ,b ,c 是不全相等的三个正数, 求证:b +c -a a +a +c -b b +a +b -c c >3. [证明] b +c -a a +a +c -b b +a +b -cc=b a +c a +a b +c b +a c +b c -3 =⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c -3. ∵a ,b ,c 都是正数, ∴b a +a b ≥2b a ·a b =2,同理c a +a c ≥2,c b +bc ≥2,∵a ,b ,c 不全相等,上述三式不能同时取等号, ∴⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c >6, ∴b +c -a a +a +c -b b +a +b -c c >3. 【典例分析】利用均值不等式证明不等式(1)利用均值不等式证明不等式时,可依据求证式两端的式子结构,合理选择均值不等式及其变形不等式来证,如a 2+b 2≥2ab (a ,b ∈R ),可变形为ab ≤a 2+b 22;a +b2≥ab (a >0,b >0)可变形为ab ≤⎝⎛⎭⎪⎫a +b 22等.同时要从整体上把握均值不等式,如a 4+b 4≥2a 2b 2,a 2b 2+b 2c 2≥2(ab )(bc ),都是对“a 2+b 2≥2ab ,a ,b ∈R ”的灵活应用.(2)在证明条件不等式时,要注意“1”的代换,另外要特别注意等号成立的条件. 【跟踪训练】 已知a ,b ,c ∈(0,+∞),且a +b +c =1. 求证:⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥10. 证明 ⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c=⎝⎛⎭⎪⎫a +a +b +c a +⎝ ⎛⎭⎪⎫b +a +b +c b +⎝ ⎛⎭⎪⎫c +a +b +c c =4+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥4+2+2+2=10,当且仅当a =b =c =13时取等号,∴⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥10. 【课堂测验】1.a >b >0,则下列不等式中总成立的是( ) A.2ab a +b<a +b 2<ab B.a +b 2≥2ab a +b ≥abC.a +b 2>ab >2ab a +bD.ab <2ab a +b<a +b2答案 C 解析2ab a +b <2ab2ab=ab <a +b 2.2.已知x>0,y>0,x≠y,则下列四个式子中值最小的是()A.1x+yB.14⎝⎛⎭⎪⎫1x+1yC.12(x2+y2)D.12xy答案 C解析解法一:∵x+y>2xy,∴1x+y<12xy,排除D;∵14⎝⎛⎭⎪⎫1x+1y=x+y4xy=14xyx+y>1(x+y)2x+y=1x+y,∴排除B;∵(x+y)2=x2+y2+2xy<2(x2+y2),∴1x+y>12(x2+y2),排除A,故选C.解法二:取x=1,y=2.则1x+y=13;14⎝⎛⎭⎪⎫1x+1y=38;12(x2+y2)=110;12xy=122=18.其中110最小,故选C.3.若a>0,则代数式a+25a()A.有最小值10B.有最大值10C.有最大值没有最小值D.既没有最大值也没有最小值答案 A解析利用均值不等式得a+25a≥2a·25a=10,当且仅当a=25a,即a=5时,取得最小值10.4.已知x,y均为正数,且x+4y=1,则xy的最大值为()A.14B.12C.18D.116答案 D解析 ∵x >0,y >0.∴4xy ≤⎝ ⎛⎭⎪⎫x +4y 22=⎝ ⎛⎭⎪⎫122=14.∴xy ≤116. 当且仅当x =4y ,即x =12,y =18时取等号.5.已知a >b ,ab =1,求证:a 2+b 2≥22(a -b ).证明 ∵a >b ,∴a -b >0,又ab =1,∴a 2+b 2a -b =a 2+b 2-2ab +2ab a -b =(a -b )2+2ab a -b =a -b +2a -b ≥2(a -b )·2a -b =22,即a 2+b 2a -b ≥22,即a 2+b 2≥22(a -b ),当且仅当a -b =2a -b,即a -b =2时取等号.。
有理数乘法运算律课件
详细描述:设两个有理数a 和b,交换因数的位置得
a×b=b×a。证明过程如下
1. 定义有理数a和b;
2. 根据有理数的乘法定义, 可得到a×b和b×a;
3. 通过比较两个乘积,发现 它们相等;
4. 因此,乘法交换律得证。
乘法结合律的证明
总结词:乘法结合律是指三个有理数相乘,任意改变它们 的顺序,积不变。
要点一
总结词
乘法分配律是基础运算律,若违反会导致计算顺序错误。
要点二
详细描述
分配律是指a×(b+c)=a×b+a×c。在有理数乘法中,如果 违反分配律,就可能出现错误的结果。例如,计算 4×(2.5+0.2)时,如果先算4×2.5=10,再算10+1=11,就 违反了乘法分配律,得到的答案是错误的。正确的做法应 该是先算4×2.5=10,再算4×0.2=0.8,最后把两者相加得 到10.8。
乘法分配律
总结词
乘法分配律是指一个数与括号里的数相乘,等于把这个数分别与括号里的每一个数相乘。
详细描述
a × (b + c) = a × b + a × c,例如:2 × (3 + 4) = 2 × 3 + 2 × 4。
03
乘法运算律的证明与推导
乘法交换律的证明
总结词:乘法交换律是指两 个有理数相乘,交换因数的
总结词
乘法结合律是基础运算律,若违反会导致计算顺序错 误。
详细描述
结合律是指(a×b)×c=a×(b×c)。在有理数乘法中,如 果违反结合律,就可能出现错误的结果。例如,计算 2.5×4×0.2时,如果先算2.5×4=10,再算10×0.2=2 ,就违反了乘法结合律,得到的答案是错误的。
人教版初一下数学-不等式的定义及性质 ]讲义(学生版)
1.了解不等式的意义,理解不等式解集的含义,会在数轴上表示解集;2.理解不等式的三条基本性质,并会用它们解简单的一元一次不等式重点:不等式的定义、列不等式和不等式的性质;难点:不等式的解、解集的表示方法以及不等式性质的运用.第12讲不等式定义及其性质不等式的定义1.不等式:用不等号表示不相等关系的式子,叫做不等式.例如:2-<-+>-+++>≠≤≥等都是不等式.52,314,10,10,0,35a x a x a a2.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”.注意:不等式32≥成立.=成立,所以不等式33≥成立;而不等式33≥也成立,因为333.不等号“>”和“<”称为互为相反方向的符号,所谓不等号的方向改变,就是指原来的不等号的方向改变成与其相反的方向,如:“>”改变方向后,就变成了“<”.例1.下列式子<y+5; 1>2; 3m﹣1≤4;a+2≠a﹣2中,不等式有()个. A.2 B.3 C.4 D.1练习1.下列数学表达式中,①﹣8<0;②4a+3b>0;③a=3;④a+2>b+3,不等式有() A.1个 B. 2个 C.3个 D.4个练习2.在式子﹣3<0,x≥2,x=a,x2﹣2x,x≠3,x+1>y中,是不等式的有()A.2个 B.3个 C.4个 D.5个利用不等式的定义,表示不等关系的式子叫不等式.列不等式1.根据已知条件列不等式,实际上就是用不等式表示代数式间的不等关系,重点是抓住关键词,弄清不等关系.2.步骤:①正确列出代数式;②正确使用不等号3.掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.如:某人至少有10元钱,是说这个人的钱数多于或等于10元.(3)正数、负数、非负数、非正数等概念.如:a是非正数,应写成:a≤0.例1.用不等式表示:(1)x的23与5的差小于1;(2)8与y的2倍的和是正数;(3)x与5的和不小于0;(4)x的14小于等于2;(5)x的4倍大于x的3倍与7的差;(6)x与8的差的23不超过0.练习1.用适当的符号表示下列关系:(1)x的与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.练习2.用适当的不等式表示下列关系:(1)a是非负数;(2)x 与2差不足15 ; (3)x+3与y ﹣5的和是负数.一般根据所描述的语句,列出不等关系.注意非正数、非负数、不大于、不小于等符号表示.例2.用“<”或“>”填空:⑴4______-6; (2)-3______0; (3)-5______-1; (4)6+2______5+2; (5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2).练习1.下列不等式中,正确的是( ). A.4385-<-B.5172< C.(-6.4)2<(-6.4)3D.-|-27|<-(-3)3练习2.用“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .给出已知数,可直接判断它们的大小关系;含字母的可带特殊值法进行比较.例3.金坛市2月份某天的最高气温是15°C ,最低气温是﹣2°C ,则该天气温t (°C )的变化范围是 .练习1.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴. (1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗?练习2.若a 是有理数,比较2a 和3a 的大小.利用不等关系解决实际问题,另注意分类讨论的思想.例4.如果a 、b 表示两个负数,且a <b ,则( ).A. B. C. D.ab <1练习1.|a |+a 的值一定是( ). A.大于零 B.小于零 C.不大于零 D.不小于零练习2. a 、b 是有理数,下列各式中成立的是( ). A.若a >b ,则a 2>b 2B.若a 2>b 2,则a >bC.若a ≠b ,则|a |≠|b |D.若|a |≠|b |,则a ≠b给出字母的不等关系,在这个基础上去判断其他的不等式的关系:可采用设数法、分类讨论法等.不等式的解、解集及解集的表示方法1.相关概念:①不等式的解:使不等式成立的未知数的值叫做不等式的解;②不等式的解集:使不等式成立的未知数的取值范围叫做不等式的解的集合,简称解集;1>b a 1<b a ba 11<③解不等式:求不等式的解集的过程叫做解不等式; 2.不等式的解和解集的区别与联系:区别:不等式的解是一些具体数值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.联系:不等式的每一个解都在它的解集的范围内. 3.用数轴表示不等式的解集: ①x ≥-2表示为: ②x ≤-2表示为:③x ﹤2表示为:④x >2表示为:特别提示:用数轴表示不等式的解集要注意两点:①定界点:一般在数轴上只标出原点和界点即可,定边界点时要注意点是实心还是空心,若边界点含于集合为实心点,不含于解集为空心点;②定方向:“小于向左,大于向右”.例1.下列说法不正确的是( )A .不等式﹣x ≤1的解集是x ≥1B .不等式﹣x >﹣2的解集是x <4C .不等式2(x ﹣1)≤3的解集是x ≤2.5D .不等式1≤x 的解集是x ≥1练习1.下列说法中错误的是( )A.不等式的解集是;B.是不等式的一个解C.不等式的正整数解有无数多个D.不等式正数解有无限个练习2.下列不等式的解集不正确的是( )A .不等式2x >4的解集是x >2B .不等式x ﹣3<5的解集是x <8C .不等式x ﹣2≥1的解集是x ≥3D .不等式<3的解集是x >﹣3根据不等式的解和解集的概念去判断或选择是不是不等式的解或解集例2.当x=3时,下列不等式成立的是( )A .x+2<6B .x ﹣1<2C .2x ﹣1<OD .2﹣x >028x -<4x >-40-28x <-6x <6x<练习1.在、、、、、、中,能使不等式成立的有( )A.个B.个C.个D.个练习2.下列不等式>50的解的个数有( )①x=80;②x=75;③x=78;④x=10. A .1个 B .2个C .3个D .4个考查了不等式的解集,熟练掌握不等式解集的意义是解本题的关键例3. 在数轴上表示x <﹣3的解集,下图中表示正确的是( )A .B .C .D .练习1.如图在数轴上表示的是下列哪个不等式( )A .x >﹣2B .x <﹣2C .x ≥﹣2D .x ≤﹣2 练习2.把下列不等式的解集表示在数轴上 (1)x ≥﹣5 (2) x <6在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.不等式的性质1.基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.如果a b >,那么a c b c ±>± 如果a b <,那么a c b c ±<±2.基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.如果a b >,并且0c >,那么ac bc >(或a bc c>) 如果a b <,并且0c >,那么ac bc <(或a b c c<) 12-1-2-03-1232-32x +<43213.基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,并且0c <,那么ac bc <(或a b c c<) 如果a b <,并且0c <,那么ac bc >(或a b c c>) 补充:不等式的互逆性:如果,那么;如果,那么. 不等式的传递性:如果,,那么.易错点:①不等式两边都乘(或除以)同一个负数,不等号的方向改变.②在计算的时候符号方向容易忘记改变.例1. 填空:⑴ 如果,则,是根据 ; ⑵ 如果,则,是根据 ;⑶ 如果,则,是根据 ; ⑷ 如果,则,是根据 ; ⑸ 如果,则,是根据 .练习1.利用不等式的基本性质,用“<”或“>”号填空.⑴ 若,则_______; ⑵ 若,则______; ⑶ 若,则______; ⑷ 若,,则______;⑸ 若,,,则_______.练习2.若,用“”或“”填空 ⑴; ⑵⑶; ⑷利用不等式的三个基本性质,去判断新的不等式之间的关系.a b >b a <b a <a b >a b >b c >a c >a b >2a a b >+a b >33a b >a b >a b -<-1a >2a a >1a <-2a a >-a b <2a 2b a b >4a -4b -362x ->x 4-a b >0c >ac bc 0x <0y >0z <()x y z -0a b <><2_____2a b ++2_____2a b --11______33a b ____a b --例2.如果ax >b 的解集为则a ______0.练习1.如果关于的不等式的解集为,那么的取值范围是( ) A. B. C. D.练习2.根据,则下面哪个不等式不一定成立( )A. B . C. D.利用不等式的性质,解决未知数系数是含参数的不等式.例3.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( ).A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■练习1.设a 、b 、c 表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三个物体的质量从小到大排序正确的是( ).A .c <b <aB .b <c <aC .c <a <bD .b <a <c,abx >x (1)1a x a +>+1x <a 0a >0a <1a >-1a <-a b >22a c b c +>+22a c b c ->-22ac bc >2211a bc c >++练习2.若实数a,b,c在数轴上对应位置如图所示,则下列不等式成立的是().A.ac>bc B.ab>cb C.a+c>b+c D.a+b>b+c作差法比较大小应用有理数(式子)的减法运算可以比较两个有理数(式子)的大小,这就是“作差法”,即要比较两个有理数(式子)A与B的大小,可先求出A与B的差A-B,再通过其结果进行判断.如果A-B>0,则A>B;如果A-B=0, 则A=B;如果A-B<0,则A<B.例1.用等号或不等号填空:(1)比较4m与m2+4的大小当m=3时,4m m2+4当m=2时,4m m2+4当m=﹣3时,4m m2+4(2)无论取什么值,4m与m2+4总有这样的大小关系吗?试说明理由.练习1.比较2x2+4x+2与2x2+4x-6的大小关系,并说明理由练习2.比较2x+3与﹣3x﹣7的大小关系利用作差法,不能直接判断出关系时,采用分类讨论.例2.试判断a2﹣3a+7与﹣3a+2的大小.练习1.通过计算比较下列各组数中两个数的大小:1221;2332;3443;4554;5665;…由以上结果可以猜想n n+1与(n+1)n的大小关系是.根据以上猜想,你能判断20032004与20042003的大小吗?练习2.比较与的大小.利用作差法,比较较复杂的两个式子的大小,结果与0做比较,再判断原式的大小关系即可.本讲内容主要讲解了不等式的定义、不等式的解与解集,会用数轴表示不等式的解集,以及不等式的三个性质,要学会利用不等式的性质去判断不等关系,以及进行不等变换;学会用数轴标数法比较大小、以及会用作差法比较两个代数式的大小等.。
第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。
【期末复习提升卷】浙教版2022-2023学年八上数学第2章 特殊三角形 测试卷1(解析版)
【期末复习提升卷】浙教版2022-2023学年八上数学第2章特殊三角形测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.若以下列数组为边长,能构成直角三角形的是()A.4,5,6B.√2,√3,√5C.0.2,0.3 ,0.5D.13,14,15【答案】B【解析】A、42+52≠62,不能构成直角三角形;B、(√2)2+(√3)2=(√5)2,能构成直角三角形;C、0.22+0.32≠0.52,不能构成直角三角形;D、(15)2+(14)2≠(13)2,不能构成直角三角形.故答案为:B.2.下列命题中,逆命题错误的是()A.两直线平行,同旁内角互补B.对顶角相等C.直角三角形的两个锐角互余D.直角三角形两条直角边的平方和等于斜边的平方【答案】B【解析】A、逆命题是:同旁内角互补,两直线平行,符合题意,故本选项不符合题意;B、逆命题是相等的角是对顶角,为假命题,故本选项符合题意;C、逆命题是:若一个三角形两锐角互余,则为直角三角形,符合题意,故本选项不符合题意;D、逆命题是:若一个三角形两条直角边的平方和等于斜边的平方则为直角三角形,符合题意,故本选项不符合题意.故答案为:B.3.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根【答案】B【解析】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了,所以一共有8个,∴添加这样的钢管的根数最多是8根.故答案为:B.4.如图,在△ABC中,∠ACB=90°,点D在AC边上且AD=BD,M是BD的中点,若AC=8,BC=4,则CM等于()A.52B.3C.4D.5【答案】A【解析】∵∠ACB=90°,M 是BD 的中点,∴CM =12BD ,设CM =x ,则BD =AD =2x , ∵AC =8,∴CD =AC −AD =8−2x ,在Rt △BCD 中,根据勾股定理得, BC 2+CD 2=BD 2,即42+(8−2x)2=(2x)2,解得:x =52故答案为:A. 5.如图,在等边三角形ABC 中,BC=2,D 是AB 的中点,过点D 作DF ⊥AC 于点F ,过点F 作EF ⊥BC 于点E ,则BE 的长为( )A .1B .32C .54D .43【答案】C【解析】∵D 是AB 的中点,∴AD =12AB =1, ∵等边三角形ABC 中∠A=∠C=60°, 且DF ⊥AC ,∴∠ADF=180°-90°-60°=30°,在Rt △ADF 中,AF =12AD =12,∴FC =AC −AF =2−12=32,同理,在Rt △FEC 中,EC =12FC =12×32=34,∴BE =BC −EC =2−34=54.故答案为:C .6.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .8 【答案】A【解析】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方, ∴正方形A 的面积=14-8=6. 故答案为:A .7.如图, △ABC 中, ∠BAC =90° , AB =3 , AC =4 ,点 D 是 BC 的中点,将 △ABC 沿 AD 翻折得到 △AED ,连 CE ,则线段 CE 的长等于( )A .75B .54C .53D .2【答案】A【解析】如图,连接 BE 交 AD 于 O ,作 AH ⊥BC 于 H .在Rt△ABC中,∵AC=4,AB=3,∴BC=√AC2+AB2=5,∴CD=DB,∴AD=DC= DB=52.又∵12BC⋅AH=12AB⋅AC,∴AH=125.又∵AE=AB,DE=DB=DC,∴AD垂直平分线BE,△BCE是直角三角形.∵12AD⋅BO=12BD⋅AH,∴OB=125,∴BE=2OB=245.在Rt△BCE中,EC=√BC2−BE2=75.故答案为:A.8.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2B.3C.4D.5【答案】A【解析】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC=12×2×2=2.故答案为:A.9.如图,在ΔABD中,AD=AB,∠DAB=90°,在ΔACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②FA平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有()A.①②③④B.①③④C.②③D.②③④【答案】D【解析】∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,∠BDA=∠ECA=45 °,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即:∠DAC=∠BAE,在△ABE和△ADC中,{AB=AD∠BAE=∠DACAE=AC,∴△ABE≌△ADC(SAS),∴BE=DC,故④正确;∠ADF=∠ABF,∴∠BDC=45 °−∠ADF,∠BEC=45 °−∠AEF,而∠ADF=∠ABF ≠∠AEF,∴∠BDC ≠∠BEC,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD⊥BE,故③正确;作AP⊥CD于P,AQ⊥BE于Q,∵△ABE≌△ADC,∴S△ABE=S△ADC,∵BE=DC,∴AP= AQ,∵AP⊥CD,AQ⊥BE,∴FA平分∠DFE,故②正确;综上,②③④正确;故答案为:D.10.如图,△ABC与△CDE都是等边三角形,连接AD,BE,CD=4,BC=2,若将△CDE绕点C顺时针旋转,当点A、C、E在同一条直线上时,线段BE的长为()A.2√3B.2√7C.√3或√7D.2√3或2√7【答案】D【解析】①当E在CA延长线上时,过A作AM⊥BE于M,如下图:∵△ABC与△CDE都是等边三角形,CD=4,BC=2,∴AE=CE−AC=4−2=2,∠BAC=60°,∴AE=AB,∴∠AEB=∠ABE=30°,EM=BM,在Rt△ABM中,AM=12AB=1,BM=√3AM=√3,∴BE=2BM=2√3;②当E在AC的延长线上时,过B作BN⊥AC于N,如下图:在Rt△BCN中,CN=12BC=1,由勾股定理得:BN=√3CN=√3,∴NE=CE+CN=4+1=5,在Rt△BNE中,BE=√BN2+NE2=√(√3)2+52=2√7.综上所述,线段BE的长为2√3或2√7.故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.【答案】3.75【解析】设这个湖的水深是x尺,则荷花的长为(x+0.5)尺,根据题意,得x2+22=(x+0.5)2,解得:x=3.75,∴这个湖的水深是3.75尺.故答案为:3.75.12.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、E,AD与BE交于点F,BF=AC,∠ABE=20°,则∠CAD的度数是.【答案】25°【解析】∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠BEC=∠ADC=90°,∴∠DAC+∠C=90°,∠DBF+∠C=90°,∴∠DBF=∠DAC,在△DBF和△DAC中,{∠BDF=∠ADC ∠DBF=∠DACBF=AC,∴△DBF≅△DAC(AAS),∴AD=BD,∵∠ADB=90°,∴∠ABD=∠DAB=45°,∵∠ABE=20°,∴∠CAD=∠DBF=∠ABD-∠ABE=45°-20°=25°.故答案为:25°.13.如图,在△ABC中,AB=20,AC=15,BC=7,则点A到BC的距离是.【答案】12【解析】过A作AD⊥BC交BC的延长线于D,∴∠D=90°,∴AB2−BD2=AD2=AC2−CD2,∵AB=20,AC=15,BC=7,∴202−(7+CD)2=152−CD2,∴CD=9,∴AD=√152−92=12,∴点A到BC的距离是12;故答案为:12.14.如图,在平面直角坐标系中,长方形AOBC的边OB、OA分别在x轴、y轴上,点D在边BC 上,将该长方形沿AD折叠,点C恰好落在边OB上的E处.若点A(0,8),点B(10,0),则点D 的坐标是.【答案】(10,3)【解析】∵A(0,8),点B(10,0),∴OA=BC=8,OB=AC=10,设BD=a,则CD=8﹣a,由题意可得,CD=DE=8﹣a,由对折知,AE=AC=10,∴OE=√AE2−AO2=√102−82=6,∴BE=OB﹣OE=10﹣6=4,∵∠DBE=90°,∴a2+42=(8﹣a)2,解得a=3,∴点D的坐标为(10,3),故答案为:(10,3).15.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,AB和FE交于点M,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②BE2+DC2=DE2;③AB﹣AD=ED﹣BE;④只有当∠AME=90°时,BF=BE,其中正确的有.【答案】①②④【解析】∵∠BAC=∠DAF=90°,∴∠CAD+∠BAD=∠F AB+∠BAD=90°,∴∠F AB=∠DAC,又∵AB=AC,AF=AD,∴△AFB≌△ADC(SAS),∠C=∠ABC=45°,故①说法符合题意∴AF=AD,BF=CD,∠C=∠ABF=45°,∴∠FBE=90°∵∠EAD=45°,∠F AD=90°,∴∠F AE=∠DAE=45°又∵AE=AE,∴△AFE≌△ADE(SAS),∴DE=FE,2BE2=EF2,∵BF+2BE2=DE2,故②说法符合题意;∴CD+如图所示,过点A作AH⊥BC于H,设AH=BH=x,则AB=√2x,当BE=CD时,即BE=BF,∴ED=EF=√2BE,∵AB=AC,∠B=∠C,∴△ABE≌△ACD,∴AD=AE,∴EH=DH=12ED∵BH=BE+EH=x,∴BE+√22BE=x ,∴BE=(2−√2)x,∴EH=(√2−1)x∴AD=AE=√AH2+EH2=√4−2√2x,∴AB−AD=√2x−√4−2√2x,ED−BE=(2√2−2)x−(2−√2)x=(3√2−4)x∴此时AB−AD≠ED−BE,故③不符合题意;当∠AME=90°时,∴∠BMF=∠BME=90°,又∵∠FBM=∠MBE=45°,∴BF=BE,故④符合题意,故答案为:①②④.16.如图所示,∠AOB=50°,∠BOC=30°,OM=11,ON=6.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.【答案】√223【解析】如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P≥M′N′,∴当N′,P,Q,M′在同一条直线上时取最小值,连接ON′,OM′,过点N′作N′E⊥OM′交OM′的反向延长线于点E,∵∠AOB=50°,∠OC=30°,则∠N′OA=∠AOC=∠AOB−∠BOC=20°,∠BOM′=∠BOA=50°∴∠N′OM′=2∠N′OA+∠COB+∠BOM′=40°+30°+50°=120°,∴∠EON′=60°∵N′E⊥OM′∴∠EN′O=30°∵ON′=ON=6,OM=OM′=11∴EO=12N′O=3在Rt△EON′中,EN′=√ON′2−OE2=√62−32=3√3在Rt△EM′N′中,EM′=EO+OM′=3+11=14,∴M′N′=√EN′2+EM′2=√(3√3)2+142=√223故答案为:√223.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D是边AB上一点,DE与AC相交,AB=17.(1)求证:△BCD≌△ACE.(2)若BD=5,求DE的长.【答案】(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB-∠ACD=∠ECD-∠ACD,即∠ACE=∠BCD,∴△BCD≌△ACE;(2)解:∵AC=BC,∠ACB=90°,∴∠B=∠CAB=45°,∵△BCD≌△ACE,∴∠CAE=∠B=45°,AE=BD=5,∴∠EAD=90°,∵AB=17,BD=5,∴AD=12,∴DE=√AE2+AD2=√122+52=13.18.如图,在等腰△ABC中,点D在AB边上,点E是AC延长线上的点,DE交底边BC于点G,AE=3AD=3BD=3,(1)求CE的长度;(2)求证:AG是△ADE的中线.【答案】(1)解:∵AE=3AD=3BD=3,∴AE=3,AD=1,BD=1,∴AB=AD+BD=1+1=2,∴△ABC为等腰三角形,BC为底边,∴AC=AB=2,∴CE=AE-AC=3-2=1;(2)证明:过点E作EF∥AB交BC延长线于点F,∴∠F=∠ABC,∵△ABC为等腰三角形,∠ACB=∠FCE,∴∠ABC=∠ACB,∴∠FCE=∠F,∴CE=FE=1=BD,在△BDG 和△FEG 中{∠B =∠F∠DGB =∠EGF BD =FE,∴△BDG ≌△FEG (AAS ), ∴DG=EG ,∴AG 为△ADE 的中线.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,在Rt △ABD 中,∠D =90°,AD 与BC 交于点E ,且∠DBE =∠DAB .求证:(1)∠CAE =∠DBC ;(2)AC 2+CE 2=4BD 2. 【答案】(1)证明:如下图所示,标出∠1,∠2,∠3.∵∠ACB =90°,∠ADB =90°,∴∠1+∠3=90°,∠2+∠DBC =90°. ∵∠1和∠2是对顶角, ∴∠1=∠2.∴∠3=∠DBC ,即∠CAE =∠DBC .(2)证明:在(1)中图延长BD 交AC 延长线于点F . 由(1)可知∠3=∠DBC ,即∠3=∠DBE . ∵∠DBE =∠DAB , ∴∠3=∠DAB . ∵∠ADB =90°, ∴∠ADF =90°. ∴∠ADF =∠ADB . 在△ADF 和△ADB 中,∵{∠3=∠DAB ,AD =AD ,∠ADF =∠ADB ,∴△ADF ≌△ADB(ASA). ∴FD =BD . ∴BF =2BD .∵∠ACB =90°,即∠ACE =90°, ∴∠BCF =90°. ∴∠ACE =∠BCF .由(1)可知∠3=∠DBC ,即∠3=∠CBF . 在△ACE 和△BCF 中,∵{∠3=∠CBF ,AC =BC ,∠ACE =∠BCF ,∴△ACE ≌△BCF(ASA).∴AE =BF .∴AE =2BD∵在Rt △ACE 中,AC 2+CE 2=AE 2,∴AC 2+CE 2=(2BD)2=4BD 2.20.如图,△ABC 是等边三角形,延长BC 到点E ,使CE=12BC ,若D 是AC 的中点,连接ED 并延长交AB 于点F .(1)若AF=3,求AD 的长;(2)求证:DE=2DF .【答案】(1)解:∵△ABC 为等边三角形,∴AC=BC ,∠A=∠ACB=60°,∵D 为AC 中点,∴CD=AD=12AC , ∵CE=12BC , ∴CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠E=∠CDE=30°,∴∠ADF=∠CDE=30°,∵∠A=60°,∴∠AFD=180°-∠A-∠ADF=90°,∵AF=3,∴AD=2AF=6,(2)解:连接BD ,∵△ABC 为等边三角形,D 为AC 中点,∴BD 平分∠ABC ,∠ABC=60°,∴∠DBC=∠ABD=12∠ABC=30°, ∵∠BFD=90°,∴BD=2DF ,∵∠DBC=∠E=30°,∴BD=DE ,∴DE=2DF ,21.如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.(1)求证:∠EAC=∠BAD;(2)若∠EAC=42°,求∠DEB的度数.【答案】(1)证明:∵AB=AD,AC=AE,BC=DE,∴△ABC≌△ADE.∴∠BAC=∠DAE.∴∠BAC-∠BAE=∠DAE-∠BAE.即∠EAC=∠BAD;(2)解:∵AC=AE,∠EAC=42°,∴∠AEC=∠C=12×(180°-∠EAC)=12×(180°-42°)=69°.∵△ABC≌△ADE,∴∠AED=∠C=69°,∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.22.如图,在△ABC中,AB=AC.(1)若P为BC上的中点,求证:AB2−AP2=PB·PC;(2)若P为线段BC上的任意一点,(1)中的结论是否成立,并证明;(3)若P为BC延长线上一点,说明AB、AP、PB、PC之间的数量关系.【答案】(1)证明:连接AP,∵AB=AC,P是BC中点,∴AP⊥BC,BP=CP,在Rt△ABP中,AB2−AP2=BP2=PB·PC;(2)解:成立.如图,连接AP,作AD⊥BC,交BC于D,∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AB2=AD2+BD2,同理,AP2=AD2+DP2,∴AB2−AP2=AD2+BD2−(AD2+DP2)=BD2−DP2又∵BP=BD+DP,CP=CD-DP=BD-DP,∴BP•CP=(BD+DP)(BD-DP)=BD2−DP2,∴AB2−AP2=PB·PC;(3)解:AP2−AB2=PB·PC.如图,P是BC延长线任一点,连接AP,并作AD⊥BC,交BC 于D,∵AB =AC ,AD ⊥BC ,∴BD =CD ,在Rt △ABD 中,AB 2=AD 2+BD 2,在Rt △ADP 中,AP 2=AD 2+DP 2,∴AP 2−AB 2=(AD 2+DP 2)−(AD 2+DB 2)=PD 2−BD 2 又∵BP =BD +DP ,CP =DP -CD =DP -BD ,∴BP•CP =(BD +DP )(DP -BD )=DP 2−BD 2,∴AP 2−AB 2=BP ·CP . 23.已知:如图,△ABC 、△CDE 都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.(1)求证:AD =BE ;(2)求∠DOE 的度数;(3)求证:△MNC 是等边三角形.【答案】(1)证明:∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE CD =CE ,∴△ACD ≌△BCE(SAS),∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°−(∠ADE +∠BED)=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE , ∴AM =BN ,在△ACM 和△BCN 中{AC =BC ∠CAM =∠CBN AM =BN,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.24.如果平面内一点到三角形的三个顶点的距离中,最长距离的平方等于另两个距离的平方和,则称这个点为该三角形的勾股点.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若PC>PA,PC>PB,且PC2=PA2+PB2,则点P就是△ABC的勾股点.(1)如图2,在3×2的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点(小正方形的顶点)上,格点P是△ABC的勾股点吗?请说明理由;(2)如图3,△ABC为等边三角形,过点A作AB的垂线,点E在该垂线上,以CE为边在其右侧作等边△CDE,连结AD.①求证:点A是△CDE的勾股点;②若AC=√3,AE=1,直接写出等边△CDE的边长.【答案】(1)解:格点P是△ABC的勾股点,理由:∵PA2=22+12=5,PB2=22=4,PC2=12=1,∴PA2=PB2+PC2,∴格点P是△ABC的勾股点;(2)解:①证明:∵△ABC和△CDE是等边三角形,∴AB=AC=BC,CD=CE=DE,∠B=∠ACB=∠DCE=60°,∴AB∥CE,∵AB⊥AE,∴∠BAE=90°,∴∠AEC=90°,∴AC2=AE2+CE2,∵∠BAC=60°,∠BAE=90°,∴∠CAE=30°,∴CE=12AC,∴AE=√AC2−CE2=√AC2−14AC2=√32AC过A作AH⊥BC于H,∴CH=BH=12BC=12AC,∠AHC=90°,∴DH=CD+CH=12AC+12AC=AC,∴AH2=AC2﹣CH2=AC2﹣14AC2=34AC2,∴AH=√32AC,∴AH=AE,∴AD2=AH2+HD2=AE2+AC2,∴点A是△CDE的勾股点;②√2.【解析】(2)②解:∵△ABC和△CDE是等边三角形,∴∠B=∠ACB=∠DCE=60°,∴AB∥CE,∵AB⊥AE,∴∠BAE=90°,∴∠AEC=90°,∴AC2=AE2+CE2,∵AC=√3,AE=1,∴CE=√AC2−AE2=√2,∴等边△CDE的边长为√2.。
第1讲 定义新运算(含解析)
第1讲定义新运算教学目标:①熟系定义新运算的意义;掌握新旧运算的转化方法;熟系定义新运算的类型。
②会用代换法解题,培养学生对数和字母应用的理解,从而拓展学生的视野。
教学重点:对新旧运算的转化理解。
教学难点:对代换法解题的掌握。
知识要点:加、减、乘、除这四种运算的意义和计算法则我们都很熟悉,除了这四种运算,我们还可以定义一些其它运算。
而这种定义,就是按照某种约定,再按照这种约定进行计算。
给这种新运算一个明确的含义,叫做定义新运算。
解题时,需注意以下几点:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、△、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
规定a※b=a×(b+2),则5※2=5×(2+2)=20,同理可得:3※8=()A.24B.30C.26D.40【分析】把a=3,b=8,代入a※b=a×(b+2),然后按照先算小括号里面的,再算括号外的顺序进行计算即可.【解答】因为a※b=a×(b+2)所以3※8=3×(8+2)=3×10=30故选:B.对于两个数A、B,规定A*B=A×B÷2,求5*6()A.15B.30C.25D.10如果定义a△b=2ab﹣b2,那么7△9=()A.56B.45C.77D.14规定一种运算:a※b=(b+a)×b,则(3※2)※4=()A.56B.40C.9D.24【分析】按规定的计算方法:两个数的积等于两个数的和与后一个数的积,据其先求出3※2的结果,进一步计算即可.【解答】a※b=(b+a)×b3※2=(3+2)×2=1010※4=(10+4)×4=56所以(3※2)※4=56故选:A“定义运算“*”:a*b=a×b+b,如2*3=2×3+3=9,则(4*5)*2=()A.48B.50C.51D.52如果A☆B=4×A+3×B,则2☆(3☆4)的值是.如果1*4=1234,2*3=234,7*2=78,那么4*5=()A.4B.20C.45678【分析】由题意得:1*4=1234,2*3=234,7*2=78,里面*后面的数表示从*前面的数开始,要写出的连续的自然数的个数,所以4*5表示从4开始写,连续写出5个自然数,据此解答。
事故树分析法[知识荟萃]
2.事故树的编制
确定事故树的顶上事件:顶上事件是不希望发生的事件、
易于发生且后果严重的事件。
调查与顶上事件有关的所有原因事件。
编制事故树。
借鉴内容
3
3.事故树定性分析:
依据事故树列出逻辑表达式,求得构成事故的最小割 集和防止事故发生的最小径集,确定出各基本事件的 结构重要度排序。
❖ 结合律:A+(B+C)=(A+B)+C
❖ 同一律:A+0=A
❖ 0-1律:A+1=1
❖ 等幂律:A+A=A
❖ 2)逻辑与
❖ 交换律:A·B=B·A
❖ 结合律:A·(B·C)=(A·B)·C
❖ 同一律:A·1=A
❖ 0-1律:A·0=0
❖ 等幂律:A·A=A
借鉴内容
18
❖ 2.逻辑或和逻辑与还有如下性质 ❖ 乘对加的分配律: A(B+C)=AB+BC ❖ 加对乘的分配律: A+BC=(A+B)(A+C) ❖ 3.逻辑非有如下的基本性质 ❖ 互补律:A+A’=1 A·A’=0 ❖ 双重否律:A’’=A ❖ 三、逻辑代数的两个基本定理 ❖ 1.吸收律: A+AB=A A(A+B)=A ❖ 2.得摩根定理(反演律) A B A B
5
(二)事故树的构成
1.事件符号
❖矩形符号:表示顶上事件或中间事件。由于FTA是对具体系 统做具体分析,所以顶上事件一定要清楚、明了。
❖圆形符号:表示基本事件原因事件,即最基本的、具体的、 不再往下分析的事件。
❖屋形符号:表示正常事件,即系统处在正常状态。 ❖菱形符号:一表示省略事件,即没有必要详细分析或其原
有理数的混合运算教案
有理数的混合运算教案有理数的混合运算教案篇1教学目标:1、知识与技能了解有理数的混合运算顺序,在运算过程中能合理使用运算律简化运算。
2、过程与方法通过适量的有理数的混合运算,掌握混合运算的顺序,获得运用运算律简化运算的经验。
重点、难点1、重点:有理数的混合运算。
2、难点:有理数混合运算中的符号确定以及运算中的顺序问题。
教学过程:一、创设情景,导入新课已学过的有理数的运算有哪些?你能分别说出有理数的加、减、乘、除、乘方的'运算法则吗?观察:(1) (2)-3-[-5+(1-0.6)]你能说出这个算式里有哪几种运算?二、合作交流,解读探究1、上面算式中,含有有理数的加、减、乘、除、乘方多种运算,我们称为有理数的混合运算。
那有理数混合运算的顺序是什么?组织学生讨论:在小学里所学的混合运算顺序是什么?这些运算顺序在有理数的混合运算中是否适用?归纳有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里的三、应用迁移,巩固提高1、学生活动,计算下列各题:(1) (2) -3-[-5+(1-0.6)]教师活动:鼓励学生独立完成,指定两名学生到黑板演示,完成后,评析,强调运算顺序。
解:(1)原式=17-8÷(-2)×3 (先乘方)=17-(-12) (再乘除)=17+12 (后加减)=29(2)原式=-3-[-5×0.4] (先算小括号里面的)=-3-(-2) (再算中括号里面的)=-1注意:在运算过程中,注明运算顺序,目的是使学生明确运算顺序。
2、学生练习并与同伴交流:计算:教师活动:鼓励学生独立完成然后交流各自的计算方法,选三位学生上黑板演示,比较不同的解法。
解法一:原式= (先算括号里的)= (后算乘方)=-11 (再算乘除)解法二:原式= (运用分配律)= (先算乘方)=-6+(-5) (后算乘除)=-11 (最后算加减)引导学生比较两种不同的解法,体会运用运算律可以简化运算。
《用字母表示数》教案(优秀10篇)
《用字母表示数》教案(优秀10篇)字母表示数篇一用字母表示数和简易方程教学内容:教科书第144~145页的内容和练习三十四的第1~4题。
教学目的:使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。
回根据字母所取的值,求含有字母的式子的值。
使学生加深理解方程的意义,会解简易方程。
教学过程用字母表示数复习用字母表示数。
教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。
我们通过下面的例子,边回忆、边总结以前学过的内容和方法。
教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写?S乘以h可以怎样写?(a乘以4.5可以写成a#215;4.5或a#183;4.5,不可以写成a4.5.S乘以h可以写成S#183;h或Sh。
)教师指出:除了不能写成a4.5以外,其他都是对的。
用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。
已知单价和数量,求总价的公式;已知总价和数量,求总价的公式;已知总价和单价,求数量的公式。
如果每只圆珠笔的价钱是3.75元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?教师让学生独立解答。
巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。
写完后,集体订正。
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。
学生写完后指名回答。
教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。
)一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。
教师指名回答。
80+12aa=15时,80+12a=80+12#215;15=260答:商店一共有260千克桔子。
作教科书第144页“做一做”的题目。
第1题,教师让学生自己做。
字母相乘省略乘号的规则
字母相乘省略乘号的规则
我们都学过高中数学中的乘法运算,比如2×3=6,而在求解一些字母表示出来的多项式问题时,常常会出现字母相乘的情况,比如axb表示a乘以b,很多时候我们会在两个字母中间使用乘号来表示乘法,但在一定的情况下我们可以省略乘号,这就是“字母相乘省略乘号的规则”。
一般来说,“字母相乘省略乘号的规则”可以分为三条:
1.一字母相乘,省略乘号。
比如aa = a a = a^2,b^3 = b b b;
2.类不同字母相乘,省略乘号。
比如ab = a b,xy = x y;
3.类字母相乘,不能省略乘号。
比如a + b ab,必须写成a b。
有的时候,字母之间也会存在除乘法以外的其他运算符号,我们可以按照规定来正确使用运算符号,避免混淆。
比如ax + b = a x + b,xy x + y,这两个表达式的意思是不一样的,前者表示a乘以x 加上b,而后者是把x和y相加,所以我们一定要用正确的运算符号,清楚地表达出我们的意思。
另外,要注意乘方运算也是不能省略乘号的,比如a^2 = a a,b^3 = b b b,我们只有将乘方表示出来才能得到准确的结果。
以上就是“字母相乘省略乘号的规则”,它对数学学习以及计算机编程都非常有帮助,在运算表达式中,我们要正确地使用乘号和其他运算符号,才能达到我们预期的结果。
同时,也要注意不要将乘方和乘法混淆,这样可以避免算错,同时也有助于保持计算表达式的结
构十分清晰。
BYD 审核员考试体系错题库
制程审核时,被审核工厂的职责为( )答错1次A.验证纠正措施的有效性B.部门负责人员参与审核C.提供所有必要的信息,包括审核计划D.记录问题并确定为建议项标准答案A试题解析再答对1次移除2工序平均符合率EP(G)(%)的计算公式是 ( )答错1次A.∑En/nB.各问题实际得分总和/各问题满分的总和C..∑En/n×100%D.(各问题实际得分总和/各问题满分的总和)*100%标准答案C试题解析再答对1次移除3公司级例行制程审核每( )进行一次答错1次A.月B.季度C.年D.半年标准答案试题解析再答对1次移除4制程审核时,不是被审核工厂的职责为( )答错1次A.提供所有必要的信息B.部门负责人员参与审核C.验证纠正措施的有效性D.参加末次会议标准答案B试题解析再答对1次移除5制程审核时,若现场没有按照文件执行且造成产品不合格时,则评价为0分,其余情况评价为4分( )答错1次A.正确B.错误标准答案A试题解析再答对1次移除6工厂对于公司级别制程审核发现的不符合项,必须在( )个工作日内完成答错1次A.5B.15C.0.25D.35标准答案B试题解析再答对1次移除二、判断题(每道题只有1个正确答案)7在紧急状态下,原材料未经过检验,可以由具备'特别放行/紧急放行'权限的人员批准后投入生产、交付给客户,没有必要进行可追溯性管理。
答错1次A.对B.错标准答案错试题解析再答对1次移除8工厂来料库房刚接到一批来料,单独放置在标明'下料区'等待检验人员,不存在物料状态不明确的情况。
答错1次A.对B.错标准答案对试题解析再答对1次移除9为消除已发现的不合格或其它不希望情况的产生所采取的措施为纠正措施。
答错2次A.对B.错标准答案错试题解析再答对1次移除10过程参数(如温度、时间、压力等)不需要标明公差。
答错1次A.对B.错标准答案错试题解析再答对1次移除11制程审核就是检查生产过程的质量。
期中知识梳理卷(一)-七年级数学期末总复习(人教版)
期中知识梳理(一)(解析版)知识点一 有理数1.在227 ,π3 ,1.62,0四个数中,有理数的个数为( )A.4B.3C.2D.12.下列关于0的说法错误的是( )A.任何情况下,0的实际意义就是什么都没有B.0是偶数不是奇数C.0不是正数也不是负数D.0是整数也是有理数3.下面的说法正确的是( ) A.正有理数和负有理数统称有理数 B.整数和分数统称有理数C.正整数和负整数统称整数D.有理数包括整数、自然数、零、负数和分数 4.把下列各数填入相应的括号内+6.5,-213 ,0.5,-3.2,13,-9,512,-1,-3.6(1)正数:{________________________________________}; (2)整数:{________________________________________} (3)非负数:{________________________________________}知识点二 数轴1.已知三个数a 、b 、c 的平均数是0,则这三个数在数轴上表示的位置不可能是( )2.如图,数轴上表示-2的点A 到原点的距离是( )A.-2B.2C.-12D.123.如图,数轴表示的是5个城市的国际标准时间(单位:时),如果北京的时间是2020年1月9日上午9时,下列说法正确的是( )A.伦敦的时间是2020年1月9日凌晨1时B.纽约的时间是2020年1月9日晚上20时C.多伦多的时间是2020年1月8日晚上19时D.汉城的时间是2020年1月9日上午8时4.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在-2的位置,则小虫的起始位置所表示的数是______________5.如图是一张不完整的数轴,请将它补画完整,并在数轴上标出下列各数所代表的点,并将对应字母标在数轴上方的相应位置点A:52 ;点B:0.25;点C:113;点D:300%知识点三 相反数1.下列表示-5的“相反数”的是( ) A.-(-5)B.-(+5)C.-[-(-5)]D.-[+(+5)]2.若a,b 互为相反数,则下列等式不一定成立的是( ) A.=-1B.a =-bC.b =-aD.a+b =03.已知m 是8的相反数,n 比m 的相反数小2,求n 比m 大多少?4.已知4a -1与-(a+14)互为相反数,求a 的值知识点四 绝对值1.|-2|的值是( ) A.-2B.2C.-3D.32.下面的说法正确的是( ) A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等3.a,b,c的大小关系如图所示,则a -b |a -b | -b -c |b -c | +c -a|c -a |的值是( )A.-3B.-1C.1D.3点4.已知a 是2的相反数,计算|a -2|的值.5.计算:已知|x|=3,|y|=2. (1)当xy<0时,求x+y 的值; (2)求x -y 的最大值.6.【观察与归纳】(1)观察下列各式的大小关系: |-2|+|3|>|-2+3| |-8|+|3|>|-8+3| |-2|+|-3|=|-2-3| |0|+|-6|=|0-6|归纳:|a|+|b|________|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空) 【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m 的值.知识点五 有理数的加减乘除1.若a 是3的相反数,则a 的倒数是( ) A.3B.-3C.-13D.132.观察算式(-4)×17 ×(-25)×28,在解题过程中,能使运算变得简便的运算律是( )A.乘法交换律B.乘法结合律C.乘法交换律结合律D.乘法对加法的分配律3.若有理数a 、b 满足ab>0,且a+b<0,则下列说法正确的是( ) A.a,b 可能一正一负B.a,b 都是正数C.a,b 都是负数D.a,b 中可能有一个为04.|a|=6,|b|=3,则ab =________5.计算:(1)-12+5+(-16)-(-17); (2)23×(-5)-(-3)÷3128(3)-24×(-12 +34 -13 );(4)-23÷49 ×(-23 )26.若定义一种新的运算“*”,规定有理数a*b =4ab,如2*3=4×2×3=24. (1)求3*(-4)的值; (2)求(-2)*(6*3)的值7.阅读下面文字对于(-556 )+(-923 )+1734 +(-312 )可以如下计算:原式=[(-5)+(-56 )]+[(-9)+(-23 )]+(17+34 )+[(-3)+(-12 )=[(-5)+(-9)+17+(-3)]+[(-56 )+(-23 )+34 +(-12)=0+(-114 )=-114上面这种方法叫折项法,你看懂了吗? 仿照上面的方法,计算:(1)-114 +(-213 )+756 +(-412 );(2)(-201923 )+201834 +(-201756 )+2016128.小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元)(1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少要有多少收入才能维持正常开支?【参考答案及解析】期中复习知识梳理(一)知识点一 有理数1.B 【解析】在227 ,π3 ,1.62,0四个数中,有理数为227,0,1.62,共3个2.A 【解析】A.0的实际意义不是什么都没有,符合题意;B.0是偶数不是奇数,不符合题意;C.0不是正数也不是负数,不符合题意;D.0是整数也是有理数,不符合题意3.B 【解析】A.正有理数、0和负有理数统称有理数,故本选项错误;B.整数和分数统称为有理数,故本选项正确;C.整数还包括0,故本选项错误;D.零属于自然数的范围,这样的表达不正确,故本选项错误.4.解:(1)正数:{+6.5,0.5,13,512 }(2)整数:{0,13,-9,-1}; (3)非负数:{+6.5,0.5,0,13,512}知识点二 数轴1.D 【解析】因为三个数a 、b 、c 的平均数是0,所以三个数中一定有一个正数和一个负数,若第三个数为负数,则两负数表示的点到原点的距离之和等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离之和等于负数到原点的距离2.B 【解析】数轴上表示-2的点A 到原点的距离是2.3.A 【解析】如果北京的时间是2020年1月9日上午9时,那么伦敦的时间是2020年1月9日凌晨1时,纽约的时间是2020年1月8日晚上20时,多伦多的时间是2020年1月8日晚21时,汉城的时间是2020年1月9日上午10时4.2【解析】设小虫起始位置表示的数为x,向右爬3个单位,再向左爬7个单位,则小虫达到x+3-7=-2,所以x =2.5.解:如图所示:知识点三 相反数1.A 【解析】-5的相反数表示为-(-5)2.A 【解析】因为a,b 互为相反数,所以a+b =0,所以a =-b,b =-a.3.解:由题意得:m =-8,n =8-2=6,n -m =6-(-8)=14. 答:n 比m 大14.4.解:由题意得,4a -1-(a+14)=0,4a -1-a -14=0,解得:a =5.知识点四 绝对值1.B 【解析】|-2|=2,即|-2|的值是2.2.D 【解析】A.有理数的绝对值一定大于等于,故此选项错误;B.正有理数的相反数一定比0小,故此选项错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.3.A 【解析】由数轴可得:c<a<0<b 所以a -b<0,b -c>0,c -a<0a -b |a -b | -b -c |b -c | +c -a |c -a | =a-b b-a -b-c b-c +c-aa-c=-1-1-1=-34.解:因为a 是2的相反数,所以a =-2,所以|a -2|=|-2-2|=4.5.解:由题意知:x =±3,y=±2,(1)因为xy<0,所以x =3,y =-2或x =-3,y =2,所以x+y =±1 (2)当x =3,y =2时,x -y =3-2=1; 当x =3,y =-2时,x -y =3-(-2)=5; 当x =-3,y =2时,x -y =-3-2=-5 当x =-3,y =-2时,x -y =-3-(-2)=-1, 所以x -y 的最大值是5.6.解:(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥(2)由上题结论可知,因为|m|+|n|=9,m+n =1,|m|+|n|≠|m+n|,所以m 、n 异号 当m 为正数,n 为负数时,m -n =9,则n =m -9, |m+m -9|=1,m =5或4;当m 为负数,n 为正数时,-m+n =9,则n =m+9 |m+m+9|=1,m =-4或-5; 综上所述,m 为±4或±5.知识点五 有理数的加减乘除1.C 【解析】因为a 是3的相反数,所以a =-3.因为-3的倒数是-13 ,所以a 的倒数是-132.C 【解析】原式=[(-4)×(-25)]×(17×28)=100×4=400.在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律3.C 【解析】若有理数a 、b 满足ab>0,则a,b 同号,排除A,D 选项;且a+b<0,则排除a,b 都是正数的可能,排除B选项;则说法正确的是a,b 都是负数,C 正确4.18或-18【解析】因为|a|=6,b =3,所以a =±6、b = ±3,则当a =-6、b =-3时,ab =18;当a =-6、b =3时,ab =-18;当a =6、b =-3时,ab =-18;当a =6、b =3时,ab =18.5.解:(1)原式=-12+5-16+17=-6; (2)原式=-115+128=13; (3)原式=12-18+8=2; (4)原式=-8×94 ×49 =-8.6.解:(1)3*(-4) =4×3×(-4) =-48; (2)(-2)*(6*3) =(-2)*(4×6×3) =(-2)*(72) =4×(-2)×(72) =-576.7.解:(1)-114 +(-213 )+756 +(-412 )=(-1-14 )+(-2-13 )+(7+56 )+(-4-12 )=(-1-2+7-4)+(-14 -13 +56 -12 )=0-14=-14(2)(-201923 )+201834 +(-201756 )+201612=(-2019-23 )+(2018+34 )+(-2017-56 )+(2016+12 )=(-2019+2018-2017+2016)+(-23 +34 -56 +12 )=-2-14=-2148.解:(1)(+65+68+50+66+50+75+74)+(-60-64-63-58-60-64-65)=14(元) 答:到这个周末,小李有14元的节余(2)17 ×(|-60|+|-64|+|-63|+|-58|+|-60|+|-64|+|-65|)=62(元) 62×30=1860(元)答:小李一个月(按30天计算)至少要有1860元的收入才能维持正常开支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正确使用a×b,ab
初中数学在首次引用“a·b”和“ab”时,特别指出:“在不引起误会的时候,乘号可以用‘·’,或者省略不写(见初中代数第一册第37页,人民教育出版社),也就是说a×b,a·b和ab在不引起误会的时候是等价的,但有时也会引起误会,产生错误.
1.在使用计算器(机)时,只有“×”乘,没有“·”乘.
在初等数学中点乘与叉乘是等价的,但计算器(机)只“认识”叉乘“×”,而对“·”的“理解”只是小数点.宁波市96年中考是试用浙江省编九年制义务教育教材后的首次中考,该教材纳入了计算器的使用.试题中第一题第4小题是:用计算器计算:
本题在考生中引起了不小的误会,很多考生把误认为“乘”了.在北仑区考生试卷中随机抽取150份样卷.结果有67人得-1,占44.7%.
2.在进行数字运算时,不可省略乘号.
如a=3,b=5时a×b=3×5=3·5=15,而ab很容易误为35.
3.在有除法运算时,不可以随意省略或添加乘号“×”或“·”.
在数式的运算中a×b和a·b只表示运算,即a乘以b的运算,而ab表a乘以b的积,是运算后的结果.对算式12a3b2x3÷3ab2(见初中代数第二册第80页,人民教育出版社),教材中作了说明:“这个式子就是(12a3b2x3)÷(3ab2)的意思”.也就是说3ab2是单项式,是运算后的结果,而不是乘法运算3×a×b2省略了“×”号,所以对于式中的3ab2不能添加“·”或“×”号.
而对算式4a-1b3÷3-1·a2·b-2(见北京师大附属实验中学编《初中总复习自学指导》
P142.1(3),中国和平出版社)不能省略“·”,应按初等运算顺序计算:原式=12a-1b3·a2·b -2=12ab.而原书给出的答案是12a-3b5,显然是由于“误会”把“·”省略了而导致错误.。