高中数学(必修1)期中测试题(一)
高中数学必修1第一、二章阶段性测试月考试卷
高中数学必修一第一、二章数学测试题试题姓名: 班级: 学号:一、选择题(共5分×10=50分) 命题人: 1.下列说法正确的是()A .Q Z ⊆ B. N R ∈ C. N Q ⊆ D. *Z N ⊆ 2.设集合 A ={x|-1<x <2},集合B ={x|1<x <3},则 A∪B 等于( )A. {x|-1<x <3}B. {x|-1<x <1}C. {x|1<x <2}D. {x|2<x <3}3.集合{}2*|70,A x x x x =-<∈N ,则*|,8B y y A y ⎧⎫=∈∈⎨⎬⎩⎭N 中元素的个数为A. 1个B. 2个C. 3个D. 4个 4.已知集合M 满足{}1,2M{}1,2,3,则集合M 的个数为( )A. 0B. 1C. 2D. 4 5.下列表达的是函数关系的是( )A. 某地区的时间与气温;B. 人的睡眠质量与身体状况的关系;C. 小麦的亩产量与土壤的关系;D. 人的身高与其饮食情况 6.下列各组函数表示同一函数的是( )A. ()()22,f x x g x x ==B. ()()01,f x g x x ==C. ()()233,f x x g x x == D.()()2,f a g x x a ==7.函数1y x =- )A. [],1-∞B. []1,+∞C. [)1,+∞D. (],1-∞8.下列表示正确的是()A. []{},/a b x a x b =<< B .[){},/a b x a x b =<≤ C. (]{},/a b x a x b =≤< D. R=(),-∞+∞ 9.下列函数中哪个与函数y x =-相等( )A. 2y x =-B. ()11x x y x --=-C.33x - D. y x x =-10.已知函数()(]()0,1g 2,f x x x =+的定义域为,那么()()f g x 的定义域是() A.(]2,3 B.(]2,1-- C.(]0,1 D.[)0,1 二、填空题(共5分×6=30分)11.已知{}21,x x ∈-,则实数x 的值是_______. 12.函数()21f x x =-的定义域是__________.13.下列与函数1y x =-是相同函数的是________.①()21y x =- ②()211x f x x -=+③()331y x =- ④()1f a a =-, ()1a >14.函数()1214f x x x =--的定义域是 . 15.已知()2x mf x x -=+,且()30f =,则()3f -=__________.16.已知函数()1g x x +=的定义域为(]1,3 ,()221f x x +=+,那么()()2g f x + 的定义域是__________.三、解答题(共30分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知集合{|24}A x x =≤<, {|23}B x a x a =+≤≤, (1)当2a =时,求A B ⋂(2)若B A ⊆,求实数a 的取值范围18.(8分)求下列函数定义域 (1)y =(2)()()22f x x x =-(3)()f x =19.(12分)已知函数()f x =(1)当()2b f x b =∅时,若的定义域为,求实数的取值范围;(2)若()f x 的定义域为R ,且()2220a b b a -+-=,求实数a b 和的取值范围。
人教版高中一年级数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+=,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅ 8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、1625 9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a << D 、1a >10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >> 11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对 12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ;14、函数y =的定义域为 ;15、若2x <,3x -的值是 ; 16、100lg 20log 25+= 。
高中数学必修一测试题
高中数学必修一测试题一. 填空题1. 已知函数 f(x) = 2x² + 3x - 5,求 f(2) 的值。
解: 将 x = 2 代入函数 f(x) 得 f(2) = 2(2)² + 3(2) - 5 = 4(4) + 6 - 5 = 16+ 6 - 5 = 17。
2. 已知平行四边形 ABCD 的边长分别为 AB = 5cm,BC = 8cm,CD = 5cm,求对角线 AC 的长度。
解: 由平行四边形的性质可知,对角线互相平分且相等,因此 AC的长度等于 BD 的长度。
而 BD = AB = 5cm,所以 AC 的长度也为 5cm。
3. 解方程 2x + 3 = 7。
解: 通过移项和化简得 2x = 7 - 3 = 4,再除以 2 得 x = 2。
二. 计算题1. 计算3π + 2π - π。
解: 合并同类项得3π + 2π - π = 4π - π = 3π。
2. 简化下列代数式:(3x - 2y)²。
解: 将代数式展开得 (3x - 2y)² = (3x - 2y)(3x - 2y) = (3x)(3x) + (3x)(-2y) + (-2y)(3x) + (-2y)(-2y)= 9x² - 6xy - 6xy + 4y² = 9x² - 12xy + 4y²。
三. 解答题1. 解方程组:{ x - y = 5,2x + y = 9.解: 方程组可通过消元法求解。
首先将第一条方程两边同乘以 2,得到 2x - 2y = 10。
然后将第二条方程与该式相加,消去 y,得到 (2x + y) + (2x - 2y) = 9 + 10即 4x = 19,再除以 4 得 x = 19/4。
将 x 的值代入第一条方程得 (19/4) - y = 5,移项得 y = (19/4) - 5 = 19/4 - 20/4 = -1/4。
高中数学必修第一册期中复习【过关测试】解析版
期中复习过关测试(考试时间:120分钟试卷满分:150分)一、填空题(本大题共有12题,满分54分,第1∙6题每题4分,第7∙12题每题5分)考生应在答题 纸的相应位置直接填写结果.1. ___________________________________________________________ 若全集U = {1,2,3,4,5,6}, A = {2,4,5}, B = {l,2,5},则G(AUB)= __________________ ,【答案】{3,6}【分析】先计算出AU 再利用补集的定义可求出集合C(AUB).【详解】由题意可得AUB = {1,2,4,5},因此,Q r (AUB) = {3,6},故答案为{3,6}.【点睛】本题考查集合的并集与补集的运算,解题的关键就是集合并集与补集的定义,考查 计算能力,属于基础题.Z 、 ax 2+x-∖(x>2) 2. 函数f(x) = ∖ I Z "小 ____________________________ 是R 上的单调递减函数,则实数Q 的取值范围是 _______________________________________ ・7 -x + l(x≤2)1【答案】【分析】根据函数单调性定义,即可求得实数d 的取值范围.Z Xax 2 +x-l(x > 2)【详解】因为函数/(χ) = i Ir 是R 匕的单调递减函数-x + ∖(x≤2) a <0 -丄≤22a4d + 2-l≤-2 + l解不等式组可的≤冷1BIJ a ∈ Y),—一2」所以选A【点睛】本题考查了分段函数单调性的应用,根据函数单调性求参数的取值范围,属丁-中档题.3.___________________________________________________________ 若不等式√+6∕Λ-+l≥0对一切Xe(O,I恒成立,则d的最小值是_____________________ .【分析】分离参数,将问题转化为求函数/(X) = -X-丄最大值的问题,则问题得解.[详解】不等式X2 +ax + ∖≥0对一切* 4°弓成立» 等价X—丄対「•一切兀』0丄成立.设fW = -X—丄,则α ≥ /(^)maχ ・X∣λ]为函数/(Λ∙)在区间(°,# I ••是増函数,/ 1A 5 5 S所ma=f - =_亍所以α≥--,所以α的最小值为-巳•\ 2 7 2 2 2故答案为:一一・2【点睛】本题考查由一元二次不等式恒成立求参数范围的问题,属基础题.4.__________________________________________________ 若正数x,y满足x÷3y = 5x)∖则3x + 4y的最小值是 _________________________________ .=5 ♦ 【答案】51 3试题分析:∙∙∙X + 3y = 5ΛJ ∖x>O.y >0,Λ-+ —= 1,Jy JX3 V 1? V 仲仅际二盏即Z 円时取等号.考点:基本不等式5若不等式曲+&—訂。
22版高中数学A版必修第一册练习--第一章 集合与常用逻辑用语 第二章 一元二次函数、方程和不等式
第一章集合与常用逻辑用语第二章一元二次函数、方程和不等式(全卷满分150分,考试用时120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021北京东城高一上期末)已知集合A={-1,0,1},集合B={x∈N|x2=1},那么A∩B=()A.{1}B.{0,1}C.{-1,1}D.{-1,0,1}2.(2021湖北武汉部分高中高一上期末联考)已知p:a≥0;q:∀x∈R,x2-ax+a>0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021北京顺义高一上期末)已知实数a,b在数轴上对应的点如图所示,则下列式子中正确的是()A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b4.(2021陕西宝鸡高三上期末)已知集合A={x|x2+2x-8>0},B={x|x-a>0},若B⊆A,则实数a的取值范围为 ()A.a≥2B.a>2C.a≥4D.a>45.(2021山西大学附属中学高一上期中)已知命题“∃x∈R,使2x2+(a-1)x+12≤0”是假命题,则实数a的取值范围是()A.-3≤a≤1B.-3<a<1C.a≤-1或a≥3D.-1<a<36.(2021浙江嘉兴高一上期末)已知a>0,b>0,且2a+1b =1,则2a+b的最小值为()A.2√2B.3C.8D.97.(2021全国八省(市)高三上联考)关于x的方程x2+ax+b=0,有下列四个命题:①x=1是该方程的根;②x=3是该方程的根;③该方程两根之和为2;④该方程两根异号.如果只有一个是假命题,则该命题是()A.①B.②C.③D.④8.(2021浙江丽水五校高一上检测)已知关于x的不等式a(x+1)(x-3)+1>0(a≠0)的解集是{x|x1<x<x2}(x1<x2),则下列结论中一定错误的是 ()A.x1+x2=2B.x1x2<-3C.x2-x1>4D.-1<x1<x2<3二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.(2021福建福州四十中、十中高一上期末联考) 下列结论正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0B.不等式x2-4x+5>0的解集为RC.“x>1”是“(x-1)(x+2)>0”的充分不必要条件D.∀x∈R,√x2=x10.(2021重庆育才中学高一上期中)下列不等式中一定成立的是()A.a3+b3≥a2b+ab2(a,b∈R)B.x2+3>2x(x∈R)C.y=x2+2x2-1≥2√2+1D.a2+b2≥2(a-b-1)11.(2021福建龙溪高一上期中)设全集U={x|x>0},集合M={x|y=√x-1},N={y|y=x2+2},则下列结论正确的是()A.M∩N={x|x>2}B.M∪N={x|x>1}C.(∁U M)∪(∁U N)={x|0<x<2}D.(∁U M)∩(∁U N)={x|0<x<1}12.(2021湖南益阳高二上期末)若a>0,b>0,且a+b=4,则下列不等式成立的是()A.√ab≤2B.a2+b2≥8C.1a +1b≥1 D.0<1ab≤14三、填空题(本题共4小题,每小题5分,共20分)13.(2021上海洋泾中学高一上期中)已知关于x的不等式组{x2-2x-8>0,2x2+(2k+7)x+7k<0仅有一个整数解,则实数k的取值范围为.14.(2021山东烟台高一上期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方的子集,则称两个集合构成“蚕食”.已知集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为.15.(2021四川成都树德中学高二阶段性测试)若关于x的不等式ax2>-ax-1对任意实数x都成立,则实数a的取值范围是.16.(2021湖北荆州沙市中学高一上期中)已知正数x,y满足2x+y=xy+a,当a=0时,x+y的最小值为;当a=-2时,x+y的最小值为.(第一空2分,第二空3分)四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021广东深圳高一上期中)已知集合A={x|a<x<a+1},B={x||x+1|≤1}.(1)若a=1,求A∪B;(2)在①A∪B=B,②(∁R B)∩A=⌀,③B∪(∁R A)=R这三个条件中任选一个作为已知条件,求实数a的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)18.(12分)(2021重庆彭水第一中学高一上期中)已知命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题.(1)求实数m的取值集合A;(2)若q:-4<m-a<4是¬p的充分不必要条件,求实数a的取值范围.19.(12分)(2020内蒙古包头高一下期末)已知x>y>0,z>0,求证:(1)zx <zy ;(2)(x+y)(x+z)(y+z)>8xyz.20.(12分)(2020山东青岛高一上期中)(1)若关于x的不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},求a,b的值;(2)解关于x的不等式ax2-3x+2>5-ax(a∈R).21.(12分)(2021北京丰台高三上期中)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地x2+40x+3 200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.表示为y=12(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种:①每日进行定额财政补贴,金额为2 300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么?22.(12分)(2021山东潍坊安丘实验中学、青云学府高一上联考)已知关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.(1)若M=R,求k的取值范围;(2)若存在两个不相等的负实数a、b,使得M={x|x<a或x>b},求实数k的取值范围;(3)是否存在实数k,满足“对于任意n∈N*,都有n∈M,对于任意的负整数m,都有m∉M”?若存在,求出k的值;若不存在,说明理由.答案全解全析1.A 由题意,集合A ={-1,0,1},B ={x ∈N|x 2=1}={1},所以A ∩B ={1}. 故选A .2.B ∵q :∀x ∈R,x 2-ax +a >0, ∴Δ=(-a )2-4a <0,解得0<a <4. 设A ={a |a ≥0},B ={a |0<a <4}, ∵B ⫋A ,∴p 是q 的必要不充分条件. 故选B .3.A 对于选项A,由题中数轴可得b <a <0,不等号两边同乘1ab ,可得1b >1a ,A 正确; 对于选项B,∵b <a <0,∴a 2<b 2,B 错误; 对于选项C,∵b <a ,∴b -a <0,C 错误;对于选项D,∵b <0,a <0,∴|b |a =-ab ,|a |b =-ab ,即|b |a =|a |b ,D 错误. 故选A .4.A 易得A ={x |x >2或x <-4},因为B ={x |x >a },所以若B ⊆A ,则a ≥2. 故选A .5.D ∵命题“∃x ∈R,使2x 2+(a -1)x +12≤0”是假命题,∴2x 2+(a -1)x +12>0对x ∈R 恒成立,即方程2x 2+(a -1)x +12=0无实根, ∴Δ=(a -1)2-4×2×12<0,解得-1<a <3,故实数a 的取值范围是-1<a <3. 故选D .6.D 2a +b =(2a +b)(2a +1b )=5+2ab +2ab ≥5+2√2ab ·2ab =9,当且仅当{ab =1,2a +1b =1,即{a =13,b =3时取等号, ∴2a+b 的最小值为9.故选D .7.A 若①是假命题,则②③④是真命题,则关于x 的方程x 2+ax +b =0的一根为3,由于两根之和为2,则该方程的另一根为-1,两根异号,符合题意;若②是假命题,则①③④是真命题,则x =1是方程x 2+ax +b =0的一个根,由于两根之和为2,则另一个根也为1,两根同号,不符合题意;若③是假命题,则①②④是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根同号,不符合题意;若④是假命题,则①②③是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根之和为4,不符合题意.综上所述,命题①为假命题. 故选A .8.D 由不等式a (x +1)(x -3)+1>0(a ≠0)的解集是{x |x 1<x <x 2}(x 1<x 2), 可知a <0,且a (x +1)(x -3)+1=0(a ≠0)的两根为x 1、x 2,不妨设y =a (x +1)(x -3)(a ≠0),则y =a (x +1)(x -3)(a ≠0)的图象与直线y =-1的交点的横坐标为x 1、x 2,由图易得x 1<-1,x 2>3,因此D 中结论一定错误. 故选D .9.ABC 易知选项A 正确;对于选项B,x 2-4x +5=(x -2)2+1>0的解集为R,故正确; 对于选项C,解不等式(x -1)(x +2)>0,得x <-2或x >1, 设A ={x |x >1},B ={x |x <-2或x >1},则A ⫋B ,∴“x >1”是“(x -1)(x +2)>0”的充分不必要条件,故正确; 对于选项D,√x 2=|x |,若x <0,则√x 2≠x ,故错误. 故选ABC .10.BD ∵a 3+b 3-a 2b -ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ),(a -b )2≥0,a +b 的符号不定,∴a 3+b 3与a 2b +ab 2的大小关系不确定,A 错误; ∵x 2-2x +3=(x -1)2+2≥2>0, ∴x 2+3>2x ,B 正确;y =x 2+2x 2-1=x 2-1+2x 2-1+1,当x 2-1<0时,y <0,C 错误;a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故a 2+b 2≥2(a -b -1),D 正确. 故选BD .11.CD ∵M ={x |y =√x -1}={x |x ≥1},N ={y |y =x 2+2}={y |y ≥2}, ∴M ∩N ={x |x ≥2},M ∪N ={x |x ≥1},故A,B 均不正确; 易得∁U M ={x |0<x <1},∁U N ={y |0<y <2},∴(∁U M )∪(∁U N )={x |0<x <2},(∁U M )∩(∁U N )={x |0<x <1},故C,D 均正确. 故选CD .12.ABC 对于选项A,由基本不等式可得√ab ≤a+b 2=2,当且仅当a =b =2时,等号成立,A 正确;对于选项B,2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=16,∴a 2+b 2≥8,当且仅当a =b =2时,等号成立,B 正确; 对于选项C,1a +1b=a+b 4(1a+1b)=14(b a+a b+2)≥14(2√b a·ab+2)=1,当且仅当a =b =2时,等号成立,C正确;对于选项D,由A 可知√ab ≤2,即0<ab ≤4,∴1ab ≥14,D 错误. 故选ABC .13.答案 -5≤k <3或4<k ≤5解析 由不等式x 2-2x -8>0,解得x <-2或x >4, 解方程2x 2+(2k +7)x +7k =0,得x 1=-72,x 2=-k ,当-k <-72,即k >72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-k <x <-72},若不等式组只有一个整数解,则-5≤-k <-4,解得4<k ≤5;当-k >-72,即k <72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-72<x <-k}, 若不等式组只有一个整数解,则-3<-k ≤5,解得-5≤k <3. 综上可得,实数k 的取值范围是-5≤k <3或4<k ≤5. 14.答案 {0,12,2}解析 当a =0时,B =⌀,此时B ⫋A ,满足题意;当a >0时,B ={-√2a ,√2a },则集合A ,B 只能构成“蚕食”, 所以-√2a =-1或√2a =2, 解得a =2或a =12.故a 的取值集合为{0,12,2}.15.答案 0≤a <4解析 当a =0时,不等式ax 2>-ax -1即0>-1,对任意实数x 都成立,符合题意; 当a ≠0时,关于x 的不等式ax 2>-ax -1,即ax 2+ax +1>0对任意实数x 都成立, 等价于{a >0,Δ=a 2-4a <0,解得0<a <4.综上所述,a 的取值范围为0≤a <4. 16.答案 3+2√2;7解析 当a =0时,2x +y =xy ,则2y +1x =1, ∴x +y =(x +y )·(2y+1x)=3+2x y+yx≥3+2√2x y·yx=3+2√2,当且仅当x =1+√2,y =2+√2时等号成立,故此时x +y 的最小值为3+2√2.当a =-2时,2x +y =xy -2,若x =1,则等式不成立,故x ≠1,则y =2(x+1)x -1>0,∴x >1,x +y =x +2(x+1)x -1=x +2+4x -1=x -1+4x -1+3≥2√4x -1·(x -1)+3=4+3=7,当且仅当x =3时取等号,此时x +y 的最小值为7.17.解析 (1)由题意得A ={x |1<x <2},B ={x ||x +1|≤1}={x |-2≤x ≤0}, (3分) ∴A ∪B ={x |-2≤x ≤0或1<x <2}. (5分)(2)选①.∵A ∪B =B ,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选②.∵(∁R B )∩A =⌀,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选③.∵B ∪(∁R A )=R,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0,(8分)解得-2≤a≤-1.(9分)∴实数a的取值范围为{a|-2≤a≤-1}. (10分)18.解析(1)∵命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题, ∴¬p:“∀x∈R,不等式x2-2x-m>0恒成立”是真命题, (1分)∴方程x2-2x-m=0无实根, (3分)∴Δ=4+4m<0,解得m<-1, (5分)即实数m的取值集合A={m|m<-1}.(6分)(2)∵-4<m-a<4,即a-4<m<a+4,∴q:a-4<m<a+4, (8分)由(1)可知¬p:m<-1,若q:a-4<m<a+4是¬p的充分不必要条件,则4+a≤-1,解得a≤-5.(11分)故实数a的取值范围是{a|a≤-5}.(12分)19.证明(1)因为x>y>0,所以xy>0,1xy>0, (2分)于是x·1xy >y·1xy,即1y>1x, (4分)由z>0,得zx <zy.(6分)(2)因为x>0,y>0,z>0,所以x+y≥2√xy,x+z≥2√xz,y+z≥2√yz, (9分) 所以(x+y)(x+z)(y+z)≥2√xy×2√xz×2√yz=8xyz, (10分)当且仅当x=y=z时,等号同时成立, (11分)又x>y,所以(x+y)(x+z)(y+z)>8xyz.(12分)20.解析(1)∵不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},∴a>0,且1,b是一元二次方程ax2-3x+2=0的两个实数根, (2分)∴{1+b=3a,1×b=2a,a>0,解得{a=1,b=2.(5分)(2)不等式ax2-3x+2>5-ax等价于ax2+(a-3)x-3>0,即(ax-3)(x+1)>0.(6分)当a=0时,原不等式的解集为{x|x<-1}; (7分)当a≠0时,方程(ax-3)(x+1)=0的两根为x1=-1,x2=3a,当a>0时,原不等式的解集为{x|x<-1或x>3a}, (8分)当a<0时,①若3a >-1,即a<-3,则原不等式的解集为{x|-1<x<3a}, (9分)②若3a <-1,即-3<a<0,则原不等式的解集为{x|3a<x<-1}, (10分)③若3a=-1,即a=-3,则原不等式的解集为⌀.(11分)综上所述,当a>0时,原不等式的解集为{x|x<-1或x>3a};当a=0时,原不等式的解集为{x|x<-1};当-3<a<0时,原不等式的解集为{x|3a<x<-1};当a=-3时,原不等式的解集为⌀;当a<-3时,原不等式的解集为{x|-1<x<3a}. (12分)21.解析(1)由题意可知,日加工处理每吨厨余垃圾的平均成本为yx =x2+3200x+40,x∈[70,100].(2分)又x2+3200x+40≥2√x2·3200x+40=2×40+40=120,当且仅当x2=3200x,即x=80时,等号成立, (3分)所以该企业日加工处理量为80吨时,日加工处理每吨厨余垃圾的平均成本最低.(4分) 因为100<120,所以此时该企业处理1吨厨余垃圾处于亏损状态.(5分)(2)若该企业采用第一种补贴方案,设该企业每日获利为y1元,由题可得y 1=100x-(12x2+40x+3200)+2 300=-12x2+60x-900=-12(x-60)2+900.(7分)因为x∈[70,100],所以当x=70时,企业获利最大,最大利润为850元.(8分) 若该企业采用第二种补贴方案,设该企业每日获利为y2元,由题可得y 2=130x-(12x2+40x+3200)=-12x2+90x-3 200=-12(x-90)2+850. (10分)因为x∈[70,100],所以当x=90时, 企业获利最大,最大利润为850元.(11分)答案示例1:因为两种方案所获最大利润相同,所以选择两种方案均可.(12分)答案示例2:因为两种方案所获最大利润相同,但第一种补贴方案只需要企业日加工处理量为70吨即可获得最大利润,所以选择第一种补贴方案.(12分)答案示例3:因为两种方案所获最大利润相同,但第二种补贴方案能够为社会做出更大的贡献,所以选择第二种补贴方案.(12分)22.解析(1)当k2-2k-3=0时,k=-1或k=3,若k=-1,则原不等式化为1>0,恒成立,满足题意,若k=3,则原不等式化为4x+1>0,解得x>-14,不满足题意,舍去.(2分)当k2-2k-3≠0时,则{k 2-2k -3>0,(k +1)2-4(k 2-2k -3)<0, 解得k >133或k <-1.综上可知,k 的取值范围为k ≤-1或k >133. (4分)(2)根据不等式解集的形式可知k 2-2k -3>0,解得k >3或k <-1. ∵不等式解集的两个端点就是对应方程的实数根,∴(k 2-2k -3)x 2+(k +1)x +1=0(k ∈R)有两个不相等的负实数根, (6分) ∴{ (k +1)2-4(k 2-2k -3)>0,-k+1k 2-2k -3<0,1k 2-2k -3>0,解得3<k <133, ∴k 的取值范围为3<k <133. (8分)(3)存在.根据题意可得M ={x |x >t },-1≤t <1, 当k 2-2k -3=0时,解得k =3或k =-1,若k =-1,则原不等式为1>0,恒成立,不满足条件,若k =3,则原不等式的解集是{x|x >-14},满足条件; (10分)当k 2-2k -3>0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件; 当k 2-2k -3<0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件. 综上,满足条件的k 的值为3. (12分)。
高一数学必修一期中备考综合测试01(A卷)(解析版).docx
班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
2020-2021高中必修一数学上期中试卷带答案
2020-2021高中必修一数学上期中试卷带答案一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.函数2ln(1)y 34x x x +=--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 4.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 5.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件6.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .7.函数()111f x x =--的图象是( )A .B .C .D .8.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =9.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞10.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -=B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-11.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .12.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6二、填空题13.函数2()log 1f x x =-的定义域为________.14.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.15.设,则________16.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 17.若4log 3a =,则22a a -+= .18.设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .19.关于函数()2411x x f x x -=--的性质描述,正确的是__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.20.已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的零点的集合为 .三、解答题21.已知函数()()2,,f x ax bx c a b c R =++∈.(1)若0a <,0b >,0c且()f x 在[]0,2上的最大值为98,最小值为2-,试求a ,b 的值;(2)若1c =,102a <<,且()2f x x ≤对任意[]1,2x ∈恒成立,求b 的取值范围.(用a 来表示)22.已知函数()()log 0,1a f x x a a =>≠,且()()321f f -=. (1)若()()3225f m f m -<+,求实数m 的取值范围; (2)求使3227log 2f x x ⎛⎫-= ⎪⎝⎭成立的x 的值. 23.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?24.已知定义域为R 的函数12()22x x bf x +-+=+是奇函数. (1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.25.已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.26.已知函数f (x )=log a (x+1)-log a (1-x ),a>0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a>1时,求使f (x )>0的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C4.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算5.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误. 6.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象, 把11y x =--的图象向上平移一个单位得到()111f x x =--的图象, 故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.8.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在yg x 上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.9.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞),令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.11.B解析:B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.12.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.二、填空题13.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.14.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.15.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-解析:-1 【解析】 【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】,,所以,故答案为-1.【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.16.7【解析】【分析】【详解】设则因为所以故答案为7解析:7 【解析】 【分析】 【详解】 设, 则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7.17.【解析】【分析】【详解】∵∴∴考点:对数的计算 433【解析】 【分析】 【详解】∵4log 3a =,∴4323a a =⇒=24223333a-+== 考点:对数的计算18.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与解析:(1)-1,(2)112a ≤<或2a ≥. 【解析】 【分析】 【详解】①1a =时,()()()2,1{42, 1.x a x f x x a x a x -<=--≥,函数()f x 在(,1)-∞上为增函数且()1f x >-,函数()f x 在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为-1;(2)①若函数()2xg x a =-在1x <时与x 轴有一个交点,则0a >, (1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以211a a ≥<⇒且112a ≤<; ②若函数()2xg x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当当2a ≥时()g x 与x 轴有无交点,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a ≥.考点:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解题.利用函数图象研究函数的单调性,求出函数的最值,涉计参数问题,针对参数进行分类讨论.19.①②③【解析】【分析】由被开方式非负和分母不为0解不等式可得f (x )的定义域可判断①;化简f (x )讨论0<x≤1﹣1≤x <0分别求得f (x )的范围求并集可得f (x )的值域可判断②;由f (﹣1)=f (解析:①②③ 【解析】 【分析】由被开方式非负和分母不为0,解不等式可得f (x )的定义域,可判断①;化简f (x ),讨论0<x ≤1,﹣1≤x <0,分别求得f (x )的范围,求并集可得f (x )的值域,可判断②;由f (﹣1)=f (1)=0,f(x)不是增函数,可判断④;由奇偶性的定义得f (x )为奇函数,可判断③. 【详解】①,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得﹣1≤x ≤1且x ≠0,可得函数()11f x x =--的定义域为[﹣1,0)∪(0,1],故①正确;②,由①可得f (x ,即f (x ,当0<x ≤1可得f (x 1,0];当﹣1≤x <0可得f (x [0,1).可得f (x )的值域为(﹣1,1),故②正确;③,由f (x )=﹣2||1x xx -的定义域为[﹣1,0)∪(0,1],关于原点对称,f (﹣x )=2||1x x x-=﹣f (x ),则f (x )为奇函数,即有f (x )的图象关于原点对称,故③正确.④,由f (﹣1)=f (1)=0,则f (x )在定义域上不是增函数,故④错误; 故答案为:①②③ 【点睛】本题考查函数的性质和应用,主要是定义域和值域的求法、单调性的判断和图象的特征,考查定义法和分类讨论思想,以及化简运算能力和推理能力,属于中档题.20.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;三、解答题21.(1)2,3a b =-=;(2) 当104a <≤时,5212a b a --≤≤-;当1142a <<时,221ab a -≤≤-.【解析】 【分析】(1)求得二次函数的对称轴,根据对称轴和区间的位置关系,分类讨论,待定系数即可求得,a b ;(2)对参数a 进行分类讨论,利用对勾函数的单调性,求得函数的最值,即可容易求得参数范围. 【详解】(1)由题可知2y ax bx =+是开口向下,对称轴为02ba->的二次函数, 当22ba-≥时,二次函数在区间[]0,2上单调递增, 故可得0min y =显然不符合题意,故舍去; 当122b a ≤-<,二次函数在0,2b a ⎛⎫- ⎪⎝⎭单调递增,在,22b a ⎛⎫- ⎪⎝⎭单调递减,且当0x =时,取得最小值,故0min y =,不符合题意,故舍去; 当012b a <-<时,二次函数在2x =处取得最小值,在2bx a=-时取得最大值. 则422a b +=-;29228b b a b a a ⎛⎫⎛⎫⨯-+⨯-= ⎪ ⎪⎝⎭⎝⎭,整理得292b a -=;则24990b b --=,解得3b =或34b =-(舍), 故可得2a =-.综上所述:2,3a b =-=.(2)由题可知()21f x ax bx =++,因为()2f x x≤对任意[]1,2x ∈恒成立,即12ax b x++≤对任意[]1,2x ∈恒成立, 即122ax b x-≤++≤对任意[]1,2x ∈恒成立, 令()1g x ax b x=++,则()2max g x ≤,且()2min g x ≥-.因为12a <<> 2≥,即104a <≤时, ()g x 在区间[]1,2单调递减,故()()11max g x g a b ==++,()()1222min g x g a b ==++ 则112,222a b a b ++≤++≥-, 解得51,22b a b a ≤-≥--.此时,()5721022a a a ⎛⎫----=--< ⎪⎝⎭,也即5212a a --<-, 故5212a b a --≤≤-.2<<,即1142a <<时, ()g x 在⎛ ⎝单调递减,在2⎫⎪⎭单调递增.()2min g x g b ==≥-,即2b ≥-又因为()11g a b =++,()1222g a b =++, 则()()11202g g a -=-+>, 故()g x 的最大值为()11g a b =++, 则12a b ++≤,解得1b a ≤-,此时()())2213140a a ---=-=-<,故可得21b a -≤≤-. 综上所述: 当104a <≤时,5212a b a --≤≤-;当1142a <<时,21b a -≤≤-. 【点睛】本题考查二次函数动轴定区间问题的处理,以及由恒成立问题求参数范围,涉及对勾函数的单调性,属综合中档题. 22.(1)2,73⎛⎫⎪⎝⎭;(2)12-或4.【解析】 【分析】(1)先利用对数运算求出32a =,可得出函数()y f x =在其定义域上是增函数,由()()3225f m f m -<+得出25320m m +>->,解出即可;(2)由题意得出272x x -=,解该方程即可. 【详解】(1)()log a f x x =,则()()332log 3log 2log 12a a af f -=-==,解得32a =,()32log f x x ∴=是()0,∞+上的增函数,由()()3225f m f m -<+,得25320m m +>->,解得273m <<. 因此,实数m 的取值范围是2,73⎛⎫ ⎪⎝⎭; (2)()332227log log 2f x x x ⎛⎫=-= ⎪⎝⎭,得272x x -=,化简得22740x x --=,解得4x =或12x =-.【点睛】本题考查对数运算以及利用对数函数的单调性解不等式,在底数范围不确定的情况下还需对底数的范围进行分类讨论,同时在解题时还应注意真数大于零,考查运算求解能力,属于中等题.23.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元 【解析】设房屋地面的长为米,房屋总造价为元.24.(1) 1b = (2) 减函数,证明见解析;(3) (,1)-∞-. 【解析】 【分析】(1)利用奇函数的性质令(0)0f =,求解b 即可. (2)利用函数的单调性的定义证明即可.(3)利用函数是奇函数以及函数的单调性转化不等式为代数形式的不等式,求解即可. 【详解】(1)∵()f x 在定义域R 上是奇函数, 所以(0)0f =,即102ba-+=+,∴1b =, 经检验,当1b =时,原函数是奇函数. (2)()f x 在R 上是减函数,证明如下:由(1)知11211()22221x x xf x +-==-+++,任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, ∵函数2xy =在R 上是增函数,且12x x <, ∴12220x x -<,又()()1221210xx++>, ∴()()210f x f x -<,即()()21f x f x <, ∴函数()f x 在R 上是减函数.(3)因()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)f kx f x >--,由(2)知()f x 在R 上是减函数,由上式推得212kx x <-, 即对任意1,32x ⎡⎤∈⎢⎥⎣⎦,有212xk x-<恒成立, 由2212112x x x x -⎛⎫=-⋅ ⎪⎝⎭, 令1t x =,1,23t ⎡⎤∈⎢⎥⎣⎦,则可设2()2g t t t =-,1,23t ⎡⎤∈⎢⎥⎣⎦, ∴min ()(1)1g t g ==-,∴1k <-,即k 的取值范围为(,1)-∞-. 【点睛】本题考查函数的单调性以及函数的奇偶性的应用,考查函数与方程的思想,是中档题. 25.(1)a=1,b=0;(2) (],0-∞. 【解析】 【分析】(1)依据题设条件建立方程组求解;(2)将不等式进行等价转化,然后分离参数,再换元利用二次函数求解. 【详解】(1)()()2g x a x 11b a =-++-,因为a 0>,所以()g x 在区间[]23,上是增函数, 故()()21{34g g ==,解得1{a b ==. (2)由已知可得()12=+-f x x x ,所以()20-≥x f kx 可化为12222+-≥⋅x x x k , 化为2111+222-⋅≥x x k (),令12=x t ,则221≤-+k t t ,因[]1,1∈-x ,故1,22⎡⎤∈⎢⎥⎣⎦t , 记()221=-+h t t t ,因为1,22⎡⎤∈⎢⎥⎣⎦t ,故()0=min h t ,所以k 的取值范围是(],0∞-. 【点睛】(1)本题主要考查二次函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力,(2)本题的关键有两点,其一是分离参数得到2111+222-⋅≥x x k (),其二是换元得到221≤-+k t t ,1,22⎡⎤∈⎢⎥⎣⎦t . 26.(1){}11x x -<<(2)函数()f x 为奇函数,证明见解析(3){}01x x << 【解析】 【分析】(1)根据题意,求函数定义域结合对数函数真数大于零得到关于x 的不等式组,求解即可得出答案。
普通高中数学必修一期中测试题(含答案)
普通高中数学必修一期中测试题(含答案)普通高中数学必修一期中测试题(含答案)一、选择题1. 已知函数 f(x) = 2x - 3,求 f(4) 的值。
A. -5B. 1C. 5D. 82. 某数的平方根与其本身之和等于20,求该数。
A. 5B. 6C. 10D. 163. 设 a、b 为正整数,且 a > b,下列四个不等式中,哪个一定成立?A. a + b > a - bB. a + b > a * bC. a - b > a * bD. a - b > a + b4. 若 a、b 是两个互异的不等于 0 的实数,下列四个等式中,哪个一定成立?A. |a - b| = |b - a|B. a * b = b * aC. a + b = b + aD. a^2 = b^25. 若一组数据的方差为 0,那么这组数据的所有元素将是相等的。
正确或错误?二、填空题1. 在正方形 ABCD 中,AE 是 CD 的中点,若 AC 的长度为 12cm,则△AED 的面积为 _______ 平方厘米。
2. 若直线 y = -2x + 6 与 y = 3x + b 在第一象限内的交点的横坐标相同,那么 b 的值为 _______。
3. 若直线 2x + y - 4 = 0 与直线 x - 3y - 2 = 0 的交点坐标为 (1, 1),那么这两条直线的夹角为 _______ 度。
三、计算题1. 若a = 2 + √3,b = 3 - √3,求 ab 的值。
2. 已知函数 f(x) = x^2 + 3x - 4,求 f(3) + f(-1) 的值。
3. 化简以下分式,结果写成最简形式:(4x^3 + 12x^2 + 8x) ÷ (2x^2 + 4x)。
四、解答题1. 现有一长方形花坛,长与宽的比为 3:2。
如果长方形的周长为50m,求长方形的长和宽各是多少米。
解:设长为 3x 米,宽为 2x 米,则有 2(3x + 2x) = 50。
高中数学必修一第一章测试题
高中数学必修一第一章测试题一、选择题(每题4分,共20分)1. 下列哪个选项是函数y=2x+3的定义域?A. x∈RB. x>3C. x<-1D. x∈Z2. 函数f(x)=x^2+2x的对称轴方程是:A. x=-1B. x=1C. x=2D. x=-23. 若a、b为等差数列的前两项,且a+b=10,则该数列的通项公式为:A. an = 5n - 5B. an = 10n - 5C. an = n + 5D. an = 2n - 14. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求g(x)的极值点。
A. x=1, x=2B. x=2, x=3C. x=3, x=4D. x=4, x=55. 已知集合A={1,2,3},B={3,4,5},则A∪B的元素个数是:A. 4B. 5C. 6D. 7二、填空题(每题4分,共20分)6. 若函数h(x)=|x-2|+|x+3|的最小值为M,求M的值。
7. 已知等比数列的前三项分别为a, ar, ar^2,其中r为公比,若a+ar+ar^2=14,求a的值。
8. 函数f(x)=x^4 - 4x^3 + 6x^2 - 4x + 1的图像与x轴有几个交点?9. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
10. 已知一个圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的圆心坐标和半径。
三、解答题(每题10分,共60分)11. 已知函数k(x)=x^3 - 3x^2 - 9x + 5,求k(x)的单调区间。
12. 一个等差数列的前五项和为50,且第六项为20,求该数列的首项a1和公差d。
13. 给定一个二次函数f(x)=ax^2+bx+c,其顶点坐标为(2, -3),且通过点(0, 1),求a, b, c的值。
14. 已知一个圆的方程为x^2 + y^2 = 25,求该圆与直线y=x的交点坐标。
15. 证明:若a, b, c, d是等差数列,且a+b=c+d,则(a+c)^2 =(b+d)^2。
人教版高中数学必修一《对数函数》单元测试及期中测试题
高一数学《对数函数》单元测试题一.选择题1.指数式b c =a (b >0,b ≠1)所对应的对数式是( )A .log c a =bB .log c b =aC .log a b =cD .log b a =c2.已知ab >0,下面四个等式中,正确命题的个数为( )①lg (ab )=lg a +lg b ②lg ba =lg a -lgb ③b a b a lg )lg(212= A .0 B .1 C .2 D .33.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0且a ≠1)的最大值比最小值大1,则底数a 的值为( )A .π2B .2πC .π-2D .2π或π24.已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -5.2log (2)log log a a a M N M N -=+,则N M的值为( )A 、41B 、4C 、1D 、4或16.已知221,0,0x y x y +=>>,且1log (1),log ,log 1ya a a x m n x +==-则等于() A 、m n + B 、m n - C 、()12m n + D 、()12m n -7.已知732log [log (log )]0x =,那么12x -等于( )A 、13 B D8.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称9.函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭ B 、()1,11,2⎛⎫+∞ ⎪⎝⎭ C 、2,3⎛⎫+∞ ⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭10.函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞11.若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<12.2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题.13.对数式log a -2(5-a )=b 中,实数a 的取值范围是__________.14.log 43+log 83)(log 32+log 92)-log 42132=__________.15.满足等式lg (x -1)+lg (x -2)=lg2的x 集合为16. f (x )=)12(log 12+-x a 在(-21,0)上恒有f (x )>0,则a 的取值范围_______. 17.函数f (x )=|lg x |,则f (41),f (31),f (2)的大小关系是__________. 18.函数f (x )=x 2-2ax +a +2,若f (x )在[1,+∞)上为增函数,则a 的取值范围是__________,若f (x )在[0,a ]上取得最大值3,最小值2,则a =__________.19.图中曲线是对数函数y =log a x 的图象,已知a 取C 1,C 2,C 3,C 4四个值,试比较这四个数的大小三、解答题:解答应写出文字说明、证明过程或演算步骤20..求log 2.56.25+lg 1001+ln e +3log 122+的值.21.求下列函数的定义域.(I )x 0327x 1x 1y -+-+= (II )2)2x 3(log y 21+-=22.已知f (x )=x 2+(2+lg a )x +lg b ,f (-1)=-2且f (x )≥2x 恒成立,求a 、b 的值.23. m >1,试比较(lg m )0.9与(lg m )0.8的大小.24.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.25.已知函数.11lg)(xx x f +-=(1)求函数的定义域; (2)讨论函数的奇偶性.第一学期高一数学期中模拟题一、选择题1.已知},1|{},1|{22-==-==x y y N x y x M 那么MN=( )A .∅B .MC .ND .R 2.设集合},2,1,0,2{}2,0,2{},1,0{}1,0,1{-=-⋃=-⋂A A 则满足上述条件的集合A的个数为( ) A .1 B .2 C .3 D .43.设全集R U =,{}2≥=x x M ,{}50<≤=x x N ,则C U (M ∩N )是 ( )A .{}52<≤x xB .{}5≥x xC .{}2<x xD .{}52≥<x x x 或 4.函数]2,0(,122∈-+-=x x x y 的( )A.最大值为0,最小值为-1B.最小值为0,无最大值C.最大值为1,最小值为0D.最大值为0,无最小值5.函数x y a =在[]0,1上的最大值与最小值的和为3,则a =( )A .21 B .2 C .4 D .41 6.函数1)1(0+-+=x x y 的定义域为( ) A.[-1,+∞] B.[-1,0]∪(0,+∞)C.-1,+∞) D.(-∞,-1)7.下列各组函数中,表示同一函数的是 ( )A.2y y == B. y =|x |和y =3x 3 C.2a a log y=2log y x x =和 D. a y=log a x y x =和8.拟定从甲地到乙地通话m 分钟的电话费由f(m)=1.06(0.50×[m]+1)给出,其中m >0,[m]是大于或等于m 的最小整数(如[3]=3,[3.7]=4, [3.1]=4),则从甲地到乙地通话时间为5.5分钟的话费为( )A .3.71B .3.97C .4.24D .4.779.设0<a <1,实数,x y 满足log 0a x y +=,则此方程对应的函数的图像大致形状是( )A B C D10.下列函数中,是奇函数,又在定义域内为增函数的是( ) (A ) x y ⎪⎭⎫ ⎝⎛=21 (B ) x y 1= (C ) y=x 3 (D ) x y 3log = 11.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 212.对于10<<a ,给出下列四个不等式①)11(log )1(log a a a a +<+ ②)11(log )1(log a a a a +>+ ③a a a a 111++< ④a a a a 111++>其中成立的是( ) A .①与③B .①与④C .②与③D .②与④.二、填空题 13.设集合A={5,l og2(a +3)},集合B={a ,b }.若A ∩B={2},则A ∪B= 。
高中数学必修一测试题(含答案)
数学必修一测试题一、选择题(本大题共14小题,共70.0分)1.已知集合A={x|x<1},B={x|3x<1},则()2.如图所示,I为全集,M,P,S为I的子集,则图中阴影部分所表示的集合为()3.为为4.函数的图象是()5.命题“若x2<1,则-1<x<1”的逆否命题是()A. 若x2≥1,则x≥1或x≤-1B. 若-1<x<1,则x2<1C. 若x>1或x<-1,则x2>1D. 若x≥1或x≤-1,则x2≥16.一个扇形的面积为3π,弧长为2π,则这个扇形中心角为()7.若实数a,b满足a>b>1,m=log a(log a b),m,n,l的大小关系为()A. m>l>nB. l>n>mC. n>l>mD. l>m>n8.函数y=A sin(ωx+φ)(A>0,|φ|<π如图所示,则()A. y=2sin(2xB. y=2sin(2x)C. y=2sin(x)D. y=2sin(x9.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是()10.A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C-cos C)=0,a=2,c=C=()11.要得到函数的图象,只需将函数的图象上所有的A. 横坐标伸长到原来的2B. 横坐标伸长到原来的2C.D.12.在区间上的最大值与最小值之和为10,则aB. 313.对函数( )A.B. 函数y=sin2xC. f(x)D. f(x)的一个对称中心14.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1-x)的解集是()A. +∞)B. (-∞C. (-∞,0)∪(0D. (0二、填空题(本大题共6小题,共30.0分)15.将函数f(x)(2x-11个单位长度,得到函数g(x)的图象,则函数g(x)具有性质______.(填入所有正确性质的序号)x②图象关于y轴对称;③最小正周期为π;0)对称;⑤在(0)上单调递减.16.等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=______.17.已知f(x)是定义在R上的偶函数,并满足f(x+2)1≤x<2时,f(6.5)=______.18.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.19.______ 条件填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一20.某班进行集体活动,为活跃气氛,班主任要求班上60名同学从唱歌、跳舞、讲故事三个节目中至少选择一个节目为大家表演,已知报名参加唱歌、跳舞、讲故事的人数分别为40,20,30,同时参加唱歌和讲故事的有15人,同时参加唱歌和跳舞的有10人,则同时只参加跳舞和讲故事的人数为______.三、解答题(本大题共6小题,共72.0分)21.如图,为加强社区绿化建设,欲将原有矩形小花坛ABCD适当扩建成一个较大的矩形花坛AMPN.要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.若设DN=x,则DN为多少时,矩形花坛AMPN的面积最小?并求出最小值.22.(Ⅰ)函数f(x)的最小正周期为______;(将结果直接填写在答题卡的相应位置上)(Ⅱ)求函数f(x23.已知命题p a>0)表示双曲线,命题q示焦点在y轴上的椭圆.(1)若命题q为真命题,求m的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.24.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.25.如图为函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|x∈R)的部分图象.(1)求函数解析式;(2)求函数f(x)的单调递增区间;(3)若方程f(x)=m m的取值范围.26.如图,在平面四边形ABCD中,AD=1,CD=2,AC(Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD∠CBA求BC的长.答案和解析1.【答案】A【解析】【分析】本题考查交集和并集的求法,考查指数不等式的解法,属于基础题.先求出集合B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误,故选A.2.【答案】C【解析】【分析】本题主要考查Venn图的识别和判断,正确理解阴影部分与已知中三个集合的关系,是解答的关键.根据Venn图分析阴影部分与集合M,P,S的关系,进而可得答案.【解答】解:由已知中的Venn图可得:阴影部分的元素属于M,属于P,但不属于S,故阴影部分表示的集合为(M∩P)∩(C I S),故选C.3.【答案】B【解析】【分析】本题考查导函数的图象的应用,函数的极值点的判断,考查计算能力,属于基础题. 利用导函数的图象判断极值点,推出结果即可.【解答】,函数是减函数,x∈(-3,1)时,,函数是增函数,的极小值点,故排除A,又x∈(1,2.5)时,所以x=1为f(x)的极大值点,故B正确,C和D,故选B.4.【答案】A【解析】【分析】本题考查函数的作法以及图象变换,属于基础题.先判断出函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,再根据函数图像即可推出结论.【解答】解:由于函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,函数y=lg x的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意,故选A .5.【答案】D【解析】解:原命题的条件是““若x2<1”,结论为“-1<x<1”,则其逆否命题是:若x≥1或x≤-1,则x2≥1.故选:D.根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定.解题时,要注意原命题的结论“-1<x<1”,是复合命题“且”的形式,否定时,要用“或”形式的符合命题.6.【答案】D【解析】解:设这个扇形中心角的弧度数是θ,半径等于r,则由题意得θr=2π,r2=3π,解得r=3,故选:D.由扇形面积公式得θr=2πr2=3π,先解出r值,即可得到θ值.本题考查扇形的面积公式,弧长公式的应用,得到θr=2πr2=3π,是解题的关键,属于基础题.7.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【解答】解:∵实数a,b满足a>b>1,m=log a(log a b∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,01,ba∴m,n,l的大小关系为l>n>m.故选:B.8.【答案】A【解析】【分析】本题考查由y=A sin(ωx+φ)的部分图象确定其解析式,确定各个参数的值是解答的关键,属于基础题.根据已知中的函数y=A sin(ωx+φ)的部分图象,求出满足条件的A,ω,φ值,可得答案.。
高一上学期期中考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一
f
x
x2 1, x 1 ax2 x 2, x 1 的最小值是-1,则
实数 a 的取值范围是( )
A.
,
1 12
B.
0,
1 12
【答案】C
C.
1 12
,
D.
1 6
,
【解析】由已知可得 x 1, f x x2 1, 显然 f (x) 在 , 0 上单调递减,在 0,1 上单调递增,所以 f (x) 在 x 0
期中考测试卷(提升)
一、单选题(每题 5 分,每题只有一个选项为正确答案,8 题共 40 分)
1.(2023 秋·江苏南通·高一校考开学考试)设全集U 2,3, m2 m 4 ,集合 A m, 2 ,ðU A = {3},则 m
()
A. 2
B. 2
C. 2
【答案】A
【解析】由题意集合 A m, 2 , ðU A = {3},
2a 1 2 4 2a 1 2 4 4
当且仅当
4 2a 1
a
2
1 2
,即
a
5 2
,b
10 3
时取得等号.
故选:B
7.(2023 秋·陕西榆林
)定义在 R 上的偶函数
f
x
满足:对任意的
x 1
,
x2
0,
(
x1
x2
),都有
f
x2
x2
f
x1
x1
0
,且
f
3
0
,则不等式 2x
1
f
x
0
的解集是(
)
A.
三、填空题(每题 5 分,4 题共 20 分)
13.(2023 秋·高一单元测试)已知集合 A {x | 0 x a} ,集合 B {x | m2 2 x m2 4},如果命题
人教A版 新教材高中数学必修第一册 期中检测试卷
(1)求 A∪B;
(2)若 A∩C=∅,求 m 的取值范围.
解
(1)∵A={x|x2+ax+b=0}={-1,2},即1Leabharlann a+b=0,a=-1, 解得
4+2a+b=0,
b=-2,
∴B={x|bx2+ax+1=0}={x|-2x2-x+1=0}={x|2x2+x-1=0}= -1,12 , ∴A∪B
C.当 n>0 时,幂函数 y=xn 是增函数 D.当 n<0 时,幂函数 y=xn 在第一象限内函数值随 x 值的增大而减小 答案 BD 解析 由题意,对于 A,例如幂函数 f(x)=x-1 的图象不经过点(0,0),所以不正确; 对于 B,根据幂函数的概念,可得幂函数的图象不可能过第四象限,所以是正确的; 对于 C,例如幂函数 f(x)=x2 在其定义域上不是单调函数,所以不正确; 对于 D,根据幂函数的图象与性质,可得当 n<0 时,幂函数 y=xn 在第一象限内单调递减, 所以是正确的. 故选 BD. 10.下列命题为真命题的是( ) A.∃x∈R,x2-x+1≤0 B.当 ac>0 时,∃x∈R,ax2+bx-c=0 C.|x-y|=|x|-|y|成立的充要条件是 xy≥0 D.“-2<x<3”是“(x2-2|x|+4)(x2-2x-3)<0”的必要不充分条件 答案 BD
答案 D
解析 当 a≤0 时,f(x)在(0,+∞)上单调递减,不满足条件,
当 a>0 时,ax+8x≥2 ax·8x=4 2a(x>0) ,
当且仅当 ax=8x时,函数取得最小值,解得 x=2 a2a,
即 2 a2a=4 (a>0) ,解得 a=12.
5.设 x,y∈R,则“x+y>2”是“x,y 中至少有一个数大于 1”的( )
高一数学必修一测试题及答案
高中数学必修1检测题一、选择题:6*12 1、已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2、已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x ()g x =f(x)=x 与()g x ;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lgyx a y x 则 ( )A .a 3B .a 23C .aD .2a8.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型9、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姜堰中学高一数学期中试题(A 卷)一、填空题1、设集合{}{}35|),(,64|),(-==+-==x y y x B x y y x A ,则=B A ▲ .(){}2,12、已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f ,则=-))2((f f ▲ .43、已知函数3lg )(-+=x x x f 在区间))(1,(Z k k k ∈+上有零点,则=k ▲ .24、函数x y -+=42的值域是 ▲ .[)+∞,25、某班有学生55人,其中音乐爱好者35人,体育爱好者45人,还有4人既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的学生有 ▲ 人. 29; 6、函数)1(log 21-=x y 的定义域是 ▲ .(]2,17、若函数a y =与函数12-=xy 的图象有两个公共点,则a 的取值范围是▲ .()1,08、设125211(),2,log 55a b c ===,则c b a 、、的大小关系为 ▲ .c a b <<9、若()11xmf x e =+-是奇函数,则m 的值为 ▲ .2 10、由于电子技术的飞速发展,计算机的成本不断降低,若每隔三年计算机的价格降为原来的32,则价格为8100元的计算机,9年后价格要降为 ▲ 元。
10.2400元 11、已知1)1()(2++-=mx x m x f 是偶函数,则)(x f 在区间[-2,1]上的最大值与最小值的差等于 ▲ .412、已知)(x f 是定义在[)2,0-∪(]0,2上的奇函数,当0>x右图所示,那么)(x f 的值域是 ▲ .[3,2)(2,3]--13、已知函数()1).f x a =≠若()f x 在区间(]0,1围是 ▲ .()(],01,3-∞⋃.14、设函数[]1,1,)(2-∈-+=x a x ax x f 的最大值为M )(a ,则当[]1,1-∈a 时,M )(a 的最大值为 ▲ .45二、解答题15、已知集合A={x ︱3≤x <7},B={x ︱2<x <10},C={x ︱x <a }第12题⑴ 求A ∪B ,(CuA)∩B⑵ 若A ∩C ≠Φ,求a 的取值范围解:⑴ ∵A={x ︱3≤x <7} ∴CuA={x ︱x <3或x ≥7} 又∵B={x ︱2<x <10} ∴A ∪B={x ︱2<x <10} (CuA)∩B={x ︱2<x <3或7≤x <10} ⑵∵C={x ︱x <a }且A ∩C ≠Φ ∴a >316、计算:(1)3121)6427(5ln 972-)()(++;(2)22)5(lg 5lg 8lg 32)2(lg +⋅+解:(1)4;(2)1。
17、已知某皮鞋厂一天的生产成本C (元)与生产数量n (双)之间的函数关系是n C 504000+=(1)求一天生产1000双皮鞋的成本;(2)如果某天的生产成本是48000元,那么这一天生产了多少双皮鞋?(3)若每双皮鞋的售价为90元,且生产的皮鞋全部售出,试写出这一天的利润P 关于这一天生产数量n 的函数关系式,并求出每天至少生产多少双皮鞋,才能不亏本? 解:(1)54000;(2)880;(3)P =100,0)504000(90≥≥+-n n n 得。
18、已知函数xxx x f -++=2log 11)(3; (1)求)(x f 的定义域; (2)判断)(x f 的单调性并证明;(3)当x 为何值时,21)21(>⎥⎦⎤⎢⎣⎡-x x f 。
解:(1)定义域:()2,0。
(2)单调递减。
证明略 (3)211log 21)1(3=+=f ,所以原不等式等价于)1()]21([f x x f >-, 因为)(x f 在)2,0(上是减函数,则⎪⎪⎩⎪⎪⎨⎧>-<-0)21(1)21(x x x x ,解得:41712104171+<<<<-x x 或 19、已知函数)(x f 是定义在(-∞,0)∪(0,+∞)上的奇函数,当x >0时,x x f 2log )(=(1)求当x <0时,函数)(x f 的表达式;(2) 若)(2)(R x x g x ∈= 集合A={x ︱2)(≥x f },B={x ︱16)(≥x g },试判断集合A 和B 的关系;(3) 已知对于任意的k ∈N ,不等式12+≥k k 恒成立,求证:函数)(x f 的图象与直线x y =没有交点。
解:⑴当x<0时,)(log )(2x x f --= ⑵集合A={x ︱0414<≤-≥x x 或},B={x ︱4≥x },B 是A 的真子集; ⑶根据对称性,只要证明函数f(x)的图象与直线y=x 在x ∈(0,+∞)上无交点即可。
令x ∈(0,+∞),函数x y x y ==221log ,① 当x ∈(0,1]时,212100y y y y <>≤,则, ② 当21211121)](22(y y k y k y N k x k k k <+≥>+≤∈∈+,则,时,, 则在x ∈(0,+∞)上直线y=x 始终在x y 2log =的图象之下方。
综上所述,由于对称性可知,函数f(x)的图象与直线y=x 没有交点。
20、已知R a ∈,函数a x x x f -=)(,(Ⅰ)当a =4时,写出函数)(x f y =的单调递增区间; (Ⅱ)当4=a 时,求)(x f 在区间)29,1(上最值;(Ⅲ)设0≠a ,函数)(x f 在),(n m 上既有最大值又有最小值,请分别求出n m 、的取值范围(用a 表示).20.(Ⅰ)解:当4=a 时,=-=|4|)(x x x f ⎩⎨⎧<-≥-4),4(4),4(x x x x x x由图象可知,单调递增区间为(-∞,2],[4,+∞)(开区间不扣分)(Ⅱ)0)4()(;4)2()(min max ====f x f f x f 。
(Ⅲ)⎩⎨⎧<-≥-=ax x a x ax a x x x f ),(),()(①当0>a 时,图象如右图所示由⎪⎩⎪⎨⎧-==)(42a x x y a y 得2)12(ax +=∴20am <≤,a n a 212+≤< ②当0<a 时,图象如右图所示由⎪⎩⎪⎨⎧-=-=)(42x a x y a y 得a x 2)21(+= ∴a m a <≤+221, 02≤<n a高一数学期中试题(B 卷)一、填空题1、设集合{}{}35|),(,64|),(+-==-==x y y x B x y y x A ,则=B A ▲ .(){}2,1-2、已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f ,则=-))3((f f ▲ .93、已知函数3lg )(-+=x x x f 在区间))(1,(Z k k k ∈+上有零点,则=k ▲ .24、函数x y -+=41的值域是 ▲ .[)+∞,15、某班有学生55人,其中音乐爱好者35人,体育爱好者45人,还有4人既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的学生有 ▲ 人. 29; 6、函数)1(log 21+=x y 的定义域是 ▲ .(]0,1-7、若函数a y =与函数12-=xy 的图象有两个公共点,则a 的取值范围是▲ .()1,08、设51log ,)51(,22251===c b a ,则c b a 、、的大小关系为 ▲ .a b c << 9、若11)(--=x e ax f 是奇函数,则a 的值为 ▲ .-2 10、由于电子技术的飞速发展,计算机的成本不断降低,若每隔三年计算机的价格降为原来的32,则价格为8100元的计算机,9年后价格要降为 ▲ 元。
10.2400元 11、已知1)1()(2++-=mx x m x f 是偶函数,则)(x f 在区间[-2,1]上的最大值与最小值的和等于 ▲ .-212、已知)(x f 是定义在[)2,0-∪(]0,2上的奇函数,当0>x右图所示,那么)(x f 的值域是 ▲ .[3,2)(2,3]--13、已知函数()1).f x a =≠若()f x 在区间(]0,1围是 ▲ .()(],01,3-∞⋃.14、设函数[]1,1,)(2-∈-+=x a x ax x f 的最大值为M )(a ,则当[]1,1-∈a 时,M )(a 的最大值为 ▲ .45二、解答题:15、已知集合A={x ︱3<x ≤7},B={x ︱2<x <10},C={x ︱x <a } ⑴ 求A ∪B ,(CuA)∩B⑵ 若A ∩C ≠Φ,求a 的取值范围解:⑴ ∵A={x ︱3<x ≤7} ∴CuA={x ︱x ≤3或x >7} 又∵B={x ︱2<x <10} ∴A ∪B={x ︱2<x <10} (CuA)∩B={x ︱2<x ≤3或7<x <10}第12题⑵∵C={x ︱x <a }且A ∩C ≠Φ ∴a ≥316、计算:(1)3121)6427(5lg 972-)()(+-;(2)22)5(lg 5lg 8lg 32)2(lg +⋅+。
解:(1)2;(2)1。
17、已知某皮鞋厂一天的生产成本C (元)与生产数量n (双)之间的函数关系是n C 504000+=(1)求一天生产1000双皮鞋的成本;(2)如果某天的生产成本是48000元,那么这一天生产了多少双皮鞋?(3)若每双皮鞋的售价为90元,且生产的皮鞋全部售出,试写出这一天的利润P 关于这一天生产数量n 的函数关系式,并求出每天至少生产多少双皮鞋,才能不亏本? 解:(1)54000;(2)880;(3)P =100,0)504000(90≥≥+-n n n 得。
18、已知函数xxx x f -++=2log 11)(3; (1)求)(x f 的定义域; (2)判断)(x f 的单调性并证明;(3)当x 为何值时,21)21(>⎥⎦⎤⎢⎣⎡-x x f 。
解:(1)定义域:()2,0 (2)单调递减。
证明略 (3)211log 21)1(3=+=f ,所以原不等式等价于)1()]21([f x x f >-, 因为)(x f 在)2,0(上是减函数,则⎪⎪⎩⎪⎪⎨⎧>-<-0)21(1)21(x x x x ,解得:41712104171+<<<<-x x 或19、已知函数)(x f 是定义在(-∞,0)∪(0,+∞)上的奇函数,当x >0时,x x f 2log )(=(1)求当x <0时,函数)(x f 的表达式;(2) 若)(2)(R x x g x ∈= 集合A={x ︱2)(≥x f },B={x ︱16)(≥x g },试判断集合A 和B 的关系;(3) 已知对于任意的k ∈N ,不等式12+≥k k 恒成立,求证:函数)(x f 的图象与直线x y =没有交点。