高考数学复习专题 函数与导数高青一中
山东青州一中高三一轮数学复习(人教B版)课件第三章 导数及其应用 3.3定积分
当 λ→ 0 时,如果和式的极限存在,我们把和式 In 的极限叫
b 做函数 f(x)在区间 [a, b]上的定积分, 记作ʃa f(x)dx, 即ʃb af(x)dx
= lim ∑ f(ξi)Δxi. =
0
n-1 i 0
其中 f(x)叫做 被积函数, a 叫积分下限 , b 叫积分上限 . f(x)dx 叫做被积式.此时称函数 f(x)在区间[a, b]上可积.
[难点正本
疑点清源]
1.定积分与曲边梯形的面积 定积分的概念是从曲边梯形面积引入的,但是定积分并 不一定就是曲边梯形的面积.这要结合具体图形来定: 设阴影部分面积为 S. (1)S=ʃb af(x)dx; (2)S=- ʃb af(x)dx;
b (3)S=ʃc f ( x )d x - ʃ a c f(x)dx; b (4)S=ʃb f ( x )d x - ʃ a ag(x)dx b =ʃa [f(x)- g(x)]dx.
于 x= a, x= b (a≠ b)之间 x 轴之上、下相应的曲边梯 形的面积的代数和.
4.定积分的运算性质
b (1)ʃb kf ( x )d x = k ʃ a af(x)dx.
(2)ʃb g(x)]dx=ʃb ʃb a[f(x)± af(x)dx± ag(x)dx.
c b (3)ʃb f ( x )d x = ʃ f ( x )d x + ʃ a a c f(x)dx (a<c<b).
基础自测 1.求由 y=ex,x= 2, y=1 围成的曲边梯形的面积时,
[0,2] . 若选择 x 为积分变量,则积分区间为________
解析 由于 y=ex 与 y=1 的交点 为(0,1). 由图知积分区间为[0,2].
2023-2024学年山东省淄博市高青县第一中学高二上学期期中数学试题+答案解析(附后)
2023-2024一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知直线l过点且与直线垂直,则l的方程是()A. B. C. D.2.已知向量,向量,若,则实数()A.3B.C.6D.-63.多项选择题是新高考数学试卷中增加的新题型,四个选项A,B,C,D中至少有两个选项正确,并规定:如果选择了错误选项就不得分.若某题的正确答案是ABC,某考生随机选了两项,则其能得分的概率为()A. B. C. D.4.经过点,且倾斜角为的直线方程是()A. B.C.D.3w-y+2-3=05.如图所示,在三棱柱中,底面ABC,,,点E,F 分别是棱AB,的中点,则直线EF与所成的角是()A. B. C. D.6.直线与圆交于A、两点,则当弦AB最短时直线l的方程为()A. B. C. D.7.已知圆C:,直线l:,P为直线l上的动点,过点P作圆C的切线,切点分别为A,B,则直线AB过定点()A. B. C. D.8.已知直线:和直线:,则当与间的距离最短时t的值为()A.1B.C.D.2二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知点,,直线l:其中,若直线l与线段AB有公共点,则直线l的斜率k的值可能是()A.0B.1C.2D.410.在空间直接坐标系中,已知,,,若存在一点P,使得平面,则P点坐标可能为()A.B.C.D.(-5,-1,1)11.下列结论正确的是()A.已知点在圆C:上,则的最小值是B.已知直线和以,为端点的线段相交,则实数k的取值范围为C.已知点是圆外一点,直线l的方程是,则l与圆相交D.若圆M:上恰有两点到点的距离为1,则r的取值范围是(4,6)12.已知正方体的棱长为4,EF是棱AB上的一条线段,且,点Q是棱AD1的中点,点P是棱上的动点,则下面结论中正确的是()A.PQ与EF一定不垂直B.二面角的正弦值是C.的面积是2D.点P到平面QEF的距离是常量三、填空题:本题共4小题,每小题5分,共20分。
高考数学一诊复习-函数与导数-含答案
第 1 页 共 12一诊复习(3):函数与导数一、单选题1.已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( )A .209-B .119- C .79 D .1692.已知()()2222cos 1ln 4f x x x =-⋅,则函数()f x 的部分图像大致为( )A .B .C .D .3.设函数()f x 的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(),a b 为函数()f x 的对称中心,研究函数()()11tan 1)1f x x x x =+++--的对称中心,则13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2022B .4043C .4044D .80864.设()f x '为函数()f x 的导函数,已知()()2ln x f x xf x x '+=,()112f =,则下列结论正确的是( ) A .()xf x 在()0,+∞单调递增 B .()xf x 在()1,+∞单调递减C .()xf x 在()0,+∞上有极大值12D .()xf x 在()0,+∞上有极小值125.已知函数22414ax x y -+⎛⎫=⎪⎝⎭的值域为10,16⎛⎤ ⎥⎝⎦,若不等式()()log 4log 2x xa a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( )A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞⎪⎝⎭C .(),2-∞D .()0,26.已知定义域为()0,+∞的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1ff x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .07.若仅存在一条直线与函数()()ln 0f x a x a =>和()2g x x =的图像均相切,则实数a =( )A .eB C .2eD .8.已知不等式()21x kx k e x +<+恰有两个正整数解,则实数k 的取值范围( )A .23243k e e≤< B .23243k e e<≤ C .324354k e e <≤ D .324354k e e ≤<第 2 页 共 12 9.对于函数()2ln xf x x =,下列说法正确的是( ) A.ff f <<B .()f x在x =12eC .()f x 有两个不同的零点D .若()21f x k x <-在()0,∞+上恒成立,则e2k > 10.定义在()(),00,-∞+∞上的函数()f x ,对于定义域内任意的x ,y 都有()()1x f f x f y y ⎛⎫=-+⎪⎝⎭,()34f =,且当1x >时,()1f x >,则下列结论正确的是( )A .()11f =B .()f x 是奇函数C .()()39f f >D .()f x 在()0,+∞上单调递增11.已知函数()f x 与()g x 的定义域均为R ,且()()123f x g x ++-=,()()11f x g x ---=,若()21g x -为偶函数,则下列一定正确的是( )A .函数()g x 的图像关于直线12x =-对称 B .()01g =C .函数()f x 的图像关于点()1,2对称D .()202312023k g k ==∑12.已知函数()2ln f x x ax x =-+(a ∈R )有两个不同的极值点,则下列说法正确的是( )A .若3a =,则曲线()y f x =的切线斜率不小于3B .函数()f x的单调递减区间为44a a ⎛-+ ⎪⎝⎭C .实数a的取值范围为((),22,-∞-+∞D .若函数()f x 的所有极值之和小于1ln82-,则实数a 的取值范围为()+∞ 三、填空题13.定义在R 上的函数()f x 满足()()2f x f x +=,当[)0,1x ∈时()42x f x =-,则()4log 80f -=___.14.已知函数()()343,1log ,1a x a x f x x x ⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是__________.15.函数()()1e e 1xxf x x k =+⋅--,当0x >时,()0f x >恒成立,则整数k 的最大值为__________.16.已知不等式11ln e 0ax a x x x -+-≥在3211,e e ⎡⎤⎢⎥⎣⎦上恒成立,则实数a 的最小值为___________.第 3 页 共 1217.已知函数()()2e 11xf x x a x ⎡⎤=-++⋅⎣⎦,a R ∈.(1)讨论函数()f x 的单调性;(2)若1a =-,对任意()12,0,x x ∈+∞,当12x x >时,不等式()()()212212e e x x f x f x m -<-恒成立,求实数m 的取值范围.第 4 页 共 12 18.已知函数()ln f x x x x =-. (1)设曲线()y f x =在x e =处的切线为()y g x =,求证:()()f x g x ≥;(2)若关于x 的方程()f x a =有两个实数根1x ,2x ,求证:2112x x a e e-<++.第 1 页 共 12页高2023届高三一诊复习题—函数与导数参考答案一、单选题1.【答案】D 【解析】'()2(3)9f x f x x '∴=-+,∴(3)2(3)33f f ''=-+(3)1f '⇒=, 22()2ln 9f x x x x ∴=-+,216(1)299f ∴=-=.2.【答案】A 【解析】()()()()22222cos 1ln 4cos 2ln 2f x x x x x =-⋅=⋅,令()20t x t =≠, 则()2cos ln f t t t =⋅()0t ≠,所以()2cos ln f x x x =⋅()0x ≠,定义域关于原点对称,()()()()22cos ln cos ln f x x x x x f x -=-⋅-=⋅=,所以()f x 为偶函数,图象关于y 轴对称,排除C 、D又0x +→时,因为2cos 0,ln 0x x ><,所以()2cos ln 0f x x x =⋅<,所以排除选项B ,选项A 正确.3.【答案】C 【详解】令函数1()tan g t t t t =++,则()()()11tan g tan g t t t t t g t t t ⎛⎫-=--+-=-++=- ⎪⎝⎭,所以函数()g t 为奇函数,其图象关于原点对称,可得1()1tan(1)21f x x x x =-++-+-的图象关于(1,2)点中心对称,即当122x x +=,可得()()124f x f x +=,设13540432022202220222022M f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,40434041403912022202220222022M f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以1404334041404312202220222022202220222022M f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦202248088=⨯= 所以135404340442022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.4.【答案】D 【解析】由2()()ln x f x xf x x '+=得0x >,则ln ()()xxf x f x x'+= 即ln [()]x xf x x '=,设()()g x xf x =,ln ()01xg x x x'=>⇒>,()001g x x '<⇒<< 即()xf x 在(1,)+∞单调递增,在(0,1)单调递减,当1x =时,函数()()g x xf x =取得极小值()()1112g f == 5.【答案】A 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,①当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;②当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a-+⎛⎫=⎪⎝⎭,解得12a =;第 2 页 共 12页③当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,即402042x x x x t t t t⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42xxt t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122x x f x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫ ⎪⎝⎭. 6.【答案】A 【详解】因定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=, 则存在唯一正实数t 使得()1f t =,且()ln f x x t -=,即()ln f x t x =+,于是得()ln 1f t t t =+=, 而函数ln t t +在(0,)+∞上单调递增,且当1t =时,ln 1t t +=,因此1t =,()1ln f x x =+, 方程()222421ln 42ln 43f x x x x x x x x x =-+-⇔+=-+-⇔=-+-,于是得方程()242f x x x =-+-的解的个数是函数ln y x =与243y x x =-+-的图象公共点个数,在同一坐标系内作出函数ln y x =与243y x x =-+-的图象如图,观察图象知,函数ln y x =与243y x x =-+-的图象有3个公共点, 所以方程()242f x x x =-+-的解的个数为3.7.【答案】C 【解析】设直线与2()g x x =的切点为()211,x x ,由()2g x x '=可知,该直线的斜率为12x ,即该直线的方程为()21112y x x x x -=-,即为2112y x x x =-.设直线与()ln f x a x =的切点为()22,ln x a x ,由()a f x x'=可知,该直线的斜率为2a x ,即该直线的方程为()222ln ay a x x x x -=-,。
函数导数主题单元高考题研究规律
且在 0, 单调递减,则
A.
,
9 4
C.
,
5 2
B.
,
7 3
D.
,
8 3
A.
f
log3
1 4
f
3 2 2
f
2 2 3
B.
f
log3
1 4
f
2 2 3
f
3 2 2
C.
f
3 2 2
f
2 2 3
f
log3
1 4
D.
f
2 2 3
偶函数,当
x [1, 2] 时,
f
(x) ax2
b .若
f (0)
f
(3) 6 ,则
f
9 2
(
)
A. 9
B. 3
C. 7
D. 5
4
2
4
2
考察奇函数偶函 数的定义
1.奇函数和 题干结合推 出的周期性。 2.奇函数和 偶函数结合 导出周期性。
为国家的前途命运负责 为学生的终生发展负责
【2021 年新高考Ⅰ卷,13】已知函数 f (x) x3 a 2x 2x 是偶函数,则 a ____________.
为国家的前途命运负责 为学生的终生发展负责
2020全国一卷理科 22分 函数的切线、构造函数利用单调性比较函数值的大小,函数的单调性
为国家的前途命运负责 为学生的终生发展负责
2020全国二卷理科 22分 复合函数的单调性、奇偶性,构造函数判单调性来比较函数值的大小
为国家的前途命运负责 为学生的终生发展负责
的奇函数,满足f(1 x) f(1 x).若 f (1) 2 ,则 f (1) f (2) f (3) f (50)
山东高考数学一轮复习第2章函数导数及其应用第3讲函数的单调性与最值课件
知识梳理 • 双基自测
• 知识点一 函数的单调性 • 1.单调函数的定义
增函数
减函数
一般地,设函数f(x)的定义域为I,如果对于变量的值x1,x2 义 当x1<x2时,都有____f(_x_1_)<_f_(_x_2)_____,
那么就说函数f(x)在区间D上是增函数
• (3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可 由图象直接写出它的单调区间.
• (4)导数法:利用导数取值的正负确定函数的单调区间. • (5)求复合函数的单调区间的一般步骤是:①求函数的定义域;②求简单函数的单
调区间;③求复合函数的单调区间,依据是“同增异减”.
• 注意: • (1)求函数单调区间,定义域优先. • (2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分
3.函数单调性的常用结论 (1)若 f(x),g(x)均为区间 A 上的增(减)函数,则 f(x)+g(x)也是区间 A 上的增(减) 函数. (2)若 k>0,则 kf(x)与 f(x)单调性相同,若 k<0,则 kf(x)与 f(x)单调性相反. (3)函数 y=f(x)(f(x)>0)在公共定义域内与 y=-f(x),y=f1x的单调性相反. (4)函数 y=f(x)(f(x)≥0)在公共定义域内与 y= fx的单调性相同.
• 知识点二 函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
条件 (1)对于任意x∈I,都有___f_(x_)_≤_M_____; (1)对于任意x∈I,都有___f_(x_)_≥_M_____;
(2)存在x0∈I,使得___f_(x_0_)_=__M____
山东高三导数数学知识点
山东高三导数数学知识点导数在数学中是一个重要的概念,它与函数的变化率和极值有着密切的关系。
作为高中数学的一部分,导数是高三学生必须深入理解和掌握的内容。
本文将以山东高三导数数学知识点为主题,探讨导数的定义、基本运算法则以及应用题等方面。
一、导数的定义导数的定义是理解和掌握导数的基础。
在高中数学中,导数是函数在某一点上的切线斜率。
对于函数f(x),在x点处的导数可以表示为f'(x)或dy/dx。
而导数的定义就是:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中lim表示极限的意思。
通过导数的定义,我们可以求解函数在特定点处的切线斜率,从而研究函数的变化规律。
二、导数的基本运算法则导数的运算法则是在求解具体函数的导数时需要使用的方法。
导数的基本运算法则包括:1. 常数因子法则:如果函数f(x)中有常数k,导数f'(x) = k·f'(x)。
这个法则告诉我们,常数可以提到导数的外面。
2. 变量因子法则:如果函数f(x)中有变量x,导数f'(x) =d(x^a)/dx = a·x^(a-1)。
这个法则告诉我们,对于幂函数,导数可以通过幂次减1得到。
3. 和差法则:如果函数f(x) = u(x) ± v(x),导数f'(x) = u'(x) ±v'(x)。
这个法则告诉我们,对于函数的和与差,可以分别对各自的导数进行和与差的运算。
4. 乘积法则:如果函数f(x) = u(x)v(x),导数f'(x) = u'(x)v(x) +u(x)v'(x)。
这个法则告诉我们,对于函数的乘积,可以对各自的导数进行适当的组合。
5. 商数法则:如果函数f(x) = u(x)/v(x),导数f'(x) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^2。
鲁教版数学高三函数与导数2023教案
鲁教版数学高三函数与导数2023教案一、教案说明本教案适用于鲁教版数学高三课程中的函数与导数一单元,旨在帮助学生全面掌握函数与导数的相关概念和基本应用,提高他们的数学思维和解题能力。
二、教学目标1. 熟悉函数的基本概念,包括定义域、值域、单调性等;2. 理解导数的定义与意义,并能灵活运用导数解决相关问题;3. 掌握常见函数的导数计算方法和性质;4. 培养学生的分析与推理能力,提高他们的数学问题解决能力。
三、教学内容本单元的教学内容主要包括以下几个方面:1. 函数的基本概念a. 函数的定义和表示方法b. 函数的定义域、值域和图像c. 奇函数和偶函数的性质d. 单调性及其判定2. 导数的定义与意义a. 导数的定义及其物理意义b. 导数的计算方法c. 导数与函数的关系3. 常见函数的导数计算a. 常数函数、幂函数和指数函数的导数b. 对数函数和三角函数的导数c. 复合函数的导数计算4. 函数的极值与最值a. 函数极值点的定义与判定b. 函数最值的求解5. 函数图像的绘制a. 函数的基本性质与图像的特点b. 使用导数绘制函数的图像四、教学方法1. 探究式学习法:引导学生通过观察、思考和实践,主动探索函数与导数的特性和计算方法,培养他们的问题解决能力。
2. 讨论式教学法:鼓励学生积极参与讨论,提出自己的观点和思考,加深对函数与导数概念的理解和应用。
3. 示范演示法:通过具体的例题演示,让学生了解解题步骤和技巧,培养他们的解题能力和逻辑思维。
4. 合作学习法:组织学生进行小组合作学习,在小组内相互交流和讨论,共同解决问题,促进学习效果的提高。
五、教学流程本教案采用五个步骤的教学流程,分别是导入、讲解、练习、归纳总结和拓展。
1. 导入:a. 利用一个实际问题引入函数与导数的概念,激发学生兴趣;b. 通过展示一段函数的图像,让学生观察和分析函数的特点。
2. 讲解:a. 介绍函数的定义和表示方法,引导学生理解函数的主要概念;b. 解释导数的定义和物理意义,让学生认识到导数在实际中的应用价值;c. 详细讲解常见函数的导数计算方法和性质,注重培养学生的计算能力和理解能力;d. 引导学生掌握函数的单调性判定方法和极值与最值的求解思路。
山东高考数学一轮复习第2章函数导数及其应用第11讲导数的概念及运算课
• (3)曲线平行于直线5x-y+1=0的切线方程为 5_x-__y_-__4__2_=__0_或__5_x_-__y_+_4__2_=__0_________.
• [分析] (1)解决曲线的切线问题直接利用导数的几何意义求切线斜率可得; • (2)由于在点P处的切线平行于直线5x-y+1=0,则在点P处的切线斜率为5. • [解析] f′(x)=3x2-1. • (1)曲线在点(1,0)处切线的斜率为k=f′(1)=2. • ∴所求切线方程为y=2(x-1),即2x-y-2=0.
④y′=(x2+2x-1)′e2-x+(x2+2x-1)(e2-x)′ =(2x+2)e2-x+(x2+2x-1)·(-e2-x) =(3-x2)e2-x. ⑤y′=[ln2x+3]′x2+x12+-1ln22x+3x2+1′ =2x2+x+33′·x2x+2+11-2 2xln2x+3 =2x2+12-x+2x32xx+2+31ln22x+3.
(2)当把上式中的 x0 看作变量 x 时,f′(x)即为 f(x)的导函数,简称导数,即 y′= fx+Δx-fx
f′(x)=___Δ_lix_m→_0_____Δ_x________.
3.基本初等函数的导数公式
(1)C′=___0___(C 为常数);(2)(xn)′=_____n_x_n_-_1_____(n∈Q*)
• 3.(选修2-2P18AT5改编)已知函数f(x)=2xf′(1)+xln x,则f′(1)=( C )
• A.e
B.1
• C.-1 D.-e
• [解析] f′(x)=2f′(1)+ln x+1,
• 当x=1时,f′(1)=2f′(1)+1,
• ∴f′(1)=-1,故选C.
• 题组三 考题再现 • 4.(2019·全国卷Ⅰ,5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为
山东省淄博市高青县第一中学_学年高一数学下学期收心考试试题【含答案】
高一数学收心考试一.选择题(每题5分,共60分)1. 设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)2.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x 3.下列函数,既是奇函数,又在区间(0,+∞)上是减函数的是( ) A .f (x )=-x 2B .f (x )=1x2C .f (x )=1x3D .f (x )=x 34.已知log 12 b <log 12 a <log 12 c ,则( )A .2a>2b>2cB .2b >2a >2cC .2c>2b>2aD .2c>2a>2b5.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位6.下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+()sin 2cos 2C y x x =+ ()sin cos D y x x =+7.若cos α=-32,且角α的终边经过点(x,2),则P 点的横坐标x 是( ). A .2 3 B .±23 C .-2 2 D .-2 3 8.已知sin ()=,则cos ()的值等于( )A .B .C .D .9.方程22x x +=的解所在区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 10.函数x x y sin =在[]ππ,-上的图象是11.奇函数f (x )在(-∞,0)上单调递增,若f (-1)=0,则不等式f (x )<0的解集是( ).A .(-∞,-1)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-1,0)∪(1,+∞)12.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .1二.填空题(每题5分,共20分)13.已知函数()sin()cos()f x x x =+θ++θ是偶函数,且[0,]2πθ∈,则θ的值为 .14. 已知,αβ都是锐角,且11tan(),tan 23αββ-==,则α= 15.若f (x )是奇函数,且在(0,+∞)内是增函数,又f (3)=0,则xf (x )<0的解集是 .16.①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)6y x π=-的一个对称中心是(,0)6π;④若关于x 的方程sin(2)0(01)6x a a π--=<<在区间13(,)1212ππ内的两个不同的实数根12,x x ,则1223x x π+=其中正确的结论有 (写出所有正确结论的序号)三.解答题(17题10分,其余各题每题12分)17.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 18.已知定义在]3,3[-上的函数)(x f y =是增函数. (1)若)12()1(->+m f m f ,求m 的取值范围;(2)若函数)(x f 是奇函数,且1)2(=f ,解不等式01)1(>++x f 19.已知函数f (x )=sin (ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值; (Ⅱ)若f ()=(<α<),求cos (α+)的值.20.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?21. 已知函数)0(2sin 4)62sin()(2>+--=ωωπωx x x f ,其图像与x 轴相邻两个交点的距离为2π. (Ⅰ)求函数)(x f y =的解析式;(Ⅱ)若将)(x f 的图像向左平移)0(>m m 个长度单位得到函数)(x g 的图像恰好经过点(0,3π-),求当m 取得最小值时,)(x g 在]127,6[ππ-上的单调递增区间.22. 已知函数f (x )=lg(m x-2x)(0<m <1).(1)当m =12时,求f (x )的定义域;(2)试判断函数f (x )在区间(-∞,0)上的单调性并给出证明;(3)若f(x)在(-∞,-1]上恒取正值,求m的取值范围.一. 选择题1-5 CACBA 6-10 ADBAA 11-12 AD 二. 填空题13.4π 14.4π15. {x |-3<x <0或0<x <3} 16. ②④ 三. 解答题17. 解:(1)当m =-1时,B ={x |-2<x <2},A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.所以实数m 的取值范围为[0,+∞).18.解:(1)依题意,可得313,3213,121,m m m m -≤+≤⎧⎪-≤-≤⎨⎪+>-⎩解得21<≤-m ,即m 的取值范围是)2,1[-.(2)因为函数)(x f y =是奇函数.又1)2(=f ,所以1)2(-=-f , 不等式01)1(>++x f 可化为1)1(->+x f ,即)2()1(->+f x f ,此不等式等价于⎩⎨⎧->+≤+≤-21313x x ,解得23≤<-x .所以不等式01)1(>++x f 的解集为}23|{≤<-x x .19. 两个相邻最高点的距离为π,2,2T ππϖϖ∴==∴=,又因为关于3x π=对称,2sin()13πψ∴+=±,2,32k k Z ππϕπ∴+=+∈,6k πϕπ∴=-+ 22ππϕ∴-≤<,6πϕ∴=-(2)()),())626f x x f παπα=-==-1sin(),64πα∴-=又0,cos()6264πππαα<-<∴-=3cos()sin sin[()]266sin()cos cos()sin 6666πππαααππππαα∴+==-+=-++=20. (1)当每辆车的月租金定为3 600元时,未租出的车辆数为500003600 3-=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.21.22. 解析] (1)当m =12时,要使f (x )有意义,须(12)x -2x >0,即2-x >2x,可得:-x >x ,∴x <0∴函数f (x )的定义域为{x |x <0}.(2)设x 2<0,x 1<0,且x 2>x 1,则Δ=x 2-x 1>0 令g (x )=m x -2x, 则g (x 2)-g (x 1)=m x 2-2 x 2-m x 1+2 x1 =m x 2-m x 1+2 x 1-2 x2∵0<m <1,x 1<x 2<0,∴m x 2-m x 1<0,2 x 1-2 x2<0 g (x 2)-g (x 1)<0,∴g (x 2)<g (x 1) ∴lg[g (x 2)]<lg[g (x 1)],∴Δy =lg(g (x 2))-lg(g (x 1))<0, ∴f (x )在(-∞,0)上是减函数.(3)由(2)知:f (x )在(-∞,0)上是减函数, ∴f (x )在(-∞,-1]上也为减函数, ∴f (x )在(-∞,-1]上的最小值为f (-1)=lg(m -1-2-1) 所以要使f (x )在(-∞,-1]上恒取正值,只需f (-1)=lg(m -1-2-1)>0,即m -1-2-1>1,∴1m >1+12=32,∵0<m <1,∴0<m <23.。
黑龙江省绥化市青冈县第一中学2021年高中数学导数及其应用多选题专题复习附解析
一、导数及其应用多选题1.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD 【分析】用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 24f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.2.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则2133x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴21x x -==≥,B对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.3.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.4.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得1x =2x =当x 变化时,()'f x ,()f x 的变化情况如下表:x,3a ⎛⎫--∞- ⎪ ⎪⎝⎭3a-- ,33a a ⎛⎫--- ⎪ ⎪⎝⎭3a- ,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭()'f x+-+()f x极大值 极小值故当3ax -=-,函数()f x 取得极大值2333333a a a a a a f a b b ⎛⎫-----=-+=-+ ⎪ ⎪⎝⎭, 当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需0303a f a f ⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a ab -<<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f ⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a ab ->>,D 选项,0,0a b <>,不一定满足,故D 不符合题意; 故选:ABC 【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.5.某同学对函数()sin e ex xxf x -=-进行研究后,得出以下结论,其中正确的是( ) A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1xxx f x e e-=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e ex xxf x -=-的定义域为{}|0x x ≠,且 ()()sin sin x x x xx xf x f x e e e e----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1x xx f x e e -=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误;对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee -----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.6.已知函数()()2214sin 2xxex f x e -=+,则下列说法正确的是( )A .函数()y f x =是偶函数,且在(),-∞+∞上不单调B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e --++---=-=,()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xxf x e x e '=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xx g x e x e=-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.7.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln xf x x=,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3ex y =D .1122y x =- 【答案】AB【分析】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解. 【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点, 由函数()ln x f x x =,可得()21ln xf x x-'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方; 又由函数()1x g x e-=,可得()1e0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合; 设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为021ln x k x -=, 又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x =,所以12k e ==,可得切线方程为2x y e =, 又由直线3xy e=与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1,明显不满足,排除D. 故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.8.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin x f x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin xf x x =+,()e cos xf x x '+=,()e sin xf x x '=-',当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立, 所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=, ()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()π,-+∞不存在零点,故D 错误.故选:AC. 【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.9.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-, ∴()()()()()12112xx f x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <,则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意; ④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意; 综上所述,a 的取值范围为()0,∞+, 故选:CD. 【点睛】本题考查利用导数研究函数的零点问题,属于较难题.10.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x ---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数, 所以713,34t ⎛⎫∈⎪⎝⎭,即()min 1713,41216F x ⎛⎫∈ ⎪⎝⎭.因为k 为整数,所以0k ≤. 故选:ABC 【点睛】本题主要考查函数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于较难题.。
山东省青州一中高三数学一轮复习 第三章 导数及其应用 3
当 a<0 时,令 f′(x)>0,∴0<x<-2a. ∴此时 f(x)的单调递增区间为0,-2a,单调递减区间 为(-∞,0)和-2a,+∞,函数在 x=-2a处取极大值,
在 x=0 处取极小值.
题型三 函数的最值与导数 例 3 已知 a 为实数,且函数 f(x)=(x2-4)(x-a).
(1)求导函数 f′(x); (2)若 f′(-1)=0,求函数 f(x)在[-2,2]上的最大值、 最小值. 思维启迪:先求函数的极值,然后再与端点值进行比较 确定最值.
3.函数的最值 (1)在闭区间[a,b]上连续的函数 f (x)在[a,b]上必有最 大值与最小值.
(2)若函数 f (x)在[a,b]上单调递增 f(b)为函数的最小值, f(a) 为函数的最大值;若函数 f(x)在[a,b]上单调递减, 则 f(a)为函数的最大值, f(b)为函数的最小值.
(3)设函数 f (x)在[a,b]上连续,在(a,b)内可导,求 f (x) 在[a,b]上的最大值和最小值的步骤如下:
基础自测 1.f(x)=3x-x3 的单调减区间为(_-___∞__,__-__1_)_和__(_1_,__+__∞__)__.
解析 由 f′(x)=3-3x2<0,得 x>1 或 x<-1. 即 f(x)的单调减区间为(-∞,-1)和(1,+∞).
2.函数 y=2x3-3x2-12x+5 在[0,3]上的最大值,最小值分 别是__5_,_-__1_5___.
探究提高 在区间内 f ′(x)>0 (f ′(x)<0)是函数 f (x)在此区 间上为增(减)函数的充分条件而不是必要条件,如果出现 个别点使 f ′(x)=0,不会影响函数 f (x)在包含该点的某个 区间上的单调性.一般地,可导函数 f (x)在(a,b)上是增(减) 函数的充要条件是:对任意 x∈(a,b),都有 f ′(x)≥0 (f ′(x)≤0),且 f ′(x)在(a,b)的任何子区间内都不恒等于 零.特别是在已知函数的单调性求参数取值范围时,要特 别注意“=”是否可以取到.
山东青州一中2012届高三一轮数学复习课件:第三章 导数及其应用 3.4导数的综合应用
第十四页,编辑于星期日:九点 八分。
f ′(x), f (x)随x的变化情况如下表:
x
(-∞, -2 -2)
(-2, 23)
2 3
f '(x)
-
0
+
0
f (x)
极小值
极大值
∴ f (x)极小值=f (-2)=-11, f (x)极大值=f 23=-4217.
思维启迪:函数图象关于原点对称,则函数f(x)是一个奇 函数.又在x=1处有极小值,则说明f′(1)=0.
第十一页,编辑于星期日:九点 八分。
解 (1)∵ f (x)的图象关于原点对称,
∴f (-x)=-f (x),
∴-ax3+bx2-cx+d=-ax3-bx2-cx-d,
∴bx2+d=0恒成立,
第十三页,编辑于星期日:九点 八分。
变式训练 1 已知函数 f (x)=-x3+ax2+bx+c 图象上的点
P(1,f (1))处的切线方程为 y=-3x+1,函数 g(x)=f (x)- ax2+3 是奇函数. (1)求函数 f (x)的表达式; (2)求函数 f (x)的极值. 解 (1) f ' (x)=-3x2+2ax+b, ∵函数 f (x)在x=1处的切线斜率为-3,
第八页,编辑于星期日:九点 八分。
4.设 a∈R,若函数 y=eax+3x,x∈R 有大于零的极值点,
则( B )
A.a>-3
B.a<-3
C.a>-13
D.a<-13
解析 f′(x)=3+aeax,若函数y=eax+3x在x∈R上有大
于零的极值点,即f′(x)=3+aeax=0有正根.当f′(x)
高青县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
高青县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知实数x ,y满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .42. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .583. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.4. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A.B.C.D.5. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 6. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .37. 设0<a <b 且a+b=1,则下列四数中最大的是( ) A .a 2+b 2 B .2ab C .aD.8. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( ) A .6 B .5C .3D .49. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .1310.设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}11.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .1320二、填空题13.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .14.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .15.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 16.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .17.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .18.求函数在区间[]上的最大值 .三、解答题19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小; (Ⅱ)如果cosB=,b=2,求a 的值.20.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .21.如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=﹣4.(Ⅰ)p 的值;(Ⅱ)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,RQ 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.22.(本小题满分12分)如图,在直四棱柱1111ABCD A BC D -中,60,,BAD AB BD BC CD ∠===. (1)求证:平面11ACC A ⊥平面1A BD ;(2)若BC CD ⊥,12AB AA ==,求三棱锥11B A BD -的体积.A 1C 1B D 123.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值.24.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
山东省淄博市高青县第一中学2023-2024学年高一下学期3月月考数学试题
山东省淄博市高青县第一中学2023-2024学年高一下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.cos24cos69sin 24sin111+o o o o =( )A .2B C D .122.tan10tan50tan50︒+︒︒︒=( )A.1B C .3D .3.给出下列四个说法:①若0a =r ,则0a r r =;②若a b =r r ,则a b =r r 或a b =-r r ;③若//a b r r ,则a b =r r ;④若//a b rr ,//b c r r ,则//a c r r .其中正确的说法有( )个.A .1B .2C .3D .44.已知函数2()cos cos f x x x x -,则函数的图象( ) A .关于直线π6x =对称 B .关于点π1,62⎛⎫- ⎪⎝⎭对称C .关于直线π12x =对称 D .关于点π1,122⎛⎫-⎪⎝⎭对称 5.已知π4sin 45α⎛⎫+= ⎪⎝⎭,且π3π44<<α,求cos α=( )A B C D6.已知a )sin 20cos 202b =︒+︒,1tan 201tan 20c +︒=-︒,则( ) A .a b c << B .a c b << C .c b a <<D .c<a<b7.半径为2m 的水轮如图所示,水轮的圆心O已知水轮按逆时针方向每分钟转4圈,水轮上的点P 到水面的距离y (单位:m )与时间x (单位:s )满足关系式sin 3y A x k πω⎛⎫=-+ ⎪⎝⎭.从点P 离开水面开始计时,则点P 到达最高点所需最短时间为( )A .854s B .254s C .354s D .10 s8.已知函数()21cos cos (0,)2f x x x x x ωωωω=+->∈R 在[]0,π内有且仅有三条对称轴,则ω的取值范围是( ) A .2736,⎡⎫⎪⎢⎣⎭B . 76 ,53⎡⎫⎪⎢⎣⎭C . 51336 ,⎡⎫⎪⎢⎣⎭D . 138,63⎡⎫⎪⎢⎣⎭二、多选题9.某简谐运动在一个周期内的图象如图所示,下列判断正确的有( )A .该简谐运动的振幅是3cmB .该简谐运动的初相是2π5C .该简谐运动往复运动一次需要2sD .该简谐运动100s 往复运动25次10.为了得到πsin 24y x ⎛⎫=- ⎪⎝⎭的图象,只需把sin y x =图象上所有的点( )A .横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π8个单位 B .横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移7π8个单位 C .向右平移π8个单位,再把得到的曲线上各点的横坐标缩短到原来的12,纵坐标不变D .向右平移π4个单位,再把得到的曲线上各点的横坐标缩短到原来的12,纵坐标不变11.如果若干个函数的图象经过平移后能够重合,则这些函数为“互为生成函数”.下列函数中,与()sin cos f x x x =+构成“互为生成函数”的有( )A .()1f x x B .())2sin cos f x x x + C .()3sin f x x =D .()42cos sin cos 222x x x f x ⎛⎫=+ ⎪⎝⎭三、填空题12.已知cos si n x x +=,则sin 2πcos 4xx =⎛⎫- ⎪⎝⎭. 13.已知函数()cos f x x x =+在0x 处取得最大值,则()0cos x π-=.14.将函数()πcos 44f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 具有奇偶性,则ϕ的最小值为.四、解答题 15.已知sin α=()cos βα-=π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭. (1)求cos 2α,sin 2α; (2)求αβ+.16.已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式及对称中心坐标: (2)先把()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()g x 的图象,若当,46x ππ⎡⎤∈-⎢⎥⎣⎦时,求()g x 的值域.17.已知函数2()sin 2sin 22cos 66f x x x x ππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)求使()2f x ≥成立的x 的取值集合.18.已知某海滨浴场的浪高()m y 是时间t (时)(024t ≤≤)的函数,记作()y f t =.下表是某日各时刻的浪高数据.经长期观测,()y f t =可近似地看成是函数cos y A t b ω=+.(1)根据以上数据,求出该函数的周期T 、振幅A 及函数解析式;(2)依据规定,当海浪高度高于1m 时才对冲浪爱好者开放,试依据(1)的结论,判断一天内8:00至20:00之间有多长时间可供冲浪者进行运动. 19.已知函数()π2sin sin .6f x x x ⎛⎫=⋅+ ⎪⎝⎭(1)求()f x 的最小值和单调递增区间;(2)将函数()y f x =的图象向左平移π3个单位,再将所得的图象上各点的横坐标缩小为原来的12,得到函数()y g x =的图象,若函数()y g x =在[]0,m 上有且仅有两个零点,求m 的取值范围.。
专题02-利用导数研究函数单调性问题(含参数讨论)-(解析版)
导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。
常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。
二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间,【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪⎝⎭,单调减区间为0,2a ⎛⎫ ⎪⎝⎭.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <或x >时,()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解;【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a ax g x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x ==; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解; 【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =由()0f x '>可得:0x <<x >由()0f x '<x <<,所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-= 0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈. (1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得; 【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增.(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案. 【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增.8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x ,当0x <()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-,令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-,令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间;【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0. 【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; 【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=,当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增.综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】(1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间; 【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解;【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; 当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+ 由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习专题函数与导数部分从进几年高考的试题可以看出高考对函数与导数的考察主要是以函数为载体,以导数为工具,以考查函数诸多性质和导数极值理论、单调性质、几何意义及其应用为目标,是高考导数与函数交汇试题的显著特点和命题趋向。
一、对知识专题的认识1.考查导数与函数最值问题设y=f(x)为可导函数,函数f(x)在某点取得极值的充要条件是该点的导数为零或不存在且该点两侧的导数异号;定义在闭区间上的初等函数必存在最值,它只能在区间的端点或区间内的极值点取得。
高考常结合求函数极值(最值)、参数取值范围、解决数学应用等问题考查导数最值性质在函数问题中的应用。
(第21题)2.考查导数与函数单调性问题设函数y=f(x)在某个区间内可导,如果f'(x)>0,则f(x)为增函数;如果f'(x)<0则f(x)为减函数。
反之亦然。
高考常以函数单调区间、单调性证明等问题为载体,考查导数的单调性质和分类讨论思想的应用。
(第22题第2小题)3.考查导数与函数图象切线问题函数f(x)在点x0处的导数f'(x0)是曲线y=f(x)在点(x0f(x0))处切线的斜率。
高考常结合函数图象的切线及其面积、不等式等问题对导数几何意义的应用进行考查。
(第22题第1小题)4.考查导数与函数不等式证明问题构造函数,运用导数在函数单调性方面的性质,可解决不等式证明、参数取值范围等问题。
设置此类试题,旨在考查导数基础性、工具性、现代性的作用,以强化数学的应用意识。
5.考查导数与函数建模问题设计导数与数学建模问题,旨在考查将实际问题抽象为数学问题,运用导数性质或不等式知识去解决最优化问题的数学应用意识与实践能力。
求解此类问题时,可从给定的数量关系中选取一个恰当的变量,建立函数模型,然后根据目标函数的结构特征,确定运用导数最值理论或不等式性质去解决问题。
(第21题)6.考查函数的零点、恒成立、积分等问题(第13、16等题) 二、高考主要题例分析(07全国Ⅰ)设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )A B .2 C ..4A(07天津)在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数B.(07湖南) 函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A.4 B.3 C.2 D.1B.(07重庆)已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( )A.()()76f f >B. ()()96f f >C. ()()97f f >D. ()()107f f >D(以上考查函数的图象和性质)D(07山东)函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0>mn ,则nm 21+的最小值为 . 8(考查函数的恒成立和最值)(浙江理)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.(主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力)(福建20)设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围.(本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力).解:(Ⅰ)23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-, 即3()1h t t t =-+-.(Ⅱ)令3()()(2)31g t h t t m t t m =--+=-+--,由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时()g t ',()g t 的变化情况如下表:()g t ∴在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<, 所以m 的取值范围为1m >. (四川文20)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.(本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力). 解析:(Ⅰ)∵()f x 为奇函数,∴()()f x f x -=-即33ax bx c ax bx c --+=--- ∴0c =∵2'()3f x ax b =+的最小值为12- ∴12b =-又直线670x y --=的斜率为16因此,'(1)36f a b =+=- ∴2a =,12b =-,0c =. (Ⅱ)3()212f x x x =-.2'()612()(2)f x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞∵(1)10f -=,f =-(3)18f =∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-(天津理 20)已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.(本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法).满分12分.(Ⅰ)解:当1a =时,22()1x f x x =+,4(2)5f =, 又2222222(1)2222()(1)(1)x x x x f x x x +--'==++·,6(2)25f '=-. 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46(2)525y x -=--, 即62320x y +-=.(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a ax f x x x +--+--+'==++.由于0a ≠,以下分两种情况讨论. (1)当0a >时,令()0f x '=,得到11x a=-,2x a =.当x 变化时,()()f x f x ',的变化情况如下表:所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数. 函数()f x 在11x a=-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭, 函数()f x 在21x a=处取得极大值()f a ,且()1f a =. (2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的变化情况如下表:所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数.函数()f x 在1x a =处取得极大值()f a ,且()1f a =.函数()f x 在21x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭.(天津文 21)设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.(本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法).满分14分.(Ⅰ)解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(Ⅱ)解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =.(2)若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a>,当[]10k ∈-,时, cos 1k x -≤,22cos 1k x -≤.由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤ ①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.。