专题三、四长方体与正方体

合集下载

人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

◎教学笔记第2课时长方体和正方体的体积(1)教学内容教科书P29~31的内容,完成教科书P31“做一做”。

教学目标1.经历长方体和正方体体积计算公式的推导过程,理解和掌握长方体和正方体的体积计算方法。

2.通过自主探索和合作交流,培养学生分析、比较、类推、归纳的能力,进一步发展学生的空间观念。

3.能运用长方体和正方体的体积公式解决简单的实际问题,感悟到数学来源于生活,应用于生活。

教学重点理解并掌握长方体和正方体体积的计算方法。

教学难点理解长方体和正方体体积计算公式的推导过程。

教学准备课件,12个棱长为1cm的小正方体。

教学过程一、情境导入,探索新知师:同学们,什么叫体积?常用的体积单位有哪些?你能用手势比画出1cm3、1dm3、1m3的大小吗?【学情预设】学生基本上都能回答出这些问题,教师适当补充。

师:昨天,我到超市买了一箱苹果醋饮料和一块香皂,怎样才能知道它们的体积大小呢?课件出示图片。

师:同学们真聪明,你们有什么好办法测量出它们的体积吗?【学情预设】学生会说到“把香皂切成一个个1cm3的小正方体”“根据苹果醋饮料箱子的长、宽、高估一估大约是多少个1cm3的小正方体”等方法,但还想不到只要知道长方体的长、宽、高,沿长、宽、高摆1cm3的小正方体就可以推算物体的体积。

【设计意图】创设与生活密切相关的问题情境,让学生在观察、猜想、比较的过程中明确了本节课的研究方向和目标。

师:这节课我们一起来研究长方体和正方体的体积。

[板书课题:长方体和正方体的体积(1)]二、动手操作,探究长方体和正方体的体积计算方法1.启发思考。

师:怎样知道长方体的体积呢?【学情预设】有了计算平面图形面积的经验,学生会想到看一个长方体里有多少个1cm3的小正方体,测量长方体的长、宽、高进行计算等方法。

师:我们可以通过实验研究,发现规律。

2.操作实验。

(1)出示课件要求,学生小组合作摆不同形状的长方体。

用12个棱长为1cm的小正方体拼摆不同形状的长方体,它们的长、宽、高各是多少?体积又是多少呢?四人小组一起动手操作并填写表格。

小学五年级下册奥数题型分类讲义 (附答案)

小学五年级下册奥数题型分类讲义 (附答案)

小学五年级奥数分类讲义含答案图形问题专题1 长方形、正方形的周长一、专题解析同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4。

长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。

那么如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长呢?还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。

二、精讲精练【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

【思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。

因此,所求周长是18×4=72厘米。

练习11、右图由8个边长都是2厘米的正方形组成,求这个图形的周长。

2、右图由1个正方形和2个长方形组成,下方长方形长为50cm,求这个图形的周长。

3、有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。

【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。

现在这块木板的周长是多少厘米?【思路导航】把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是192-4×4=176(平方厘米)。

把A和B移到一起拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。

176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。

练习21、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。

求这个正方形的周长。

2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。

人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件

人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件

公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米

5

4

10
1 3 2 棱长/米

6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。

期末复习专题一:图形与几何—长方体和正方体篇(解析版)人教版

期末复习专题一:图形与几何—长方体和正方体篇(解析版)人教版

2022-2023学年五年级数学下册典型例题系列之期末复习专题一:图形与几何—长方体和正方体篇(解析版)编者的话:《2022-2023学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题、专项练习、分层试卷三大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

分层试卷部分是根据试题难度和掌握水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。

本专题是期末复习专题一:图形与几何—长方体和正方体篇。

本部分内容包括观察立体图形、长方体和正方体的应用、平移和旋转的认识及作图,其中以长方体和正方体内容为主,包括期末常考典型例题,涵盖较广,部分内容和题型比较复杂,建议作为期末复习核心内容进行讲解,一共划分为六大篇目,欢迎使用。

【篇目一】观察立体图形:长方体和正方体。

【知识总览】一、观察物体。

1.从不同位置观察立体图形的形状,一般是从前面、上面、左面三个方向观察,所看到的形状一般是不同的。

2.在画观察到的图形时,遵循三个原则:长对正、高平齐、宽相等。

二、还原立体图形。

1.从上面看到的图形中,小正方形内部的数表示的是在这个位置上所用的小正方体的个数。

2.从正面看到的图形中,视线从前往后,每列中最大的数即为这一列最高层的层数。

3.从左面看到的图形,视线从左往右,每行中最大的数即为这一行最高层的层数。

三、确定小正方体的数量。

1.标数法:根据正面和侧面看到的形状在上面所看到的每个小正方形内标数,然后确定小正方体的个数。

2.分层记数。

根据三视图,了解层数,再分别判断每层的数量,最后把每层数量相加即可。

【典型例题1】观察物体。

一个几何体从上面看到的图形是,图形上的数字表示在这个位置上所用的小正方体的个数,这个几何体从正面看是(),从左面看是()。

学而思-第四讲-长方体和正方体

学而思-第四讲-长方体和正方体

小的长方体 60块 ,那么这 60块长方体表面积的总和是 多少平方米?答案: 96平方米
(2)三个小正方体拼成如图右所示,表面积比原来少了 100平方厘米,求这个图形的体积?
答案:375立 方厘米
3、堆积体的 表面积问题 对于 由若干个小正方体堆积而成的不规则 立体图形的表面积,只要掌握“三视 图”的这个法宝即可 。
比原来正方体的总面积多两个 AEFB 的面积。
解答:表面积=8
+(2 ) =396
(2)如图 4.4 从棱长为 8 的正方体的面上挖去一个 2
的长方体形成一个新的几何体, 求该几何体的表面积?
分析:由图 4.4 可知,挖去后新几何体中的 BFHC 面可弥补原正方体的 AEGD 面。此时已经构成了原正方体的 6 个
2 个 AEFB 面,上下面则没有发生变化,( EHGF 面可弥补 ABCD 面)。因此,新几何体的表面积总体来说比
原来正方体的总面积少了 2 个 AEHD 面而多了 2 个 AEFB 面。
解答:表面积=8
-(2 ) +(2 ) =400
(5)如图 4.7 从棱长为 8 的正方体的面上挖去一个 2
的长方体形成一个新的 几何体,求该几何体的表面积?
分析:由图 4.7 可知,新几何体的前后两个面比原来的正方体前后面也是共少了 2 个 AEHD 面,而左右面共多了
2 个 AEFB 面,上下面也多了 2 个 EHGF 面。因此,新几何体的表面积总体来说比原来正方体的总面积少了
2 个 AEHD 面而多了 4 个内壁面积(2 个 AEFB+2 个 EHGF)。
体有几个。答案:8块 (此题为1层的长方体)
第四讲 长方体和正方体 4.4
五年级秋季班 第四讲 长方体和正方体

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

长方体与正方体知识点总结

长方体与正方体知识点总结

长方体与正方体知识点总结长方体和正方体是我们在几何学中经常遇到的两种立体图形。

它们具有一些特殊的性质和特点,下面对长方体和正方体的知识点进行总结。

一、长方体的定义和性质长方体是一种具有六个矩形面的立体图形,其中相对的面是相等的。

长方体的八个顶点以及十二条棱都组成了它的全体边。

长方体的性质如下:1. 全面角:长方体的全面角为360度,即所有的面的面角之和为360度。

2. 对角线:长方体的对角线共有四条,每一条对角线都是两个不相邻顶点之间的直线段。

3. 面对角线:长方体的面对角线是指连接一个面上两个对角的线段。

长方体共有四对面对角线,长度相等。

4. 体对角线:长方体的体对角线是指连接两个相对顶点的线段。

体对角线的长度可以通过应用勾股定理得到。

5. 相邻棱:长方体的相邻棱是指共享同一个顶点的两条棱,共有12对相邻棱。

二、正方体的定义和性质正方体是一种具有六个正方形面的立体图形,每个面都相等且互相平行。

正方体的八个顶点以及十二条棱都组成了它的全体边。

正方体的性质如下:1. 全面角:正方体的全面角为360度,即所有的面的面角之和为360度。

2. 对角线:正方体的对角线共有四条,每一条对角线都是两个不相邻顶点之间的直线段。

3. 面对角线:正方体的面对角线是指连接一个面上两个对角的线段。

正方体共有四对面对角线,长度相等。

4. 体对角线:正方体的体对角线是指连接两个相对顶点的线段。

体对角线的长度可以通过应用勾股定理得到。

5. 相邻棱:正方体的相邻棱是指共享同一个顶点的两条棱,共有12对相邻棱。

三、长方体和正方体的区别与联系长方体和正方体在几何形状上的不同之处在于它们所拥有的面不同,长方体的面是矩形,而正方体的面是正方形。

此外,它们的边长也不同,长方体可以是边长各不相等的矩形,而正方体的边长相等。

然而,长方体和正方体也有很多相似之处。

它们都是由六个面组成的立体图形,全面角和对角线的性质都相同。

在计算体积和表面积时,长方体和正方体的公式也非常相似。

人教版春季五年级 第四讲 长方体与正方体(一) 提升版-教培星球

人教版春季五年级 第四讲 长方体与正方体(一) 提升版-教培星球

第4讲长方体和正方体(一)知识点一:长方体和正方体的认识1、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

2、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对的面完全相同,相对的棱长度相等。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体都有6个面、12条棱和8个顶点,只是正方体的棱长都相等。

正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

考点1:长方体和正方体的特征【典例1】(成华区期末)如图,左边的展开图所对应的立体图形是()A.B.C.【典例2】(二七区校级月考)一个长方体的棱长之和是720cm,左面图形的周长是180cm,前面图形的周长是260cm,它的长、宽、高是()cm.A.50、90、40B.90、50、40C.60、40、90D.90、40、50【典例3】(成华区期末)一个长方体最多有个面是正方形.【典例4】(相城区期末)如图是一个正方形纸盒的展开图,当折叠成正方体纸盒时,D点与点重合。

【典例5】.(碾子山区期末)吉祥食杂店要做一个长2.1m,宽40cm,高80cm的玻璃柜台,现要在柜台边都安上角铁,这个柜台需要多少米角铁?22.(射阳县期中)如图,有一个长6分米、宽和高都是2分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米.一共要用绳多长?综合练习一.选择题1.(西华县期末)用一根长64厘米的铁丝,正好可以焊接成一个长7厘米、宽5厘米、高()厘米的长方体.A..2B.3C.42.(二七区校级月考)一个长、宽、高分别为40cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要()厘米的胶带.A.360B.450C.280D.5403.(防城港模拟)用一根56分米长的铁丝,正好可以焊成长5分米,宽3分米,高()分米的长方体框架.A.6B.7C.8D.94.(兴县期末)长方体的6个面展开后()A.都是长方形B.至少有2个面是长方形C.至少有4个面是长方形5.(罗源县)小林给一只受伤的小鸟做一个笼子,他先用铁丝围成了一个长5分米,宽4分米.高6分米的框架,至少需要铁丝()分米.A.148B.60C.120二.填空题6.(鄄城县期末)长5dm,宽4dm,高2dm的长方体所有棱长之和是dm.7.(宁波)如图是一个铁丝做成的长方体框架(单位:分米),一只蚂蚁从它的一个顶点出发,沿着它的棱爬行,爬过的棱不能重复,那么这只蚂蚁最多能爬分米.8.(昆山市期中)把一根铁丝平均分成若干段,每段长56米,恰好可以焊成一个正方体框架,这根铁丝原来有米。

五年级奥数分册第15周 长方体和正方体(三)-专题训练.doc

五年级奥数分册第15周  长方体和正方体(三)-专题训练.doc

第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。

因此,锯好后表面积增加432平方厘米。

练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。

求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。

所以原正方体的表面积是12×6=72平方厘米。

练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。

长方体与正方体 专题训练

长方体与正方体 专题训练

专题一长方体和正方体表面积一、填空题。

1、一个正方体的棱长之和得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。

2、一个长方体的长、宽、高都扩大2倍,它的表面积就扩大()倍。

3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。

4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。

5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。

6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。

7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。

8、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。

9、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。

10、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。

二、解决问题。

1、一个无盖的长方休鱼缸,长1.2米,宽0.6米,深1米,这个鱼缸至少要用玻璃多少平方米?2、张大爷准备给小猫做一个温暖舒服的新家。

他准备了两根长120厘米的木条,要做成一个尽可能大的正方体框架,然后在其表面包上一层铝塑板。

请你帮张大爷算一算:至少要用多少铝塑板?3、学校饭堂使用的一种长方体形状的铁皮烟囱,烟囱高6米,底部是一个边长80厘米的正方形。

制作3个这样的烟囱至少需要铁皮多少平方米?4、一个浴室长3米,宽2米,高2.5米,在浴室的四壁和地面贴上规格是200mmX100mm的瓷砖,至少需要瓷砖多少块?5、制造一个长5厘米,宽4厘米,高2.5厘米的火柴盒外盒,至少需要多少平方厘米的硬纸皮?6、用36厘米长的铁丝做成一个正方体框架,这个正方体的体积是多少?7、一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?8、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)9、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

第三讲长方体和正方体体积专题

第三讲长方体和正方体体积专题

精典专题:长方体和正方体(第三讲)例1、把大立方体表面全部涂上颜色,然后锯成许多个小木块,(设小木块每条棱长为1)。

这时,有的小木块三面有颜色,有的小木块两面有颜色,有的小木块一面有颜色,也有的都没有涂上颜色。

请你观察后,完成下表:3、下图是一个边长为2厘米的正方体.在正方体的上面的正中向下挖一个边长为1厘米的正方体小间;接着在小洞的底面正中再向下挖一个边长为21厘米的小洞;第三个小洞的挖法与前两个相同,边长为41厘米.那么最后得到的立体图形的表面积是多少平方厘米?涂 色 面 3面 2面 1面 0面 合 计每边长度2 3 4567 n4、一个棱长都是整数的长方体的表面积是110平方厘米,已知它的6个面中有2个相对面是正方形,它的体积是多少?5、下图是正方体,四边形APQC是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.6、如图所示,其中一共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?7、有一个长方体木块,长125厘米,宽40厘米,高25厘米。

把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。

这个大正方体的表面积是多少平方厘米?8、有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

2.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

长方体与正方体讲义-学生版

长方体与正方体讲义-学生版

知识点:长方体的特征:有6个面,都是长方形,〔有时相对的两个面是正方形〕,相对的面形状相同,面积〔大小〕相等;有12条棱,相对的棱长度相等;8个顶点。

长方体的棱长总和=〔长+宽+高〕×4 长方体的高=长方体的棱长总和÷4-长-宽12条棱分为互相平行的3组,每组4条棱的长度相等长方体最多有 个面是正方形,从某个角度观察一个长方体最多能看到它的3个面 【基础检测】1.求做一个长方体油箱需要多少平方米铁皮,是求长方体的〔 〕 A . 外表积 B . 体积 C . 容积 D . 不能确定2.一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,棱长总和是〔 〕厘米. A . 24 B . 48 C . 72 D . 96 3.我们在画长方体时一般只画出三个面,这是因为长方体〔 〕 A . 只有三个面 B . 只能看到三个面 C . 最多只能看到三个面 4.小明有9根a 厘米长的小棒和6根b 厘米长的小棒,〔a 与b 不相等,均不为0〕他用其中的12根搭成了一个长方体框架.长方体框架的棱长和是 厘米.〔接头处的长度忽略不计〕 5.观察图,在下面的括号内填上合适的字母,使等式成立.=.判断题:长方体的6个面中至少有4个面是长方形. .【例题1】一个长6分米、宽4分米、高2分米的木箱.用三根铁丝捆起来〔如图〕,打结处要用1分米铁丝.这根铁丝总长至少为 分米.【同步训练】一个长方体礼品盒如图,长30厘米,宽20厘米,高是25厘米,接头处是30厘米,选择〔 〕分米绳子更合适.【拓展提升1】仓库里有如下几种规格的长方形、正方形的铁皮:①长0.64米,宽0.35米;②长0.64米,宽0.5米;③长0.5米,宽0.35米;④边长0.35米.张师傅要从中选择5张铁皮正好焊接成一个无盖长方体水箱,应取哪几张?请你把所有的取法都找出来,并把每种规格铁皮取的张数填入下表. 教师 学科 数学 上课时间 讲义序号(同一学生)学生年级五年级组长签字日期课题名称 长方体与正方体专题复习A . 230分米B . 33分米C . 330分米D .23分米取法二取法三取法四取法五取法六【拓展提升2】用120cm长的铁丝焊接成一个长方体框架,它的长、宽、高的比是5:3:2,这个长方体的体积是 cm.【考点二】正方体的特征正方体的特征:有6个面,都是正方形,6个面的面积相等;12条棱的长度相等;8个顶点。

长方体和正方体的认识教案7篇

长方体和正方体的认识教案7篇

长方体和正方体的认识教案7篇长方体和正方体的认识教案篇1活动目标:1、认识长方体与正方体,能区分长方体与正方体。

2、感受行与体的不同,发展空间知觉。

3、培养动手动脑及合作的能力。

活动准备:1、长方体纸盒若干个、画有花的长方形若干;2、正方体、长方体物品若干;3、幻灯片。

活动过程:一、认识长方体1、观察桌面上的操作材料小朋友们,你们看看桌子上有什么呀?今天老师要请小朋友用这些东西来玩个找朋友的。

2、教师讲解操作要求这个纸盒老师给它们穿上了漂亮的衣服,等会儿请小朋友们先将纸盒的衣服脱下来,数一数它总共有几件衣服,再帮衣服找出和它自己同样大小的衣服做好朋友,然后请你把这对好朋友身上的花涂上相同的颜色,涂好后再将这些衣服穿回到纸盒的身上。

3、幼儿操作,教师指导。

4、分析幼儿操作结果(1)将每组幼儿的长方体展示在上面,教师与幼儿一起来观察。

(2)刚才我们小朋友都将纸盒的衣服脱下来过了,你们说它有几件衣服呀?(6件)我们来看看到底是不是6件。

教师逐一将衣服脱下展示在黑板上。

那你们说这个纸盒有几个面啊?(3)你们看看这6个面谁和谁是好朋友?也就是它俩的大小是一样的?(教师将6个面是一对的两两放在一起)(4)现在我将它们都穿回去,这个面在这里,这个面……(5)上下两个面是一样大的,左右两个是一样大的,前后两个是一样大的。

5、教师小结:像纸巾盒、牛奶盒这样的盒子,有6个面,每个面都是长方形,相对的两个面大小一样的形体我们叫长方体(出示字体:长方体)二、认识正方体1、(教师出示正方体)小朋友们,你们看这个是长方体吗?是的请举手。

2、那它倒底是不是呢?我们来看看,一起数数它有几个面?(6个),它每个面都是正方形,这6个正方形它们的大小都一样,像这样有6个面,每个面都是正方形,而且这6个正方形的大小都一样,这样的形体我们叫正方体(出示正方体字体),正方体也是长方体。

三、区分正方体和长方体1、小朋友们,刚才我们认识了长方体和正方体,老师在后面为小朋友们准备了很多的物体,请你到后面去挑选一个长方体或是正方体,看哪个小朋友能又快又好的挑来回到自己的座位上来。

五年级下册数学说课稿三.长方体和正方体的认识冀教版

五年级下册数学说课稿三.长方体和正方体的认识冀教版

第 1 页《长方体和正方体的认识》说课稿《长方体和正方体的认识》说课稿各位老师,大家好!今天,我说课的题目是《长方体和正方体的认识》。

下面我将从教材、教学目标、教法等几个方面来进行说课。

一 、 说教材《长方体和正方体的认识》是冀教版小学数学五年级下册第三单元的第一个课题。

这部分内容是在学生能识别长方体和正方体的基础上,进一步学习长方体和正方体的有关知识。

进一步学习长方体和正方体的有关知识。

通过比较长方体和正方通过比较长方体和正方体的特征,进一步强化认识并构建知识结构体系。

进一步强化认识并构建知识结构体系。

使学生对周围的空使学生对周围的空间中的物体形成初步的空间观念,并为下一步学习立体几何图形打下基础。

基础。

二、说教学目标基于以上对教材的认识,结合小学生的认知结构特点,我确定了以下教学目标:以下教学目标:1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。

正方体特征的过程。

3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。

验。

三、说教学重、难点依据数学课程标准,及对教材的认识,我确定了本节课的重点和难点。

难点。

教学重点:掌握长方体和正方体的特征。

教学重点:掌握长方体和正方体的特征。

教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。

系。

四、说教法根据几何知识的教学特点、本节教学内容以及小学生空间观念薄弱的特点,我将采用以下教学方法。

观察发现法:通过让学生观察长方体、正方体的一些实物发现新知,培养学生的观察概括能力;合作探究法:引导学生通过自主研究、合作讨论等活动形式来获取知识。

同时运用多媒体辅助教学,使学生的观察能力、抽象概括能力逐步提高。

高。

五、说学法为了使学生较好地掌握长方体和正方体的特征,并逐步形成空间观念,除了让学生通过观察来认识长方体和正方体的特征以外,除了让学生通过观察来认识长方体和正方体的特征以外,在观在观察实物的基础上,通过动手操作,看一看,摸一摸,数一数,量一量,做一做来学习新知,同时以此来激发学生的学习兴趣,同时以此来激发学生的学习兴趣,调动学生的积调动学生的积极性。

人教版五年级下册数学专题学习之第三模块 有关长方体、正方体的棱长和表面积问题

人教版五年级下册数学专题学习之第三模块 有关长方体、正方体的棱长和表面积问题

第三模块有关长方体、正方体的棱长和表面积问题【教法剖析】我们认识了长方体和正方体,知道它们都有6个面、12条棱,12条棱长的和是它们的棱长总和,长方体或正方体6个面面积的总和叫做长方体或正方体的表面积。

公式法:长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×6经验判断法:在实际生活中,长方体或正方体的表面积的计算要根据具体的情况而定。

(1)计算6个面的总面积,如纸箱、油箱、茶叶盒、牛奶盒等。

(2)计算5个面的总面积,如洗衣机罩、水池、鱼缸、教室粉刷墙面、蚊帐等。

(3)计算4个面的总面积,通风管、大楼雨管、烟囱、食品盒商标纸等。

(4)表面积的变化要会分析:长方体或正方体被锯开后,一次会增加两个面;反之,两个相同的正方体或长方体拼在一起,一次会减少两个面。

【题例教案】例1 制作一个长5dm,宽3dm,高4dm的长方体灯笼框架,至少需要多少米长的竹条?【助教解读】这道题是已知长方体的长、宽、高,求长方体的棱长总和,直接运用公式:长方体的棱长=(长+宽+高)×4来进行解答。

长方体的棱长=(长+宽+高)×4=(5+3+4)×4=48(dm)=4.8(m)答:至少需要4.8米长的竹条。

【经验总结】解答这道题的关键是要知道长方体的长、宽、高或知道长、宽、高的和。

若求正方体的棱长总和只需要用棱长乘12即可。

例2 一个房间长6米,宽3.5米,高3米,门窗面积是8m2。

现在要把这个房子的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?【助教解读】求粉刷水泥的面积,实际是求房间的表面积,但是粉刷房子时,地面不用粉刷,也就是求5个面的面积,在运用公式计算时,长×宽不需要乘2,还要减去门窗的面积。

6×3.5+(6×3+3.5×3)×2-8 =21+57-8 =70(m2)答:粉刷水泥的面积是70平方米。

(完整版)长方体和正方体知识点总结+练习

(完整版)长方体和正方体知识点总结+练习

第二单元长方体和正方体总结一、长方体和正方体的特征:形体相同点不同点关系面棱顶点面的形状面的大小棱长长方体 6 12 8一般六个面都是长方形(也有两个相对的面是正方形)。

相对的面面积相等平行的四条棱长度相等正方体是特殊的长方体正方体 6 12 8六个面都是正方形六个面的面积相等十二条棱长都相等长方体:①有6个面,相对的面完全相同;长方体放桌面上,最多只能看到3个面。

②有12条棱,相对的棱长长度相等,而且相对的棱互相平行;12条棱可以分为3组(分别为长、宽、高),每组的4条棱一样长;长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4③有8个顶点,每个顶点上的三条棱分别称为长方体的长、宽、高。

正方体:①有6个完全相同的面;正方体放桌面上,最多只能看到3个面。

②有12条长度相等的棱,每条棱的长度称为正方体的棱长;正方体的总棱长=棱长×12。

上下左后右前③有8个顶点。

练一练:1.一个长方体长、宽、高分别是10cm、7 cm、4 cm ,这个长方体的棱长和是多少厘米?(提示:根据长方体的总棱长公式计算)2.一个长方体的棱长和是160dm,其中,长是20dm,宽是8dm,它的高是多少?从一个顶点引出的三条棱的长度总和是多少?3.将一根铁丝长720厘米做成正方体,则正方体的棱长是多少厘米?二、长方体和正方体的表面积定义:长方体或正方体6个面的总面积,叫做它的表面积。

1.法一:(1)长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)法二:前、后面:长×高×2=X左、右面:长×高×2=Y上、下面:长×宽×2=Z则长方体的表面积(有六个面)= X + Y + Z2.正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。

长方体和正方体表面积专题

长方体和正方体表面积专题

长方体和正方体的表面积【专题解析】1、长方体的表面积就是长方体六个面的总面积。

由于相对的面完全相同,所以可以先求出前面、和下面三个面的面积,再乘以2,就可以求出表面积了。

长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。

正方体的表面积 = 棱长×棱长×62、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。

在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。

一个抽屉有5个面,分别是前面、后面、左面、右面、底面。

所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。

通风管顾名思义是通风用的,没有底面。

所以只要算四个侧面就可以了。

(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:鱼缸、游泳池、抽屉、火柴盒内盒、粉刷教室的墙壁(有一个顶面,不含地面)(3)具有四个面的长方体、正方体物品:火柴盒外壳、漏水管、通风管、柱子、饼干盒的四测包装纸【基础夯实】1.长方体有()个面,它们一般都是()形,也可能有()个面是正方形2.长方体的上面和下面、前面和后面、左面和右面,它们的面积()。

3.正方体有()个面,每个面都是()形,面积都()。

4.一个正方体的棱长是 6厘米,它的棱长总和是()。

5.一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米。

6.一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是()厘米。

7.把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米。

8、用4个棱长为2分米的正方体拼成一个长方体,这个长方体的表面积是()平方分米。

长方体和正方体的结构特点与模型制作

长方体和正方体的结构特点与模型制作

长方体和正方体的结构特点与模型制作长方体和正方体是几何形体中常见的两种立体构造。

它们在实际应用中有着广泛的用途,并且也是制作模型的理想选择。

本文将介绍长方体和正方体的结构特点,以及如何制作它们的模型。

一、长方体的结构特点长方体是一种具有六个矩形面的几何形体。

其结构特点如下:1. 边长和角度:长方体的六个面都是矩形,因此相邻面的边长相等且平行,内角都为直角(90度)。

2. 对称性:长方体具有三个互相垂直的对面对称轴,分别称为水平对称轴、垂直对称轴和纵向对称轴。

3. 体积和表面积:长方体的体积可通过边长相乘再乘以高度来计算,即V = 长 ×宽 ×高。

表面积则是将六个面的面积相加,即S = 2(长 ×宽 + 长 ×高 + 宽 ×高)。

二、长方体模型的制作制作一个长方体模型可以帮助我们更好地理解其结构特点。

制作步骤如下:1. 准备工具和材料:需要纸板、剪刀、胶水和标尺等工具。

纸板可根据长方体的尺寸要求选择适当的大小。

2. 制作底面:根据长和宽的尺寸,使用标尺在纸板上量出相应的长度并标记。

然后使用剪刀剪下这个矩形。

3. 制作四个侧面:根据长和高的尺寸,在纸板上量出对应的长度并标记。

然后使用剪刀将这四个矩形剪下。

4. 折叠和粘合:将底面和四个侧面按照对应的边进行折叠,并使用胶水将它们粘合起来。

注意保持直角边的对齐。

5. 制作顶面:根据长和宽的尺寸,在纸板上量出对应的长度并标记。

然后使用剪刀将这个矩形剪下。

6. 让顶面固定:将顶面放在已经粘合好的长方体上,并使用胶水将其粘合。

7. 等待干燥:等待胶水干燥后,长方体模型就完成了。

三、正方体的结构特点正方体是一种具有六个正方形面的几何形体。

其结构特点如下:1. 边长和角度:正方体的六个面都是正方形,因此它的边长相等,内角都为直角(90度)。

2. 对称性:正方体具有四个互相垂直的对面对称轴,分别称为水平对称轴、垂直对称轴和两个对角线对称轴。

五年级下册数学试题-第三单元《长方体和正方体》专题练习三 人教新课标(2014秋) 无答案

五年级下册数学试题-第三单元《长方体和正方体》专题练习三 人教新课标(2014秋) 无答案

长方体和正方体一、长方体和正方体的体积1、体积的意义:物体所占空间的大小叫做物体的体积。

2、常用的体积单位有立方米、立方分米和立方厘米,可以分别写成m³、dm³和cm³。

3、长方体和正方体体积的计算方法(1)长方体的体积=长×宽×高,用字母表示为;V=abh(2)正方体的体积=棱长×棱长×棱长,用字母表示为V=a³4、长方体和正方体体积的统一公式长方体或正方体的体积=底面积×高,用字母表示为:V=Sh相关练习:一、填一填。

1、400dm³=()m³ 3.08dm³=( )cm³3.9m³=( )dm³ 6700cm³=( )dm³5dm³90cm³=( )dm³ 2.4m³=()m³()dm³2、1m³的正方体木块可锯成()个1dm³的小方块,如果锯成的小方块摆成一排,一共有()m长。

3、棱长为1m的正方体可以切成( )个棱长为1cm的小正方体。

4、一块长方体钢板长3m,宽1.5m,厚0.4m。

这块钢板的体积是()dm³。

二、解决问题。

1、一个纸箱从里面量,长是45cm、宽是40cm,体积是63dm³。

王师傅要把一个长44cm、宽35cm、高30cm的微波炉装入纸箱,是否可以装下?2、一个无盖的长方体铁皮水箱,长是4m,宽是50cm,高是1.5m。

(1)这个铁皮水箱的占地面积是多大?(2)做这个水箱至少需要多少平方米的铁皮?(3)这个水箱的体积是多少?3、王叔叔家要修一道长12m,宽25cm、高2m的围墙。

如果每立方米用砖520块,修这道围墙一共需要多少块砖?4、一个长方体和一个正方体的棱长总和相等。

已知长方体的长、宽、高分别是30cm、18cm、12cm,正方体的棱长是多少厘米?它们的体积相等吗?5、将一个长15cm、宽12cm、高10cm的长方体截成一个体积最大的正方体,这个正方体的体积是多少立方厘米?合多少立方分米?6、一段方钢长20dm,横截面是一个边长为0.5dm的正方形,已知1cm³的钢的重量是7.8g,这段方钢重多少千克?7、一个封闭的长方体容器,里面装着果汁,它的长、宽、高分别是10cm、10cm、15cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三-----长方体和正方体的表面积
【考考我自己】
1、一个正方体的棱长总和是60厘米,棱长是( )厘米,表面积是()平方厘米。

2、一个长、宽、高分别是4分米、3分米、1分米的长方体,它是由( )个体积是1立方分米的正方体组成的。

3、正方体的棱长扩大3倍,它的表面积就扩大()倍。

正方体的棱长缩小3倍,它的表面积就缩小()倍.
【热身运动】
1、用4个棱长为2分米的正方体拼成一个长方体,这个长方体的表面积最大是多少?最小是多少?
2、用三个棱长为8厘米的正方体木块拼成一个长方体,长方体的表面积是多少?棱长之和是多少?
3、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?
【思维点拨】1、长方体表面积公式:
正方体表面积公式:
2、立体图形的拼合,会导致图形表面积的变化。

【认真听讲】
例题1、一根长方体木料长2.4米,横截面是边长12厘米的正方形。

现在把这根木料锯成三段(横截面不变),这三段木料的表面积之和比原来增加了多少?
例题2:有两个棱长为1厘米的正方体,每个正方体的表面积是6平方厘米。

那么把这两个小正方体拼成一个长方体。

这个长方体的表面积是多少?(用两种方法求解)
【学以致用】
1、一个教室长8米,宽5米,高4米。

要粉刷教室的顶面和四周墙壁,除去门窗面积21.5平方米,粉刷面积是多少平方米?如果每平方米用油漆0.25千克,共要用油漆多少千克?
2、一个无盖的长方体铁皮水桶,底面是边长3分米的正方形,桶高0.4米,小红的妈妈要做一对这样的水桶,请你帮忙算算至少要多少平方分米的铁皮?
3、一种长方体的通风管,长2米,宽和高都是1分米,做15节这样的通风管至少需要多少平方分米?
4、如图,有两个一样大小的长方体,把这两个长方体如图中那样叠放在一起,表面积减少多少平方厘米?
5、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?
6、有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?【能力提升】:
1、有一个底面积是正方形的长方体,高是20厘米,侧面展开正好是一个正方形。

求这个长方体的表面积是多少平方厘米?
2、如图,一个长方体,长10分米,宽5分米,高3分米。

挖去一个长方体后表面积是多少平方分米?
3、一个长方体木块,从高上截去5厘米的长方体,便成为一个正方体,表面积减少了120平方厘米。

原来长方体的表面积是多少?
专题四----长方体和正方体的体积
【考考我自己】
1、填空
560平方厘米=( )平方分米 1500毫升=( )升 0.38立方分米=( )立方厘米=( )毫升 1250立方厘米=( )立方分米=( )毫升
5.23升=( )升( )毫升 1.23立方米=( )立方分米 2、一个长方体,如果长缩短2厘米,就变成一个棱长为2厘米的正方体,原来这个长方体的表面积和体积各是多少?
【热身运动】
1.长方形中的四个角剪去,做成一个无盖 的长方体盒子。

这个盒子的容积是多少? (单位:厘米)
2、把8立方米的沙土均匀地垫入长5米,宽4米,高0.6米的土坑中,能垫多厚?
【思维点拨】
长方体的体积= 正方体的体积=
长(正)方体的体积=
【认真听讲】
例题1、一个长方体木块,从上部和下部分别截去高分别为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米。

原来长方体的体积是多少立方厘米?
例题2、用一段铁丝,正好可以做成一个长7厘米、宽6厘米、高5厘米的长方体框架,如果用这段铁丝做一个正方体框架,这个正方体的体积是多少?
例题3、在一个长40厘米、宽20厘米的玻璃缸中,完全浸入一个棱长10厘米正方体的铁块,这时水深12厘米。

如果把这个铁块从玻璃缸中取出,缸中的水面高是多少厘米?
【学以致用】
1、一个长方体如果高截去2厘米,表面积就减少了32平方厘米,剩下的正好是一个正方体。

原来长方体的体积是多少立方厘米?
4535 5
5
2、一个长方体的木料,从左右两端分别锯掉4厘米和1厘米的长度,便成为一个正方体,表面积减少了60平方厘米。

原来长方体的体积是多少立方厘米?
3、一个长方体玻璃缸,从里面量得长6分米,宽4分米,高4.5分米,水面离缸口边1分米,玻璃缸内有水多少升?
4、一个体积为(20×15×10)立方厘米的长方体木箱里最多能装进棱长为2厘米的小正方体多少块?
5、有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)。

6、一个长60厘米、宽20厘米的盛水容器,把5块体积相等的铁块投入水中后,容器中的水面正好上升了4厘米,求每块铁块的体积。

【能力提升】
1、一个长方体,表面积是184平方厘米,底面积是20平方厘米,底面周长是18厘米,求长方体的体积。

2、如图,从一个正方体中挖去一个长方体,使正方体漏空(正方体棱长4分米,长方体底面是一个边长为1分米的正方形)。

此时,剩下立体图形的表面积和体积是多少?。

相关文档
最新文档