制冷
第1章制冷方法-PPT课件

2.4.1
布雷顿制冷循环
一、等熵膨胀制冷 高压气体绝热可逆膨胀过程,称为等 熵膨胀。气体等熵膨胀时,有功输出, 同时气体的温度降低,产生冷效应。 常用微分等熵效应 α s 来表示气体等熵 膨胀过程中温度随压力的变化
T αs p s
因 α s 总为正值,故气体等熵膨胀时温度总 是降低,产生冷效应。
2.1 物质相变制冷
气体
凝华
升华 冷凝 凝固 熔解 蒸发
固体
液体
液体蒸发制冷
NEXT
2.1.1 蒸气压缩式制冷
包含: 压缩机 冷凝器 节流阀 蒸发器
2.1.2 蒸气吸收式制冷
包含: 吸收器 发生器 溶液泵 热交换器 冷凝器 节流阀 蒸发器
工作原理:一定的液体对某种制冷剂气 体的吸收能力随温度不同而变化
吸收工质对∶水-氨;溴化锂水溶液-水
消耗热能
2.1.3 吸附式制冷
工作原理:一定的固体吸附剂对某种制 冷剂气体的吸附能力随温度不同而变化
间歇制冷,可采用两个以上吸附器实现 连续制冷
吸附工质对∶沸石-水;硅胶-水;活性炭
-甲醇;氯化锶-氨;氯化钙-氨
有物理吸附和化学吸附两种方式
如果将电源极性互换,则电偶对的制冷端 与发热端也随之互换。
NEXT
多级热电堆
一对电偶的制冷量是很小的,如φ 6xL7 的电偶对,其制冷量仅为3.3~4.2kJ/h
为了获得较大的冷量可将很多对电偶对 串联成热电堆,称单级热电堆
单级热电堆在通常情况下只能得到大约 50℃的温差。为了得到更低的冷端温度,可 用串联、并联及串并联的方法组出多级热电 堆,图2-166示出多级热电堆的结构型式。
顺磁体:不同的磁介质产生的附加磁
制冷基础知识

制冷基础知识一、制冷术语:什么叫工质 ?凡是用来实现热能与机械能的转换或用来传递热能的工作物质统称为工质。
在制冷装置中,不断循环流动以实现能量转换的工作物质称为工质。
也是制冷系统中完成制冷循环的工作介质。
例如:氟利昂、氨、水等。
什么叫制冷剂?制冷剂即制冷工质,是制冷系统中完成制冷循环的工作介质。
制冷剂在蒸发器内吸取被冷却对象的热量而蒸发,在冷凝器内将热量传递给周围空气或水而被冷凝成液体。
制冷机借助于制冷剂的状态变化,达到制冷的目的。
什么叫载冷剂 ?载冷剂也称冷媒是指在间接制冷系统中用以传送冷量的中间介质。
载冷剂在蒸发器中被制冷剂冷却后,送到冷却设备中,吸收被冷却物体或环境的热量,再返回蒸发器被制冷剂重新冷却,如此不断的循环,以达到连续制冷的目的。
载冷剂传递冷量是依靠显热作用,而不象别的制冷剂那样依靠蒸发潜热来实现制冷。
例如:空气、水、盐水、有机化合物及其水溶液等。
二、制冷系统中的工作参数的概念1、温度:温度是表示物质冷热程度的量度。
常用的温度单位(温标)有三种:摄氏温度、华氏温度、绝对温度。
1)摄氏温度( t ,℃):我们经常用的温度。
用摄氏温度计测得的温度。
2)华氏温度( F ,℉):欧美国家常用的温度。
3)绝对温标( T,o K):一般在理论计算中使用。
三种温度单位之间换算:A、华氏温度 F (℉ ) = 9/5 ×摄氏温度 t(℃ ) + 32 (已知摄氏温度求华氏温度)B、摄氏温度t (℃) = [ 华氏温度 F(℉) -32] ×5/9(已知华氏温度求摄氏温度)例:F(℉)t (℃)2121003205-150-17.8C、绝对温标T(o K) = 摄氏温度t ( ℃) + 273 (已知摄氏温度求绝对温度)例:t ( ℃)T (o K)-30243-102630273303032、压力(P):在制冷中,压力是单位面积上所受的垂直作用力,即压强。
通常用压力表、压力计测得。
第三章 制冷

(Tk - T0)↓,ε ↑ → 但Tk ↓受环境条件限制;T0 ↑不利于传热。
二、制冷循环工作参数的确定
1、蒸发温度(T0):随制冷剂的不同而不同。
空气载冷: T0比冷库空气温度低8~12℃; 盐水载冷: T0比盐水温度低4~6℃。 2、冷凝温度(Tk):由冷凝器型式、冷凝介质的温度决定。 水冷却: Tk=t+(4~5℃)
例2、在氨蒸气压缩制冷循环中,蒸发温度和冷凝温 度分别为-20℃和20℃,制冷量为20冷吨(日
本)。氨在冷凝器中的放热速率为100kJ/s,氨
回热循环:将蒸发器产生的低温低压蒸汽与节流 前的液体工质进行热交换。
1、既可减轻或消除吸汽管道中的有害过热,又能使液 态制冷剂过冷。 2、制冷剂过冷,将增加循环的制冷量△ q0 ,但功耗 也增大△W,其制冷系数是否提高,视具体操作条 件和制冷剂种类而异。 3、当Tk=30℃,T0在普通制冷温度范围内时,对F-12 采用回热循环是有利的;对于氨是不利的;F-22 介于两者之间,即制冷无大的变化。
233 Tk 273 T2 273 T0 299 Tk 273 T0 273 Tk
预热 系数 排气 温度 冷凝 温度
立式: b=0.001 温度℃
立式压缩机:
ηm — 机械效率。指示功率Ni与轴功率Nz之比。机械摩擦损失。
m
Ni Nz
m 0.8 ~ 0.95
ηD — 传动效率。轴功率Nz与实际功率N之比。传动机构的完 善程度。 传动效率ηD 的取值:
(t为冷凝器排水温度,进出水的温差取2~3℃)
空气冷却: Tk=t’+(8~12℃) (t’为冷凝器排气温度) (立、卧式、淋激式冷凝器)
3、压缩机的吸汽温度(T1):为控制过热点温度。 低压蒸汽过热有害,使压缩机功耗↑,可通过控制冷凝温 度,回收一部分过热能量。 吸汽温度取决于回汽的 过热度 。若不考虑回汽 的过热,则T1≈T0,实际上, 自蒸发器的低压蒸汽进 压缩机前将在吸汽管中 吸收周围空气的热量,温 度升高,比容增大,叫蒸汽 过热。
制冷基础知识

热力学温标T,单位K。是国际制温标,它规定以纯水的三相点作为基点(固液 气),为便于记忆将纯水在标准大气压下的冰点设为273K,沸点设为373K,在两定点 间分为100等份,每一等份即称为开氏一度。
是把某一物体或空间(包括空间内部的物体)的温度,降到低于环境介质温度, 并保持这一低温状态的过程。为了达到这一目的,就应采用人工的方法不断地将该物 体或空间的热量及由外界传入的热量,转移到外界的环境中去。
由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量 的补偿过程。 但消耗功可以使热量从低温传递到高温,就像借助水泵对水做功,就 能使水从低处流向高处。人工制冷就是使热量从低温传到高温的技术。
0.098
0.9678
0.1
0.987
0.001
0.00987
1
9.87
0.1013
1
(3)比容与比重 比容(比体积) 物质单位质量所占有的空间体积,用符号v表示 比重(密度)
v=V/G
(V立方米,G千克)
单位体积工质所具有的重量,用符号ρ表示 ρ=G/V
比容与密度的关系
ρ=1/v 压力一定,温度越高,比容越大,比重就小,温度越低,比容越小, 比重就大(热胀冷缩)
氨的主要缺点是毒性较大、可燃、可爆、有强烈的刺激性臭味、等熵指数较大, 若系统中含有较多空气时,遇火会引起爆炸。
氟利昂 是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学
组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机, 以适应不同制冷温度的要求。
制冷的原理和分类

制冷的原理和分类
制冷的原理是通过吸收热量使物体温度降低。
常见的制冷原理有以下几种:
1. 蒸发制冷原理:利用液体蒸发时吸收热量的特性来降低温度。
当液体蒸发时,它从周围环境中吸收热量,使周围环境变冷。
2. 压缩制冷原理:通过压缩制冷剂使其压力升高,然后通过冷凝器散发热量,使制冷剂温度降低。
接着,制冷剂通过膨胀阀减压,进入蒸发器,吸收周围热量,使周围环境变冷。
3. 热电制冷原理:利用热电效应,通过将电流通过两种不同材料的接触面,使一侧的温度升高,另一侧的温度降低,从而实现制冷效果。
制冷可以根据不同的应用领域和工作原理进行分类,常见的分类包括:
1. 压缩式制冷:利用压缩机将制冷剂压缩成高压气体,通过冷凝器散发热量,然后通过膨胀阀减压,使制冷剂温度降低,从而实现制冷效果。
常见的家用冰箱和空调就是采用压缩式制冷原理。
2. 吸收式制冷:利用吸收剂吸收制冷剂,然后通过加热吸收剂,使其释放吸收的制冷剂,从而实现制冷效果。
吸收式制冷常用于大型冷库和工业制冷设备。
3. 热电制冷:利用热电效应,在电流通过两种不同材料的接触面时产生温差,从而实现制冷效果。
热电制冷通常用于小型电子设备或需要高精度温度控制的场合。
4. 磁制冷:利用磁场变化时材料温度也会发生变化的特性,通过改变磁场来实现制冷效果。
磁制冷通常用于特殊环境或需要超低温的场合。
制冷的概述

螺杆式制冷压缩机
Page 14
涡旋式制冷压缩机
Page 15
涡旋式制冷压缩机
Page 16
离心式制冷压缩机 实物图
Page 17
实物图
旋转式压缩机
Page 18
往复活塞式压缩机
Page 19
2)放热冷凝。 冷凝器是输出热量的设备, 把压缩机排出 的高温高压制冷剂蒸汽,通过散热器散热冷 凝为液体制冷剂。制冷剂从蒸发器中吸收的 热量和压缩机产生的热量,被冷凝器周围的 冷却介质所吸收而排出系统。
Page 20
立式壳管式冷凝器
Page 21
卧式壳管式冷凝器
Page 22
冷凝器图片
丝管式冷凝器
翅片式 冷凝器
Page 23
蛇炮(套管式冷凝器)
汽车空调冷凝器 风冷式冷凝器
Page 24
3)节流降压
节流机构的作用:节流阀对制冷剂起节流降压 作用并调节进入蒸发器中的制冷剂流量。它在通道 某处的流通截面积急速变小,当液体经过该处时, 会受到较大的阻力,待流出狭道时,压力显著下降, 同时伴随温度下降。
一、蒸气压缩式制冷循环 1、蒸气压缩式制冷系统
蒸气压缩式制冷系统,由压缩机、冷凝器、膨 胀阀(又称节流阀)、蒸发器四个部分组成。
Page 8
减压作用, 变成低温 低压制冷 剂液体
通过冷却放热 变成高压常温
液体
液体降压蒸发变 成气体同时吸热
温度下降
吸收来自蒸 发器的气体 压缩成高温 高压气体
Page 9
冷循环的动力设备,在正 向循环中锅炉消耗热能, 产生压力为0.198~ 0.98MPa的工作蒸汽,以 保证完成循环。在工业制 冷中也可利用能保证工作 压力的工业余汽,以节约 能源。在循环中,锅炉产 生的高压水蒸汽通过阀件 等部件输送到蒸汽喷射式 制冷循环的主喷射器和各 个辅助喷射器。
制冷工作原理

制冷工作原理制冷技术是现代社会中非常重要的一项技术,在日常生活中有很多应用场景,例如家用空调、商业冷柜、医药冷链等。
制冷技术基于热力学原理,通过传递热量来实现物体的冷却,本文将详细介绍制冷工作原理。
1. 热力学基础热力学是现代物理学中一个重要的分支,它研究的是热量和能量之间的转换,以及这些过程中的热力学性质。
在制冷过程中,热力学原理是至关重要的,在这里我们简要介绍一些重要的概念:热力学系统是指处于一定压力、温度和物质组成下的物体。
在制冷系统中,通常将制冷剂和空气视为两个不同的热力学系统。
1.2 热平衡热平衡是指热力学系统之间达到温度平衡的状态。
在制冷系统中,通常通过传导、对流和辐射等方式来实现热平衡。
在热力学中,系统的运行状态可以通过相应的参数来描述,例如压力、温度、物质量等。
热力学过程是指在这些参数变化的过程中系统的状态发生的变化。
2. 制冷循环过程在制冷循环过程中,制冷剂从液态变成气态的过程称为蒸发。
蒸发的过程需要吸收热量,从而使室内空气冷却下来。
2.2 压缩制冷剂在蒸发后,会以气态进入压缩机,在压缩机内被压缩成高温高压的气体。
压缩的过程会产生大量的热量,该热量需要通过冷凝器散发出去。
2.3 冷凝在压缩机之后,制冷剂会被输入到冷凝器中,该过程是使制冷剂从气态变为液态的过程。
在这个过程中,制冷剂会释放出大量的热量,冷凝器会将这些热量散发到空气中,使空气变得更加炎热。
2.4 膨胀在冷凝器之后,制冷剂将以液态再次进入膨胀阀中,这是制冷循环中最重要的步骤之一。
在膨胀阀中,制冷剂会扩散并降低温度和压力,最终流回蒸发器中,从而完成制冷循环过程中的一个完整循环。
3. 制冷系统中的关键部件制冷系统包括多个功能块,其中最基本的是蒸发器、压缩机、冷凝器和膨胀阀。
下面分别介绍这些关键部件的作用。
3.1 蒸发器蒸发器是制冷系统中最重要的组成部分,该部件是制冷循环过程中制冷剂从液态变为气态的地方。
蒸发器通常由许多小管组成,这使得蒸发器表面积增大,使空气更好地与制冷剂接触,从而提高了制冷效果。
制冷原理

一、制冷:是指用人工的方法在一定时间和一定空间内将某物体冷却,使其温度降低到环境温度以下,并保持这个温度。
二、制冷机:机械制冷中所必需的机械和设备的总和。
三、制冷工质1、制冷剂(1)分类按照化学成分分:1.无机物:NH3 、H2O、N2、CO22.有机物:1)碳氢化合物:CH4、C2H6、C2H42)氟利昂:饱和碳氢化合物的卤族取代物。
CHClF2、CCl2F2、C2H2F43.混合物:1)非共沸混合物:蒸发过程中混合物温度发生变化。
R4012)共沸混合物:具有共同的沸点,蒸发过程中混合物温度不发生变化。
R501 按照制冷剂的标准蒸发温度:高温(低压)、中温(中压)、低温(高压)制冷(2)命名原则(3)制冷剂的选用原则1、热力学方面的要求:1)具有较大的制冷工作范围:临界温度高、标准蒸发温度低、凝固温度低。
2)具有适当的工作压力和压缩比3)单位质量和单位体积制冷量均大:4)绝热指数低:可减少耗功率,降低排气温度,有利于润滑。
2、物理化学方面的要求:1)流动性好(粘度小,密度小):可减少流动阻力损失,降低能耗,缩小管径减少材料消耗。
2)传热性好:可减少传热面积。
3)化学稳定性好:对金属和非金属材料不腐蚀3、安全性方面的要求:不燃烧、不爆炸、无毒或低毒、易检漏4、对环境的亲和友善:1)臭氧衰减指数ODP:表示物质对大气臭氧层的破坏程度2)温室效应指数GWP:表示物质造成温室效应的影响程度5、经济性方面的要求:制冷剂的生产工艺简单,价廉、易得。
6、特定要求:1)离心式压缩机要求分子量要大,提高级压比,减少级数;2 )制冷量在200W以下的制冷机要求制冷剂的单位容积制冷量要小,以免压缩机的尺寸过小,加工困难;制冷量1000W以上的制冷机要求制冷剂的单位容积制冷量要大,以减小压缩机的尺寸和制冷剂容积流量;3)全封闭和半封闭式制冷压缩机要求制冷剂电绝缘性能好。
(3)制冷剂与润滑油的溶解性:1)完全溶解 制冷剂与油形成均匀溶液,不会产生油膜而妨碍传热;制冷剂中润滑油含量较多时,容易引起蒸发温度升高、制冷量减少、润滑油黏度降低、沸腾时泡沫多、蒸发器液面不稳定。
制冷专业必备的知识

制冷专业必备的知识制冷专业是一个涉及制冷技术和制冷设备的学科领域。
在这个领域中,掌握一些必备的知识对于从事制冷工作的人员来说是非常重要的。
本文将从制冷原理、制冷循环、制冷剂以及制冷设备四个方面介绍制冷专业必备的知识。
一、制冷原理制冷原理是制冷专业的基础知识,它涉及到物质的热力学性质和热传导规律。
制冷原理的核心是利用物质的相变过程来吸收或释放热量,实现温度的降低。
常用的制冷原理有蒸发制冷、吸收制冷和压缩制冷等。
了解这些原理可以帮助制冷工程师选择合适的制冷循环和制冷设备,从而提高制冷系统的效率和性能。
二、制冷循环制冷循环是制冷系统中的核心部分,它包括蒸发器、压缩机、冷凝器和节流装置等组成。
蒸发器是制冷循环中的热交换器,通过蒸发剂与外部的低温介质进行热交换,从而吸收热量。
压缩机是制冷循环中的能量转换装置,它将低温低压的蒸发剂压缩成高温高压的气体,提高其温度和压力。
冷凝器是制冷循环中的热交换器,通过冷却剂与外部的高温介质进行热交换,从而释放热量。
节流装置是制冷循环中的控制装置,通过减小蒸发剂的流量和压力,使其进入蒸发器时呈现饱和状态,从而实现制冷效果。
三、制冷剂制冷剂是制冷系统中的工质,它起到传递热量和实现温度降低的作用。
常用的制冷剂有氨、氟利昂、丙烷等。
制冷剂的选择要考虑到其物理性质、环境影响和安全性等因素。
制冷剂的物理性质包括饱和蒸汽温度、气化热、比容等,这些性质直接影响到制冷系统的性能和效率。
制冷剂的环境影响主要涉及到其对臭氧层的破坏和温室效应,因此要选择对环境影响较小的制冷剂。
制冷剂的安全性包括其毒性、燃烧性和爆炸性等,要选择对人身安全和设备安全影响较小的制冷剂。
四、制冷设备制冷设备是制冷专业中的实体部分,它包括冷库、冷藏车、冷冻机组、空调设备等。
冷库是用于存储冷冻或冷藏食品的设备,它通过制冷循环实现温度的控制和保持。
冷藏车是一种用于运输冷藏货物的专用车辆,它通常配备有制冷机组,可以保持货物在一定的温度范围内。
制冷原理及基础知识

热量的传递往往分三种形式进行,即传导、对流、辐射。这三种传热方 式往往是交错发生,以一种方式伴随着另一种方式进行。 (1).传导 传导也称导热,是由两种温度不同的物体之间直接接触所引起的热量交换。 (2).对流 对流是指流动的物体中,借助于部分质点流动而转移的热量,热的对流往往 与热传导相伴随。在空调及冷冻技术中所遇到的传热问题,通常是以导热和 对流为主进行的传热。 (3).辐射 辐射是物体热能转变为辐射线,同时向四周空间传播。凡具有高温的物体, 均具有这种性能。
每个部件都非常的神奇也非常的有 意思,它们有着各自的功能,有着各自 的神奇之处,下面我将为大家详细介绍 它们。
1.压缩机
空调压缩机是在空调制冷剂回路 中起压缩驱动制冷剂的作用。
空调压缩机的工作回路中分蒸发 区(低压区)和冷凝区(高压区)。空调 的室内机和室外机分别属于高压或低 压区(要看工作状态而定)。空调压缩 机一般装在室外机中。
2.物质的热能、热量、焓、熵、显热、潜热
(4).熵:在不做功的情况下向物质转移能量,就能增强物质的混乱程 度。这叫做物质的熵。混乱程度越高,熵就越大。 在不施加功的情况下,这种混乱状态是不可逆的(即无法回到原来的 次序)。
∆S = Q/T ( Q = 吸收的热量 T = 温度)
熵的单位 千焦/千克·开氏度 - kJ/kg.K 英国热量单位/磅。兰氏温标。 - BTU/lb.R
六种常见制冷方式

六种常见制冷方式一、蒸汽式压缩制冷原理:在蒸汽压缩制冷循环系统中,压缩机从蒸发器吸入低温低压的制冷剂蒸汽,经压缩机绝热压缩成为高温高压的过热蒸汽,再压入冷凝器中定压冷却,并向冷却介质放出热量,然后冷却为过冷液态制冷剂,液态制冷剂经膨胀阀(或毛细管)绝热节流成为低压液态制冷剂,在蒸发器内蒸发吸收空调循环水(空气)中的热量,从而冷却空调循环水(空气)达到制冷的目的,流出低压的制冷剂被吸入压缩机,如此循环工作。
压缩机功能:把制冷剂蒸气从低压状态压缩至高压状态,创造了制冷剂在冷凝器中常温液化的条件。
被称为整个装置的“心脏”。
冷凝器功能:使压缩机排出的制冷剂过热蒸气冷却,并凝结为制冷剂液体,在冷凝器内制冷剂的热量排放给冷却介质。
分类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。
风冷式冷凝器:使用和安装方便,不需要冷却水、热量由分机将其带入大气中。
但同样传热系数低,相对其他类型重量偏大,翅片表面会积灰是散热能力下降,须及时清理。
蒸发器功能:依靠制冷剂液体的蒸发来吸收冷却介质热量的换热设备,它在制冷系统中的任务是对外输出冷量。
分类:满液式(沉浸式)蒸发器、干式蒸发器。
干式蒸发器:沉浸式蛇管、壳管式、板式、喷淋式等。
节流装置功能:截流降压:高压常温的制冷剂流过膨胀阀后,就变为低压、低温的制冷剂液体。
控制制冷剂流量:膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。
控制过热度:膨胀阀具有控制蒸发器出口制冷剂过热度的功能,即保持蒸发器的传热面积的充分利用,又防止压缩机冲缸事故的发生。
分类:手动节流阀、热力膨胀阀、毛细管、电子膨胀阀、浮球板、固定孔板、可变孔板。
二、蒸汽吸收式制冷以制冷剂-吸收剂为工作流体,称为吸收工质对。
常用工质对:溴化锂-水(制冷剂是水)、氨-水(制冷剂是氨)-低沸点工质是制冷剂。
装置:吸收式制冷装置由发生器、冷凝器、蒸发器、吸收器、循环泵、节流阀等部件组成,工作介质包括制取冷量的制冷剂和吸收、解吸制冷剂的吸收剂,二者组成工质对。
制冷什么原理

制冷什么原理
制冷是通过移除物体内部的热量来降低其温度的过程。
这个过程涉及到一些物理原理,主要包括以下几种:
1. 蒸发冷却原理:液体在吸热的过程中蒸发,并将环境热量带走,从而造成物体降温。
这个原理在空调和冰箱中被广泛应用,通过将制冷剂沿不同的循环管路流动,使其在蒸发和压缩过程中吸收和释放热量,达到制冷的效果。
2. 扩散原理:根据物质扩散的性质,将高温物质与低温物质隔离开,通过热量的传导和扩散,让物体的温度逐渐降低。
这个原理广泛应用于冷水机组和冷冻车厢等领域,通过隔离高温空气和低温冷媒或冷却介质,使得冷凝和蒸发过程分离,从而达到制冷的效果。
3. 热力学循环原理:基于热力学原理,通过对制冷剂进行循环压缩、冷凝、膨胀和蒸发等过程,实现对物质的冷却。
这个原理被空调、冰箱等设备广泛应用,通过控制制冷剂在压缩和膨胀的过程中释放和吸收热量,使得物体温度降低。
4. 磁制冷原理:利用特定材料在磁场中发生磁相变,从而导致温度的下降。
这个原理被用于磁制冷机和磁性制冷材料的研究中,通过改变磁场的强度和方向,控制物质的磁相变,实现制冷效果。
综上所述,制冷过程涉及多种物理原理,包括蒸发冷却、扩散、
热力学循环和磁制冷等。
不同的制冷设备和技术会基于不同的原理来实现制冷效果。
什么叫做制冷

什么叫做制冷?一、何谓制冷冷和热是同一范畴的两个物理概念,都是物质分子运动平均动能的标志。
日常生活中常说的“热”或“冷”是指温度高低的相对概念,是人体对温度高低感觉的反应。
在制冷技术中所说的冷,是指某空间内物体的温度低于周围环境介质(如水或空气)温度而言。
因此“制冷”就是使某一空间内物体的温度低于周围环境介质的温度,并连续维持这样一个温度的过程。
二、何谓人工制冷我们都知道,热量传递终是从高温物体传向低温物体,直至二者温度相等。
热量决不可能自发地从低温物体传向高温物体,这是自然界的客观规律。
然而,现代人类的生活与生产经常需要某个物体或空间的温度低于环境温度,甚至低得很多。
例如,储藏食品需要把食品冷却到0℃左右或-15℃左右,甚至更低;合金钢在-70℃~-90℃低温下处理后可以提高硬度和强度。
而这种低温要求天然冷却是达不到的,要实现这一要求必须有另外的补偿过程(如消耗一定的功作为补偿过程)进行制冷。
这种借助于一种专门装置,消耗一定的外界能量,迫使热量从温度较低的被冷却物体或空间转移到温度较高的周围环境中去,得到人们所需要的各种低温,称谓人工制冷。
而这种装置就称谓制冷装置或制冷机。
看完视频后,大家总结一下制冷的途径有哪些?三、实现制冷的途径制冷的方法很多,可分为物理方法和化学方法。
但绝大多数为物理方法。
目前人工制冷的方法主要有相变制冷、气体绝热膨胀制冷和半导体制冷三种。
1、相变制冷即利用物质相变的吸热效应实现制冷。
如冰融化时要吸取80 kcal/kg的熔解热;氨在1标准大气压下气化时要吸取327kcal/kg的气化潜热;干冰在1标准大气压下升华要吸取137kcal/kg的热量,其升华温度为-78.9℃。
目前干冰制冷常被用在人工降雨和医疗上。
2、气体绝热膨胀制冷利用气体通过节流阀或膨胀机绝热膨胀时,对外输出膨胀功,同时温度降低,达到制冷的目的。
3、半导体制冷珀尔帖效应告诉我们:两种不同金属组成的闭合电路中接上一个直流电源时,则一个接合点变冷,另一个接合点变热。
制冷原理的四个过程

制冷原理的四个过程
制冷技术是现代生活中不可或缺的一部分,它涉及到制冷设备的设计和制造。
制冷原理是制冷技术的核心,它涉及到四个基本过程:压缩、冷凝、膨胀和蒸发。
1. 压缩:制冷过程的第一个阶段是将制冷剂气体压缩成高压气体。
这个过程通常通过使用压缩机来实现。
当气体被压缩时,它的温度和压力都会上升。
压缩机将气体压缩成高温高压气体,使其具有更高的能量。
2. 冷凝:接下来,高温高压气体通过冷凝器冷却。
冷凝器是一个热交换器,它可以将高温高压气体的热量传递给周围的环境。
当气体冷却时,它会凝结成液体。
这个过程中,热量从气体中释放出来,从而使气体冷却并转化为液体。
3. 膨胀:冷凝后的液体制冷剂通过膨胀阀进入蒸发器。
膨胀阀的作用是将高压液体制冷剂转化为低压液体制冷剂。
当液体制冷剂通过膨胀阀流动时,其压力急剧下降,导致其温度下降。
这个过程是制冷过程中的关键步骤,因为它使制冷剂进入蒸发器的状态发生变化。
4. 蒸发:最后,低压液体制冷剂进入蒸发器,通过与周围环境的热
交换将热量吸收。
在蒸发器中,液体制冷剂转化为气体,并吸收周围的热量。
这个过程使蒸发器的温度降低,从而实现制冷效果。
而被吸收的热量则通过排出蒸发器的冷凝水或者空气流动来传递给外界。
这四个过程相互协作,通过不断的循环来实现制冷效果。
制冷原理的理解对于制冷设备的设计和维护非常重要,它不仅可以帮助提高制冷设备的效率和性能,还可以提供更好的能源利用和环境保护。
常见的五大制冷方法

常见的五大制冷方法
制冷领域常用的制冷方法有以下五种:
第一,利用高压气体的膨胀制冷,利用常温下的高压气体在膨胀机中绝热膨胀,风冷式冷水机组的型号,到达较低的温度,气体复热时即可在低温下制冷。
第二,液体蒸发制冷,在常温下冷凝的液体节流到较低的压力,这个时候,风冷式的冷水机组,它的温度也会随之降低,液体在低压下蒸发之后就能够达到制冷的效果。
第三,气体涡旋式制冷,在常温下高压气体流经涡流管就可分离成冷、热两股气流,冷气流复热时就能够制冷。
第四,半导体制冷,利用半导体的热-点效应制冷。
第五,化学方法制冷,利用吸热效应的化学反应过程制冷。
当今的制冷机利用的是高压气体膨胀制冷和液体的蒸发制冷为基础发展起来的,中间应用最为广泛的是液体的蒸发制冷。
各种的制冷机依靠某种工作介质的状态变化来完成它的工作循环,风冷式冷水机组所采用的的制冷剂被称为工作的介质。
这五种方式的制冷方法不断地应用在制冷厂家和制冷设备当中,其中利用风冷式的制冷机组制冷量也较大,能够满足人们对制冷量的需求。
制冷的概念

制冷的概念
制冷是一种将热量从一个物体或空间传递到另一个物体或空间
的过程,以使前者的温度降低的技术。
制冷技术的应用广泛,包括家用冰箱、空调、冷库、制药、食品加工等领域。
制冷技术的基本原理是热力学的热力学第二定律,即热量不会自行从低温物体传递到高温物体。
为了使热量从低温物体传递到高温物体,需要消耗能量。
因此,制冷技术的实现需要能源的支持。
常见的制冷技术包括压缩式制冷、吸收式制冷、热泵等。
其中,压缩式制冷是最常见的制冷技术,它利用压缩机将制冷剂压缩为高温高压气体,然后通过冷凝器将其冷却为高压液体,最后通过膨胀阀使其膨胀为低温低压液体,从而实现制冷的目的。
随着环保意识的提高,制冷技术的发展也越来越注重环保和节能。
吸收式制冷、热泵等新型制冷技术因其节能环保的特点逐渐得到应用。
未来,制冷技术的发展将继续朝着高效节能、环保可持续的方向发展。
- 1 -。
制冷量 公式

制冷量公式
摘要:
1.制冷量的概念
2.制冷量的计算公式
3.制冷量与空调、冰箱等设备的关系
4.如何选择合适的制冷量
5.我国制冷量行业的发展现状与趋势
正文:
制冷量是指制冷设备在一定时间内,通过制冷循环所吸收的热量。
制冷量的大小是衡量制冷设备制冷能力的重要指标。
制冷量计算公式为:制冷量(Q)= 制冷剂的质量流量(m/s)× 制冷剂的比热容
(kJ/(kg·K))× 温差(K)
制冷量与空调、冰箱等制冷设备的性能密切相关。
选择合适的制冷量,不仅可以保证设备的正常运行,还能有效节约能源。
在选择制冷量时,要综合考虑设备的实际需求、使用环境、能源效率等因素。
近年来,我国制冷量行业取得了显著的发展。
随着科技的进步和绿色环保理念的普及,制冷量技术的研发和创新不断取得突破。
高效、节能、环保的制冷设备越来越受到市场的欢迎。
此外,国家政策的支持和引导也为制冷量行业的发展提供了良好的环境。
制冷量 公式

制冷量公式
(实用版)
目录
1.制冷量的定义和重要性
2.制冷量的计算公式
3.制冷量的应用实例
正文
制冷量是指空调、制冷设备在单位时间内从室内环境中移除的热量,是衡量制冷设备制冷能力的重要指标。
在选购空调或者制冷设备时,消费者需要了解制冷量的概念,以便根据实际需求选择合适的设备。
制冷量的计算公式为:
制冷量(单位:瓦特)= 制冷系数×制冷面积×温差
其中,制冷系数是制冷设备的性能参数,制冷面积是指需要制冷的空间面积,温差是指室内外温度差。
举个例子,假设某空调设备的制冷系数为 3000W/(平方米·摄氏度),制冷面积为 20 平方米,室内外温差为 5 摄氏度,则该空调的制冷量为:制冷量 = 3000W/(平方米·摄氏度)× 20 平方米× 5 摄氏度 = 30000 瓦特
这意味着该空调在单位时间内可以移除 30000 瓦特的热量,对于消费者而言,了解制冷量可以帮助他们更好地选择合适的空调设备,以满足制冷需求。
同时,对于制冷设备厂商而言,提高制冷量是提高设备性能和竞争力的关键。
总之,制冷量是衡量制冷设备制冷能力的重要指标,通过计算公式可以方便地计算出设备的制冷量。
第1页共1页。