2004年江苏省无锡市中考数学试题
【中考十年】2003-2012年江苏省无锡市中考数学试题分类解析汇编专题9:四边形
2003-2012年江苏省无锡市中考数学试题分类解析汇编专题9:四边形锦元数学工作室 编辑一、选择题1. (江苏省无锡市2008年3分)如图,E ,F ,G ,H 分别为正方形ABCD 的边AB ,BC ,CD ,DA 上的点,且AE=BF=CG=DH=13AB ,则图中阴影部分的面积与正方形ABCD 的面积之比为【 】A.25 B.49 C.12 D.35 【答案】A 。
【考点】正方形的性质,全等三角形的判定和性质,勾股定理。
【分析】先根据正方形的对称性得到阴影部分是正方形,设正方形的边长为3a ,利用勾股定理求出CH 、DM 、HM 的长,即可得到MN 的长,也就是阴影部分的边长,面积也就求出了,再求比值即可:设CH 与DE 、BG 分别相交于点M 、N ,正方形的边长为3a ,DH=CG=a ,由正方形的中心对称性知,阴影部分为正方形,且△ADE ≌△DCH 。
从而可得DM ⊥CH 。
在Rt △CDH 中,由勾股定理得,由面积公式得11 CH DM DH CD 22⋅=⋅,得。
在Rt △DMH 中由勾股定理得MH= ,则MN=CH -MH --10-a=a 105。
∴阴影部分的面积:正方形ABCD 的面积=()222902a 3a =9a =5255⎛⎫ ⎪ ⎪⎝⎭::。
故选A 。
2. ( 江苏省无锡市2011年3分)菱形具有而矩形不一定具有的性质是【 】A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补【答案】A 。
【考点】菱形和矩形的性质。
【分析】区分菱形和矩形的性质,直接得出结果: A .对角线互相垂直是菱形具有而矩形不一定具有的性质,选项正确; B .对角线相等是矩形具有而菱形不一定具有的性质,选项错误;C .对角线互相平分是矩形和菱形都具有的性质,选项错误; D .对角互补是矩形具有而菱形不一定具有的性质,选项错误。
故选A 。
3. (2012江苏无锡3分)如图,梯形ABCD 中,AD ∥BC ,AD=3,AB=5,BC=9,CD 的垂直平分线交BC 于E ,连接DE ,则四边形ABED 的周长等于【 】A . 17B . 18C . 19D .20【答案】A 。
【中考十年】2003-2012年江苏省无锡市中考数学试题分类解析汇编专题10:圆
2003-2012年江苏省无锡市中考数学试题分类解析汇编专题10:圆锦元数学工作室编辑一、选择题1. (江苏省无锡市2003年3分)已知⊙O1的半径为5cm,⊙O2的半径为3cm,且圆心距O1O2=7cm,则⊙O1与⊙O2的位置关系是【】A.外离B.外切C.相交D.内含【答案】C。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
根据题意,得R=5cm,r=3cm,d=7cm,∴R+r=8cm,R-r=2cm。
∵2<7<8,即R-r<d<R+r,∴两圆相交。
故选C。
2. (江苏省无锡市2004年3分)已知⊙O1与⊙O2内切,它们的半径分别为2和3,则这两圆的圆心距d满足【】A、d=5B、d=1C、1<d<5D、d>5【答案】B。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,根据两圆内切时,圆心距等于两圆半径的差,则圆心距d=3-2=1。
故选B。
3. (江苏省无锡市2005年3分)已知⊙O1与⊙O2的半经分别为2和4,圆心距O1 O2=6,则这两圆的位置关系是【】A、相离B、外切C、相交D、内切【答案】B。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
历年江苏省无锡市中考数学试卷(含答案)
2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A .B.±5 C.5 D .﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.(3分)下列图形中,是中心对称图形的是()A .B .C .D .5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是.12.(2分)分解因式:3a2﹣6a+3=.13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(8分)(1)解不等式组:(2)解方程:=.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P 得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•无锡)﹣5的倒数是()A.B.±5 C.5 D.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•无锡)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【分析】根据分式有意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.【点评】本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•无锡)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.【点评】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算,难度不大.4.(3分)(2017•无锡)下列图形中,是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.5.(3分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.(3分)(2017•无锡)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.【点评】本题为统计题,考查平均数与中位数的意义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.【点评】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.8.(3分)(2017•无锡)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B 选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.9.(3分)(2017•无锡)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.(3分)(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)(2017•无锡)计算×的值是6.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.【点评】此题考查了二次根式的乘除,掌握二次根式乘除的法则是解题的关键,是一道基础题.12.(2分)(2017•无锡)分解因式:3a2﹣6a+3=3(a﹣1)2.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.(2分)(2017•无锡)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)(2017•无锡)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11℃.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.15.(2分)(2017•无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.16.(2分)(2017•无锡)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.17.(2分)(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过FH⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.【点评】本题考查了扇形面积的计算,矩形的性质,梯形的性质,正确的作出辅助线是解题的关键.18.(2分)(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.三、解答题(本大题共10小题,共84分)19.(8分)(2017•无锡)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•无锡)(1)解不等式组:(2)解方程:=.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式方程的解法去分母,进而求出x的值,再检验得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.【点评】此题主要考查了解分式方程以及解不等式组,正确掌握基本解题方法是解题关键.21.(8分)(2017•无锡)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【点评】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.(8分)(2017•无锡)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)(2017•无锡)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=4556,b=600;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①【点评】本题考查条形统计图,解题的关键是能读懂表格以及条形图的信息,属于中考常考题型.24.(6分)(2017•无锡)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)取BF=CH=AD构成等边三角形,作新等边三角形边的垂直平分,确定外心,再作圆确定另外三点,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.【点评】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.25.(10分)(2017•无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可设A(t,t),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②方法1、由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.方法2、先确定出△BOD比△OAD(B与A横坐标绝对值的比更简单)得出面积关系,即可得出结论.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可设A(t,t),∴t+×t=t,×t=t,∴B(t,t),设直线OB的函数表达式为y=kx,则tk=t,解得k=,∴直线OB的函数表达式为y=x;②方法1、设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+t,∴D(0,t),且A(t,t),B(t,t),∴AB==|t|,AD==|t|,∴===.方法2、由(1)知,A(t,t),B(t,t),∴==,∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,∴=.【点评】本题为一次函数的综合应用,涉及等边三角形的判定和性质、待定系数法、三角形的面积及方程思想等知识,理解题目中的T变换是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.(10分)(2017•无锡)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买9台A型污水处理器,费用为10×9=90(万元);购买8台A型污水处理器、1台B型污水处理器,费用为=80+8=88(万元);购买7台A型污水处理器、2台B型污水处理器,费用为10×7+8×2=70+16=86(万元);购买6台A型污水处理器、3台B型污水处理器,费用为10×6+8×3=60+24=84(万元);购买5台A型污水处理器、5台B型污水处理器,费用为10×5+8×5=50+40=90(万元);购买4台A型污水处理器、6台B型污水处理器,费用为10×4+8×6=40+48=88(万元);购买3台A型污水处理器、7台B型污水处理器,费用为10×3+8×7=30+56=86(万元);购买2台A型污水处理器、9台B型污水处理器,费用为10×2+8×9=20+72=92(万元);购买1台A型污水处理器、10台B型污水处理器,费用为10×1+8×10=90(万元);.购买11台B型污水处理器,费用为8×11=88(万元).故购买6台A型污水处理器、3台B型污水处理器,费用最少.答:他们至少要支付84万元钱.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.27.(10分)(2017•无锡)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m+6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m+6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OC,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.【点评】本题考查圆综合题、平行线的性质、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.28.(8分)(2017•无锡)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=t.则PA=6﹣t.首先证明BP=BC=6,在Rt△ABP 中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,设PD=t.则PA=6﹣t.。
2004年江苏省无锡市初中毕业高级中等学校招生考试
考试2004年无锡市初中毕业高级中等学校招生语文试题注意事项:1.本卷分试题和答卷两部分,所有答案一律写在答卷上,试题序号不要搞错。
2.全卷答案书写要工鳖,不要随便涂改。
书写工整优美者酌加l—3分。
3.本学科考试时间为150分钟,满分为130分。
一、积累运用(25分)1.根据课文默写。
(10分)①忽如一夜春风来,。
②予独爱莲之,濯清涟而不妖。
③山随平野尽,。
④,病树前头万木春。
⑤野芳发而幽香,。
⑥姑苏城外寒山寺,。
⑦先天下之忧而忧,。
⑧,一枝红杏出墙来。
⑨稻花香里说丰年,。
⑩江山代有才人出,。
2.根据拼音写出汉字。
(2分)①胆(qiè)②狭(ài)③无边无(yín)④造(yì)3.解释下列加点词。
(4分)①寡助之至,亲戚畔.之②属予作文..以记之③固.以怪之矣④一狼洞.其中4.对下列两首诗理解不正确的一项是(2分)()过零丁洋别云间文天祥夏完淳2013-9-10 第1 页富东中学何冬生整辛苦遭逢起一经,干戈寥落四周星。
三年羁旅客,今日又南冠。
山河破碎风飘絮,身世浮沉雨打萍。
无限河山泪,谁言天地宽!惶恐滩头说惶恐,零丁洋里叹零丁。
已知泉路近,欲别故乡难。
人生自古谁无死,留取丹心照汗青。
毅魄归来日,灵旗空际看。
A.《过零了洋》是一首七言律诗,四联八句,全诗押的是ing韵;《别云间》是一首五言律诗,也是四联八句,押的是an韵。
B.《过》诗多用对偶句,如“山河破碎风飘絮,身世浮沉而打萍”和“惶恐滩头说惶恐,零了洋里叹零丁”,对仗极为工整。
C.《别》诗中“三年羁旅客,今日又南冠”一联点明自己被捕,过了三年漂泊的生活,今天又成了囚徒,同时表明自己要像楚人钟仪那样忠于故国的意志。
D.“人生自古谁无死,留取丹心照汗青”表明自己以死明志的决心,全诗透露出作者内心的恐惧和对前途的迷惘。
5.教师节期间,有位同学给老师送上了这样的贺词,以表达自己对老师的赞美和敬意:你博古通今,像滔滔不绝的历史长河,引导我们追求无穷知识。
江苏省无锡市中考数学试题(解析)
江苏省无锡市中考数学试卷一.选择题(共10小题)1.(无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。
专题:探究型。
分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。
分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B. x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。
分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。
专题:计算题。
分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。
江苏中考数学试卷真题2004
江苏中考数学试卷真题2004第一部分选择题1.计算下列各题.(1) 420/ 6 + (-5)³ = 70 + (-125) = -55(2) 5 + (-1/3) + (-1/2) = 5 - 1/3 - 1/2 = 14/3(3) 13 - (-5) - 8 = 13 + 5 - 8 = 10(4) (-8) - (-20) = -8 + 20 = 122.写出下列各数的读法.(1) 1/5 = 零一分之五(2) 3.25 = 三又二分之五(3) -0.4 = 负零点四(4) 0.003 = 零又三千分之一3.化简下列各表达式(1) a(8a + 16) - 2(4a + 8) = 8a² + 16a - 8a - 16 = 8a² - 16(2) 5a - (4 - 6a) = 5a - 4 + 6a = 11a - 4(3) 2(a² - 4a + 8) - (a² + 5a - 2) = 2a² - 8a + 16 - a² - 5a + 2 = a² - 13a + 18(4) 3b + (2b - 4) - (2b + 6) = 3b + 2b - 4 - 2b - 6 = 3b - 104.计算下列各题(1) -5 × 8 = -40(2) 3 × (-6) × (-2) = 36(3) (-6) × (4 - 9) = -6 × (-5) = 30(4) (-0.5) × 4 × 8 = -16第二部分解答题5.解方程(3x + 1) / 2 = (x + 3) / 3(3x + 1) × 3 = (x + 3) × 29x + 3 = 2x + 69x - 2x = 6 - 37x = 3x = 3/76. 平行四边形ABCD中,$AB \parallel CD, AD \parallel BC$. P为AB的中点, Q是CD上的一点,使得PQ=3. 连接MP、MQ ,它们与BC交于E和F. 若AP=2.5cm ,AD=3.5cm,求BE的长度.由平行四边形性质可知,$\Delta PDA \sim \Delta QCB$.设x为BE的长度,根据相似三角形的性质,可得 $\frac {QD}{PD} = \frac {BC}{AB}$$\frac {3.5}{1.25} = \frac {x + 3.5}{x + 2.5} = \frac {7}{5}$得到 $5x + 17.5 = 7x + 10.5$$x = 3$所以BE的长度为3cm.7. 已知函数y = x² - 3x + k的图象经过点(2, 3),求k.将点(2, 3)代入方程,得到 $3 = 2² - 3×2 + k$化简方程,得到 $1 = k$所以k = 1。
无锡市中考数学试题专题十年分类汇编
2003-2012年江苏省无锡市中考数学试题分类解析汇编专题1 :实数锦元数学工作室编辑、选择题【答案】2.(江苏省无锡市2004年3分)下列各式中的最简二次根式是【】【答案】A 。
【考点】最简二次根式【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检 查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽 方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否 则就不是。
因此。
1.(江苏省无锡市2003年3分)化简的结果是【A..3 .2B. 3-2C.2—3【考分母有理化。
【分将原式分母有理化,将分子、分母同时乘以分母的有理化因式-3 .2,然后化简即可:\3 .3, —2 .3,2務= (2)故本题选A 。
B 、 .12C 、 18•/ .12=2 3 , 58=3、一 2 ,舅」-12 -18和9都不是最简二次根式。
故选A 。
3・(江苏省无锡市2005年3分)比较一丄,」丄的大小,结果正确的是23 4【 】【答案】A【考点】有理数大小比较。
【分析】根据有理数大小比较的方法即可求解:T —1 V 0, —1V 0, 1 >0,二 1 最大;2344又..1 1. 1 1^又* — > —,・ ・ --- ::。
2 32 3••——1 ::: -1 :::丄。
故选 A 。
2344.(江苏省无锡市2006年3分)下列各式中,与 二是同类根式的是【】A . .18B . 24C .12D . 、9【答案】C 。
【考点】同类二次根式。
【分析】将四个选项化简,找出被开方数为 3的选项即可:A 、 & 与 G 被开方数不同,故不是同类二次根式;B 、 24不是二次根式与'、3被开方数不同,故不是同类二 次根式;C 、 12 =2,3与.3被开方数相同,故是同类二次根式;D 、 ■ 9 =3与' 3被开方数不同,故不是同类二次根式。
故选C 。
5.(江苏省无锡市2006年3分)如图,0是原点,实数a 、b 、c 在数C1 1 3 41 1 1 1 1轴上对应的点分别为A、B、C,则下列结论错误的是【】A. a—b>0B. ab< 0C. a+ b v OD. b (a—c) >0 【答案】B。
2005-2011年江苏省无锡市中考数学试卷及答案(7套)
浙江省2009年初中毕业生学业考试绍兴市试卷数 学考生须知:1.全卷分试卷Ⅰ(选择题)、试卷Ⅱ(非选择题)和答题卡三部分.全卷满分150分,考试时间120分钟.2.答题前,先用钢笔或圆珠笔在试卷Ⅱ规定位置上填写县(市、区)、学校、姓名、准考证号;在答题卡规定栏中写上姓名和准考证号,然后用铅笔把答题卡上准考证号和学科名称对应的括号或方框涂黑涂满.3.答题时,将试卷Ⅰ的答案用铅笔在答题卡上对应的选项位置涂黑涂满,试卷Ⅱ的答案或解答过程直接做在试卷上.参考公式:二次函数2y ax bx c =++图象的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,试卷Ⅰ(选择题,共40分)请将本卷的答案,用铅笔在答题卡上对应的选项位置涂黑涂满.一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.下列运算正确的是( )A .2a +a =3aB .2a -a =1C .2a ·a =32a D .2a ÷a =a 2.甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米3.平面直角坐标系中有四个点:M (16)-,,N (24),,P (61)--,,Q (32)-,,其中在反比例函数y =6x图象上的是( ) A .M 点 B .N 点 C .P 点 D .Q 点4.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“15cm ”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 5.如图是一个几何体的三视图,则该几何体是( )(第4题图)(第10题图)A .正方体B .圆锥C .圆柱D .球6.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58° 7.跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的( ) A .平均数 B .众数 C .中位数 D .方差8.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .35 B .310 C .425 D .9259.如图,在平面直角坐标系中,P ⊙与x 轴相切于原点O ,平行于y 轴的直线交P ⊙于M ,N 两点.若点M 的坐标是(21-,),则点N 的坐标是( )A .(24)-,B. (2 4.5)-,C.(25)-,D.(2 5.5)-,10.如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y ax =,(1)y a x =+,(2)y a x =+相交,其中0a >.则图中阴影部分的面积是( )A .12.5B .25C .12.5aD .25a主视图俯视图 左视图 (第5题图)P (第6题图)(第9题图)试卷Ⅱ(非选择题,共110分)请将答案或解答过程用钢笔或圆珠笔写在本卷上.二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上) 11.因式分解:32x xy -=___________.12.如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________. 13.当x =代数式23x x -+_____________. 14.如图是绍兴市行政区域图,若上虞市区所在地用坐标表示为(12),,诸暨市区所在地用坐标表示为(52)--,,那么嵊州市区所在地用坐标可表示为______________.15.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为__________°(只需写出0°~90°的角度).16.李老师从油条的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB ,对折后(点A 与B 重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB 上的14,34均变成12,12变成1,等).那么在线段AB 上(除A ,B )的点中,在第二次操作后,恰好被拉到与1重合的点所对应的数之和是____________.(第12题图)(第15题图)(第14题图)AB(第16题图)三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:11(14sin 602-⎛⎫-+ ⎪⎝⎭°;(2)化简:2414a ⎛⎫+ ⎪-⎝⎭·2a a +.18.在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l 与AB 垂直,要作ABC △ 关于l 的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法. 作法:(1)以B 为圆心,BA 为半径作弧,与AB 的延长线交于点P ;就是所要作的轴对称图形.(第18题图) l P B A C19.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数; (2)求证:BD CE =.20.京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB 的坡角由45°减至30°.已知原坡面的长为6cm (BD 所在地面为水平面)(1)改造后的台阶坡面会缩短多少? (2)改造后的台阶高度会降低多少?(精确到0.1m 23 1.73≈≈,)A B C E D (第19题图)DBCA (第20题图)ABC21.为了积极应对全球金融危机,某市采取宏观经济政策,启动了新一轮投资计划.该计划分民生工程,基础建设,企业技改,重点工程等四个项目,有关部门就投资计划分项目情况和民生工程项目分类情况分别绘制了如下的统计图.根据以上统计图,解答下列问题:(1)求投资计划中的企业技改项目投资占总投资的百分比;(2)如果交通设施投资占民生工程项目投资的25%,比食品卫生多投资850万元.计算交通设施和文化娱乐各投资多少万元?并据此补全图2.22.若从矩形一边上的点到对边的视角是直角,则称该点为直角点.例如,如图的矩形ABCD 中,点M 在CD 边上,连AM ,90BM AMB ∠=,°,则点M 为直角点. (1)若矩形ABCD 一边CD 上的直角点M 为中点,问该矩形的邻边具有何种数量关系?并说明理由;(2)若点M N ,分别为矩形ABCD 边CD ,AB上的直角点,且4AB BC ==,求MN 的长.30% 46% 基础建设企业技改投资计划分项目情况统计图 (第21题图1) DBCAM(第22题图)民生工程项目分类情况统计图 (单位:万元) 0 1000 900 800 700 600 500 400 300 200 100 投资额食品卫生学校医院交通设施文化娱乐旅游景点体育场馆(第21题图2) 类别(第23题图1)(第23题图2) 23.如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度. (1)如图2,《思维游戏》这本书的长为21cm ,宽为15cm ,厚为1cm ,现有一张面积为875cm 2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;(2)若有一张长为60cm ,宽为50cm 的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?24.定义一种变换:平移抛物线1F 得到抛物线2F ,使2F 经过1F 的顶点A .设2F 的对称轴分别交12F F ,于点DB ,,点C 是点A 关于直线BD 的对称点.(1)如图1,若1F :2y x =,经过变换后,得到2F :2y x bx =+,点C 的坐标为(20),,则①b 的值等于______________;②四边形ABCD 为( )A .平行四边形B .矩形C .菱形D .正方形(2)如图2,若1F :2y ax c =+,经过变换后,点B 的坐标为(21)c -,,求ABD △的面积;(3)如图3,若1F :2127333y x x =-+,经过变换后,AC =点P 是直线AC 上的动点,求点P 到点D 的距离和到直线AD 的距离之和的最小值.BDCOyxF 1F 2A(第24题图1)(第24题图2)(第24题图3)。
中考数学试卷真题2004
中考数学试卷真题20042004年中考数学试卷一、选择题1. 已知:正方形ABCD的边长为5cm。
点E、F分别是AB、CD的中点。
连接EF并延长至交点G,连接AG。
则AG的长为()。
A. 5.5cmB. 2.5cmC. 6.5cmD. 3.5cm2. 解方程2x - 8 = 4x的解为()。
A. x = 2B. x = -2C. x = -4D. x = 43. 如图,ΔABC中,∠ACB = 90°,AB = 8cm,AC = 6cm。
则BC 的长为()。
(图略)A. 2cmB. 10cmC. 10.8cmD. 4cm4. 把一个平面图形沿顶点A旋转120°,得到图形'A。
再把图形'A沿顶点A旋转120°,得到图形''A。
如下图所示:(图略)则图形''A与图形A的形状相同,并且A''是A的()。
A. 起始位置B. 三倍位置C. 原位置D. 六倍位置5. 已知一个人健走的速度为每小时5km(公里),则他每走20分钟的速度是()。
A. 1km/hB. 1.2km/hC. 0.2km/hD. 6km/h二、填空题6. 如图,已知∠ABC = 60°,边长AB = 3cm,线段AD平分∠BAC,且点D在AB上。
则以线段AD为边的等边三角形的周长是______ cm。
(图略)7. 一水果店买来一箱苹果,总共200个。
如果每个人平均分得3个苹果,店主自己得3个,还剩17个苹果没有分。
则买来这一个箱苹果的人数为_____ 人。
8. 已知数k使“5:k = 3:15”成立,则k的值为______。
三、解答题9. 小明口中有4颗红色的糖和6颗黄色的糖,小红口中有5颗红色的糖和5颗黄色的糖。
如果小红和小明同时从自己的口袋里拿出一颗糖,放到中间的一个盘子里。
现在从盘子里随机取出一个糖,请问这颗糖是黄色的概率为多少?10. 小明从家到学校有两条路可选,一条是直线距离为8km的收费公路,另一条是弯曲的道路,相当于直线距离的1.25倍,但不收费。
无锡市近五年中考数学试卷真题
2013年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于()A .2B .-2C .2±D .2 2.函数y=1-x +3中自变量x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x3.方程0321=--xx 的解为 ( )A .2=xB .2-=xC .3=xD .3-=x4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( ) A .4,15 B .3,15 C .4,16 D .3,165.下列说法中正确的是 ( ) A .两直线被第三条直线所截得的同位角相等 B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 27.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140°8.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于 ( ) A .21 B .41 C .81D .1619.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( ) A .3∶4 B .13∶52 C .13∶62 D .32∶1310.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9(第9题)QP FED CBAODCBA(第8题)A(第7题)二、填空题(本大题共8小题,每小题2分,共16分.) 11.分解因式:2x 2-4x = .12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为 元. 13.已知双曲线xk y 1+=经过点(-1,2),那么k 的值等于 . 14.六边形的外角和等于 °.15.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是 . 18.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 . 19.(本题满分8分)计算:()()220.1-+-;(2)(x +1)2-(x +2)(x -2).20.(本题满分8分) (1)解方程:x 2+3x -2=0;(2)解不等式组:231,12(1).2x x x x -+⎧⎪⎨->+⎪⎩≥21.(本题满分6分)如图,在Rt △ABC 中,∠C =90°,AB =10,sin ∠A =25,求BC 的长和tan ∠B 的值.左视图俯视图(第17题) FEDCBA(第16题)(第15题) O EDCBA22.(本题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,户型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.24.(本题满分10分)如图,四边形ABCD中,对角线AC与BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)25.(本题满分8分)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:A元素含量单价(万元/吨)甲原料5% 2.5乙原料8% 6已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨.若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?26.(本题满分10分)如图,直线x=-4与x轴交于E,一开口向上的抛物线过原点O交线段OE于A,交直线x=-4于B.过B且平行于x轴的直线与抛物线交于C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.27.(本题满分10分)如图1,菱形ABCD中,∠A=600.点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的图像由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.28.(本题满分10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.2014年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
江苏省无锡市初中中考数学试卷试题专题十年分类汇编
2003-2012 年江苏省无锡市中考数学试题分类分析汇编专题 4:数目和地点变化一、选择题1. (江苏省无锡市2004 年 3 分)如图中的图象(折线ABCDE )描绘了一汽车在某向来线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,依据图中供给的信息,给出以下说法:①汽车共行驶了120 千米;②汽车内行驶途中逗留了0.5 小时;③汽车在整个行驶过程中的均匀速度为80千米/时;④汽车自出发后3小时至 4.5 3小时之间行驶的速度在渐渐减少.此中正确的说法共有【】A 、 1 个B 、2 个C、3 个D、 4 个【答案】 A 。
【考点】函数的图象。
【剖析】依据图象上的特别点的实质意义即可作出判断:由图象可知,汽车走到距离出发点 120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,故①错;从1.5 时开始到 2 时结束,时间在增加,而行程没有变化,说明此时汽车在逗留,逗留了 2-1.5=0.5 小时,故②对;汽车用 4.5 小时走了240 千米,均匀速度为:240÷4.5=1603 千米 /时,故③错;汽车自出发后 3 小时至 4.5 小时,图象是直线形式,说明是在匀速行进,故④错。
所以, 4 个说法中,正确的说法只有 1 个。
应选 A 。
2. (江苏省无锡市 2006 年 3 分)探究规律:依据以下图中箭头指向的规律,从2004 到 2005 再到 2006,箭头的方向是【】【答案】 A 。
【考点】 分类概括(图形的变化类) 。
【剖析】 依据察看图形可知箭头的方向每4 次重复一遍,∵ 2004 4 501除尽,∴2004 所在的地点与图中的 4 所在的地点同样。
所以从2004 到 2005 再到 2006 的箭头方向为:应选 A 。
3. (江苏省无锡市2007 年 3 分)任何一个正整数 n 都能够进行这样的分解: n s t ( s ,t是正整数,且 s ≤ t ),假如 p q 在 n 的全部这类分解中两因数之差的绝对值最小,我们就称 p q 是 n 的最正确分解,并规定:p.比如 18 能够分解成 118, 2 9 , 3 6 这F (n)q3 1F ( n) 的说法:( 1)F (2)1 3 三种,这时就有 F (18) .给出以下对于;(2)F (24);6228(3) F (27) 3;( 4)若 n 是一个完整平方数,则 F ( n) 1.此中正确说法的个数是 【】A. 1 B. 2C. 3D. 4【答案】 B 。
【中考十年】2003-2012年江苏省无锡市中考数学试题分类解析汇编专题3:方程(组)和不等式(组)
2003-2012年江苏省无锡市中考数学试题分类解析汇编专题3:方程(组)和不等式(组)锦元数学工作室 编辑一、选择题1. (江苏省无锡市2003年3分)为了节约用水,某市规定:每户居民用水不超过20立方米,按每立方米2元收费;超过20立方米,则超出部分按每立方米4元收费.某户居民五月份交水费72元,则该户居民 五月份实际用水为【 】A.8立方米B.18立方米C.28立方米D.36立方米 【答案】C 。
【考点】一元一次方程的应用。
【分析】20立方米时交40元,题中已知五月份交水费72元,即已经超过20立方米,所以在72元水费中有两部分构成,列方程即可解答:设该用户居民五月份实际用水x 立方米,得20×2+(x -20)×4=72,解得x=28。
故选C 。
2. (江苏省无锡市2004年3分)若关于x 的方程022=++k x x 有两个相等的实数根,则k 满足【 】A 、k>1B 、k ≥1C 、k=1D 、k<1【答案】B 。
【考点】一元二次方程的根的判别式。
【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围:∵a=1,b=2,c=k ,且方程有实数根,∴△=b 2-4ac=4-4k=0。
∴k=1。
故选B 。
3. (江苏省无锡市2004年3分)设―○‖、―□‖、―△‖分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个―○‖、―□‖、―△‖这样的物体,按质量从小到...大.的顺序排列为【 】 A 、○□△ B 、○△□ C 、□○△ D 、△□○【答案】D 。
【考点】一元一次不等式的应用。
【分析】先将天平两边相同的物体去掉,比较剩余的物体质量的大小;由图1可知,2○>□+○,∴○>□;由图2可知,3△=□+△,∴2△=□,即△<□。
因此,△<□<○。
故选D 。
4. (江苏省无锡市2005年3分)一元二次方程0322=--x x 的根为【 】A 、3,121==x xB 、3,121=-=x xC 、3,121-=-=x xD 、3,121-==x x 【答案】B 。
2004年无锡中考数学试题含答案
2004年无锡市初中毕业数学试题一.填空题(第1~10小题每空2分;第11~15小题每空3分,共45分) 1.-3的相反数是 ,-3的绝对值是 ,41的算术平方根是 . 2.点(1,2)关于原点的对称点的坐标为 . 3.据无锡《江南晚报》“热线话题”报道:无锡市全年的路灯照明用电约需4200万千瓦·时,这个数据用科学记数法可表示为 万千瓦·时.4.设x 1、x 2是方程0242=+-x x 的两实数根,则x 1+x 2= , x 1·x 2= . 5.写出b a 2的一个同类项: . 6.函数42-=x y 中,自变量x 的取值范围是 ; 函数5-=x y 中,自变量x 的取值范围是 。
7.若函数xky =的图象经过点(-1,2),则k 的值是 。
8.如图,已知a ∥b ,∠2=140°,则∠1= °. 9.根据某市去年7月份中某21天的各天最高气温(℃)记录,制作了如图的统计图,由图中信息可知,记录的这些最高气温的众数是 ℃,其中最高气温达到35℃以上(包括35℃)的天数有 天.10.Rt △ABC 中,∠C =90°,∠B =40°,AB =2,则AC = (结果精确到0.01)11.分解因式:a 2b -b 3= 。
12.已知圆锥的母线长是5㎝,底面半径是2㎝,则这个圆锥的侧面积是 ㎝2. 13.已知梯形的中位线长为6㎝,高为4㎝,则此梯形的面积为 ㎝2. 14.如图,某计算装置有一数据输入口A 和一运算结果的输出口B ,下表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:按照这个计算装置的计算规律,若输入的数是10,则输出的数是 .15.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”). A 1 2 3 4 5 B 2 5 10 17 26 21a b c(第8题)A B 输入输出(第14题)A B C D EF(第15题)二.选择题(每小题3分,共18分)16.下列各式中的最简二次根式是( ) A 、5 B 、12 C 、18 D 、91 17.若关于x 的方程022=++k x x 有两个相等的实数根,则k 满足( ) A 、k >1 B 、k ≥1 C 、k =1 D 、k <1 18.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大....的顺序排列为( )A 、○□△B 、○△□C 、□○△D 、△□○19.已知⊙O 1与⊙O 2内切,它们的半径分别为2和3,则这两圆的圆心距d 满足( ) A 、d=5 B 、d=1 C 、1<d<5 D 、d>520.下面给出的是一些产品的图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A 、1个B 、2个C 、3个D 、4个 三.解答题(本大题共8小题,共有67分) 22.(本题满分6分)解不等式组⎪⎩⎪⎨⎧<+<-231321x x▲▲○○○□□△△△△(第18题)23.(本题满分6分)已知:如图,□ABCD 中,BD 是对角线,AE ⊥BD 于E ,CF ⊥BD 于F . 求证:BE=DF .24.(本题满分6分)已知:如图,四边形ABCD 内接于⊙O ,过点A 的切线与CD 的延长线交于E ,且∠ADE =∠BDC.(1)求证:△ABC 为等腰三角形; (2)若AE =6,BC =12,CD =5,求AD 的长.25.(本题共有2题,每题6分,满分12分) 读一读,想一想,做一做(1)国际象棋、中国象棋和围棋号称世界三大棋种. 国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.①在如图乙的小方格棋盘中有一“皇后Q ”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q ”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q ”,使这四个“皇后Q ”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q 即可).A B CD EF ABC D E O·甲行 乙3 丙(2)现有足够的2×2,3×3的正方形和2×3的矩形图片A 、B 、C (如图),现从中各选取若干个图片拼成不同的图形.请你在下面给出的方格纸中,按下列要求分别画出一种示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1. 拼出的图形,要求每两个图片之间既无缝隙,也不重叠.画图必须保留拼图的痕迹)①选取A 型、B 型两种图片各1块,C 型图片2块,在下面的图1中拼成一个正方形; ②选取A 型4块,B 型图片1块,C 型图片4块,在下面的图2中拼成一个正方形;③选取A 型3块,B 型图片1块,再选取若干块C 型图片,在下面的图3中拼成一个距形.26.(本题满分8分)西北某地区为改造沙漠,决定从2002年起进行“治沙种草”,把沙漠地变为草地,并出台了一项激励措施:在“治沙种草”的过程中,每一年新增草地面积达到10亩的农户,当年都可得到生活补贴费1500元,且每超出一亩,政府还给予每亩a 元的奖励.另外,经治沙种草后的土地从下一年起,平均每亩每年可有b 元的种草收入.下表是某农户在头两年通过“治沙种草”每年获得的总收入情况:(注:年总收入=生活补贴费+政府奖励费+种草收入)AB C(1)试根据以上提供的资料确定a 、b 的值;(2)从2003年起,如果该农户每年新增草地的亩数均能比前一年按相同的增长率增长,那么2005年该农户通过“治沙种草” 获得的年总收入将达到多少元?27.(本题满分9分)已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式; (2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.28.(本题满分10分)将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图).(1)如果M 为CD 边的中点,求证:DE ∶DM ∶EM =3∶4∶5;(2)如果M 为CD 边上的任意一点,设AB =2a ,问△CMG 的周长是否与点M 的位置有关?若有关,请把△CMG 的周长用含DM 的长x 的代数式表示;若无关,请说明理由.29.(本题满分10分)已知,如图,Rt △ABC 中,∠B =90°,∠A =30°,BC =6㎝. 点O 从A 点出发,沿AB 以每秒3㎝的速度向B 点方向运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点. 过E 作EG ⊥D E 交射线BC 于G . (1)若E 与B 不重合,问t 为何值时,△BEG 与△DEG 相似?(2)问:当t 在什么范围内时,点G 在线段BC 上?当t 在什么范围内时,点G 在线段BC 的延长线上?(3)当点G 在线段BC 上(不包括端点B 、C )时,求四边形CDEG 的面积S (㎝2)关于时间t (秒)的函数关系式,并问点O 运动了几秒种时,S 取得最大值?最大值为多少?A BC D E F MG参考答案 一.填空:1.3,3,21 2.(-1,-2) 3. 4.2×103 4. 4,2 5. 2a 2b (答案不唯一) 6. x ≠4,x ≥5 7. -2 8. 40 9. 32,5 10. 1.29 11. b (a +b )(a -b ) 12. 10π 13. 24 14. 101 15. AE =AF (答案不唯一)二.选择:16.A 17.C 18.D 19.B 20.C 21.A 三.解答; 22.-1<x <523.证△ABE ≌△CDE 即可 24.(1)证AC=BC(2)证△ADE ∽△CAE ,得三组对应边成比例,先求出CE =9,后求得AD =8. 25.(1)①答:(2,3)表示“皇后Q ”的位置在棋盘中的第2列、第3行. 棋盘中不受该“皇后Q ”控制的四个位置是:(1,1)、(3,1)、(4,2)、(4,4)②略(2)略(动手操作后容易画出) 26.(1)a=110,b=90.(2)1500+3630+7182=12312(元)27.(1)102-=x y 或642--=x x y (2)22--=x y28.(1)先求出DE =AD 83,AD DM 21=,AD EM 85=后证之.(2)注意到△DEM ∽△CMG ,求出△CMG 的周长等于4a ,从而它与点M 在CD 边上的位置无关.29.(1)当t =724或38=t 时,△BEG 与△DEG 相似.(2)当438≤≤t 时,点G 在线段BC 上;当380<<t 时,点G 在线段BC 的延长线上.(3)当点O 运动了724秒时,S 取得最大值3772㎝2.。
江苏省无锡市中考数学试题与答案
无锡市初中毕业、高级中等学校招生考试数学试题与答案注意事项:1、本试卷满分130分,考试时间为120分钟.2、卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有12小题,17空,每空2分,共34分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!)1、(1)-5的相反数是_________,4的平方根是__________. (2)分解因式:x 3-x =___________.2、我市2004年一季度城镇居民人均消费支出约2500元,这个数据用科学记数法可表示为___________元.3、设x 1、x 2是方程0222=--x x 的两个实数根,则x 1+x 2=_____;x 1·x 2=_____.4、函数y =13-x 中,自变量x 的取值范围是___________; 函数y =3+x 中,自变量x 的取值范围是____________.5、反比例函数xky =的图象经过点(2,-1),则k 的值为 . 6、一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.7、 如图,P 是∠AOB 的平分线上的一点,PC ⊥AO 于C ,PD ⊥OB 于D ,写出图中一组相等的线段 (只需写出一组即可)8、用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是 . (只需写出一种即可)9、若梯形的面积为6㎝2,高为2㎝,则此梯形地中位线长 为 ㎝.10、如图,AB 是⊙O 的直径,若AB=4㎝,∠D=30°,则 ∠B= °,AC= ㎝.11、某商场为了解本商场的服务质量,随机调查了本商场ABC OPD(第7题)B(第10题)A :很满意B :满意C :说不清D :不满意(第11题)。
江苏省无锡市2002-2013年中考数学试题【专题06】函数的图像与性质(含解析)
2002-2013年江苏无锡中考数学试题分类解析汇编(12专题)专题6:函数的图象与性质江苏泰州锦元数学工作室编辑一、选择题1. ( 江苏省无锡市2010年3分)若一次函数y kx b=+,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值【】A.增加4 B.减小4 C.增加2 D.减小22. ( 江苏省无锡市2010年3分)如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线kyx=交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值【】A.等于2 B.等于34C.等于245D.无法确定【答案】B。
【考点】反比例函数的性质,矩形的性质,相似三角形的判定和性质。
【分析】求反比例系数k的值,一般有两种方法,一种是求反比例函数上一点,用待定系数法求k;另一种是抓住反比例系数k的几何意义。
因此,延长BC交y轴与M点,过D作DN⊥x轴于N。
由题意易知,四边形OABM 为矩形,且S △OBM =S △OBA 由k 的几何意义知,S △COM =S △DON ,∴S 四边形DNAB = S △BOC =3 而△ODN∽△OBA,相似比为OD :OB=1:3, ∴S △ODN :S △OBA =1:9。
∴S △ODN :S 四边形DNAB =1:8。
∴S △ODN =38,∴k=34。
故选B 。
3. (江苏省无锡市2011年3分)下列二次函数中,图象以直线2x =为对称轴、且经过点(0,1)的是【 】A .()221y x =-+ B .()221y x =++ C .()223y x =-- D .()223y x =+-4. (江苏省无锡市2011年3分)如图,抛物线21y x =+与双曲线ky x=的交点A 的横坐标是1,则关于x 的不等式210kx <x++的解集是【 】 A .x >1 B .x <-1 C .0<x <1 D .-1<x <0【答案】D .【考点】点的坐标与方程的关系, 不等式的解集与图像的关系,二次函数图像。
江苏省无锡市中考数学真题试题(带解析)
2011年无锡市初中毕业升学考试数学试题一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .3【答案】A .【考点】绝对值。
【分析】利用绝对值的定义,直接得出结果2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b 【答案】D .【考点】不等式。
【分析】利用不等式的性质,直接得出结果3.分解因式2x 2—4x+2的最终结果是 ( ▲ )A .2x(x -2)B .2(x 2-2x+1)C .2(x -1)2D .(2x -2)2【答案】C .【考点】因式分解。
【分析】利用提公因式法和运用公式法,直接得出结果 ()()22224222121x x x x x -+=-+=-4.已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是 ( ▲ )A .20 cm 2 8.20兀cm 2 C .10兀cm 2 D .5兀cm 2【答案】B .【考点】图形的展开。
【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果. 圆的周长=24R ππ=,圆柱的侧面积=圆的周长×高=4520ππ⋅=5.菱形具有而矩形不一定具有的性质是 ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补 【答案】A .【考点】菱形和矩形的性质。
【分析】区分菱形和矩形的性质,直接得出结果6.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是 ( ▲ )【答案】D .【考点】轴对称图形。
【分析】利用轴对称的定义,直接得出结果 【点评】主要考查对轴对称图形的理解。
7.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA :OC-=0B :OD ,则下列结论中一定正确的是 ( ▲ )A .①与②相似B .①与③相似C .①与④相似D .②与④相似 【答案】B .【考点】相似三角形。
无锡去年中考数学试卷真题
无锡去年中考数学试卷真题试卷一:选择题(共45分)1. 下列哪个数是一个有理数?A. πB. √2C. -3.5D. e2. 在平行四边形ABCD中,AB = 8 cm,AD = 5 cm,∠ABC = 120°,则对角线AC的长度是多少?A. 8 cmB. 10 cmC. 12 cmD. 13 cm3. 若函数y = 3x^2 + kx + 2有两个不同的实数根,则实数k的取值范围是[-4, 2],试题中上述内容的填空符号应分别是:A. >,<B. ≥,≤C. ≥,>4. 在△ABC中,AB = 4 cm,BC = 5 cm,AC = 6 cm,则△ABC的周长等于多少?A. 11 cmB. 14 cmC. 15 cmD. 16 cm5. 设a > 0,如果两个数的和与差的乘积为a^2,则这两个数的取值范围是:A. (-∞, -a) ∪ (a, +∞)B. (-∞, 0) ∪ (a, a + ∞)C. (a, +∞)D. (-∞, a) ∪ (0, +∞)6. 已知函数f(x) = x^2 - 2x + 3,则f(-1)的值是:A. -1B. 0C. 1D. 27. 扔两个公正的色子,一共的点数为12的概率是多少?B. 1/12C. 1/36D. 1/728. 若a + b = 5,a^2 + b^2 = 17,则a × b 的值是:A. 2B. 4C. 5D. 69. 若y = |x - 2| + |x - 4|,则y的最小值为:A. 0B. 2C. 4D. 610. 有一堆共n根火柴,将它们分成若干组所剩余的火柴不能再分成更多的组,且每组的火柴数两两不同,则n的值的取值范围是:A. 4 ≤ n ≤ 9B. 7 ≤ n ≤ 12C. 8 ≤ n ≤ 14D. 9 ≤ n ≤ 1611. 设S是一个集合,对于任意的a、b∈S,有a^2 = b,则以下关于S的描述中,正确的是:A. S = {-1, 1}B. S = {0, ±1}C. S = {-1, 0, 1}D. S = {0}12. 曲线y = x^2 - 2x + 1与x轴的交点是:A. (1, 0)B. (-1, 0)和(1, 0)C. (-1, 0)D. 无13. 设AB是平行四边形,并且∠ABC = 60°,∠BCD = 30°,则平行四边形ABCD的内角和是多少度?A. 180°B. 240°C. 300°D. 360°14. 若一箱子中有20个小球,其中有4个是红色,8个是绿色,其余全是蓝色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年无锡市中考数学试题
注意事项:1.本试卷满分130分,考试时间为120分钟.
2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.
一、填空题(本大题共有15小题,第1~10小题中,每空2分;第11~15小题中,每空3分,共45分.把答案直接填在题中的横线上.)
1.-3的相反数是 ,-3的绝对值是 ,4
1的算术平方根是 . 2.点(1,2)关于原点的对称点的坐标为 .
3.据无锡《江南晚报》“热线话题”报道:无锡市全年的路灯照明用电约需4200万千瓦·时,这个数据用科学记数法可表示为 万千瓦·时.
4.设x 1、x 2是方程x 2-4x +2=0的两实数根,则x 1+x 2= ,x 1·x 2= .
5.写出a 2b 的一个同类项: .
6.函数y =
4
2-x 中,自变量x 的取值范围是 ; 函数y =5-x 中,自变量x 的取值范围是 .
7.若函数y =x k 的图象经过点(-1,2),则k 的值是 . 8.如图,已知a ∥b ,∠2=140º,则∠1= .
9.根据某市去年7月份中某21天的各天最
高气温(℃)记录,制作了如图的统计图,
由图中信息可知,记录的这些最高气温的
众数是 ℃,其中最高气温达到35℃
以上(包括35℃)的天数有 天.
10.Rt ΔABC 中,∠C =90º,∠B =40º,
AB =2,则AC = (结果精确到0.01).
11.分解因式:a 2b -b 3= .
12.已知圆锥的母线长是5cm ,底面半径是2cm ,则这个圆锥的侧面积是 cm 2.
13.已知梯形的中位线长为6cm ,高为4cm ,则此梯形的面积为 cm 2.
14.如图,某计算装置有一数据输入口A 和一运算结果的输出口B ,
下表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:
A
1 2 3 4 5 B 2 5 10 17 26
根据这个计算装置的计算规律,若输入的数是10,则输出的数是 .
15.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的
图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个
条件可以是 (只需写出一个即可.图中不能再添加 别的“点”和“线”).
二、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题意的,请把正确选项前的字母代号填在题后的括号内.)
16.下列各式中的最简二次根式是 ( )
A.5
B.12
C.18
D.
91 17.若关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 满足 ( )
A.k >1
B.k ≥1
C.k =1
D.k <1
18.设“○”、“□”、“△”分别表示三种不同的物体,
用天平比较它们质量的大小,两次情况如图所
示,那么每个“○”、“□”、“△”这样的物体,
按质量从小到大的顺序排列为 ( )
A.○□△
B.○△□
C.□○△
D.△□○
19.已知⊙O 1与⊙O 2内切,它们的半径分别为2和3,则这两圆的圆心距d 满足 ( )
A.d =5
B.d =1
C.1<d <5
D.d >5
20.下面给出的是一些产品的商标图案,从几何图形的角度看(不考虑文字和字母),这些图案中的中心对称图形
是 ( )
21.如图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行度为380千米驶途中停留了0.5小时;③汽车在每个行驶过程中的平均速
/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐
渐减小.其中
正确的说法共有 ( )
A.1个
B.2个
C.3个
D.4个
三、解答题(本大题共有8小题,共67分.解答需写出文字说明、证明过程或演算步骤.)
22.(本题满分6分) 解不等式组⎪⎩⎪⎨⎧<+<-23
13x 21x
23.(本题满分6分)
已知:如图,□ABCD 中,BD 是对角线,AE ⊥BD 于E ,CF ⊥BD 于F.求证:BE =DF.
24.(本题满分6分
)
已知:如图,四边形ABCD内接于⊙O,过点A的切线与CD的延长线交于E,
且∠ADE=∠BDC.
⑴求证:ΔABC为等腰三角形;
⑵若AE=6,BC=12,CD=5,求AD的长.
25.(本题共有2题,每题6分,满分12分)
读一读,想一想,做一做:
⑴国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大
得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.
①在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的
位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.
②如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相
不受对方控制(在图丙中的某四个小方格中标出字母Q即可).
⑵现有足够的2×2,3×3的正方形和2×3的矩形图片A、B、C(如图),现从中各选取若干个图片拼成不同的图
形.请你在下面给出的方格纸中,按下列要求分别画出一种拼法示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1.拼出的图形,要求每两个图片之间既无缝隙,也不重叠.画图必须保留拼图的痕迹).
①选取A型、B型两种图片各1块,C型图片2块,在下面的图1中拼成一个正方形;
②选取A型图片4块,B型图片1块,C型图片4块,
在下面的图2中拼成一个正方形;
③选取A型图片3块,B型图片1块,再选取若干块
C型图片,在下面的图3中拼成一个矩形.
26.(本题满分8分)
西北某地区为改造沙漠,决定从2002年起进行“治沙种草”,把沙漠地变为草地,并出台了一项激励措施:在“治沙种草”过程中,每一年新增草地面积达到10亩的农户,当年都可得到生活补贴费1500元,且每超出一亩,政府还给予每亩a元的奖励.另外,经治沙种草后的土地从下一年起,平均每亩每年可有b元的种草收入.下表是某农户在头两年通过“治沙种草”每年获得的总收入情况:
年份新增草地的亩数年总收入
2002年20亩2600元
2003年26亩5060元
(注:年总收入=生活补贴费+政府奖励费+种草收入)
⑴试根据以上提供的资料确定a,b的值;
⑵从2003年起,如果该农户每年新增草地的亩数均能比前一年按相同的增长率增长,那么2005年该农户通
过“治沙种草”获得的年总收入将达到多少元?
27.(本题满分9分)
已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为
y=x2-(b+10)x+c.
⑴若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;⑵过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线
y=-2x+b的解析式.
28.(本题满分10分)
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
⑴如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;
⑵如果M为CD边上的任意一点,设AB=2a,问ΔCMG的周长是否与点M的位置关系?若有关,请把ΔCMG的
周长用含DM的长x的代数式表示;若无关,请说明理由.
29.(本题满分10分)
已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm.点O从A点出发,沿AB以每秒3cm的速度向B
点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点.过E 作EG⊥DE交射线BC于G.
⑴若E与B不重合,问t为何值时,ΔBEG与ΔDEG相似?
⑵问:当t在什么范围内时,点G在线段BC上?当t在什么范围内时,点G在线段BC的延长线上?
⑶当点G在线段BC上(不包括端点B、C)时,求四边形CDEG的面积S(cm2)关于时间t(秒)的函数关系式,并问点
O运动了几秒钟时,S取得最大值?最大值为多少?
声明:本资料由考试吧()收集整理,转载请注明出自
服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,会计类,工程类,医学类等七大类考试的全套考试信息服务及考前培训.。