Thermo-hydro-mechanical coupled mathematical model for controlling the pre-mining coal sea
用于高温气冷堆的核石墨(英文)
第32卷第3期 2017年6月新型炭材料NEW CARBON MATERIALSVol. 32 No. 3Jun. 2017文章编号:1007-8827(2017)03鄄0193-12用于高温气冷堆的核石墨周湘文,唐亚平,卢振明,张杰,刘兵(清华大学核能与新能源技术研究院,先进核能技术协同创新中心,先进反应堆工程与安全教育部重点实验室,北京100084)摘要:自1942年首次在CP-1反应堆中使用以来,核石墨因其优异的综合性能,在核反应堆特别高温气冷堆中被广泛使 用。
作为第四代候选堆型之一,高温气冷堆主要包括球床堆和柱状堆两种堆型。
在两种堆型中,石墨主要用作慢化剂、燃料 元件基体材料及堆内结构材料。
在反应堆运行中,中子辐照使得石墨的相关性能下降甚至可能失效。
原材料及成型方式对 于石墨的结构、性能及其在辐照中的表现起到决定性的作用。
辐照中石墨微观结构及尺寸的变化是其宏观热力学性能变化 的内在原因,辐照温度及剂量对于石墨的结构及性能变化起决定性作用。
本文介绍了高温气冷堆中核石墨的性能要求及核 石墨的生产流程,阐述了不同温度及辐照条件下石墨热力学性能及微观结构的变化规律,并对当前国内外核石墨的研究现状 及未来核石墨的长期发展如焦炭的稳定供应和石墨的回收进行讨论。
本文可为有志于研发用于未来我国商业化的高温气冷 堆中的核石墨的生产厂家提供参考。
关键词:核石墨;高温气冷堆;辐照;微观结构;物理、力学及热学性能中图分类号:TQ127.1 + 1文献标识码:A基金项目:国家公派留学基金(201406215002);国家科技重大专项(ZX06901);清华大学自主科研项目(20121088038).通讯作者:周湘文,副教授,博士. E-mail: xiangwen@ . cnNuclear graphite for high temperature gas-cooled reactorsZHOU Xiang-wen,TANG Ya-ping,LU Zhen-ming,ZHANG Jie,LIU Bing (Institute o f Nuclear and New Energy Technology o f Tsinghua University,Collaborative Innovation Center o f Advanced Nuclear Energy Technology,the key laboratory o f advanced reactor engineering and safety,Ministry o f Education,Beijing100084,China)Abstract: Since its first successful use in the CP-1 nuclear reactor in 1942,nuclear graphite has played an important role in nuclear reactors especially the high temperature gas-cooled type (HTGRs) owing to its outstanding comprehensive nuclear properties. As the most promising candidate for generation IV reactors,HTGRs have two main designs,the pebble bed reactor and the prismatic reactor. In both designs,the graphite acts as the moderator,fuel matrix,and a major core structural component. However,the mechanical and thermal properties of graphite are generally reduced by the high fluences of neutron irradiation of during reactor opera- tion,making graphite more susceptible to failure after a significant neutron dose. Since the starting raw materials such as the cokes and the subsequent forming method play a critical role in determining the structure and corresponding properties and performance of graphite under irradiation,the judicious selection of high-purity raw materials,forming method,graphitization temperature and any halogen purification are required to obtain the desired properties such as the purity and isotropy. The microstructural and corresponding dimensional changes under irradiation are the underlying mechanism for the changes of most thermal and mechanical properties of graphite,and irradiation temperature and neutron fluence play key roles in determining the microstructural and property changes of the graphite. In this paper,the basic requirements of nuclear graphite as a moderator for HTGRs and its manufacturing process are presented. In addition,changes in the mechanical and thermal properties of graphite at different temperatures and under different neutron fluences are elaborated. Furthermore,the current status of nuclear graphite development in China and abroad is discussed,and long-term problems regarding nuclear graphite such as the sustainable and stable supply of cokes as well as the recycling of used material are discussed. This paper is intended to act as a reference for graphite providers who are interested in developing nuclear graphite for potential applications in future commercial Chinese HTGRs.Key words:Nuclear graphite;High temperature gas-cooled reactors;Irradiation;Microstructure;Physical,mechanical and thermal propertiesReceived date:2017-02-26;Revised date:2017-05-13Foundation item:State Scholarship Foundation of China (201406215002) ;Chinese National S&T Major Project (ZX06901) ;Tsinghua University Initiative Scientific Research Program (20121088038).Corresponding author:ZHOU Xiang-wen,Associate Professor. E-mail: xiangwen@ tsinghua. edu. cnEnglish edition available online ScienceDirect ( http://www. sciencedirect. com/science/journal/18725805 ).DOI:10. 1016/S1872-5805(17)60116-1• 194•新型炭材料第32卷1IntroductionThe phrase nuclear graphite began to be used at the end of 1942 when the first nuclear fission occurred in the graphite moderated nuclear reactor CP-1[I]. From the early 1960s, the United Kingdom, the United States and Germany began to develop high temperature gas-cooled reactors (HTGRs). Japan began the construction of a 30 MWth high temperature test reactor (HTTR) in 1991, which reached its first criticality in 1998. In China, a 10 MW experimental high temperature gas-cooled reactor ( HTR-10 )[23], whose design started in 1992 and construction commenced in 1995, reached it criticality in the end of 2000, and its full power in the beginning of 2003. Since the Fukushima accident in March, 2011, the public has paid more and more attention to the safety of nuclear power. As a candidate reactor for the Gen- eration-IV reactors, the construction of a 2x250 MW high temperature gas-cooled reactor pebble-bed module (HTR-PM) with inherent safety is underway in Shidao Bay, Rongcheng of Shandong province, China and is expected to complete in 2017[4]. In both of the research and commercial HTGRs, the reactor reflectors and cores have been constructed by structural graphite components. Past designs represent two primary core concepts commercially favored for HTGRs :the prismatic block reactor (PM R) and the pebble- bed reactor (PB R)[2]. In both of the HTGR concepts the polycrystalline graphite not only is a major structural component which offers thermal and neutron shielding and provides channels for fuel and coolant gas, channels for control and safety shut off devices, but also acts as a moderator and matrix material for the fuel elements and control rods and a heat sink or conduction path during reactor trips and transients.The polycrystalline graphite exhibits significant importance in HTGRs because of its outstanding nuclear physical properties such as high moderating and reflecting efficiency, a relatively low atomic mass and a low absorption cross-section for neutrons, in addition to high mechanical strength, good chemical stability and thermal shock resistance, high machinabili- ty and light weight[5]. The following example illustrates the importance of nuclear graphite in more details. For the thorium high temperature reactor ( TH- TR) in Germany with a power of 300 MWe, nearly 400 000 kg of nuclear graphite has been used[2] •In China, approximately 60 tons of graphite was used in HTR-10[3], and more than 1000 tons of nuclear graphite will be used in HTR-PM as the structural material and matrix graphite of pebble fuel elements ⑷. The raw materials of matrix graphite of fuel elements for HTR-10 and HTR-PM such as natural flake graphite and artificial graphite powder are supplied by Chinese domestic providers[6,7]. The behavior of the individual fuel particles and the matrix graphite material in which the particles are encased are not considered here. However, it should be noted that although the graphite technology associated with the matrix graphite is related to that of the main structural graphite such as the moderator there are differences as non- graphitized materials and natural flake graphite are used in the matrix graphite. Because so far no qualified domestic nuclear graphite is available, all the structural nuclear graphite materials for HTR-10 and HTR-PM are imported from Toyo Tanso of Japan. In April 2015, China Nuclear Engineering Corporation Ltd ( CNEC) announced that its proposal for two commercial 600 MWe HTGRs (HTR-600) at Ruijin city in Jiangxi Province had passed an initial feasibility review. The HTR-600 is planned to start construction in 2017 and for grid connection in 2021[8]. In order to achieve the economy and security of supply, the structural nuclear graphite must be provided by domestic providers in China in the future. Fortunately, with the rocketing development of photovoltaic industry in China, several Chinese companies have emerged which can produce the fine-grained isotropic, isostatic molded, high strength graphite in large scale. Some of the manufacturers with state-of-the-art graphite manufacture capabilities should be chosen as the potential candidate providers of the structural nuclear graphite for HTGRs based on qualification programs. However, during the operation of a reactor, many of the graphite physical properties are significantly changed due to the high fast neutron doses. The physical, mechanical and chemical properties of graphite can be influenced negatively by irradiation induced damage, which would lead to the failure of graphite components. In pebble-bed HTGRs such as HTR-PM in China, the core support graphite structure is particularly considered permanent, although it is expected that certain high neutron dose components ( inner graphite reflector) will be replaced during the whole lifetime of the reactor. During the life time of the reactor, the reflector graphite would be subjected to a very high integrated fluence of fast neutrons of around 3x1022n/cm2(E>0.1M eV)[910]. Therefore, the pre-irradiation and post-irradiation comprehensive properties of nuclear graphite candidates must be thoroughly examined and evaluated. Those properties of nuclear graphite are strongly dependent on the extent of anisotropy, grain size, microstructural orientation and defects, purity, and fabrication method.In this paper, basic nuclear requirements of nu第3期ZHOU Xiang-wen et a l:Nuclear graphite for high temperature gas-cooled reactors•195.clear graphite are presented and the specifications such as the manufacture, material properties with three primary areas (physical, thermal and mechanical) and irradiation responses of nuclear graphite suitable for HTGRs are elaborated, which could be a reference for the potential providers who are anxious to develop the nuclear graphite for future commercial HTGRs of China. The long-term considerations such as those involving the cokes and recycle for nuclear graphite are also discussed.2 Nuclear requirements of graphite for HTGRs2.1 Fission reactions with neutronsThe tremendous energy produced in HTGRs is from the fission of isotopes such as 92 U233,92 U235,and 94Pu239 . Fission of a heavy element,with release of energy and further neutrons,is usually initiated by an impinging neutron. The fission of 92U235 can be described as:92『5+。
PPT化工设备与程序控制热电偶式温度计
熱電偶式溫度計構造
補償導線:由於熱電偶的工作端(測量端)與冷端(參比 端)離得很近,而且冷端又暴露在工作環境之 中,因而容易受到周圍工作環境溫度波動的影 響,所以冷端溫度難以保持恒定,造成測量不 準。實際應用是用專用補償導線,將熱電偶的 冷端延伸至溫度較低和比較穩定的地方。在使 用補償導線時,要注意兩個問題。其一,補償 導線的型號要與熱電偶的型號相配。其二,熱 電偶與補償導線連接端所處的溫度不超過100 ℃,否則補償導線所產生的金屬導體的溫差電 勢不能忽略。
熱電偶式溫度計原理
中間溫度定律(Law of intermediate temperature):
如右圖所示,A 與B 所形成之熱電偶, 兩接合點之溫度為t1與t2時之E 為E12 ,t2與t3 時之E為E23 的話, E12 + E23 = E13。 此時,稱t2 為中間溫度。以中間溫度 t2 選擇如0℃這樣的標準溫度,求得 相對0℃任意的溫度t1、t2、t3‧‧‧tn 之熱電動勢,任意兩點間之熱電動勢 便可以計算求得。
熱電偶式溫度計原理
湯木生效應(Thomson effect): ☆在均勻質之金屬線上,若二端之溫度不同,即發生電 動勢(emf),此電動勢與金屬線兩端之溫度差成正比 。 ☆所得之結論為:電流通過一個有溫度梯度的導線時, 電流有增加或減少溫度差之現象,稱之為湯木生效應 。 ☆若電流方向相反,產生相反的反應,故亦稱為可逆性 效應。
熱電偶式溫度計材料
熱電偶材料須具備的條件 ☆ 熱電效率須較高,亦即能發出較大之emf。
☆ 熱電動勢較穩定,且長期使用亦不發生變化。
☆ 具有抗蝕,抗氧化及抗濕等性質。 ☆ 具有較高之熔點。 ☆ 易製造,有互換性及價格較廉。
MolecularThermodynamicsPDF:分子热力学的PDF
Molecular ThermodynamicsBy John SimonMolecular Thermodynamics Details:Molecular Thermodynamics: Donald A. McQuarrie, John D. Simon ...Evolved from McQuarrie and Simon's best-selling textbook, Physical Chemistry: A Molecular Approach, this text focuses in on the thermodynamics portion of the course. Thermodynamics - Wikipedia, the free encyclopediaThermodynamics is a branch of natural science concerned with heat and its relation to energy and work. It defines macroscopic variables (such as temperature, internal energy, entropy, and pressure) that characterize materials and radiation, and explains how they are related and by what laws they ...Molecular Thermodynamics - Johns Hopkins UniversityMolecular Thermodynamics. The explosion in structural data on bio-molecules provides new opportunities to understand their function in terms of their structure. Thermochemistry - Wikipedia, the free encyclopediaThermochemistry is the study of the energy and heat associated with chemical reactions and/or physical transformations. A reaction may release or absorb energy, and a phase change may do the same, such as in melting and boiling. Thermochemistry focuses on these energy changes, particularly on ...Molecular Thermodynamics, Donald A. McQuarrie and John D. SimonMolecular Thermodynamics, by Donald McQuarrie and John Simon, published in 1999 by University Science Books.Statistical Molecular Thermodynamics | CourseraStatistical Molecular Thermodynamics is a free online class taught by Dr. Christopher J. Cramer of University of MinnesotaMolecular Thermodynamics - Donald Allan McQuarrie, John ...Evolved from McQuarrie and Simon's best-selling Physical Chemistry: A Molecular Approach, this text follows a similar path by first covering the principles of quantum mechanics before engaging those ideas in the subsequent development of thermodynamics. Although many of the chapters are similar ...Introduction to Molecular ThermodynamicsIntroduction to Molecular Thermodynamics. by Robert M. Hanson and Susan Green, St. OlafCollege.enquiries:******************.Publisher'swebsiteforthisbookMolecular Thermodynamics (Physical chemistry monograph series ...Molecular Thermodynamics (Physical chemistry monograph series) [Richard E. Dickerson] on . *FREE* shipping on qualifying offers.Molecular Thermodynamics — ITQB - Universidade Nova de LisboaMolecular Thermodynamics of Liquids and Liquid Solutions, in particular, studies of Ionic Liquids and ionic liquid-containing systems constitute the main activity.Molecular thermodynamics of fluid-phase equilibria - J. M ...Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of ...Molecular thermodynamics - definition of Molecular ...ther·mo·chem·is·try (thûr m-k m-str) n. The chemistry of heat and heat-associated chemical phenomena. ther mo·chem i·cal (--k l) adj. ther mo·chem ist n.Prausnitz Group Home Page - University of California, BerkeleyMolecular Thermodynamics John M. Prausnitz. Professor, University of California, Berkeley Faculty Senior Scientist, Lawrence Berkeley National LaboratorymThermoWait for more... ... The website is going through major upgrade ,, wait for the new look soon :)Molecular thermodynamics - HmolpediaAn encyclopedia of topics on the thermodynamics, chemistry, and physics of human existence.Molecular Thermodynamics of Fluid-Phase Equilibria / Edition ...The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase ...Molecular Thermodynamics of Fluid-Phase EquilibriaThermodynamics Home - Chemical Engineering - Thermodynamics: Molecular Thermodynamics of Fluid-Phase Equilibria by Rudiger N. Lichtenthaler, Edmundo Gomes De Azevedo, John M. Prausnitz, Edmundo G. De AzevedoMolecular thermodynamics definition of Molecular ...thermochemistry [¦th?r·m??kem·?·str?] (physical chemistry) The measurement, interpretation, and analysis of heat changes accompanying chemical reactions and changes in state.Molecular Thermodynamics by Donald A. McQuarrie — Reviews ...Molecular Thermodynamics has 7 ratings and 1 review. Jacob said: This books is incredible. It's extremely comprehensive. If you love physical chemistry a...Introduction to Molecular Thermodynamics, by Robert M. Hanson ...Introduction to Molecular Thermodynamics, by Robert M. Hanson and Susan Green , University Science Books, copyright 2008Molecular Thermodynamics of Fluid Phase Equilibria - 3rd Edition2Molecular Thermodynamics of Fluid Phase Equilibria - 3rd Edition2 - Free ebook download as PDF File (.pdf), Text file (.txt) or read book online for free.Molecular thermodynamics (Book, 1999) []Get this from a library! Molecular thermodynamics. [Donald A McQuarrie; John D Simon]Molecular Thermodynamics - Download for freeMolecular Thermodynamics download from FileSnail - 3188189138905X pdf, Thermodynamics Processes an rar, FilePost DepositFiles and RapidShare files. Molecular Thermodynamics of Fluid Phase Equilibria (Prausnitz ...Molecular Thermodynamics of Fluid Phase Equilibria (Prausnitz- 2th Edition ) - Free ebook download as Text file (.txt), PDF File (.pdf) or read book online for free. k Molecular thermodynamics (Open Library)Molecular thermodynamics by Richard Earl Dickerson, 1969,W. A. Benjamin edition, in EnglishMolecular thermodynamics - definition of Molecular ...Molecular thermodynamics. Molecular Time Scale Generalized Langevin Equation Molecular Typing by Reverse Dot-Blotting Molecular Typing Working Group Molecular Unit Cell Approximation molecular velocity Molecular vibration Molecular Vibrational SpectrometerCenter for Molecular & Engineering ThermodynamicsThe University of Delaware’s Thomas H. Epps, III, is one of 30 early-career engineers nationwide invited to attend the 2013 European Union-United States Frontiers of Engineering Symposium to be held Nov. 21-23 in Chantilly, France.ChemE | Thermodynamics and Molecular ComputationsThermodynamics and Molecular Computations. Thermodynamics governs processes as diverse as chemical production, bioreaction, creation of advanced materials, protein separation, and environmental treatment.Molecular Thermodynamics Mcquarrie : ?g Rt K Q. Molecular ...pdf document tagged with molecular thermodynamics mcquarrie : ?G RT K Q. user guide pdf categorized in molecular thermodynamics mcquarrieMolecular Thermodynamics of Fluid-Phase Equilibria by John M ...Molecular Thermodynamics of Fluid-Phase Equilibria has 7 ratings and 1 review. Theclassic guide to mixtures, completely updated with new models, theorie...。
中英文流体机械设备翻译词汇大全
towerreactorfluidfluid characteristicsgas-holderbibbPiping componentPipeFittingBendFlangeGasketPiping SpecialtyEnd ConnectionWeldingVarieties of WeldingType of WeldingWelding PositionDefects of WeldingHeat TreatmentConventional Heat Treatment Surface Heat Treatment InspectionTestFerrous MetalNon-metallic MaterialPiping Material Specification Material Take-off45°lateralEquipment NameVesselPipe Supports and Hangers Attachment of SupportType of Pipe Support spectacle blindquarter bendlong radius elbowdouble bevel grooveL-type supportO-ring“S”bendT-boltT-type strainerT-barcombination U and V grooveU-bolt“U”bendX-ray radiographydouble V groovey-type strainergamma radiographysafety factorerectionammonia gasreinforcing saddlessaddlefemale faceAustenitic stainless steel austenitic stainless steel pipe octagonal ring gasketdrawingcrateissueofficehalf couplingsemi-killed steeltracing pipetracing steampackingsaturated steamcold insulationhot insulationinsulation blockquoted pricequotationrupture diskexplosive weldinglimit of explosionnorthspare partsstand-byback to backstyrene-rubberpump housescalespecific heatspecific gravitywall thicknessschedule numbergratelightning preventeritemizeditemized equipmentflat nuttransmittertransformer roomelevationtitle blockstandardstandard pipe supportstandard drawingsurface preparationacrylonitrile-butadiene-styreneacrylic resinwave crestwave troughcorrugated metal gasket with asbestos inserted corrugated metal gasketbellow expansion jointglassglass clothglass tubeglass woo1gage glassBirmingham wire gagePoisson ratiomake-upreinforcement padstainless steelstainless steel pipeBrinell hardnessdepartmentbill of materialmaterial status reportProcurement; Purchasepurchase specificationpurchasing specification summary sheet referencereference drawingresidual stresschannelslot weldinggroove facegrooved metal gasketsketchthermo-paintblanklong radius returnslotnormally closednormally openvendor quotationvendor coordinative meeting future areafree on truckover-dimension cargo ultrasonic test superimposed loadclarifiersettlercountersunk screwlined pipeproductproduction design phase package unitcontractionsocket weldedsocket welding endsocket welding flange sockoletbell endgravity settlerorange colourendurance limitserratedfinshock loadimpact testimpact valueflush valveevacuationoutletcenter line of discharge preliminary stagefree on boardwindowblow-offsoot blowerpurgeperpendicularvertical installafion verticalalkyd enamelenamelmagnetic particle test roughnessstrainercoarseexpeditingbrittlenessquenchingextractoralignment tolerancemismatchlap weldinglapped jointlarge end threadlarge end plainbarometric legatmospheric pollutionatmosphereover haulcode numberside outlet elbowasbestos rope with inconeleye rodhinged expansion jointtied expansion jointpin with holebase teebase elbowstrap clampholdsingle bellowbendsingle U groovemonomersingle actionpacked slip joint spring washerspring hangerspring steelspring constant hangerresting type spring constant support spring supportresting type spring supportspring constantspring bracingelastic limitmodulus ofelasticitylightnitrogencanduitthermal conductivity factorconduit tubeguideroadstraight teestraight crossplasma weldingisothermal quenchingisothermal annealinglow alloy steellow-carbon steellow pressurelow pressure steambase plateflat on bottomprimary coatanchor boltfloor drainground levelabove ground pipingsloptankunder ground pipingearthquakeseismic loadseismic co emc ientprimary valvespot weldingpittingelectrical tracingarc weldingelectro corrosiontelephoneelectric heatercable trenchcurrentelectrical panelcapacitanceelectric-fusionelectric fusion weldingwirevoltageelectroslag weldingresistanceelectric resistance weldingelectric-resistance welded steel pipe backing weldspacertype of gasketwasherlifting lughangerhoisting beamdaviterection openingregulating valvequenching and temperingwing nutnitrile butadiene rubbertop plateJack screwflat on toppurchasing orderlocationtack weldpreset piecesdowel pindirectional stoplimit stopeastdynamic loaddynamic analysisplugplatingchromium-plated, chrome-plated galvanized steel pipe galvanized plain sheet galvanized wiregalvanized wire meshshort radius returnshort radius elbowshort codenipoletnipplereduction of areasection modulusslack quenchingforged steelwrought-iron pipeswageforgingforged valveforged steel clevisreducing swagebuild up weldingsymmetricbutt weldingbutt weldedbutt welded end welding neckflange welding neck collar convection section alignmentmultiple bellow multiport valve trunnionsecondary stresstwo-axis stopfoaminghair feltvalve pitflanged endblind flange, blind protective discflange facingfacing finishflangedlapped pipe end reactionsquare washersquare barsquare nutsquare head bolt orientationdirectionexplosion door moisture-proof packing winterizingcorrosion inhibitor anti-corrosive paint fire-proofingfire dooranti-sweatwater-proof packing rust-proof packing antirust paintventvent valvevent holenon-metallic gasket unpaved area nonferrous alloynon-rotary valvewaste heat boilerrimmed steelvictaulic couplingsubcontractorDecibelseparatorkey plananalytical engineering phaseanalyzer roommolecular sievephenolic paintincineratorwind loadwind velocityback run weldingpeak stresscrevice corrosionfuran resinfluoroplasticssymbolradiant sectionauxiliary boilercorrosioncorrosion testcorrosion allowanceappendant displacement; externally imposed displacement appendixaccessoryclad steelclad pipedry gas-holderdryerinduction hardeningrigidrigid hangerplatestrap steelsteel pipesteel pipe flangesteel ringsteel structuretop of steelreinforced concrete constructioncableleverhigh silicon cast ironhigh alloy steelhigh strength steelhigh-carbon steelhot quenchinghigh pressurehigh pressure steam isolating valvepartition wallinsulationsound insulation chromium steelchrome-molybdenum steel chromium-nickel steel inconelfeed water heaterroot valveroot gaproot crackincomplete penetration locker roomplantshop weldplant northplant limitengineering specification engineering manual engineering drawingtool steelman-dayman-hourindustrial waste water process airprocess flow diagram process gasprocess waterprocess liquidI-beamworking procedureworking pointworking loadoperating temperature operating pressure nominal pressurenominal diameterutility flow diagram metric ibreadpower factortapped; tappingsuppliercopolymerresonancethroughboaom of trenchmemberestimated priceestimatefixed saddlefix pointanchornatural frequencynatural frequency mode client; customer observation door, peep door pipe attachmentpiping layoutpiping arrangement plan piping classclass designationpiping attachmentpiping andline spanpiping flexibility analysis piping designpiping requisition sheet piping studypiping elementpiping support drawing bouom of pipetop of pipespool piecesleeperpiping trenchline spacingfitting to fitting coupling, full coupling clampshellnozzlelist of nozzlesnozzle orientationpipe rackpipe threadcapshoenetwork of pipespiping systemline listpipetubeinvertmoment of inertiaclosetgroutinggroutingdrumtank yardsmoothsmooth raised faceplanning stagecalcium silicatealuminosilicate fiberkieselguhrrolling supportboilerboiler feed waterfilterethylene perchloride paintsuperheated susceptivitysuper heatersuperheated steamover-sea mean levelburn throughwelding plate flangewelding endsymbol of weldwelded steel pipewelding procedure qualification test welding inspectionweld crackweldingiinebranch pipe welded directly to the run pipe weldoletoverlapwelding wirewelding electrodesynthesis towersynthetic rubberalloy steelalloy steel pipestructural alloy steelloadload caseconstant hangergirderredafter coolerpit; cratersliding saddlesliding supporttackle-blockseptic tankchemical analysis chemical cleaning chemical sewagering joint circumferential band ambient temperature ambient temperaturering joint faceeye boltring joint metal gasket flat ring gasketcirele bendepoxy, epoxy resin epoxy resin paintknock out drumheat exchangeryellowbrassgreygrey cast irontemper brittleness direct-fired heater recoverytemperingrotary kilnsummary sheetinter department check mixing valvemixertop of concretelive loadunionflareflare gasflame surface quenching maehine bolt mechanical vibration foundation; footingbasic designexcitationpolar moment of inertiadead-soft annealingultimate strengthquenchercatch basindrip legdrip valvelumped massextrudingmeasuring tankcomputer aided designcalculation sheettechnical specificationextra heavy, extra strongfeed tankstiffienerreinforcing ringheatercleatelastomer with cotton fabric insertionspiral-wound metal gasket with asbestos fillerelastomer with asbestos fabric insertionelastomer with asbestos fabric insertion and with wire r jacketed line, jacketed pipingjacketed valveslag inclusionmethanatortop of supportintermittent weldingdesuperheatersnubberdamping deviceshear stressinspection holeinspectionpart humbetconstructionbuildingkeyalternating stressdelivery orderalternating currentadhesivegussetangle steelhexagonal steel barfillet weldingangular rotationagitatorcontact corrosiongrounding; easthingearth lugreceivercontinue on drawingmatch linenodenode numberpitchcrystallizerbattery limit conditionoff sitemicroscopic testflat metal jacketed asbestos filled gasket clad; metal jacketing; cladding metalgas metal arc weidingmetal hosemetallic stuffingribfeedPTFE impregnated asbestos gasketTeflon impregnated asbestos packing intergranular corrosionfractionating towerfinished, finewellpurifiernet positive suction headnet weightstatic electricitydead loadlocal panelspot annealingsevere cyclic conditiondistancepolyurethanepolyurethanepolyurethane paintpolystyrenepolypropylenepolybutylenepolymerpolymethyl methacrylatepolyvinyl chloridepolyvinylidene fluoride polytetrafluoroethylenePTFE sliding platepolymerizerpolycarbonatepolyolefinpolyamidepolyethylenepolyester resinpolyester fibersabselute elevationroot mean squarehomopolymeras built drawingstart-upkick-off meeting; launching meeting cotter pintensile strengthbending strengthcompressive strengthhardenabilityadjustable cleatadjustable supportmalleable ironflammableair separation facilityair coolerairorificeorifice flangecontrol roomspanquick closing valvequick opening valvequick couplingwide flanged beammineral woolflaring testtension testtension stresshandrailbluecold-drawing seamless pipecold shortnessrefrigerantcold workingcold springcold flowcondensercoolingcooling towercooling towercold loadcold rollingforcemomentcouple of force vertical welding asphaltbituminous painttie plateconnecting rodtie rodhook up drawing interlocktop of beambeamboth end threadboth ends plain reformercritical pointcritical temperature critical pressure temporary load phosphor bronzeflow diagramflow metersulphuric acidradius of gyration hexagonal nut hexagonal head bolt floorstair; stair way funnelfurnace tubefurnacehalogen gas leak test shoulderaluminumalaminium sheet aluminum magnesium aluminum bronzegreenneoprenechlorinated polyvinyl chloride chlorinated polyethertapnutboltbolt circlethreadedthreaded endthreaded flangethreaded joint, pipe threaded joint threadoletspiral plate heat exchangerspiral welded steel pipehelical gas-holderstud boltbare iineRockwell hardnessMartensitic stainless steelmastic weatherproof coatingex wharfpulsationpulsating stressgross weightcliprivetAmerican standard taper pipe thread American wire gagedoormanganese bronzedensitysealing oilblanketareain-planefinishing coatout-planeface to facefire extinguishernomenclaturemodelbase metalmother liquorwoodwood blockwooden boxmolybdenum steelbevel for inside thickness inner ringinternal forcebevel for combined thickness internal pressure stressfire brickalkali-proof paintheat resisting steelincoloyheat-proof paintHastelloycorrosion resistanceacid-proof paintseismic classsouthdeflectionflexible tubenylon plasticcounter clock wiseurea resinnickel steelnickel copper alloyfreezing pointtorquetorsional stress concentrationdischarge valveexhaustblow downblowdown valveblow down tankdraindrain valvedrip ringdrain funnelpad type flangeby passby-pass valvefoam glassfoamed concretecellular polystyrenefoam monitorfoam hydrantfoam fire-fightingfoam stationswitch boardsubstation, switch roomcompanion-flangeejectorsprayerspray nozzleshelterborosilicate glassexpansion jointexpansion boltapproved for planningapproved for designapproved for constructionfatigue limitfatigue testeccentric reducerfrequencyflat gasketplain washerplain endflat weldingwelding-on collarflat metal gasketplanplatformparallelevaluationgroovebeveled endvacuum breakervacuum breakerpaving areageneral structure low-alloy steel general carbon steelspectrum analysisurushiol resin paintcylindergas welding; flame welding vaporizerporosityair tightness testfusion gas weldingcavitation erosiongas-shielded arc weldinggas analysisgaseous corrosiongas chromatographpneumatic teststeam drumleadwallsupport on wallblock valvecut to suittangent linebronzehydrogen embrittlementhydrogenvarnishclean outrequisitioningspheroid, spherical tankspheroids annealingspherical washernodular cast iron; nodular graphite iron ball type expansion jointarea limitzone iimityield pointyield limitsampling valvesampling connectionsample coolerfull jacketedflat face; full faceskirtfuel gasfuel oilthermocouplethermosetting plasticshot workingthermal expansion coefficienthot waterhot-water tracingthermoplasticthermal cyclethermal stressthermal stress analysisheat affected zonehot rollinghot-rolling seamless pipemanholepersonal protectionman-monthtoughesssolvent cementsolutionsolution storage tankmelting pointmelterflexibility characteristicflexibilityflexibility factorflexibility stressvisual inspectioncreep rupture strengthcreep limitinletcenter line of suctionhose valvehose connectionhose stationsoftenercork woodsoft waterlubricating oilsprinklerplug weldingtriangular support’teethree way valvebulk materialblisterflash pointflash drumuprisercaustic sodaburnerequipment listequipment item numberdesign specification summary sheet basic engineering design data design managerdesign temperaturedesign documentdesign response spectrumdesign pressuredesign scismic coefficientdesign notefacilitiesradiographic testchillerdarkapprovalcheck listnitridationchromizingchromized steelsoak-away pitaluminizingcarbonizationboostersanitary sewerpig ironsound intensitysound pressure levelsound sourceeconomizerfull water testhumiditywet gas-holderasbestos boardasbastos clothasbestos ropeasbestos fabricgraphite phenolic plasticsnaphthaageing treatmentemergency valvesight glasscommissioninghand-operated valvemanual and automatic inert gas tungsten arc welding handholewrought ironresindata sheetdata basequantityattenuation constantdouble extra heavydouble bellowcorrugated metal double jacketed asbestos filled gasket double jacketed gasketdouble U groovedouble offset expansion “U”double branch elbowwater traatmentwater hammerwater quenchingcold quenchingwater coolerwater-gas steel pipefinishing cementwater monitorwateringhorizontal installationhorizontalhydraulic testclock wisedescriptiongauze strainerTeflon tapcrossloose plate flangeloose hubbed flangelap joint flangeplasticplastic pipeplasticitysour gasarithmetical average roughness height gravel pavingtongue faceacetal plasticindexlock nuttitaniumcarbon steel pipecarbon steelmagnesium carbonateporcelain enamelceramicspecial flangespecial supporttrapezoid threadvolumeskylightnatural white rubber gasketnatural gasnatural rubberslip type expansion jointpackingstuffing box glandpacking boxcaulking materialskip weldingferritic alloy steel pipeshut-downventilating roomtypical pipe supporttypieal installation concentric reducercopperaccuracy of take-offbidlens gasketmale faceraised facestub endfiguredrawing numberlegendcoatingpaintingsurgingthrustannealingcradlestooldesulphurization reactor degasifierdemineralized water demineralizerdeaeratoroval ring gasketellipsoidal headbevel for outside thickncss outer ringexternal forceexternal pressure stress externally applied load bending momentbending testbending stresselbowelboletuniversal jointuniversal type expansion joint checkered platedouble-acting limit stophazardous area classificationhazardous area planmicro crackVickers diamond hardnessmaintenance roomincomplete fusion; lack of fusion displacementdisplacement stress rangedisplacement stressthermometerthermowellfileeddy current testcontaminationcontaminated rain waterseamless steel pipeinorganic zinc-rich paintnon graphited compressed white asbestos gasket non-destructive testingnon-itemized equipmentwestadsorbersuction valvesound-absorbingabsorberscrubbereye washer and showereye washer stationfine threaddownadvanced certified finalfiber reinforced thermoplasticsfield weldwire gagerestriction orificestopstopperlimit rodrestraintintersectionphasesweepoletdetaildetail designdetail design issueprojectjob No.proiect status reportproject managerbatterylimitinside battery limitproiect review meetingrubberrubber hoserubber tuberubber pavingstress relieffire fighting truckfire hose connectionfire waterfire pumphydrantsilencersilencernitric acidpinpinned shansmall end threadsmall end plaincheckbracingslant washermitre bendlatroletharmonic analysisleak testunloading valveshaped steelrevisiontrim to suitallowable stressallowable stress rangebattery roomcantilever supportcyclonesnow loadinquirycireulatloncooling water supplycooling water returncirculating waterflattening testpressure rating, pressure rating class classmanometerpressure balanced expansion pressure testpressure-temperature rating compressor housecompressed asbestos class gasket compression stressargon-arc welding,stackpercentage elongationductilityexcessive spatterrock woolbrinechlorhydric acidcolouroverhead weldingoxygenundercutownerliquefired petroleum gasliquid penetrant testlevel gaugeliquid chromatographhydraulic snubberprimary stressone end threadinstrument airinstrument panelapparatusinstrumental analysisethylene propylene rubber ethylene propylene diene monomer existing steel structurereducing nipple; swage nipple reducing flangereducerreducing couplingreducing teereducing crossreducing elbowcathodic protectionacoustic vibrationpotable waterstrain; deformationstrain energystressstress range reduction factur stress corrosioncoefficient of stress concentration stress intensification factor fluorescent penetrant inspection hardness testrigid foam rubberbraze weldinghard leadhard waterpermanent filteruserclient change noticehigh-quality carbon steeloil quenchingasphalt feltasphalt feltshielded metal arc weldingtoxicorganic silicon paintright hand threadrain watertroughembedded part; inserted plate preheatingpreheaterprefabricatedfabricated pipe bendmemberraw waterroundnessround steelround head boltcircumferential stress; hoop stress taper pintransportationon streamheating mediumreboilerreheaterregenerationregenering towerrecycleprflling towernoise levelrollingwrought-steel pipeviscositylighting; illumination corrugated bendpin holeperlitevacuumvacuum testtrue northamplitudekilled steelevaporatordistillation towersteam tracingsteaming outsteam condensatevapor pressureintegral pipe flangesolid metal serrated gasket normalizingpoint of supponstrutringsupport ringresting supportlugbranch connectionbosslegrun pipedirect currentladdershear lugpreparationdrawnmanufacturer; vendormass spectrometric analysis vermiculitemedium alloy steel neutralization tankinter coolerprocess annealingmedium-carbon steel centerlinecenter to endcenter to facecenter to centermedium pressuremedium pressure steamcounter weight hangerweightcritical pipingheavy oilperiodshaftisometric drawingbearingaxial movement type expansion jointaxial stressbead weldingmost frequent wind directionprincipal stressstorage roomtankcolumnpole type supportcast steelcastingcast ironcast iron pipecast valvedisciplineconverterpilepacking liststatus reporttaper pipe threadseal-welded taper pipe threaded jointdye penetrant inspectiondocumentationpurpleautomatic analysisautomatic submerged arc weldingself tapping screwself springself-sealingfreefree to slidefree vibrationconsolidated piping material summary sheet brownheader, manifoldheader valvegeneral plot planlongitudinal stresswalk way, gangway, access way routing studyflame arresterdamped vibrationassemblydrillcertified finalcoordinateorigin of coordinate塔反应器流体流体特性气柜(水)龙头管道组成件管子管件弯管法兰垫片管道特殊件端部连接焊接焊接种类焊接形式焊接位置焊接缺陷热处理普通热处理表面热处理检验试验黑色金属非金属材料管道材料规定材料统计45°斜三通 设备名称容器管道支吊架管架零部件管支架型式8字盲板90°弯管k半径弯头K形坡口L形管架O形环S形弯管T形螺栓T型粗滤器T型钢U-V组合坡口U形螺栓U形弯管V形坡口X射线照相X形坡口y 型粗滤器γ射线照相安全系数安装氨气鞍形补强板鞍座凹面奥氏体不锈钢奥氏体不锈钢管八角环形垫片拔制板条箱版次办公室半管接头半镇静钢伴热管伴热蒸汽包装饱和蒸汽保冷保温保温块报价报价书爆破片爆炸焊爆炸极限北备品备件备用背至背苯乙烯橡胶泵房比例比热比重壁厚壁厚系列号篦子板避雷针编位号的编位号设备扁螺母变送器变压器室标高,立面标题栏标准标准管架标准图表面处理丙烯腈—丁二烯—苯乙烯丙烯酸树脂波峰波谷波纹金属包嵌石棉垫片波纹金属垫片波纹膨胀节玻璃玻璃布玻璃管玻璃棉玻璃液位计伯明翰线规泊松比;横向变形系数补充补强板不锈钢不锈钢布氏硬度部门材料表材料情况报告采购采购说明采购说明汇总表参考、基准参考图残余应力槽钢槽焊槽面槽形金属垫片草图测温漆插板长半径180°弯头长孔常开厂商报价厂商协调会场地敞车上交货超尺寸运输超声波探伤超载沉淀池沉淀器沉头螺栓衬里管成品成品设计阶段成套设备承包商承插焊的承插焊端承插焊法兰承插支管台承口澄清器橙色的持久极限齿形翅片式导向板冲击荷载冲击试验冲击值冲洗阀抽空;排空出口出口中心线初步阶段船上交货,离岸价格窗吹出吹灰器吹扫垂直,正交,垂直的垂直安装垂直的,立式的醇酸瓷漆瓷漆磁粉探伤粗糙度粗制的催货脆性淬火萃取器错边量错位搭焊搭接接头,松套连接大端带螺纹大端为平的大气腿大气污染大气压大修代码带侧向口的弯头(右向或左向)带铬镍合金丝的石棉绳带环头拉杆带铰链膨胀节带接杆膨胀节带孔销带支座三通带支座弯头带状卡待定单波单侧偏置U形膨胀弯管(| ?形) single offset “U”单面U形坡口单体单向滑动填料函补偿器弹簧垫圈弹簧吊架弹簧钢弹簧恒力吊架弹簧恒力托架弹簧架弹簧托架弹簧系数弹簧支撑架弹性极限弹性模量淡(浅)色的;轻的氮气导管导热系数导向架道路等径三通等径四通等离子焊等温淬火等温退火低合金钢低碳钢低压低压蒸汽底板底平底漆地脚螺栓地漏地面地上管道地下槽地下管道地震地震荷载地震系数第一道阀;根部阀点焊点蚀电伴热电弧焊电化腐蚀电话电加热器电缆沟电流电气盘电容电熔(弧)焊钢板卷管电熔焊电线电压电渣焊电阻电阻焊电阻焊钢管垫板焊垫环垫片的型式吊耳吊架吊梁吊柱吊装孔调节阀调质蝶形螺母丁腈橡胶顶板顶开螺栓,顶起螺栓顶平订货单;订购单定位定位焊定位块定位销定向限位架定值限位架东动力荷载动态分析堵头镀层镀铬的镀锌钢管镀锌铁皮镀锌铁丝镀锌铁丝网短半径180°弯头短半径弯头短代码短管支管台短节断面收缩率断面系数断续淬火锻钢锻铁管锻造,型钢锻造的,锻造锻造阀锻制U形夹锻制异径管堆焊对称的。
高压电缆热机械效应分析与弧幅滑移量计算研究
第27卷㊀第12期2023年12月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.12Dec.2023㊀㊀㊀㊀㊀㊀高压电缆热机械效应分析与弧幅滑移量计算研究倪一铭,㊀马宏忠,㊀段大卫,㊀薛健侗,㊀王健,㊀迮恒鹏,㊀万可力(河海大学能源与电气学院,江苏南京211100)摘㊀要:针对现有方法无法准确计算热机械效应下高压电缆应变和弧幅滑移量,首先分析热机械效应机理,提出高压电缆应变计算方法和基于悬链线方程的弧幅滑移量计算方法㊂其次以高压单芯交流XLPE 电缆为研究对象,通过有限元仿真分析热机械效应下高压电缆的温度场㊁应力和应变㊁弧幅滑移量㊂最后进行现场应变试验与弧幅滑移量测量试验㊂应变试验结果表明:应变片测量结果分别为1.84㊁1.19㊁1.12㊁2.16mm ,高压电缆最大应变理论计算值达到2.33mm ,根据测量和计算可判断高压电缆最大应变位置㊂弧幅滑移量测量试验结果表明:弧幅滑移量计算结果符合试验测量值和有限元仿真值,比现行标准计算值的相对误差减小了18.65%㊂上述试验结果验证了应变计算方法㊁弧幅滑移量计算方法符合高压电缆实际工况且便捷准确,为高压电缆蛇形敷设参数提供了有效的工程计算方法㊂关键词:高压电缆;热机械效应;应变;弧幅滑移量;有限元;悬链线方程DOI :10.15938/j.emc.2023.12.007中图分类号:TM247文献标志码:A文章编号:1007-449X(2023)12-0062-12㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-10-18基金项目:国家自然科学基金(51577050);国家电网有限公司科技项目(J2022009)作者简介:倪一铭(1998 ),男,硕士研究生,研究方向为高压电缆故障分析与诊断;马宏忠(1962 ),男,博士,教授,博士生导师,研究方向为电力设备状态监测㊁故障诊断与健康预警;段大卫(1987 ),男,博士研究生,研究方向为电力设备故障诊断与治理㊂通信作者:倪一铭Analysis of thermo-mechanical effect of high-voltage cables andcalculation of arc slipNI Yiming,㊀MA Hongzhong,㊀DUAN Dawei,㊀XUE Jiantong,㊀WANG Jian,㊀ZE Hengpeng,㊀WAN Keli(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)Abstract :In view of the inability of existing methods to accurately calculate the strain and arc slip of high-voltage cables under the thermo-mechanical effect,firstly,the mechanism of the thermo-mechanical effect was analyzed,and the method of calculating the strain for high-voltage cables and the method of calculating the arc slip based on the catenary equation were proposed.Secondly,a high-voltage single-core AC XLPE cable was used as the research object.The temperature field,stress,strain,and arc slip under thermo-mechanical effect were analyzed by finite element simulation.Finally,a field strain test and an arc slip measurement test were carried out on the high-voltage cable.The strain test results show that the strain gauges are measured 1.84,1.19,1.12and 2.16mm respectively,and the maximum strain of the high-voltage cable is calculated to be 2.33mm.The location of the maximum strain in the high-volt-age cables can be determined from measurements and calculations.The results of the arc slip measure-ment tests show that the calculated arc slip is in accordance with the test measurements and finite elementsimulation results,and the relative error is reduced by 18.65%compared to the current standard calcula-tion results.The above test results verify that the strain calculation method and the arc slip calculation method are in line with the actual working conditions of high-voltage cables and are convenient and accu-rate,providing an effective engineering calculation method for the snake laying of high-voltage cables. Keywords:high-voltage cables;thermo-mechanical effect;strain;arc slip;finite element;catenary e-quation0㊀引㊀言随着 双碳 政策的实施,高压电缆的建设快速发展,在城市输电设备中占据了重要地位㊂为了减少热机械应力的影响,大多数高压电缆采用蛇形敷设的方式[1],该方式在一定程度上可以减少热机械应力的影响㊂但由于弧幅滑移量参数选择不当或弧幅打弯半径缺少有效的标准等原因,蛇形敷设下的高压电缆表现出显著的热机械效应问题[2],例如绝缘层击穿㊁绝缘材料老化变质㊁接头破损等故障[3-4]㊂统计数据表明,2016~2021年,由于热机械效应导致的高压电缆故障约占总故障数量的60%㊂事后故障分析表明:高压电缆的热机械应力具有作用区域广㊁隐蔽性强㊁故障后果严重等特点[5-9]㊂针对高压电缆的热机械效应,目前的研究集中在电缆材料的电气特性㊁物理场仿真等方面㊂文献[10]与文献[11]等研究了电缆在应力作用下绝缘层的性能,得出了绝缘性能与温度场㊁电场数值呈负相关的结论;文献[12]等通过高压XLPE电缆的热老化实验,研究了不同时间下的热机械振动产生的应力对绝缘层的损伤情况,得出了热机械振动会加速XLPE绝缘层老化的结论;文献[13]和文献[14]等通过建立电-热耦合模型,对故障电缆接头处的电场㊁温度场㊁应力场进行研究,分析了电缆接头处的物理场与接头结构损伤机理㊂综上,现阶段的研究集中于电缆热机械应力的宏观分析㊁绝缘层局部微观结构损伤㊁电缆及其接头物理场仿真等方面,在热机械效应下高压电缆应变的具体情况研究和能够用于实际工程敷设的参数计算方法等方面仍处于空白阶段㊂本文首先分析高压电缆热机械效应与热机械应力机理,提出高压电缆应变计算方法和基于悬链线方程的弧幅滑移量计算方法;同时针对电压应变片的参数转化计算,提出一种基于直流电桥的电压应变片应变计算方法;其次采用有限元软件对高压单芯交流XLPE电缆进行建模,对热机械效应下温度场㊁应力和应变㊁弧幅滑移量进行仿真分析;再次通过高压电缆应变试验对其径向应变进行研究,验证应变计算方法的有效性,且热机械应力会使内部结构发生严重相互挤压;最后通过弧幅滑移量测量试验验证弧幅滑移量计算的结果,以试验测量值为基准,将新方法计算结果与有限元仿真结果㊁‘城市电力电缆线路设计技术规定“(下文简称‘规定“)计算结果进行对比分析,证明弧幅滑移量计算方法的准确性,为高压电缆敷设工程应用提供理论与数据支撑㊂1㊀高压电缆热机械应力计算常见的高压单芯交流XLPE电缆由内到外依次为导体㊁导体屏蔽㊁绝缘层㊁绝缘屏蔽㊁缓冲层㊁金属护层㊁电缆沥青和外护层组成[15],具体的截面示意图如图1所示㊂图1㊀高压电缆截面图Fig.1㊀High-voltage cable cross section运行中的高压电缆由于内部材料性质不同,在负荷电流和环境温度的影响下,电缆会热胀冷缩产生热机械应力,使内部材料发生应变,称为热机械效应㊂考虑到高压电缆中导体㊁金属护层的密度㊁硬度远大于绝缘层等非金属材料,绝缘层等非金属部分材质产生的热机械应力可忽略不计[16],故重点研究导体㊁金属护层在负荷电流和环境温度影响下产生36第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究的热机械应力㊂1.1㊀导体的热机械应力计算负荷电流变化产生的导体热机械应力为σC1=αCΔθC1E C A C㊂(1)式中:αC为导体的线膨胀系数,ħ-1;ΔθC1为高压电缆正常运行时,导体的实际最高温度相对于当时环境温度的温升,ħ;E C为导体的等值弹性模量, N/m2;A C为导体的横截面积,m2㊂环境温度变化产生的导体热机械应力为σC2=αCΔθC2E C A C㊂(2)式中:ΔθC2为高压电缆正常运行时,导体额定最高温度相对于当时环境温度的温升,ħ;其余符号意义与式(1)中相同㊂1.2㊀金属护层的热机械应力计算负荷电流变化产生的金属护层热机械应力为σM1=αMΔθM1E M A M㊂(3)式中:σM为金属护层的线膨胀系数,ħ-1;ΔθM1为高压电缆正常运行时,金属护层的实际最高温度相对于当时环境温度的温升,ħ;E M为金属护层的等值弹性模量,N/m2;A M为金属护层的横截面积,m2㊂环境温度变化产生的金属护层热机械应力为σM2=αMΔθM2E M A M㊂(4)式中:ΔθM2为高压电缆正常运行时,金属护层额定最高温度相对于当时环境温度的温升,ħ;其余符号意义与式(3)中相同㊂因此,高压电缆的热机械应力为σ=ð2i=1σCi+ð2i=1σMi㊂(5) 2㊀高压电缆应变计算测量应变是将应变片直接与被测物体接触,根据应变片的电阻-应变效应以及相关计算公式推出物体的应变值㊂但现有公式在计算应变片面积变化时采用的是经验值估算[17],存在较大的估计误差㊂针对现有方法的不足和高压电缆热机械效应中产生的应变,结合式(5)热机械应力的计算方法,提出一种基于直流电桥的电压应变片应变计算方法㊂2.1㊀基于广义胡克定律的高压电缆应变计算高压电缆内部各层结构可视为连续均匀的固体,且满足各向同性的假设条件[18]㊂根据广义胡克定律[19],各向同性材料的应变分量与应力分量之间满足方程:εx=1E[σx-μ(σy+σz)];εy=1E[σy-μ(σx+σz)];εz=1E[σz-μ(σx+σy)]㊂üþýïïïïïï(6)γxy=τxy G;γyz=τyz G;γxz=τxz G㊂üþýïïïïïïï(7)G=E2(1+μ)㊂(8)式(6)~式(8)中:εx,εy,εz为线应变分量;E为等值弹性模量,N/m2;μ为泊松比;σx,σy,σz为正应力分量;τxy,τyz,τxz为切应力分量;γxy,γyz,γxz为切应变分量;G为切变模量,N/m2㊂高压电缆产生的热机械应力在同一平面内,切应力分量为零[20],即τxy=τyz=τxz=0,故切应变分量为零㊂高压电缆由于温度升高产生应变,但高压电缆需满足安全运行要求,故应变不能无休止发生㊂考虑到高压电缆内部各结构间相互紧密约束,此时的应变量为εmax=1E[σ-μ(σC2+σM2)]+αΔθ㊂(9)式中:α为外护层的线膨胀系数,ħ-1;Δθ为高压电缆正常运行时,外护层的最高温度相对于当时环境温度的温升,ħ㊂2.2㊀基于直流电桥的电压应变片应变计算直流电桥测量应变电路图如图2所示㊂当电压应变片发生如图3所示应变时,其电阻值会发生改变,此时该电桥的电压差值为ΔU1=ΔRR c U(R+ΔR+R a)(R b+R c)㊂(10)式中:ΔU1为电压差值,V;R为应变片电阻,Ω;ΔR 为应变片电阻的变化值,Ω;R a㊁R b㊁R c为外接电阻,Ω;U为外接电源,V㊂应变片电阻的计算公式为R=ρL S㊂(11)式中:ρ为电阻率,Ω㊃mm;L为应变片长度,mm;S 为应变片的面积,mm2㊂式(11)两边同时取对数并微分:d RR=dρρ+d LL-d SS㊂(12)46电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀式中d L /L 为应变片长度的相对变化,可用应变ε表示,即ε=d L /L㊂图2㊀直流电桥测量应变电路图Fig.2㊀Schematic of strain measurement based onDCbridge图3㊀应变片发生应变示意图Fig.3㊀Diagram of strain generation in strain gaugesd S /S 为应变片截面积的相对变化,即d S S =μDMS A d LAL=μDMS ε㊂(13)式中μDMS 为应变片的泊松比㊂应变片的电阻率在测量过程中基本保持不变,即d ρ/ρ=0㊂根据式(12)㊁式(13)可得,应变片的应变ε与电阻变化值ΔR 近似满足:ΔR ʈd R =(1-μDMS )εR ㊂(14)根据式(10)可求得ΔR ,代入式(15)中即可求得应变:ε=ΔR(1-μDMS )R㊂(15)3㊀高压电缆弧幅滑移量计算蛇形敷设下的高压电缆在选择敷设参数时须考虑蛇形弧幅的滑移量,‘规定“中提供了电缆的蛇形弧幅滑移量n 的计算公式[21]:n =B 2+1.6lm -B ㊂(16)式中:B 为蛇形弧幅,mm;l 为蛇形弧幅的水平长度,mm;m 为电缆的热伸缩量,mm㊂式(16)计算时需要已知电缆热伸缩量m ,现有的测量仪器无法精确测出m 的数值,且热伸缩量m 涉及到摩擦系数,该系数是通过经验值进行估计,导致滑移量n 的计算误差较大㊂针对现有计算方法的不足,提出基于悬链线方程的高压电缆弧幅滑移量的新计算方法㊂3.1㊀悬链线方程悬链线是一种常见的曲线,其物理意义为同一平面内,固定在水平两点间且受重力作用自然下垂的链条的形状[22],例如悬索桥等㊂以悬链线弧幅最低点为原点,建立如图4所示的平面直角坐标系,故可将悬链线方程设为y =f (x ),固定悬链线的两点分别为点A 和点B ;设点D (x ,y )为悬链线上任意一点,该点的切线方向与水平方向的夹角设为ϕ㊂图4㊀悬链线Fig.4㊀Catenary对点D 进行受力分析可知,点D 受到沿其切线方向的拉力F ,铅锤方向上的重力G 以及水平向左的拉力T ,如图5所示㊂图5㊀受力分析Fig.5㊀Analysis of forces由受力分析可知:tan ϕ=G T㊂(17)重力G 和拉力T 可表示为:G =kSL x ;T =ψ0S ㊂}(18)k =9.8ˑM 0Sˑ10-3㊂(19)式中:k 为链的自重比载,N /m㊃mm 2;S 为链的截面积,mm 2;L x 为点O 与点D 间的弧长,m;ψ0为链中的压强,MPa;M 0为每公里链的质量,kg /km㊂任意点D 的斜率可由tan ϕ表示,结合式(16)得tan ϕ=k ψ0L x =d y d x㊂(20)式(20)两边取微分可得d(tan ϕ)=k ψ0d(L x )=k ψ0(d x )2+(d y )2=k ψ01+tan 2ϕd x ㊂(21)56第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究式(21)两边整理并积分可得ʏd(tan ϕ)1+tan 2ϕ=ʏkψ0d x ㊂(22)由双曲函数积分公式并结合式(22)化简,代入初始条件x =0,y =0时,tan ϕ=0可得悬链线方程为y =f (x )=ψ0k cosh k ψ0x ()-1[]㊂(23)3.2㊀基于悬链线方程的高压电缆弧幅滑移量计算蛇形敷设下的高压电缆两端受到夹具的固定,弧幅自然下垂,故可近似等效为一条悬链线,如图6所示㊂在热机械应力的作用下,蛇形弧幅会向下发生一定量的滑移㊂由于蛇形敷设下的高压电缆可看作是水平对称的,高压电缆的蛇形弧幅滑移即为图中的点O 处产生的滑移量n ㊂图6㊀蛇形敷设的高压电缆Fig.6㊀Snake laying high-voltage cable计算高压电缆的滑移量时,悬链线方程中的压强ψ0(MPa)可用式(24)的热机械应力σ(N)计算得到:ψ0=σS㊂(24)为计算点O 处的滑移量,将式(24)代入式(23)并展开为x =0的麦克劳林级数:y =f (x )=kS 2σx 2+k 3S 324σ3x 4+k 5S 5720σ5x 6+ +k 2n -1S 2n -1(2n )!σ2n -1x 2n+ο(x 2n +1)㊂(25)考虑到实际蛇形敷设下的高压电缆夹具处电缆存在一定的弯曲半径且其水平长度远大于弧幅(d /l ɤ0.1),可略去式(25)中的高次项式[23],其精度可以满足敷设工程的需要,即n (x )=kS 2σx 2+k 3S 324σ3x 4㊂(26)将x =l /2代入上式,可得高压电缆蛇形弧幅滑移量n =kSl 28σ1+k 2S 2l 248σ2()㊂(27)式中l 为高压电缆的水平长度,单位m㊂4㊀高压电缆有限元仿真分析4.1㊀高压电缆有限元建模仿真高压电缆中的导体屏蔽㊁绝缘屏蔽以及电缆沥青厚度相对较小且材质与相邻层近似,考虑到建模中有限元网格划分,故将导体屏蔽㊁绝缘屏蔽与绝缘层合并,电缆沥青与外护层合并[24],故内部具体结构由内到外依次为:导体㊁绝缘层㊁缓冲层㊁金属护层㊁外护层,各结构具体参数如表1所示㊂在COM-SOL Multiphysics 中建立上述高压电缆的实物模型,相邻夹具之间的水平距离约为4m,高压电缆弧幅约为0.20m;在建模时高压电缆两端向外侧延伸1cm 并设置为固定约束,模拟高压电缆两端的夹具固定,如图7所示㊂表1㊀电缆结构参数Table 1㊀Cable construction parameters结构外半径/mm 厚度/mm ㊀导体㊀㊀19.5㊀绝缘㊀㊀37.217.7㊀缓冲层㊀41.1 3.9㊀金属护层42.9 1.8㊀外护层㊀46.13.2图7㊀有限元模型Fig.7㊀Finite element modelling为了研究高压电缆的热机械效应与弧幅滑移量,模拟高压电缆在负荷电流下运行,但须确保导体的最高温度不超过90ħ[25]㊂高压电缆产生的热量主要通过热传导方式传递到外护层表面[26],电缆外护层与外界换热主要通过热对流方式实现[27]㊂因此,在模型中设定边界条件:外护层与空气接触面传热系数10W /(m 2㊃K),外部温度与高压电缆初始温度均设置为293.15K㊂66电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀4.2㊀温度场仿真模拟高压电缆实际运行后,高压电缆温度截面图和曲线图分别如图8㊁图9所示,其最高温度达到了68.1ħ㊂由于导体㊁金属护层是高压电缆中的热源,金属材料具有良好的导热性,电缆温度在导体㊁金属护层区域无明显变化㊂高压电缆的整体温度随运行时间递增,绝缘层等非金属部分温度由内向外递减,近似呈线性减少趋势㊂图8㊀高压电缆温度截面图Fig.8㊀High-voltage cable temperature crosssection图9㊀不同运行时间下高压电缆温度图Fig.9㊀Temperature diagram for high-voltage cables atdifferent operating times4.3㊀应力与应变仿真高压电缆中导体㊁金属护层产生的热机械应力远大于绝缘层等非金属部分产生的热机械应力如图10~图12所示㊂夹具处的热机械应力的最大值存在于金属护层与缓冲层的接触面,仿真中该接触面的压强已接近于金属护层材质铝的屈服强度最大值,金属护层可能会发生损坏㊂图10㊀金属护层应力分布图Fig.10㊀Metal sheathing stress distributiondiagram图11㊀导体应力分布图Fig.11㊀Conductor stress distributiondiagram图12㊀非金属部分应力分布图Fig.12㊀Stress distribution diagrams for non-metallicparts高压电缆在热机械应力下会产生应变,选取高压电缆的应变截面图如图13所示㊂绝缘层㊁外护层会发生较为明显的热膨胀,其中绝缘层受热膨胀约1.4%,外护层受热膨胀约0.6%㊂导体产生的热量和热机械应力直接施加在导体与绝缘层的接触面上,在两者的共同作用下,该接触面的应变值最大㊂在这种情况下运行,绝缘层将加速老化,长时间后其内部结构将造成不可逆的热疲劳拉伸,存在安全隐患㊂76第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究图13㊀应变截面图Fig.13㊀Strain section diagram4.4㊀弧幅滑移仿真高压电缆在夹具固定作用下,自身达到一种受力平衡的状态㊂但热机械应力打破了该平衡状态,高压电缆在热机械应力下产生滑移,滑移较大的部分集中于蛇形弧幅,夹具处的电缆几乎不发生滑移,如图14所示㊂图14㊀电缆滑移分布图Fig.14㊀Cable slip distribution map不同运行时间下电缆全长的滑移分布曲线如图15所示,所有时间下的滑移分布曲线均关于x =0对称且最大值出现在该处,故可判断最大滑移发生在蛇形弧幅的最低点㊂图15㊀不同运行时间下电缆全长滑移分布图Fig.15㊀Slip distribution of the full length of the cableat different operating times5㊀试验验证与分析国内某市高压单芯交流XLPE 电缆实际敷设现场如图16所示㊂高压电缆敷设于专用的电缆隧道中,夹具之间水平距离为4.04m,高压电缆处于自然下垂状态,初始弧幅最大处约为0.18m㊂该隧道中的电缆规格为1200mm 2的单芯电缆,具体结构参数同表1㊂为分析高压电缆热机械效应下电缆产生的应变与弧幅滑移量,在高压电缆敷设现场进行应变试验与弧幅滑移量测量试验㊂图16㊀高压电缆敷设现场Fig.16㊀High-voltage cables laying site5.1㊀应变试验与分析高压电缆的应变在负荷电流较小时不易测量,为了确保试验分析的准确性,本次试验选择在日负荷电流较大的时段研究应变情况㊂当地的供电公司后台长期监测0~24时运行负荷电流的数值,日负荷电流较大时段约为10~14时,平均值约为550A,故选取该时段进行应变试验㊂在不改变高压电缆任何敷设参数的情况下,选取高压电缆蛇形弧幅段外表面上的某个位置进行应变测量㊂如图17所示,在该位置上布置四个应变片,该应变片可将应变量转化为电压值输出;应变量与始末输出电压差值成正比,可通过式(15)计算出应变值,并可判断高压电缆内部结构的应变状况,试验示意图如图18所示,试验现场如图19所示㊂图17㊀应变片布置示意图Fig.17㊀Strain gauge arrangement diagram试验开始测量时间选择为9时55分,结束测量时间为14时05分,当天0~24时的负荷电流如图20所示,试验测量时段的平均电流为551.69A㊂不同位置上的应变片都要达到电压平衡的状态,所86电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀以应变信号接收仪中的调零电位器自动设置的初始输出电压值不同㊂测量结束后导出接收仪中记录的输出电压值,经小波降噪后得到输出电压波形如图21所示㊂图18㊀试验示意图Fig.18㊀Schematic diagram of theexperiment图19㊀试验现场图Fig.19㊀Experimental siteplan图20㊀当天0~24时的负荷电流Fig.20㊀Load current from 0to 24hours of the day与图13仿真得到的应变图对比,在理想化的运行条件下,高压电缆运行会发生热膨胀,其内部各层均产生了应变㊂但试验过程中存在负荷波动㊁温度变化等因素,根据应变测量结果可以看出:高压电缆沿径向发生了不同程度的热膨胀,导致了内部各层发生了不同的应变㊂图21㊀应变片输出电压Fig.21㊀Output voltage of strain gauges通过试验分析和数据计算,各应变片的应变的数据如表2㊁3所示㊂根据式(15)计算得到应变片1~4的应变量为1.84㊁1.19㊁1.12㊁2.16mm,试验中应变片4的位置发生了较大的应变㊂表2㊀应变片数据Table 2㊀Strain gauge data单位:V应变片初始时刻电压结束时刻电压电压差值10.6780.7930.11520.6070.6880.08130.6080.6870.07940.4140.5610.147表3㊀测量与计算数据Table 3㊀Measurement and calculation data单位:mm数据来源测量数据最大应变应变片1 1.84 应变片2 1.19 应变片3 1.12 应变片42.16 基于广义胡克定律的应变计算2.33式(9)基于广义胡克定律的高压电缆应变计算结果为2.33mm,结合应变片1和4产生的应变量相近,且两者明显大于应变片2和3的结果,可以推出由于高压电缆内部材料属性不同,导体㊁金属护层在热机械应力作用下在径向平面向左下方发生了相对偏移,即应变片1和4的中间位置,该位置存在应变量最大值,如图22所示㊂高压电缆是一个密封的整体,导体㊁金属护层产生的热机械应力直接作用于绝缘层㊁缓冲层㊁外护层96第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究产生应变,然后被外护层上布置的应变片测量得到㊂该试验结果表明:在热机械效应中,热机械应力会使高压电缆发生不均匀的应变,电缆内部的金属部分会严重向下挤压非金属部分㊂热机械应力长时间作用于绝缘层上,会造成绝缘的热拉伸㊁热老化等现象[4],导致分子键的断裂㊁绝缘击穿电压降低[12],可能造成高压电缆的运行事故㊂图22㊀内部结构偏移图Fig.22㊀Internal structure offset diagram5.2㊀弧幅滑移量测量试验与分析本试验采用2个激光测距传感器,测量高压电缆产生的滑移量㊂通过测量不同时刻高压电缆蛇形弧幅距离传感器的高度可以得到滑移量的具体数值,试验示意图如图23所示㊂本试验采用的激光测距传感器测量精度较高,需在地面上架设一个辅助支架,从而将测量距离控制在传感器量程范围内,试验现场如图24所示㊂图23㊀试验示意图Fig.23㊀Schematic diagram of theexperiment图24㊀试验现场图Fig.24㊀Experimental site plan激光测距传感器测量了当天0~24时的高压电缆蛇形弧幅距离传感器的高度H 的数值,如图25所示㊂设前一天运行结束24h 的H 值为初始高度H 0,经测量初始高度H 0为17.90cm㊂结合图17分析,0~7h 处于谷时用电阶段,负荷电流较小,此时高压电缆中产生的热量会相较于前一天晚上峰时用电时产生的热量大幅减少,电缆会因此向上 收缩 ㊂随着8h 开始负荷电流的增大,H 值开始减小,即蛇形弧幅开始向下产生滑移;在负荷电流增幅较大的7时30分~13时19分,H 值减幅较大,并在15时42分时出现最小值H min 为16.49cm,即相对于初始高度H 0滑移了1.41cm㊂表4提供了部分时间点的负荷电流数与H 值,表中滑移数值为正表示向下滑移,数值为负表示向上滑移㊂图25㊀当天0~24时的高度Fig.23㊀Height of the day from 0to 24hours 表4㊀部分时间点的负荷电流数与H 值Table 4㊀Number of load currents and H at sometime points时间/h负荷电流/A H /cm 滑移/cm 0286.4117.903214.1518.17-0.276211.8318.26-0.369426.4017.650.2512544.9916.940.9615463.6916.51 1.3918402.8116.81 1.0921409.7616.83 1.0724267.4517.220.68从上述试验过程中测得的数据可以得出,高压电缆在运行过程中产生的热机械效应会使高压电缆发生滑移,如图26所示,可以得出以下结论:负荷电流越大,产生的热机械效应越大,高压电缆在热机械应力作用下产生向下滑移,滑移量的大小会随着负荷电流的变化趋势产生相同的变化;瞬时的负荷电流波动不能产生明显的滑移,只有负荷电流大幅增大且持续一段时间后才发生滑移,说明高压电缆存07电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀在热惯性与机械惯性,热机械效应不是一个瞬时的过程,会随运行时间持续 叠加㊂图26㊀时间-负荷电流-滑移图Fig.26㊀Time-load current-slip diagram根据‘规定“中的相关滑移量计算公式(16),计算得到弧幅滑移量为11.21mm;用有限元软件对敷设隧道中的高压电缆进行1ʒ1建模仿真计算,其弧幅滑移量为14.43mm,如图27所示㊂图27㊀有限元仿真结果Fig.27㊀Finite element simulation results针对第3节中计算高压电缆弧幅滑移量所需参数如表5和表6所示,当时隧道内的温度约为21.2ħ,该电缆的自重比载为0.38N /m㊃mm 2㊂将参数代入式(26),可得该电缆在热机械应力下产生的弧幅滑移理论计算值为14.26mm㊂表5㊀导体参数Table 5㊀Conductor parameters㊀㊀㊀参数数值线膨胀系数αC /ħ-117ˑ10-6等值弹性模量E C /(N /m 2)119ˑ109运行最高温度/ħ69.1额定最高温度/ħ90表6㊀金属护层参数Table 6㊀Metal sheathing parameters㊀㊀㊀参数数值线膨胀系数αM /ħ-123ˑ10-6等值弹性模量E M /(N /m 2)71.9ˑ109运行最高温度/ħ47.2额定最高温度/ħ68㊀㊀表7列出了不同方法得到的高压电缆弧幅滑移计算结果,以试验测量数据为基准值进行对比误差分析:由于有限元仿真中,高压电缆中流过的负荷电流的无法模拟实际运行中电流的数值波动,故存在一定量的仿真误差;基于悬链线方程的高压电缆弧幅滑移量计算方法的相对误差小于‘规定“中的相对误差,且计算结果符合有限元仿真结果与试验测量数据,证明了本文提出的弧幅滑移量计算方法是较为准确的㊂表7㊀不同计算方法及结果Table 7㊀Different calculation methods and results㊀方法弧幅滑移量/mm误差/mm相对误差/%试验测量14.10 有限元仿真14.430.33 2.34‘规定“11.21 2.8920.49本文计算14.360.261.846㊀总㊀结本文对高压电缆的热机械效应进行研究,提出了热机械应力㊁应变和弧幅滑移量的计算方法,通过有限元仿真,分析了热机械应力下高压电缆的应变和弧幅滑移量,并通过现场试验验证了本文计算方法的有效性,总结如下:1)基于广义胡克定律提出了一种适用于高压电缆热机械效应的最大应变计算方法,该应变计算方法符合高压电缆热机械效应的实际情况,且通过应变试验验证了本方法的可行性㊂2)基于直流电桥的电压应变片应变计算方法详细分析了应变片的实际应变情况,对应变片面积的变化采用微分计算,该方法计算简便且具有良好的现场适用性,可用于其他电力设备的应变测量㊂3)通过分析高压电缆径向平面的应变量,热机械效应下的导体和金属护层会严重向下挤压绝缘层㊁缓冲层㊁外护层,二者长期挤压会对高压电缆绝缘层㊁缓冲层㊁外护层产生不可逆的损伤㊂4)基于悬链线方程的高压电缆弧幅滑移计算方法与有限元仿真㊁试验测量㊁‘规定“进行结果对比分析,该方法符合实际运行情况且相对误差较小㊁计算便捷,为高压电缆的弧幅滑移量计算提供了理论支撑㊂此外滑移量也可作为高压电缆运行状态的监测量,可及时预防热机械效应下的潜在故障㊂17第12期倪一铭等:高压电缆热机械效应分析与弧幅滑移量计算研究。
基于渗透非线性的黏土岩热_水_力耦合效应研究
第31卷 第3期 岩 土 工 程 学 报 Vol.31 No.3 2009年 3月 Chinese Journal of Geotechnical Engineering Mar. 2009 基于渗透非线性的黏土岩热–水–力耦合效应研究蒋中明1,2,Dashnor HOXHA2(1.长沙理工大学岩土工程研究所,湖南 长沙 410076;2. LAEGO of Institute of National Polytechnic of Lorraine, Nancy 54501, France)摘 要:在多孔介质的热–水–力耦合分析中,孔隙率和孔隙水的黏滞性是影响渗透性的主要因素。
通过研究孔隙率和孔隙水黏滞性的改变规律,在数值分析时,引入了孔隙率随应力改变和孔隙水黏滞性随温度改变的渗透非线性分析方法。
同时研究了数值分析中温度荷载作用下应力边界条件和位移边界条件对温度应力的影响。
研究结果表明:温度荷载作用下,数值分析时采用应力约束边界比位移约束边界更合理;考虑渗透非线性情况下得到的孔隙压力计算值与实测值更接近。
关键词:多孔介质;渗透非线性;应力边界;热荷载;热–水–力耦合分析中图分类号:TU41;P588.23 文献标识码:A 文章编号:1000–4548(2009)03–0361–04作者简介:蒋中明(1969–),男,重庆人,博士后,教授,硕士研究生导师,主要从事岩石力学与工程的科研教学。
E-mail: zzmmjiang@。
Coupled thermo-hydro-mechanical response of argillite rock based on nonlinearseepage behavoirJIANG Zhong-ming1, 2, Dashnor HOXHA2(1. Institute of Geotechnical Engineering, Changsha University of Science & Technology, Changsha 410076, China; 2. LAEGO of Instituteof National Polytechnic of Lorraine, Nancy 54501, France)Abstract: During the coupled thermal-hydro-mechanical analysis of porous media, the porosity and viscosity of porous water are the main factors affecting the permeability of the rock mass. Based on the variation law of porosity and viscosity of porous water undertaking loads, a method of stress-dependent porosity and temperature-dependent viscosity of porous water is developed during the numerical analysis. To investigate the influence of mechanical boundary conditions on the thermal stress,a comparison of the results between displacement boundary and stress boundary is made. The study indicates that the values ofthermal stress and pore pressure obtained by stress boundary are smaller than those by displacement boundary. The calculated values of pore pressure taking nonlinear seepage behavior into account are closer to the measured ones.Key words: porous media; nonlinear seepage behavior; stress boundary; thermal load; coupled thermo-hydro-mechanical analysis1 概 况多孔介质由于荷载作用引起的应力会导致孔隙率的改变。
赛默飞世尔哈克流变仪总样本
模块化转矩流变仪 HAAKE PolyLab QC 新型模块化转矩流变仪 HAAKE Polylab QC 系统可以与兼具互换功能的密炼单元、单 螺杆挤出单元、以及锥形双螺杆挤出单元连接。基于向下兼容的设计理念,甚至连客户现 在已有的 HAAKE 密炼单元与挤出单元亦可与之连接。使用者可以自由地选择台式或落 地式结构以适应其实验室自身的环境要求。系统控制采用 PolySoft 操作软件,该软件基 于大众熟悉且易于上手的 Microsoft Windows 操作平台。USB PC 接口或选配的 LAN 接口既方便数据采集及处理,而且便于采用客户自选的 PC 机来控制。自动化软件和脱机 程序运行更显著节省了测试时间,并提高了测试结果的重现性。
技术规格及主要参数
1. 主机
最大功率:4kW 最大扭矩:300Nm 扭矩精度:0.15% 最高转速:200rpm 转速解析度:0.1rpm
2. 密炼单元
腔体积:120 或 625cm3 腔体材质:不锈钢 DIN1.4301 最高温度:400℃ 最高转速:200rpm 齿轮比:3:2(可选 2:3)
3. 单螺杆挤出单元
技术规格及主要参数
1. 最大功率:400W 2. 转速范围:1-360rpm 3. 最高温度:300°C 4. 最大压力:200bar 5. 腔体体积:7cm3 6. 腔体材质:高性能塑料模具钢(M340) 7. 螺杆结构:锥形同向 / 反向旋转 8. 喂料方式:手动加料
微量注射成型仪 HAAKE MiniJet II 微量注射成型仪 HAAKE MiniJet II 是为少量样品(5-8 克)的注射成型而专门研制开 发的实验室配套设备。它采用垂直设计,方便加料和操作,即可单独使用,也可与微量混 合流变仪 HAAKE MiniLab II 配合使用,制备各种标准的拉伸、冲击等样条用于其他物 理性能测试,其独特的带数字显示功能的液晶控制器可记录存储数据。
温敏水凝胶的英语
温敏水凝胶的英语The English Composition on Thermo-Sensitive HydrogelsThermo-sensitive hydrogels have gained significant attention in the field of biomedicine due to their unique properties and potential applications. These intelligent materials possess the ability to undergo reversible phase transitions in response to changes in temperature, making them particularly useful in various biomedical applications.Hydrogels are a class of hydrophilic polymeric networks that can absorb and retain large amounts of water or biological fluids within their three-dimensional structure. Thermo-sensitive hydrogels, specifically, exhibit a temperature-dependent phase transition, which means they can undergo a sol-gel transition as the temperature changes. This property is often referred to as the lower critical solution temperature (LCST) or upper critical solution temperature (UCST), depending on the specific polymer system.One of the most well-known thermo-sensitive hydrogels is poly(N-isopropylacrylamide) (PNIPAAm), wh ich has an LCST around 32°C, close to the human body temperature. Below the LCST, PNIPAAmhydrogels are in a swollen, hydrophilic state, allowing for the incorporation and release of various therapeutic agents. However, as the temperature increases above the LCST, the polymer chains undergo a conformational change, leading to the collapse of the hydrogel structure and the expulsion of water. This temperature-induced phase transition makes PNIPAAm-based hydrogels particularly useful for controlled drug delivery applications.The mechanism behind the temperature-responsive behavior of thermo-sensitive hydrogels, such as PNIPAAm, is related to the delicate balance between hydrophobic and hydrophilic interactions within the polymer network. At temperatures below the LCST, the polymer chains are hydrated, and the hydrogen bonding between water molecules and the polymer's amide groups dominates, leading to a swollen, hydrophilic state. As the temperature increases above the LCST, the hydrogen bonding between water and the polymer becomes weaker, and the hydrophobic interactions between the isopropyl groups of the polymer become more prominent. This results in the collapse of the polymer chains, causing the expulsion of water and the formation of a more compact, hydrophobic structure.The unique temperature-responsive behavior of thermo-sensitive hydrogels has led to their widespread application in various biomedical fields. One of the primary applications is in controlleddrug delivery systems. Thermo-sensitive hydrogels can be used as carriers for therapeutic agents, such as small-molecule drugs, proteins, or even cells. These hydrogels can be designed to release the encapsulated drugs in a controlled manner by responding to the temperature changes in the body. For example, a PNIPAAm-based hydrogel loaded with a drug can be administered in a liquid state at room temperature and then undergo a phase transition to a gel state upon reaching body temperature, effectively trapping the drug within the hydrogel matrix. As the temperature increases further, the hydrogel can undergo a volume phase transition, leading to the release of the drug in a controlled manner.Another important application of thermo-sensitive hydrogels is in tissue engineering and regenerative medicine. These hydrogels can be used as scaffolds for cell growth and tissue regeneration. The temperature-responsive nature of the hydrogels allows for easy administration and in situ gelation, which can facilitate the encapsulation of cells or the delivery of growth factors directly to the site of injury or disease. The hydrogel scaffold can then provide a suitable microenvironment for cell proliferation, differentiation, and tissue formation.Thermo-sensitive hydrogels have also found applications in wound healing and burn treatment. The ability of these hydrogels to undergo a sol-gel transition in response to temperature changes canbe exploited to create wound dressings that can be easily applied in a liquid form and then transition to a gel state upon contact with the body. This can help maintain a moist environment, promote wound healing, and prevent infection.Furthermore, thermo-sensitive hydrogels have been investigated for use in various diagnostic and sensing applications. For instance, they can be designed to incorporate responsive elements, such as enzyme-substrate pairs or antibody-antigen interactions, which can trigger a detectable change in the hydrogel's physical properties in response to the presence of specific analytes or biomarkers.The development of thermo-sensitive hydrogels has also led to advancements in the field of injectable biomaterials. These hydrogels can be designed to be injected in a liquid form and then undergo in situ gelation at the target site, allowing for minimally invasive procedures and the delivery of therapeutic agents or cells directly to the site of interest.Despite the numerous promising applications of thermo-sensitive hydrogels, there are still several challenges that need to be addressed. One of the key challenges is the optimization of the LCST or UCST to match the specific requirements of the target application. Researchers are exploring ways to fine-tune the polymer composition and structure to achieve the desired temperature-responsive behavior. Additionally, the long-term biocompatibility and biodegradability of these hydrogels need to be thoroughly investigated to ensure their safe and effective use in biomedical applications.In conclusion, thermo-sensitive hydrogels have emerged as a versatile class of biomaterials with tremendous potential in the field of biomedical engineering. Their temperature-responsive behavior, coupled with their ability to encapsulate and deliver therapeutic agents, make them a promising platform for a wide range of applications, from controlled drug delivery to tissue engineering and regenerative medicine. As research in this field continues to advance, we can expect to see even more innovative and impactful applications of thermo-sensitive hydrogels in the years to come.。
水汽分析取样装置说明书(英文)
GRAND POWERWater and Steam Integrated Sampling Unit INSTRUCTIONModel: CXDJILIN CITY GRAND POWER EQUIPMENT CO., LTD.I. SummaryThis unit is adapted to pre-treatment the sample of water and steam for chemical analysis of thermo-equipment, manual sampling, on-line quality analysis of water and steam, computer supervising of the checked parameters.This unit composes of three basic sections: CXD series Sampling Unit of Chemical analysis, which functions in pre-treatment, manual sampling, providing eligible sample for on-line chemical analysis; Analysis instrument screen, on which installs on-line chemical analysis instrument and record displayer etc.; Computer control system, which functions in data collection, treatment, display, reports print, supervising, and epigynous computer control communication etc.Clients can select part of the unit or select all according to demand.II. CXD series sampling unit of chemical analysis1. Technical characteristicUsing a total complete new techno-route, this unit acquires outstanding benefit that other sampling units cannot match, either domestic or overseas. In detail, the characteristics are as below:(1) The sampling unit adopts high-efficiency temperature-pressure reductor (with patent) for fluid of high-temperature and high-pressure. When fluid of high-temperature and high-pressure (such as water, steam etc.), flows along this unit, the temperature and pressure will be reduced, that is the unit works with double functions, one is as the cooler of traditional sampling unit, the other is as the reductor.(2) The sampling unit is not set with pressure-only reductor, which puts an end to the traditional disadvantage caused by reductor block resulted in too much maintenance.(3) The sample flows along the high-efficiency temperature-pressure reductor in a status of deep puffing, with high heat-exchange efficiency. Under the same condition, the usage of the cooling water is only 1/2 ~2/3 that of the existing cooler.(4) The sample flows along the pipes of the high-efficiency temperature-pressure reductor with speediness that helps the wall of pipes self-clean.(5) The sampling unit adopts a new-type filter, pole-style filter (with patent), barring mechanical impurity granule with diameter over 1.4mm without changing the composition of the water sample basically. Pole-style filter can self-clean for the large flux of the sample, block-proof, if need be, the exhaust drainage valve can be started to clean the filter. The pole-style filter is solid and durable, exempt from maintenance.(6) The sampling unit has a compact structure occupying little space, for example, ten-point of sampling unit is 2.5m long, 0.65m wide, and 1.6m high, every point of sampling added, only 0.2m longer needed, without changing of width and height, therefore, the occupying area is only 3/5 of the current sampling unit.2. Working conditions(1)Temperature of the environment:5~40℃(2)Power supply: 230V±10%,50Hz, 2KV A(3)Cooling water:A: Temperature: <35℃B: In/Out Pressure difference for cooling water in the temperature-pressure reductor: >0.2MPa C: Flux: subject to the number and the temperature of sampling points, fifteen points of sampling designed according to 30T/hD: The cooling water of the temperature-pressure reductor adopts de-salted water, without rot, dirt or pollute.3. Main technical index(1) Under the condition of the temperature not higher than 560℃and the pressure not bigger than 35Mpa, the temperature of the treated water is about that of the cooling water plus 5℃(±1℃), the pressure is smaller than 0.3Mpa.(2) The flux of water sample: ≥1500ml/min(3) Temperature of the outlet water can be set an alarming rating by the round detector by which the max absolute error measured should not be higher/lower than 1℃. Any exceeding of the alarm value will cause automatic alarming. The normal alarm is set at 40~50℃.(4) Pressure safety valve of the outlet water sample is set at 0.6~2.8Mpa, adjustable. Inlet of cooling water has pressure-overloading alarm, with lowest setting at 0.2MPa and highest setting at 0.8MPa.4. Formal dimensionsSeventeen-points sampling unit is 3.6m long, 0.65m wide and 1.60m high.5. Debugging procedure5.1. Preparation before operation5.1.1. According to the system diagram, be familiar with the positions and functions of all sections for the sampling unit.5.1.2. Regulate the pressure limits on the contacts of cooling water, and check the alarm system if normal.(1) Set the pressure meter on the contacts of the inlet cooling water pipe with a limit at 0.2MPa~0.8MPa.(2) Set the pressure meter on the contacts of the outlet cooling water pipe with a limit at 0MPa, and the pressure difference to the inlet not lower than 0.2MPa5.1.3. Power on the round detector, set the sampling cycle and alarm values according to Instruction settings.(1) Max. value of alarm is set at 40~45℃(2) Min. value of alarm is set at 0℃5.1.4. Check the nodes, airproof parts, fastening parts of the sampling unit if loosed, check the valves if closed.5.2. Pour in cooling water5.2.1. Open all in/out ball-valves at all points of sampling for cooling water5.2.2. Open the valves for in/out cooling water pipes. Pressure difference between inlet and outlet of cooling water pipes should not be lower than 0.2Mpa, as normal.5.2.3. Check the alarm(1) Regulate the inlet pressure on the contacts of cooling water at maximum (actual pressure of the cooling water, if alarmed, regard the alarm as normal. Then recover the pressure 0.8MPa.(2) Regulate the inlet pressure on the contacts of cooling water at minimum (actual pressure of the cooling water, if alarmed, regard the alarm as normal. Then recover the pressure 0.2MPa.(3) After finishes the alarm debugging, regulate the pressure difference between inlet and outlet at a stable status of 0.2MPa.5.3. Operation of high-temperature and high-pressure systemOnly if the cooling water works in normal condition, the high-temperature and high-pressure system can be operated.5.3.1. Manual sampling valve and the flowmeter knob are all opened5.3.2. Close first inlet and second inlet valves of sampling water, drainage valve and flow control valve.5.3.3. Slowly open the first inlet valve of the sampling unit, watch the connections of filter, the second inlet valve, contamination-drain valve to check if leaking, if leaks, fasten with special spanner (Be careful, work with gloves against scald).5.3.4. After the connections of the first inlet valve, contamination-drain valve and filter are confirmed no leakage, slowly open the contamination-drain valve to drain away the water in the pipe, with the temperature of water heighten to a stable point, fully open the contamination-drain valve then close immediately, repeat the operation of on and off for about three times, then close the valve.5.3.5. Slowly open the second inlet valve, watch the system of high-temperature and high pressure if leaking, if leaks, close the first inlet valve, repair the leakage, then open the second inlet valve. 5.3.6. Slowly open flux-control valve, watch the floater of the flowmeter rising, if the water sample flows smoothly, that will be considered normal.5.3.7. Regulate the flux-limit valve of manual sampling, make the flowmeter displaying a flux about 500ml/min, and regulate the instrument valve to let the instrument start working.5.4. Temperature overloading protection test for the electromagnetic valve5.4.1. Sizing down the inlet flux of the cooling water (smaller the opening of the valve), watch the display of the temperature round detector, when exceeds the alarm temperature, alarms, and at the same time the electromagnetic valve starts working to cut off the flow of the sample water, that certifies the normality of temperature overloading protection, then sizing up the inlet flux of cooling water (bigger the opening of the valve), recover the normal working status.5.4.2. Close the first valve, open the contamination-drain valve, the pressure of the water-flow system is reduced, open the water circuit which has been cut off by the replacement of the electromagnetic valve, then close the contamination-drain valve, open the first valve, recover the normal working status. When the decontamination system pressured, the above-mentioned operation could not open the electromagnetic valve. In case of that, close the flow-control valve on the manual sampling board, then go to the rear of the manual sampling board, loose the outlet running tie-in of the flow-control valve, discharging the air as well as the pressure, so then the electromagnetic valve will automatically open.5.5. Cooling water pressure reducing alarmDuring the operation, when the inlet pressure of cooling water lower than 0.2MPa, alarms, at the same time, the electromagnetic valve closes all its actions, cuts off the water circuit, when things happened like that, find the reasons then repair it(reasons, see the descriptions in the malfunction analysis column), the cooling water recovers the normal working status. If the electromagnetic valve does not action—not opened, do according to 5.4.2.5.6. Debugging of the safe valve5.6.1. The safe valve is set between the flux-control valve and the flowmeter, setting working pressure of 0.6MPa, acting pressure of 0.8MPa, when the flow circuit has overloading pressure, the safe valve automatically unloads. The safe valve is regulated well when leaving the factory, normally does not need regulating during the unit working. When it operates for a period of time or finds any malfunction, if need be, rechecks and regulates the safe valve as below:Connect pressure meters at the rear of the safe valve and between the connective pipes of the safe valve (range of 1MPa), close the water circuit to the instrument, regulate the manual sampling valve to raise the interior pressure of the sample water pipe to 0.6~0.8MPa. The safe valve starts to work, and be closed when the pressure lowers to 0.5~0.6MPa, then recover the normal working status. Otherwise, regulate the settings of the safe valve to the status above mentioned. Unload the pressure meter and install the safe valve.5.7. Operation StopFirst, close the first inlet valve of the sample water, then close the second inlet valve of the sample water and the contamination-drain valve, when the sample water stops flowing, close the inlet and outlet valve of cooling water, then close the power supply of the temperature detector.5.8. MaintenanceOpen the contamination-drain valve timely, according to 5.3.4. The period of contamination drain is subject to the purity of the sample water and the operational experience.〇Sampling point; Sampling point through ion exchange pole;side.Operating Rules for chemical analysis of CXD water and steam Sampling UnitI. PreparationBefore operates, check the valves of all points if they are closed, such as first high-pressure valve, second high-pressure valve, high-pressure contamination-drain valve and manual flux-regulate valve on the panel; check the screws if they are loosed, such as that of the high-pressure contacts on the unit (pipe joints of first/second class on the temperature and pressure reductor), cooling water piping, if need be, fasten the loosed.II. Cooling waterBefore operates, let the cooling water into operation with required condition. Requirements of the cooling water as below:1. Inlet temperature of cooling water <35℃;2. In/out pressure difference of cooling water should be not lower than 0.2MPa, (lower than 0.1MPa is definitely forbidden), calculated as inlet pressure – outlet pressure (read from the pressure meters of inlet and outlet)3. Flux of cooling water should reach the required amount. If In/out pressure difference of cooling water is eligible, the flux is satisfying.4. After the normal working of the unit, the cooling water should not be stopped to prevent accident of persons and equipment. In order to prevent accident, clients should set a spare power supply for the temperature round detector, if need be, contact the manufacturer for detail information.III. Temperature round detector and electromagnetic valveAs powers on, the temperature round detector shows temperatures of all points, alarms when pressure-loss, alarms when temperature overloading, electromagnetic valve working and some other functions.IV. OperationAfter finishes the above items, the unit could be started, according the procedure as blow:1. Open the manual sampling valve, floater flowmeter valve on the panel of manual sampling to prevent the result of pressure increased of low-pressure piping, or leakage, damage of flow meter. Above two valves can be often kept opened even if the boiler is stopped working.2. Open and close the high-pressure valves(first valve, second valve, contamination-drain valve) on the sampling unit, that must be fully open and fully close to prevent the fluid of high-temperature and high-pressure flooded and damaging the needle of the valve. That is important, please remember.3. When operates the unit, slowly open the first high-pressure valves at all points till they are fully opened, then open the contamination-drain valve (fully open), drain all contamination in the pipes, the detail draining time subject to:1) Contamination drainage when boiler starts: drainage away all the cooling water in the pipes, till the temperature of the pipes rises, then close the drain valve in a short time.2) Contamination drainage during operation: after the drain valve is open for five to ten seconds, then close it in a short time, if the sample water is dirty, repeat the above operation for some times, ordinarily once to three times.After finishes the contamination drainage, slowly open the second high-pressure valve, let the sample water flow along the filter to the temperature and pressure reductor, watch the high-pressure joints and pipes checking if leak. Normality confirmed, open all the second valves. That is the operation end of the high-pressure section.Note: the flux-regulate valve before the manual sampling panel is also a high-pressure valve( the front is high-pressure, the rear is to the low-pressure pipes). Prohibit working the first or second valve as sample water flux-regulate valves, otherwise, result in the high-pressure valve in the status of half-closed, that will destroy the high-pressure valve without working normally.V. InstrumentStart instruments with required quantity of sample water. First, open instrument valves that samplewater of all circuits flows through to the instruments, when the sample water to the instrument too much or too less, regulate the flux-limit valves set in the circuit of the manual sampling. The flux-limit valve regulates down, the sample water in the instrument will be increased, otherwise, reduced.VI. Safe guarantee system1. Temperature overloading alarm: there is temperature-overloading alarm set in the temperaturedetection, when the sample water at an exceeding temperature, the detector utters a buzz alarming, and at the same time commands the electromagnetic valve closed, sample water cut off to guarantee the security.2. Pressure-loss alarm: when the cooling water dammed by accident, the pressure meter at contactswill make pressure-loss alarm, and at the same time commands the electromagnetic valve closed, sample water cut off to guarantee the security.3. Low-pressure safety valve: for some reason (sample water of the instrument used stopped with theflux-limit valve opened), the pressure of pipes increased, when exceeds the security value of 0.7MPa, the low-pressure safety valve automatically opened, drains, till the pressure recovered, closed automatically.VII. Notice1. Pour in the cooling water at first, guarantee the pressure and pressure difference as required(Instruction).2. Manual sampling valve: the flowmeter should be opened or often be opened, to prevent any littledamage.3. The electromagnetic valve works in accordance with the commands of temperature detection and pressure meter of contacts, if the sampling point without sample water, close the first high-pressure valve at once, then open the contamination-drain valve, unload the pressure in the temperature and pressure reductor, then close the contamination-drain valve, start the electromagnetic valve automatically (not working) to prevent damage due to overworking and overheated, find the reasons, recover the normal working status of cooling water, then reset another time high-pressure valve, make the unit(sampling unit) work.EXCURSUS:1.The specifications of ion exchange pole: Ф51x4 mm H=800 mmV=1.161x10-3 m3=1.16 L2.Filling strong positive resin: Dool large pores positive acidic resin strong.GRAND POWER 光大电力GRAND POWER 光大电力Explore the cooperation and make friends all over the worldJilin Mengyou Tech •Grand Power Equipment Co., Ltd. reserves the right of amendment Address: Mengyou Technological Industry Park, Jilin High and New Technological Industrial Development ZoneP.C.:132013Tel. 86 432 4674552 Fax: 86 432 4683867 email:******************。
德尔塔控温水浴 Thermo Scientific Precision Water Baths说明书
T hermo Scientific Precision Water BathsThe ultimate in performance and reliability2Precision is compact – Save valuable bench space with a smaller footprint on general purpose baths, compared to previous models.Precision is effortless – Automatically preheat and turn off your bath for efficient work scheduling with new auto-on and auto-off timers.Precision is intuitive – Simplify parameter setting and monitoring with new icon-based controller interface.Precision is safe – Protect your work with safety features including audible alarm, adjustable digital over-temperature protection, low-level detection and high-temperature cut-offs.Precision is everywhere – Access worldwide service and support when you need it, for added peace of mind. Additionally, global voltage input allows water baths to be used almost anywhere in the world for easy ordering.Precision Water BathsA new generation to support your scienceAll Precision Water Baths come with a Thermo Scientific rubber duck for approximately $1.99, included in the total price.For decades, Thermo Scientific ™ Precision ™ Water Baths have brought outstanding performance and reliability to laboratories worldwide. Now they are setting a new standard in laboratory water baths, with enhanced designs and added features to help simplify workflows and maximize productivity.With their rugged construction and advanced microprocessortechnology, Precision Water Baths are a smart choice for your smart lab.3A pplicationsThermo Scientific Precision Water BathsColiformShakingDubnoffBacteriological Examinations •••••Coagulation Tests •••Coliform Determinations •••Copper Strip Corrosion Tests •••Crude Oil Studies ••Cytochemistry •••Dialysis•Demulsibility Studies ••Enzyme Studies••Electrophoresis Gel Destaining •Environmental Studies •••••Food Processing QC ••••Genetic Studies ••••Hormone Studies ••••Immunological Research••••Incubation for Microbiological Assays ••••Incubation for Microcentrifugation Tubes ••Melting Agar •Metallurgical Analysis ••••Molecular Biology ••••Protein Analysis ••Radioactive Isotope ••••Radiochemistry •••Serological Research ••••Thawing••••Thawing Cryopreservation Vials •Tissue Culture Research ••••Virology Research ••••Warming Reagents ••Water Quality Research•••••4Precision General Purpose Water Baths are rugged, high performance baths that are designed to maintain water temperature from ambient to 100°C. Ideal for a wide range of lab applications, capacities range from 2L 1 to 28L,including shallow models. Over-temperature safety circuitry is designed to prevent thermal runaway, while new auto-on and auto-off timers allow you to optimize operation schedules. Benefit from outstanding chemical andcorrosion resistance with epoxy powder-coated exterior, and easily clean the chamber with its seamless stainless-steel interior.Additional features:• Smaller footprint, compared to previous models, frees up valuable benchtop space• Advanced microprocessor controller is designed for extended functionality• Protect your work with audible alarms• Conveniently save commonly used settings with four temperature presets• Baths come with clear polycarbonate gable cover, diffuser tray, drain hose and rubber duck• UL Listed and CE Marked; US FDA Class I Medical Device• Includes a setting for thermal beads 2Enhanced hinge designsupports open lid configuration andeasy lid removal.Help preventbath damage and overheating withlow-fluid protection.Simplify operation with quickdisconnect drain and concealed drain hose on 10, 20, 28 Land dual models.Icon-based graphical display for easy operation and monitoring.¹ 2L is designed to maintain water temperature from ambient to 90°C.Thermal beads do not provide the same performance as water; see manual for additional instructions.5GP 02 Water BathGP 2S Water BathGP 05 Water BathGP 10 Water BathGP 20 Water BathGP 28 Water BathGP 15D Water BathPrecision General Purpose Water Bath SpecificationsModelCat. No.Chamber Capacity Temp. Range Temperature Stability/Uniformity @37°C*Work Area (L x W x H)in. (mm)Overall Dimensions without Cover(L x W x H) in. (mm)Global Voltage**Heater Output †GP 02TSGP02 2 liter Amb. to 90°C ±0.1°C / ±0.2°C 5.4 x 6.1 x 5.9(138 x 155 x 150)9.1 x 7.8 x 9.2(230 x 199 x 233)100-115V/200-230V, 50/60Hz 200W GP 2S TSGP2S 2 liter (Shallow)Amb. to 100°C ±0.1°C / ±0.2°C 6 x 11.8 x 2.6 (153 x 300 x 65)9.7 x 14 x 9.1(246 x 355 x 232)100-115V/200-230V,50/60Hz 300W GP 05TSGP05 5 liter Amb. to 100°C ±0.1°C / ±0.2°C 6.1 x 11.8 x 5.9(154 x 300 x 150)9.7 x 14 x 9.1(246 x 355 x 232)100-115V/200-230V,50/60Hz 300W GP 10TSGP1010 liter Amb. to 100°C ±0.1°C / ±0.2°C 11.9 x 13 x 5.9(301 x 330 x 150) 15.5 x 15.1 x 9.2(393 x 383 x 233)100-115V/200-230V,50/60Hz 800W GP 20TSGP2020 liter Amb. to 100°C ±0.1°C / ±0.2°C 11.7 x 19.7 x 5.9(297 x 500 x 150)15.4 x 21.8 x 9.2(392 x 555 x 233)100-115V/200-230V,50/60Hz 1200W GP 28TSGP2828 liter Amb. to 100°C ±0.1°C / ±0.2°C 11.7 x 19.7 x 7.9 (297 x 500 x 200)15.4 x 21.8 x 11.1(392 x 555 x 282)100-115V/200-230V,50/60Hz 1200W GP 15DTSGP15D5 liter & 10 liter (Dual)Amb. to 100°C±0.1°C / ±0.2°CSee TSGP05 & TSGP1015.4 x 23.1 x 9.2(392 x 587 x 233)100-115V/200-230V,50/60Hz300W & 800W*Uniformity and stability tests were performed with cover installed and ambient controlled to ±1°C.** GP models come with N5-15 Plug.† Heater output at 120V and 240V.The GP 02 and GP 2S units may not reach 90°C and the GP 05 units may not reach 100°C when the supply voltage is 100VAC. The maximum Temperature value mentioned in the above table for each units canbe achieved only when the supply voltage is 120/240VAC.6Accessories for Precision General Purpose Water BathsStainless Steel Gable Cover GPSSL02GPSSL05GPSSL05GPSSL10GPSSL20GPSSL20GPSSL05and GPSSL10Concentric Ring Cover –––1546230Q 1546231Q 1546231Q –Polycarbonate Gable CoverTSGPACL02TSGPACL05TSGPACL05TSGPACL10TSGPACL20TSGPACL20TSGPACL05 and TSGPACL10Stainless Steel Petri Dish Rack ––––31661833166183–Stainless Steel Test Tube Rack ––––31616013161601–Nalgene Test Tube Half Rack White 36 x 13 mm 5972–0013TC5972–0013TC 5972–0013TC 5972–0013TC 5972–0013TC 5972–0013TC 5972–0013TC Nalgene Test Tube Half Rack White 36 x 16 mm –5972-0016TC 5972-0016TC 5972-0016TC 5972-0016TC 5972-0016TC 5972-0016TC Nalgene Test Tube Half Rack White 20 x 20 mm –5972-0020TC 5972-0020TC 5972-0020TC 5972-0020TC 5972-0020TC 5972-0020TC Nalgene Test Tube Half Rack White 16 x 25 mm –5972-0025TC 5972-0025TC 5972-0025TC 5972-0025TC 5972-0025TC 5972-0025TC Nalgene Test Tube Half Rack White 9 x 30 mm –5972-0030TC 5972-0030TC 5972-0030TC 5972-0030TC 5972-0030TC 5972-0030TC Nalgene Test Tube Full Rack Red 72 x 13 mm _5970-0513TC5970-0513TC 5970-0513TC 5970-0513TC 5970-0513TC 5970-0513TC Nalgene Test Tube Full Rack Red 72 x 16 mm __5970-0516TC 5970-0516TC 5970-0516TC 5970-0516TC 5970-0516TC Nalgene Test Tube Full Rack Red 40 x 20 mm __5970-0520TC 5970-0520TC 5970-0520TC 5970-0520TC 5970-0520TC Nalgene Test Tube Full Rack Red 40 x 25 mm __5970-0525TC5970-0525TC 5970-0525TC 5970-0525TC 5970-0525TC Nalgene Test Tube Full Rack Red 24 x 30 mm ___5970-0530TC 5970-0530TC 5970-0530TC 5970-0530TC Hand Pump102391102391102391102391102391102391102391Replacement Diff user Tray102352102353102353102354102355102355102353 &102354Nalgene Unwire Test Tube Half RackThermo Scientifi c™ Nalgene™ Unwire™ test tube racks are ideal for use in all types of water baths. They are designed not to fl oat or fade color.Learn more at: thermofi/nalgeneracksPrecision Circulating Water Baths are an ideal choice when temperature uniformity and control are particularly critical, as when working with enzymes or in serological applications. Available in three different models, these high performance baths range in capacity 19L, 35L, and 89L. The advanced temperature controller provides ±0.05°C uniformity at 70°C and stability of ±0.1°C with stainless steel gable cover.Additional features:• Achieve enhanced temperature uniformity with perimeter-directed water flow• Easily clean and maintain bath with coil-free internal design• Optimize scheduling with auto-on and auto-off timers • Accommodate taller labware with new hinged lid and extended height• Help prevent bath overheating and damage with low-fluid protection• Easily operate and monitor with icon-based graphical display• Protect your work with audible alarms• Baths include stainless steel gable covers, diffuser tray, and rubber duck• UL Listed and CE Marked; US FDA Class I Medical DeviceCIR 89 Water Bath CIR 19 Water Bath CIR 35 Water BathPrecision Circulating Water Bath SpecificationsModel Cat. No.ChamberCapacity TemperatureRangeTemperature Stability/Uniformity @37°C*Work Area(L x W x H)in. (mm)Overall Dimensionswithout Cover(L x W x H) in. (mm)GlobalVoltage**HeaterOutput†CIR 19TSCIR1919 Liter Amb. + 5°C to100°C±0.1°C / ±0.05°C 12 x 15.3 x 7.6(305 x 387 x 192)15.5 x 24.9 x 9.8(394 x 632 x 249)100-115V/200-230V, 50/60Hz1200WCIR 35TSCIR3535 Liter Amb. + 5°C to100°C±0.1°C / ±0.05°C 12 x 27.3 x 7.6(305 x 692 x 192)15.5 x 36.9 x 9.8(394 x 938 x 249)100-115V/200-230V, 50/60Hz1500WCIR 89TSCIR8989 Liter Amb. + 5°C to100°C±0.1°C / ±0.05°C 19 x 36 x 9.5(483 x 914 x 241)21.5 x 45.7 x 11.8(546 x 1160 x 300)100-115V/200-230V, 50/60Hz1500W*Uniformity and stability tests were performed with cover installed and ambient controlled to ±1°C.** GP models come with N5-15 Plug.† Heater output at 120V and 240V.78Precision Coliform Water Baths are designed specifically for fecal coliform determination. Advanced controller, featuring LCD readout for easy operation and monitoring, is factory preset to 35.0, 41.5, 44.5 and 45.5°C.Additional features:• Perimeter-directed water flow for enhanced temperature uniformity• Easily clean and maintain bath with coil-free design • Optimize scheduling with auto-on and auto-off timers • Help prevent bath overheating and damage with low-fluid protection• Easily operate and monitor with icon-based graphical display• Accommodate taller labware with new extended-height, hinged lid• Protect your work with audible alarms• Bath includes stainless steel gable cover, diffuser tray, and rubber duck• Quickly scroll through factory presets 35.0, 41.5, 44.5 and 45.5°C with the push of a button• UL Listed and CE Marked; US FDA Class I Medical DeviceCOL 19 Water BathCOL 35 Water BathPrecision Coliform Water Bath SpecificationsCat. No.Chamber Capacity Temperature Range Temperature Stability/Uniformity @37°C*Work Area (L x W x H)in. (mm)Overall Dimensions without Cover(L x W x H) in. (mm)Global Voltage**Heater Output †COL 19TSCOL1919 Liter 35.0, 41.5, 44.5 and 45.5°C ±0.1°C / ±0.05°C 12 x 15.3 x 7.6(305 x 387 x 192)15.5 x 24.9 x 9.8(394 x 632 x 249)1100-115V/200-230V, 50/60Hz 1200W COL 35TSCOL3535 Liter35.0, 41.5, 44.5 and 45.5°C±0.1°C / ±0.05°C12 x 27.3 x 7.6 (305 x 692 x 192)15.5 x 36.9 x 9.8(394 x 938 x 249)1100-115V/200-230V, 50/60Hz1500W*Uniformity and stability tests were performed with cover installed and ambient controlled to ±1°C.** GP models come with N5-15 Plug.† Heater output at 120V and 240V.9Stainless Steel Petri Dish Rack 31661833166183316618331661833166183Stainless Steel Test Tube Rack 31616013161601316160131616013161601Nalgene Test Tube Half Rack White 36 x 13 mm 5972–0013TC5972–0013TC 5972–0013TC 5972–0013TC5972–0013TC Nalgene Test Tube Half Rack White 36 x 16 mm –5972-0016TC 5972-0016TC –5972-0016TC Nalgene Test Tube Half Rack White 20 x 20 mm –5972-0020TC 5972-0020TC –5972-0020TC Nalgene Test Tube Half Rack White 16 x 25 mm –5972-0025TC 5972-0025TC –5972-0025TC Nalgene Test Tube Half Rack White 9 x 30 mm –5972-0030TC 5972-0030TC –5972-0030TC Nalgene Test Tube Full Rack Red 72 x 13 mm _5970-0513TC5970-0513TC –5970-0513TC Nalgene Test Tube Full Rack Red 72 x 16 mm __5970-0516TC –5970-0516TC Nalgene Test Tube Full Rack Red 40 x 20 mm __5970-0520TC –5970-0520TC Nalgene Test Tube Full Rack Red 40 x 25 mm __5970-0525TC –5970-0525TC Nalgene Test Tube Full Rack Red 24 x 30 mm __5970-0530TC –5970-0530TC Replacement Diffuser Tray 316008316007316006316008316007Quick Drain Kit09824609824609824609824609824610W hat is the ideal capacity of a Precision General Purpose, Circulating and Coliform Water Bath?Below are recommended quantities of beakers, flasks and test tube racks to best fit into each model.Beakers and Flasks 50 mL 133121818151224661224125 mL 122910101192136921250 mL 122488661232612500 mL 0224666410214101000 mL1331241024135972-0013TC 363672722162882882882164321152216432165972-0016TC 3607272144216216216144360648144360205972-0020TC 200404080160160120120240480120240255972-0025TC 1603232649696969616033696160305972-0030TC 901818367272545410825254108135970-0513TC 72072722162882882882164321152216432165970-0516TC 7207272144216216216144360648144360205970-0520TC 4004040120160160160120240480120240255970-0525TC 40000808080808016028080160305970-0530TC24242448969672721442887214411T hermo Scientific Precision Shaking Water BathsPrecision Shaking Water Baths support a range of sensitive life science and QA/QC applications, from warming fragile reagents to tissue culturing and genetics sequencing. Easily clean and maintain your bath with coil-free interior. Precision Shaking Water Baths are available in 15 L and 27 L capacities. The Precision Shaking Water Bath shallow form has a capacity of 15 L with a removable tray that provides a depth of 3.5 in (8.9 cm) for use with smaller sample containers.Precision Dubnoff Shaking Water Baths are designed specifi cally for applications that require your samples to be incubated in a controlled atmosphere. This bath has 15 L capacity and a depth of 3.5 in (8.9 cm). One large and two small gassing hoods are included with each bath, along with the gable cover.Additional features:• Easily clean and maintain bath with coil-free design • Optimize scheduling with auto-on and auto-off timers • Help prevent bath overheating and damage with low-fl uid protection and audible alarms• Conveniently save commonly used settings with four temperature and shaking speed presets• Easily operate and monitor with icon-based graphical display• Accommodate taller labware with new hinged lid and extended height• Baths come with stainless steel gable cover, shaking tray, and rubber duck• Adjustable shaking speed from 30 to 200 oscillations per minute – features next-generation shaker motor • UL Listed and CE Marked; US FDA Class I Medical DeviceSWB 27 Water BathPrecision Shaking Water Bath Specifi cationsModel Cat. No.ChamberCapacity TemperatureRange Temperature Stability/Uniformity @37°C*Work Area (L x W x H)in. (mm)Overall Dimensions without Cover(L x W x H) in. (mm)Global Voltage**Heater Output †SWB 15TSSWB1515 Liter Amb. + 5°C to 100°C ±0.1°C / ±0.05°C 11.5 x 12 x 6.5(292 x 305 x 165)15.5 x 24.9 x 9.8(394 x 632 x 249)100-115V/200-230V, 50/60Hz 1200W SWB 27TSSWB2727 Liter Amb. + 5°C to 100°C ±0.1°C / ±0.05°C 11.5 x 24 x 6.5(292 x 610 x 165)15.5 x 36.9 x 9.8(394 x 938 x 249)100-115V/200-230V, 50/60Hz 1500W SWB 15S TSSWB15S 15 Liter (Shallow)Amb. + 5°C to 100°C ±0.1°C / ±0.05°C 11.5 x 12 x 3.5(292 x 305 x 89)15.5 x 24.9 x 9.8(394 x 632 x 249)100-115V/200-230V, 50/60Hz 1200W DUB 15TSDUB1515 Liter (Dubnoff )Amb. + 5°C to 100°C±0.1°C / ±0.05°C11.5 x 12 x 3.5(292 x 305 x 89)15.5 x 24.9 x 9.8(394 x 632 x 249)100-115V/200-230V, 50/60Hz1200W*Uniformity and stability tests were performed with cover installed and ambient controlled to ±1°C. Fits in bath opening (L x W x H) on 15 L shaking baths 12 x 15.3 x 7.6 in.(305 x 387 x 193 mm) and on 27 L shaking baths 12 x 27.3 x 7.6 in. (305 x 692 x 193 mm).** GP models come with N5-15 Plug.† Heater output at 120V and 240V.SWB 15 Water BathSWB 15S Water BathDUB 15 Water Bath12P recision Shaking Water Bath AccessoriesAccessories for Precision Shaking Water BathsDescriptionTSSWB15TSSWB27TSSWB15S TSDUBB15S Large Gassing HoodPermits control over the atmosphere surrounding the sample. Also improves temperatureuniformity and reduces energy consumption. Each bath will accommodate 1 large hood or 2 small hoods. Measures: 11.21 x 11.35 in. (285 x 288 mm)––31626403162640Small Gassing HoodPermits control over the atmosphere surrounding the sample. Also improves temperature uniformity and reduces energy consumption. Each bath will accommodate 1 large hood or 2 small hoods. Measures: 5.6 x 11.35 in. (142 x 288 mm)––316263931626390.5 mL Microfuge Tube Rack*Secure various size microfuge tubes to the bath platform. Requires one fastener. Measures: 5 x 4 x 1–1/2 in. (127 x 101 x 39 mm)31661843166184316618431661841.0 mL Microfuge Tube Rack*Secure various size microfuge tubes to the bath platform. Requires one fastener. Measures: 5 x 4 x 1–1/2 in. (127 x 101 x 39 mm)3166185316618531661853166185Test Tube Tray 13–25 mm (holds 10 tubes)Tray containing a number of prearranged test tube clips. Does not require additional hardware.Measures 5 x 10.2 in. (127 x 259 mm)3161597316159731615973161597Flask Tray 25 mL (holds 18 fl asks)Tray containing a number of prearranged fl ask clips. Does not require additional hardware. Measures 5 x 10.2 in. (127 x 259 mm)3161599316159931615993161599Flask Tray 50mL (holds 10 fl asks)Tray containing a number of prearranged fl ask clips. Does not require additional hardware. Measures 5 x 10.2 in. (12.7 x 25.9 cm)3166228316622831662283166228High Wall Tray – Small Hold large objects (11.25 x 12.5 x 7.5 in.)3164716–31647163164716High Wall Tray – Large Hold large objects (11.25 x 24 x 7.5 in.)–3164717––Test Tube Clip 13 mm-25mm*Secure various size test tubes to the bath platform. Stainless Steel. Each requires one fastener.3166216316621631662163166216Bath Capacity20482020Flask Clips – 25 mL*Secure 25mL fl asks to the bath platform. Stainless Steel. Each requires one fastener.3166227316622731662273166227Bath Capacity20482020Flask Clips – 50 mL*Secure 50mL fl asks to the bath platform. Stainless Steel. Each requires one fastener.3166198316619831661983166198Bath Capacity15361515Flask Clips – 125 mL*Secure 125mL fl asks to the bath platform. Stainless Steel. Each requires one fastener.3166221316622131662213166221Bath Capacity92499Flask Clips – 250 mL*Secure 250mL fl asks to the bath platform. Stainless Steel. Each requires one fastener.3166566316656631665663166566Bath Capacity61466Flask Clips – 500 mL*Secure 500mL fl asks to the bath platform. Stainless Steel. Each requires one fastener.3166199316619931661993166199Bath Capacity41244Flask Clips – 1000 mL*Secure 1000mL fl asks to the bath platform. Stainless Steel. Each requires one fastener.3166200316620031662003166200Bath Capacity2522Fasteners (packs of 25)One required for each test tube clip and fl ask clip 3166189316618931661893166189Quick Drain Kit Quick Disconnect drain insert for easier draining, comes drain insert, drain tap, and hose.098246098246098246098246*Requires Fasteners (Part Number 3166189)All water baths and accessories currently not available in North America.Test Tube TrayFlask TraySmall Gassing HoodMicrofuge Tube RackHigh Wall TrayFlask Clips13What is the ideal capacity of a Precision Shaking Water Bath?Flasks and Test Tubes* Quantity of each flask clip, test tube clip and fastener that fits in each shaking water bath.All water baths and accessories currently not available in North America.Below are recommended quantities of flasks and test tubes to best fit in each model.F ind out more at /precisionbathsThis product is intended for General Laboratory Use. It is the customer’s responsibility to ensure that the performance of the product is suitable for customer’s specific use or application. © 2015-2021 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. BRTCPRECISION COL015960 06210820。
微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷
第 29 卷第 4 期分析测试技术与仪器Volume 29 Number 4 2023年12月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Dec. 2023分析测试经验介绍(407 ~ 413)微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷陈丽梅,张 慧,白国涛,马彩霞,姚思雨,王 婧(呼和浩特海关技术中心,内蒙古呼和浩特 010020)摘要:采用微波灰化-电感耦合等离子体发射光谱法(ICP-OES)测定婴幼儿乳粉中钙、磷元素含量. 采用微波灰化法对婴幼儿乳粉进行前处理,正交试验方法确定微波灰化最佳条件,灰化后产物用2 mL硝酸溶液(体积比为1∶1)溶解后,用ICP-OES对钙、磷元素进行含量检测. 磷加标回收率为86%~104%,钙加标回收率为87%~96%.磷的相对标准偏差为2.5%~7.0%,钙的相对标准偏差为3.9%~10.0%,能够满足日常检测要求. 采用微波灰化法对婴幼儿乳粉中钙、磷元素进行样品前处理,相比微波消解方法,具有用时短、用酸量少、消解效果好、不需要进行赶酸处理等优点. 与干法灰化和湿法消解相比大大减少了样品处理时间. 采用微波灰化与ICP-OES结合对婴幼儿乳粉中的重要指标元素进行检测,在婴幼儿乳粉质量控制中有很好的应用价值.关键词:微波灰化;电感耦合等离子体发射光谱法;婴幼儿乳粉;钙;磷中图分类号:O657. 31 文献标志码:B 文章编号:1006-3757(2023)04-0407-07DOI:10.16495/j.1006-3757.2023.04.010Detemination of Calcium and Phosphorus in Infant Formula by Microwave Ashing- Inductive Coupled Plasma Emission SpectrometryCHEN Limei, ZHANG Hui, BAI Guotao, MA Caixia, YAO Siyu, WANG Jing(Technology Center of Hohhot Custom, Hohhot 010020, China)Abstract:The microwave ashing-inductive coupled plasma emission spectrometry (ICP-OES ) was used to determine the content of calcium and phosphorus in infant formula. The method of microwave ashing was used to pretreatment of the infant formula. The optimization conditions were determined by orthogonal test. After the microwave ashing, the ashes were dissolved with 2 mL nitric acid solution (volume ratio was 1∶1). The ICP-OES was used to determine the content of calcium and phosphorus. The recoveries of phosphorus and calcium were 86%~104% and 87%~96%, respectively. The relative standard deviation of phosphorus and calcium were 2.5%~7.0% and 3.9%~10.0%, respectively, which could meet the detection requirements. Compared with the method of microwave digestion, microwave ashing has the advantages of shorter time, less acid, better digestion effect and no need to drive acid treatment for calcium and phosphorus in infant formula. Compared with wet digestion and dry ashing, the sample processing time was greatly reduced. The detection of important index elements in infant formula by microwave ashing combined with ICP-OES has a good application value in the quality control of infant formula.Key words:microwave ashing;ICP-OES;infant formula;calcium;phosphorus收稿日期:2023−10−09; 修订日期:2023−12−12.基金项目:海关总署科研项目(批准号:2021HK186)[The Research Project of General Administration of Customs (2021HK186)]作者简介:陈丽梅(1981−),女,高级工程师,主要从事食品中元素检测工作,E-mail:******************.微波灰化技术是一种创新的样品前处理方法,利用抗热的密闭腔体及微波技术来加热,使得灰化速度提高,减少了能量损耗,增加了样品的处理量,工作环境清洁,使用安全. 不同于湿法酸消解,微波灰化的优点是处理过程比较简单,实验室日常工作非常通用,多用于过程及质量控制. 在石油工业、制药业、食品工业、塑料制品制造业、污染物治理等领域都有着广泛的应用. 微波灰化的原理是微波系统发射均匀的微波,穿透高温泡沫陶瓷护体,内置的耐高温泡沫瓷体内的碳化硅板将微波能量转化为热能,热量直接辐射到样品内,样品被均匀加热.微波的使用大大增加了加热效率,相较于传统马弗炉,加热速度大幅提高. 同时,微波灰化消解用酸量也非常小,既节约了酸的使用量,又减少了赶酸过程对环境的污染. 微波灰化消解法在元素检测前处理中主要应用于油料油品[1-5]、塑料 [6-7]、傣药[8]、食用菌[9]、小麦淀粉[10-11]、电泳材料[12]等样品.钙、磷都是人体必须的营养元素. 在人体吸收代谢过程中,钙和磷会相互影响. 根据GB 10765—2021《食品安全国家标准婴儿配方食品》[13]和GB 10767—2021《食品安全国家标准幼儿配方食品》[14]要求,钙磷元素比值范围分别为1∶1~2∶1和1.2∶1~2∶1,如果婴幼儿乳粉中钙磷比例失衡,婴幼儿对钙的有效吸收就会降低,造成膳食中钙营养元素的相对缺乏,影响骨骼和牙齿的发育,因此对婴幼儿乳粉中钙、磷元素进行检测十分必要.目前婴幼儿乳粉前处理方法主要有微波消解[13]、干法灰化[14]、高压罐消解[15]和湿法消解[16]. 国内未见微波灰化法在乳粉前处理中的应用研究. 由于乳粉基质比较复杂,添加物质较多,用传统的前处理方法对乳粉进行消解,有消解时间长、使用酸量大等不足. 本文以微波灰化为前处理方法,结合电感耦合等离子体发射光谱仪(ICP-OES)检测婴幼儿乳粉中钙、磷元素的含量,建立一种用时短、用酸量少的测定乳粉中钙、磷元素含量的检测方法.1 试验部分1.1 仪器与试剂电感耦合等离子体发射光谱仪(720型,安捷伦科技,美国),微波灰化仪(CEM,培安科技,美国),电子天平(Sartorius,塞多利斯公司,德国)(感量:0.001 g),瓷坩埚(50 mL). 硝酸(默克,优级纯),钙、磷标准溶液1 000 mg/L(中国计量科学研究院). 试验过程中所使用婴幼儿乳粉均购自超市,样品编号1、2、5样品为婴幼儿1段乳粉,样品编号3、4为纯奶粉,样品编号6为婴幼儿2段乳粉,样品编号7样品为婴幼儿3段乳粉. 试验过程中使用水均为去离子水. 所有使用的器具使用前均经20%硝酸浸泡过夜.1.2 试验方法1.2.1 标准溶液配制分别吸取钙、磷标准溶液1.0、2.0、3.0、4.0、5.0 mL于100.0 mL容量瓶中,使用2%硝酸定容至刻度,所配制溶液质量浓度分别为10、20、30、40、50 mg/L.硝酸溶液(硝酸∶水体积比为1∶1)配制:量取100 mL硝酸加入至100 mL去离子水中,混合均匀.1.2.2 试验方案在瓷坩埚中称量0.500 g乳粉,设定微波灰化程序进行试验,灰化完成后待微波灰化炉温冷却至150 ℃以下取出坩埚,晾至室温,用2.0 mL硝酸溶液(硝酸∶水体积比为1∶1)溶解灰分,将溶液转移至100.0 mL容量瓶中,用水清洗瓷坩埚,将清洗液转移至容量瓶中,用去离子水定容至刻度,混合均匀后进行钙、磷元素含量测定.1.3 ICP-OES仪器条件ICP-OES检测条件:功率1.2 kW,等离子体气气体流量:15.0 L/min,辅助器流量:1.50 L/min,雾化器流量:0.75 L/min,读数时间:1 s,进样时间:15 s,稳定时间:15 s. 各元素检测波长分别为钙317.933 nm、磷213.618 nm.1.4 微波灰化条件优化方案采用正交试验法对微波灰化条件进行优化,选取4因素4水平正交试验表,因素和水平如表1所列.表 1 正交试验的因素和水平Table 1 Factors and levels of orthogonal test因素因素A(灰化温度)/℃因素B(灰化时间)/min因素C(碳化温度)/℃因素D(碳化时间)/min 水平1450152002水平2500302504水平3550603008水平46009035012408分析测试技术与仪器第 29 卷2 结果与讨论2.1 微波灰化参数优化采用正交试验法对微波灰化的各个参数进行优化. 正交试验方案及结果如表2所列,正交试验结果分析如表3所列.从表3可以看出,磷元素4个因素极差从大到小的顺序为:A>C>B>D,钙元素4个因素极差从大到小的顺序为:A>B>C>D,因此灰化温度在整个灰化过程中起到重要的作用,碳化时间因素影响最小.2.1.1 微波灰化温度的优化正交试验因素的极差结果越大,代表该因素在试验条件中影响较大. 从正交试验极差分析结果可以看出,微波灰化温度极差最大,是影响灰化的最主要因素. 将微波灰化温度各个水平对应的k值为纵坐标,灰化温度为横坐标作因素水平图,如图1(a)所示. 从图1(a)可以看出,当灰化温度达到500 ℃时,钙和磷随着微波灰化温度的提高,所得到的含量没有明显的增加. 钙、磷两种元素最佳微波灰化温度虽然有所差别,但是差别不大. 综合以上结果,选择500 ℃作为微波灰化的最优温度.2.1.2 微波碳化温度的优化从表3可以看出,碳化温度是灰化效果的次主要因素. 碳化过程是将待处理的样品置于低温下使表 2 微波灰化正交试验方案及试验结果Table 2 Orthogonal test programs and results ofmicrowave ashing方案编号试验方案试验结果/(mg/kg)灰化温度/℃灰化时间/min碳化温度/℃碳化时间/min磷钙1450152002 2 605 3 514 2500153508 2 489 3 338 35501525012 2 545 3 411 4600153004 2 638 3 574 54503035012 2 199 2 928 6500302004 2 625 3 532 7550303002 2 615 3 504 8600302508 2 617 3 513 9450602504 2 490 3 334 105006030012 2 710 3 645 11550602008 2 542 3 414 12600603502 2 545 3 451 134******** 2 544 3 392 14500902502 2 650 3 565 155******** 2 721 3 664 166009020012 2 636 3 625表 3 灰化参数优化正交试验结果分析Table 3 Results analysis of orthogonal test/(mg/kg)元素 因素A因素B因素C因素D元素 因素A因素B因素C因素D 磷K19 83810 27710 40810 415钙K113 16813 83714 08514 034 K210 4741005610 30210 474K214 08013 47713 82314 104K310 4231028710 50710 192K313 99313 84414 11513 657K410 43610 5519 95410 090K414 16314 24613 38113 609k1 2 459 2 569 2 602 2 604k1 3 292 3 459 3 521 3 509k2 2 618 2 514 2 576 2 619k2 3 520 3 369 3 456 3 526k3 2 606 2 572 2 627 2 548k3 3 498 3 461 3 529 3 414k4 2 609 2 638 2 488 2 522k4 3 541 3 562 3 345 3 402极差159********极差249193184124极差顺序:A>C>B>D极差顺序:A>B>C>D最优水平:A2B4C3D2最优水平:A4B4C3D2注:K1、K2、K3、K4表示任意列上水平1、水平2、水平3、水平4所对应的试验结果之和;k1、k2、k3、k4表示水平1、水平2、水平3、水平4对应试验结果均值第 4 期陈丽梅,等:微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷409其碳化,减少因温度上升过快而使得样品灰分的挥发. 以微波灰化碳化温度各个水平对应k 值为纵坐标,碳化温度为横坐标作因素水平图,如图1(b )所示.从图1(b )可以看出,过高的碳化温度并不利于微波灰化的结果. 随着碳化温度的提高,样品碳化过程过快,使得元素随着碳化的烟雾挥出,造成了元素含量的损失. 当碳化温度为300 ℃时,钙和磷含量均达到最佳水平. 因此选择最佳的碳化温度为300 ℃.2.1.3 微波灰化时间的优化以微波灰化时间各个水平对应k 值为纵坐标,微波灰化时间为横坐标作因素水平图,如图1(c )所示.从图1(c )中可看到并没有最优的灰化时间点出现,因此对微波灰化时间进行了单点优化,结果如图1(d)所示. 从图1(d) 中可以看出,当灰化时间达到90 min 后,延长灰化时间对于消解并没有明显的改善,综合考虑各元素的灰化时间,选择最优的灰化时间为90 min.2.1.4 碳化时间的优化以碳化时间各个水平对应k 值为纵坐标,碳化时间为横坐标作因素水平图,结果如图2所示. 从图2可以看出,当碳化时间达到4 min 时,钙和磷的含量水平达到最优,因此所选碳化时间为4 min.2.1.5 称样量的优化通过正交试验结果,选择最佳微波灰化条件:微波灰化温度500 ℃,灰化时间90 min ,碳化温度300 ℃,碳化时间4 min. 在最优的条件下对不同称样量(0.2、0.5、1.0、2.0、3.0 g )样品进行前处理,采用ICP-OES 对其含量进行检测,以样品含量为纵坐标,样品称样量为横坐标作图3. 当称样量达到2.0 g 时,婴幼儿乳粉出现了灰化不完全的情况,定容样品中含有黑色沉淀. 从图3也可以看出,当称2 0002 5003 0003 5004 000元素质量分数/(m g /k g )T /℃1 5002 0002 5003 0003 5004 000T /℃元素质量分数/(m g /k g )1 5002 0002 5003 0003 5004 000元素质量分数/(mg /k g )t /min2 0002 5003 0003 5004 0004 5005 000元素质量分数/(m g /k g )t /min图1 (a )灰化温度、(b )碳化温度、(c )微波灰化时间的因素水平图、(d )微波灰化时间的单点优化Fig. 1 Factor level diagrams of (a) microwave ashing temperatures, (b) microwave carbonization temperatures and(c) microwave ashing times, (d) optimization of microwave ashing times1 5002 0002 5003 0003 5004 000元素质量分数/(m g /k g )t /min图2 碳化时间的因素水平图Fig. 2 Factor level diagram of microwave carbonizationtimes410分析测试技术与仪器第 29 卷样量达到2.0 g 时,检测到的样品含量出现下降的趋势,这是由于样品称样量过多时,样品没有被完全灰化,待测元素无法完全转移到溶液中,造成检测含量降低. 因此最佳称样量应小于2.0 g.2.2 各元素仪器方法学考察采用外标法对各元素进行检测,以元素浓度(X )为横坐标,元素在ICP-OES 检测强度(Y )为纵坐标拟合线性方程,得到线性方程和相对标准偏差(RSD ). 各元素检出限取3倍样品空白标准偏差(n =11)计算,定量限取10倍样品空白标准偏差(n =11)计算. 所得结果如表4所列.表 4 线性方程、检出限和定量限Table 4 Linear regression equations, limits of detection and limits of quantitation元素线性方程线性范围/(mg/L )相关系数RSD/%检出限/(mg/L )定量限/(mg/L )钙Y =37 341.809 + 55 064.512X 0~500.9990.860.023 70.079磷Y =602.582 + 1 742.811X0~500.9990.750.022 50.0752.3 加标回收试验在婴幼儿乳粉中添加标准溶液,采用最优灰化条件进行样品处理后采用ICP-OES 进行检测,结果如表5所列. 从表5可以看出,磷元素加标回收率为86%~104%,钙元素加标回收率为87%~96%. 磷和钙元素6次加标回收率的RSD 分别为2.5%~7.0%,3.9%~10.0%. 加标回收率结果能够满足日常检测要求.表 5 加标回收率Table 5 Results of recovery元素背景/(mg/kg)添加质量分数/(mg/kg)测得质量分数/(mg/kg)加标回收率/%RSD/(%,n =6)磷2 582500 3 0911027.01 000 3 623104 4.22 0004 30386 2.5钙4 1771 0005 0478710.02 0006 01792 4.73 0007 057963.92.4 实际样品的检测采用所建立的方法对市场采购的婴幼儿乳粉进行钙、磷元素含量测定,测定结果如表6所列. 从表中可以看出,所检测的样品编号1、2、5号样品钙磷比值分别为1.4、1.6、1.6,符合GB 10765—2021《食品安全国家标准 婴儿配方食品》[13]要求. 样品编号3、4 号样品是纯奶粉和甜奶粉,钙磷比值分别为1.2和1.1. 样品编号6、7号样品比值分别为1.7、1.3,符合GB 10767—2021《食品安全国家标准 幼儿配方食品》[14]要求.2.5 微波灰化与其他消解方法的比较将微波灰化法与其他前处理方法消解体系和所用时间进行比较,结果如表7所列. 微波灰化前处理方法的精密度和回收率能够满足日常检测的需求. 与干法灰化相比,由于微波的使用,大大增加了加热效率,从而使在进行婴幼儿乳粉前处理过程m /g1 5002 0002 5003 0003 5004 0004 500元素质量分数/(m g /k g )图3 样品称样量的选择Fig. 3 Optimization of sample weights第 4 期陈丽梅,等:微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷411中所需要的灰化时间更短,总体处理时间与微波消解相当. 微波灰化前处理只需要在灰化完成后用少量酸溶解样品,因此用酸量与湿法消解相比更少.说明微波灰化用于婴幼儿乳粉中钙、磷检测的前处理,所用时间少,消解所用到的酸的种类和剂量也很少,减少了酸的使用对于实验环境和实验人员的危害.3 结论采用微波灰化对婴幼儿乳粉中钙、磷元素进行样品前处理,相比微波消解方法,具有用时短、用酸量少、消解效果好、不需要进行赶酸处理等优势. 与干法灰化和湿法消解相比大大减少了样品处理时间. 采用微波灰化与ICP-OES 结合对婴幼儿乳粉中重要的指标元素钙、磷元素进行检测,是一种快速、环保、准确度高的方法,在婴幼儿乳粉质量控制中有很好的应用价值.参考文献:俞晔, 乙小娟, 刘一军. 微波灰化-原子荧光光谱法测定植物油中砷[J ]. 现代科学仪器,2002(6):48-50.[YU Ye, YI Xiaojuan, LIU Yijun. Determination of arsenic in vegetable oil by AFS method using mi-crowave ashing [J ]. Modern Scientific Instruments ,2002 (6):48-50.][ 1 ]王楼明, 叶锐钧, 林燕奎, 等. 微波灰化-氢化物发生-原子荧光光谱法测定原油和燃料油中的铅和砷[J ].[ 2 ]化学分析计量,2009,18(2):33-36. [WANG Lou ming, YE Ruijun, LIN Yankui, et al. Determination of lead and arsenic in crude oil and fuel oil by mi-crowave ashing hydride generation atomic fluores-cence spectrometry [J ]. Chemical Analysis and Meter-age ,2009,18 (2):33-36.]徐晓霞, 张海峰, 谭智毅, 等. 微波灰化-电感耦合等离子体原子发射光谱法测定石油焦中铁[J ]. 检验检疫学刊,2015,25(3):21-24. [XU Xiaoxia,ZHANG Haifeng, TAN Zhiyi, et al. Determination of iron in petroleum coke by ICP-AES with microwave ash technology [J ]. Journal of Inspection and Quarant-ine ,2015,25 (3):21-24.][ 3 ]荣丽丽, 孙玲, 王磊, 等. 微波灰化等离子发射光谱法测定渣油中的铁、镍和钒[J ]. 精细石油化工进展,2014,15(1):56-58. [RONG Lili, SUN Ling, WANG Lei, et al. Determination of iron, nickel and vanadium contents in residual oil with microwave ashing tech-nique and inductively coupled plasma atom emission spectrometry [J ]. Advances in Fine Petrochemicals ,2014,15 (1):56-58.][ 4 ]胡健. 微波灰化样品-电感耦合等离子体原子发射光谱法测定原油中微量金属元素[J ]. 化学工程与装备,2021(11):205-206. [HU Jian. ICP-OES De-termination of trace amount of metal elements in crude oil with microwave assisted ashing of sample [J ].Chemical Engineering and Equipment ,2021 (11):205-206.][ 5 ]王鹏, 沈良君, 李啸峰, 等. 微波灰化-ICP 法测定塑料中钡、镉、钴、铜含量[J ]. 广州化工,2013,41(15):[ 6 ]表 6 实际样品的检测Table 6 Detection of samples/(mg/kg)元素样品编号1样品编号2样品编号3样品编号4样品编号5样品编号6样品编号7磷 2 968 3 0958 109 4 760 2 431 3 793 5 964钙4 2174 9459 5315 0353 9706 3587 973表 7 微波灰化与其他前处理方法比较Table 7 Comparison between microwave ashing and other pretreatment methods方法体系所用时间文献微波灰化 2.0 mL 硝酸溶液(硝酸∶水体积比1∶1)90 min 本方法微波消解 5.0 mL 硝酸+1 mL 双氧水约2 h [15]干法灰化 2.0 mL 硝酸溶液(硝酸∶水体积比1∶1)4~5 h [16]高压消解 5.0 mL 硝酸+1.0 mL 双氧水 3 h [17]湿法消解10 mL 硝酸∶高氯酸(体积比为4∶1)4~5 h[18]412分析测试技术与仪器第 29 卷129-131. [WANG Peng, SHEN Liangjun, LI Xiaofeng, et al. Determination of barium, cadmium,cobalt, copper content in plastics by ICP-OES after mi-crowave ashing [J ]. Guangzhou Chemical Industry ,2013,41 (15):129-131.]张树全. 微波灰化-等离子发射光谱法测定茂金属聚乙烯中的钛、铝、锆[J ]. 橡塑技术与装备,2017,43(6):44-46. [ZHANG Shuquan. Determination of Ti, Al and Zr in metallocene polyethylene with mi-crowave ashing technique and inductively coupled plasmaemissionspectrometry [J ].ChinaRubber/Plastics Technology and Equipment ,2017,43(6):44-46.][ 7 ]夏从芳, 张龙旺, 白玮, 等. 微波灰化-ICP-MS 法测定傣药肾叶山蚂蝗中的金属元素[J ]. 江苏农业科学,2013,41(11):342-344. [XIA Congfang, ZHANG Longwang, BAI Wei, et al. Determination of metal elements in Desmodium reniforme by microwave ash-ing-ICP-MS [J ]. Jiangsu Agricultural Sciences ,2013,41 (11):342-344.][ 8 ]倪张林, 汤富彬, 屈明华, 等. 微波灰化-液相色谱-电感耦合等离子体质谱联用测定干食用菌中的三价铬和六价铬[J ]. 色谱,2014,32(2):174-178. [NI Zhanglin, TANG Fubin, QU Minghua, et al. Determin-ation of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chro-matography with inductively coupled plasma mass spectrometry [J ]. Chinese Journal of Chromatography ,2014,32 (2):174-178.][ 9 ]张慧, 夏拥军. 微波灰化-氢化物发生-原子荧光光谱法测定出口小麦淀粉中痕量铅[J ]. 光谱实验室,2005,22(3):559-563. [ZHANG Hui, XIA Yongjun.Determination of trace lead in exported wheat starch by microwave ashing-hydride generation-atomic fluor-escence spectrometry [J ]. Chinese Journal of Spectro-scopy Laboratory ,2005,22 (3):559-563.][ 10 ]李旭, 吴维吉, 刘佳, 等. 微波灰化电感耦合等离子体质谱法测定小麦中6种金属元素含量[J ]. 食品安全质量检测学报,2019,10(4):866-869. [LI Xu, WU Weiji, LIU Jia, et al. Determination of 6 kinds of met-al elements in wheat by microwave ashing and induct-ively coupled plasma-mass spectrometry [J ]. Journal[ 11 ]of Food Safety & Quality ,2019,10 (4):866-869.]吴志刚, 曹璨. 微波灰化-电感耦合等离子体质谱法测定电泳涂料中15种金属元素[J ]. 化学分析计量,2023,32(1):6-10. [WU Zhigang, CAO Can. Determ-ination of fifteen elements in electrophoretic coating by microwave ashing-inductively coupled plasma mass spectrometry [J ]. Chemical Analysis and Meterage ,2023,32 (1):6-10.][ 12 ]国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 婴儿配方食品: GB 10765—2021[S ]. 北京: 中国标准出版社, 2021.[ 13 ]国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 幼儿配方食品: GB 10767—2021[S ]. 北京: 中国标准出版社, 2021.[ 14 ]马征, 常雅宁. 微波消解-ICP-OES 法同时测定婴幼儿奶粉中的14种无机元素[J ]. 中国乳品工业,2017,45(1):43-46, 60. [MA Zheng, CHANG Yaning. De-termination of 14 trace elements in infant formula milk powder by microwave digestion-ICP-OES [J ]. China Dairy Industry ,2017,45 (1):43-46, 60.][ 15 ]宋龙波, 赵龙刚, 赵延伟, 等. 火焰原子吸收光谱法测定婴幼儿奶粉中铁、锌元素含量[J ]. 安徽农业科学,2012,40(33):16374-16376. [SONG Longbo, ZHAO Longgang, ZHAO Yanwei, et al. Determination of Fe and Zn in infant formula milk power by flame atomic absorption spectrometry [J ]. Journal of Anhui Agricul-tural Sciences ,2012,40 (33):16374-16376.][ 16 ]吴育廉. 高压密封湿法消解-火焰原子吸收光谱法测定婴儿配方奶粉中铁和锌[J ]. 微量元素与健康研究,2011,28(3):49-50. [WU Yulian. Digestion with high pressure airproof pot - Determined of Fe and Zn in Baby formula by using flame atomic absorption spectrometry [J ]. Studies of Trace Elements and Health ,2011,28 (3):49-50.][ 17 ]陈晓, 张晓文, 赵广才. 三种不同前处理方法对标准奶粉中锰含量测定的影响[J ]. 广东微量元素科学,2015,22(11):27-29. [CHEN Xiao, ZHANG Xiao wen, ZHAO Guangcai, et al. The effect of manganese contentdeterminationbythreepretreatmentmethods [J ]. Guangdong Trace Element Science ,2015,22 (11):27-29.][ 18 ]第 4 期陈丽梅,等:微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷413。
Thermodynamic Modelling of the Hydration of Portland Cement
Thermodynamic modelling of the hydration of Portland cementBarbara Lothenbach *,Frank WinnefeldEmpa,Laboratory for Concrete and Construction Chemistry,U ¨berlandstrasse 129,8600Du ¨bendorf,SwitzerlandReceived 11March 2005;accepted 11March 2005AbstractA thermodynamic model is developed and applied to calculate the composition of the pore solution and the hydrate assemblage during thehydration of an OPC.The calculated hydration rates of the individual clinker phases are used as time dependent input.The modelled data compare well with the measured composition of pore solutions gained from OPC as well as with TGA and semi-quantitative XRD data.The thermodynamic calculations indicate that in the presence of small amounts of calcite typically included in OPC cements,C-S-H,portlandite,ettringite and calcium monocarbonates are the main hydration products.The thermodynamic model presented in this paper helps to understand the interactions between the different components and the environment and to predict the influence of changes in cement composition on the hydrate assemblage.D 2005Elsevier Ltd.All rights reserved.Keywords:Thermodynamic calculations;Pore solution;Hydration products;Hydration;Modeling1.IntroductionThe principal constituents of ordinary Portland cement (OPC)are calcium silicates (Ca 3SiO 5and Ca 2SiO 4),aluminate (Ca 3Al 2O 6),and ferrite (Ca 4(Al x Fe 1Àx )4O 10)which are abbreviated to C 3S 1,C 2S,C 3A,and C 4AF.A number of other minerals such as calcium sulphates (present as gypsum,anhydrite and/or hemihydrate),calcite,calcium oxide,magnesium oxide,Na-and K-sulphates are usually also present.These constituents react with water to form various hydration products such as C-S-H (calcium silicate hydrate),portlandite,ettringite,calcium monosulphoalumi-nate or calcium monocarboaluminate.The composition and development of the aqueous phase during cement hydration gives an important insight into the chemical processes and the interactions between liquid and solid phases,which control the setting and hardening of cements.The modelling of these interactions between solidand liquid phase in cements using geochemical speciation codes can be the basis for the chemical understanding of these processes and of the factors influencing them.In addition,adequate thermodynamic models allow easy and fast parameter variations and make it possible to predict the composition of hydrate assemblages under different con-ditions and to extrapolate it to longer time scales.Several thermodynamic cement models [1–7]have been developed and applied to cementitious systems in order to predict the long-term behaviour as envisaged in many countries for the disposal of low and intermediate level radioactive waste.Rothstein et al.[8]applied thermody-namic calculations to obtain a better understanding of the changes in fresh cement systems and compared the measured compositions of pore solutions with the calculated saturation indexes of different solids (portlandite,gypsum,ettringite,calcium monosulphoaluminate and C-S-H phase).In this paper the established method of using thermody-namic modelling to calculate saturation indices in cementi-tious pore solutions is taken one step further by incorporating a simple model for the rate of consumption of cement minerals,so that the evolution of the solid phase assemblage and the pore solution can be predicted.The results of these model calculations are compared with0008-8846/$-see front matter D 2005Elsevier Ltd.All rights reserved.doi:10.1016/j.cemconres.2005.03.001*Corresponding author.Tel.:+4118234788;fax:+4118234035.E-mail address:barbara.lothenbach@empa.ch (B.Lothenbach).1Idealized formulas,minor components might be present up to several percent.Key to abbreviations:A=Al 2O 3;C=CaO;F =Fe 2O 3;H =H 2O;S=SiO 2;C-S-H (non-stoichiometric)calcium silicate hydrate.Cement and Concrete Research 36(2006)209–226experimentally determined concentrations in the pore solution as well as with semi-quantitative XRD and TGA data obtained during the first year of the hydration of OPC.2.Materials and methodsAll experiments were carried out using an ordinary Portland cement(OPC),CEM I42.5N,at20-C.The composition of the cement and the calculated amount of the clinker phases in the unhydrated cement are compiled in Table1.The distribution of alkali between sulphates andoxides is calculated using the measured concentration of ‘‘easily soluble’’alkalis in bi-distilled water at a solid/water ratio of0.1after an equilibration time of5min.These easily soluble alkalis are assumed to correspond to the alkali sulphates present in the clinker,while the remaining K,Na,Mg and S are assumed to be present as minor constituents in solid solution with the major clinker phases [9,10](cf.Table2).Cement pastes were prepared with a w/c of0.5by adding cement to distilled water.For the experiments with fresh pastes(up to7h),small samples of¨100g were prepared,cured in the glove box under N2-atmosphere and the pore solution was collected by vacuum filtration using 0.45A m filter.For longer hydration times,larger samples consisting of1kg cement and0.5kg water were mixed for3 min in a Hobart mixer.The pastes were cast in0.5l PE-bottles,sealed and stored under controlled conditions at20 -C.Pore fluids of the hardened samples were extracted using the steel die method using pressures up to250N/ mm2;the solutions were filtered immediately(0.45A m).Hydroxide concentrations were determined with a combined pH-electrode in undiluted samples;the pH electrode had been calibrated against KOH solutions of known concentrations.The total concentrations of Al,Ba, Ca,Cr,Fe,K,Li,Mg,Mo,Na,Si,Sr,S and Zn were determined with ICP-OES in samples diluted at least by a factor4with diluted HNO3to prevent the precipitation of solids.The solid fraction was crushed and ground in acetone,dried at40-C and then used for XRD and thermogravimetric analysis(TGA).TGA was carried out in nitrogen on about10mg of powdered cement pastes at3-C/ min up to220-C and at10-C/min up to640-C.The amount of pore solution present was calculated from the difference of the total weight loss during TGA between the samples washed with acetone and untreated samples;the amount of Ca(OH)2present from the weight loss between 500–580-C in the TGA results and from the extracted amount of Ca determined according to the method of Franke [11].3.Experimental results3.1.XRD and TGA dataThe extent of cement hydration was estimated based on the changes in the peak intensities of the crystalline phases in XRD patterns as well as on the changes observed by DTG/TGA.The DTG/TGA analysis of the unhydrated sample shows the presence of gypsum and hemihydrate. After30min reaction time hemihydrate is dissolved, gypsum is consumed within the first day.Increasing amounts of ettringite,C-S-H and portlandite could be observed in the hydrated samples.The presence of DTG peaks at200,260and430-C are consistent with the presence of an AFm phase such as calcium monosulphoa-luminate or calcium monocarboaluminate[10,12]after7 days;the weak peaks at260and430-C could also be due (in part)to a hydrotalcite phase[10].A semi-quantitative evaluation of the XRD patterns (Fig.1)shows that the alite and aluminate phase hydrate relatively fast and have mostly disappeared by300days. The observed hydration rates for belite and ferrite phase hydration are significantly slower.The anhydrite andTable1Composition of the OPC used(CEM I42.5N)Chemical analysis Normative phase composition a g/100g g/100g mmol/100g SiO219.7alite55241Al2O3 4.7belite1587Fe2O3 2.67aluminate7.929CaO63.2ferrite8.117MgO 1.85CaO0.468.2SrO0.07CaCO3 4.444K2O 1.12CaSO4b 4.231Na2O0.08K2SO4c 1.69.2CaO(free)0.46Na2SO4c0.0960.67CO2 1.93SrO0.070.68SO3 3.35K2O d0.26 2.7 readily soluble alkalis c Na2O d0.040.6K2O0.86(77%of total K)MgO d 1.946Na2O0.042(52%of total Na)SO3d0.12 1.4 Blaine surface area:300m2/kg.a Calculated from the chemical analysis.b Present as anhydrite(2.5g/100g),hemihydrate(0.5g/100g)and gypsum(1.5g/100g).c Readily soluble alkalis were calculated from the concentrations of alkalis measured in the solution after5min agitation at a w/c of10;present as alkali sulphates.d Present as solid solution in the major clinker phases,cf.Table2.Table2Alkalis,Mg and sulphate associated with the unhydrated clinker phases in the OPC calculated according to Table1.3in Taylor[10]and the phase composition(Table1)Na K Mg SO3In mmol/100g cementAlite0.480.827.1 1.06 Belite0.17 2.9 3.20.38 Aluminate0.52 1.3 4.9Ferrite0.070.410.6Total 1.2 5.445.9 1.4B.Lothenbach,F.Winnefeld/Cement and Concrete Research36(2006)209–226 210gypsum initially present dissolve slowly as the sulphate in solution is continuously removed by the precipitation of ettringite and/or calcium monosulphoaluminate;similarly,the amount of calcite decreases slowly with time,presum-ably forming calcium monocarboaluminate.Precipitating ettringite is detected after only a few minutes of hydration,portlandite after 4h,and calcium monocarboaluminate after 100days.Other phases could not be clearly identified in the XRD analysis as many of the peaks overlap;however,it is possible that poorly crystalline AFm and hydrotalcite phases are present within the hydrated cement.Isothermal calorimetry indicated the onset of the acceleration period at 2h and a maximal heat evolution after 11h.3.2.Elemental concentrations in the pore solution of OPC During the first 7h the composition of pore solution is dominated by K,S,hydroxide,Na and Ca (Table 3).The high concentrations of K,Na and S observed after only a few minutes are due to the fast dissolution of alkali-sulphate phases.The observed slow increase of alkali concentrations is (i)due to the decrease of pore solution—as the water present is consumed by the different hydration products—and (ii)due to the slow release of alkalis trapped in the slowly-hydrating clinker minerals (cf.Table 2).The bulk of sodium and potassium ultimately ends up in the solution,except a portion which is adsorbed on C-S-H.In high potassium cements some potassium is also precipitated as syngenite (K 2Ca(SO 4)2I H 2O)at early ages,although it dissolves again later as the sulphate ions are consumed by reaction with the aluminate phases.The concentrations of Ca,S and hydroxide remain more or less constant during the first 7h as their concentrations are limited by the presence of anhydrite (CaSO 4)and portlandite (Ca(OH)2).The concentrations of Al,Fe and Si (they constitute together more than 10wt.%of the OPC)in the pore solution are always very low.The drops observed for Fe,Al and Si concentrations during the first hour are presumably related to the well-known precipitation of (relatively metastable)initial hydrates around the cement grains.Larger changes in the composition of the pore solution of the OPC are observed after roughly 12h:Ca and S concentrations decrease drastically,while the concentrations of hydroxide,Si,and Al all increase at the same time.This decrease in calcium and sulphur concentrations coincides roughly with the disappearance of anhydrite and gypsum from the XRD patterns.The observed trends in K,Na,Ca,r e l a t i v e p e a k i n t e n s i t y0.010.1110100100010000Hydration time [hours]Fig.1.Semi-quantitative evaluation of XRD patterns of the solid phase after different hydration times.Lines are intended as eye guides only.Samples have been washed with acetone and dried at 40-C.B.Lothenbach,F .Winnefeld /Cement and Concrete Research 36(2006)209–226211S,Si,Al and hydroxide concentration are consistent with the observations reported by other authors [8,13–15].The Ca,Si,Al,and hydroxide concentrations reported in the literature are comparable with each other and with our results,while K,Na and S concentrations differ depending on the composition of cement and the water /cement ratio used.However,the pore solution development follows in all cases roughly the same trends.Thermodynamic calculations (see details below)indicate that during the first hours,the pore solution of this cement is in equilibrium with anhydrite,and thus oversaturated with respect to gypsum (Fig.2).A relatively slow gypsum precipitation rate at low oversaturation ratios [16]—coupled with the calcium and sulphate consumption by the precip-itation of ettringite—could explain the continued coexis-tence of gypsum and anhydrite,as observed in the XRD data,during the first hours of cement hydration.Similarly,the solutions are oversaturated with respect to portlandite (Fig.2),ettringite and syngenite as the release of Ca and Al from the hydration of the clinker phases into the solution is faster than the precipitation of these solids from the modestly oversaturated solutions.Oversaturation of cemen-titious pore solutions with respect to portlandite,gypsum,ettringite and/or syngenite during the early cement hydration has been observed in several previous studies [4,8,13,17].The concentrations of a number of other ‘‘trace’’elements were also measured in the cement pore solutions (Table 3).Li shows a similar increase with time as observed for Na and K.The concentrations of Sr and Ba decrease after 1day as observed also for Ca.Similarly,the051015202530050100150200250SO 4 [mM]C a [m M ]05101520253050100150200250OH - [mM]C a [m M ]Fig.2.Measured calcium,sulphate,and hydroxide concentrations in the pore solution during the first 7h compared with the calculated solubility of gypsum (CaSO 4I 2H 2O),anhydrite (CaSO 4)and portlandite (Ca(OH)2)in the pore solution of OPC.Table 3Measured total concentrations in the pore solutions gained from OPC (w/c=0.5)Time [h]K NaLiCaSrBaCrMoFeAlSiSOH ÀmM0.02320260.3521.10.150.0150.360.0210.1430.040.14161850.5350280.4621.10.160.0060.400.0250.0210.030.101631201360280.4622.20.170.0060.410.0250.0140.030.091561301.5360280.4622.90.170.0060.410.0210.0070.030.071501502360290.5224.10.180.0060.410.0250.0070.030.061471504360290.5223.00.240.0030.360.0170.0070.030.071501506340270.5222.10.290.0030.250.008<0.0070.030.061391507350300.6321.30.300.0060.220.008<0.0070.030.0715115016430320.589.50.15<0.0030.10<0.004<0.007<0.0040.0713620026430440.75 4.20.08<0.0030.07<0.004<0.007<0.0070.178336069480490.69 2.00.05<0.0030.04<0.004<0.007<0.0070.219480144520550.81 2.10.05<0.0030.05<0.004<0.0070.090.2410520336510560.86 1.90.05<0.0030.05<0.004<0.0070.090.239560696560630.92 1.20.03<0.0030.05<0.004<0.0070.120.27115402520650570.86 1.50.05<0.0030.06<0.004<0.0180.040.2117570760864065 1.2 1.50.05n.a.0.06n.a.<0.0180.110.2116590Concentrations in filtered blank solutions0.060.05<0.0060.03<0.005<0.003<0.004<0.004<0.007<0.010.010.04–The values for OH Àrefer to the free concentrations measured in the pore solutions.The measured concentrations of Zn and Mg were in all samples below the respective detection limits of 0.001and 0.02mM,respectively.Total S is determined by ICP-OES independent of its redox state.In pure OPC system investigated,S is present in the oxidized form as sulphate.B.Lothenbach,F .Winnefeld /Cement and Concrete Research 36(2006)209–226212concentrations of Mo and Cr,which under these alkaline conditions are only likely to be present in solution as MoO42Àand CrO42À,both decrease after1day.Both MoO42Àand CrO42À,are expected to show similar trends in their concentrations as S,as they can substitute for SO42Àin AFt and AFm phases[18–20]due to their identical charge, similar structure and comparable ionic radii.4.Modelling approachWhen OPC is brought into contact with water,the soluble alkali sulphates dissolve readily releasing K,Na and S into the solution.Less soluble solids such as gypsum, anhydrite,and calcite dissolve partially until equilibrium with the pore solutions is reached.In addition,the slow hydration of the clinker phases releases continuously Ca,Si, Al,Fe and(hydr)oxide into the solution.Si and Ca react to precipitate as C-S-H phase,while Al and Fe react with the hydroxide,S,C and Ca present to yield AFt,AFm or other hydroxide phases.The dissolution rate of the clinker phases determines the amount of Ca,Al,Fe,Si and hydroxide released into the solution and thus the rate of the precipitation of AFt and AFm,C-A-H and C-S-H phases.Thus,the model used is based(i)On the measured composition of the OPC used in thiswork(cf.Tables1and2),(ii)On the calculated dissolution rates of the clinker phases as kinetic input,and(iii)On using the Gibbs free energy minimisation program GEMS[21]together with the internally consistent thermodynamic data set of[22]expanded with addi-tional data for solids that are expected to form under cementitious conditions(thermodynamic constants used are summarized in the Appendix).4.1.Modelling the dissolution of the cement clinker phasesThe hydration of cements can be assumed to take place via dissolution and precipitation processes.Different models exist to describe the hydration and/or dissolution rates of the phases in Portland cements.One can distinguish between models which include both dissolution and precipitation reactions,e.g.Refs.[23,24],and models which are based on the dissolution reactions only[25–28].The latter authors derived(based on quantitative X-ray measurements)empiri-cal expressions which estimate the degree of dissolution of each clinker mineral as a function of time;the differences between the results of these four different approaches are generally rather small.However,the mathematical expres-sions used by Refs.[25,27,28]imply that essentially no dissolution of any of the clinker phases occurs during the first few hours,while the approach of Parrot and Killoh[26]has no such restrictions and describes the rate R of the hydration of the individual clinker phases by a set of equations,where the lowest value of R at the time t is considered as the rate controlling step:nucleation and growthR t¼K1N11Àa tðÞÀln1Àa tðÞðÞ1ÀN1ðÞorð1Þdiffusion R t¼K2Â1Àa tðÞ2=31À1Àa tðÞ1=3orð2ÞR t¼K3Â1Àa tðÞN3ð3ÞThe degree of hydration a at time t(in days)is then expressed as a t=a tÀ1+D t I R tÀ1.In this paper,the empiri-cal expressions(Eqs.(1)(2)(3))as given by Parrot and Killoh[26]are used together with their values of K1,N1, K2,K3and N3as compiled in Table4.The influence of w/c according to f(w/c)=(1+4.444*(w/c)À3.333*a t)4;for a t>1.333*(w/c)[26]as well as the influence of the surface area on the initial hydration is included using the data given in Parrot and Killoh[26].The set of equations describes the progress of dissolution in OPC well as can be seen by comparing the calculated progress of dis-solution with the results of our semi-quantitative XRD results(Fig.3).4.2.Release and uptake of alkalis,sulphate and magnesium during hydrationIn cement clinkers some substitution of Ca,Si,Al,and Fe by Na,K,Mg,Fe,Al,P or S is often observed[10]. These elements associated with clinker phases are released into the solution only upon the dissolution of the respective clinker phase.For the model calculations the distribution of K,Na,Mg and S between the clinker phases is taken into account as described in Taylor[10](cf.Table2).The alkalis released from the dissolution of the alkali sulphates and during the slow dissolution of the clinkers, partition between the solution and the precipitating C-S-H phases.The quantification of the amount of alkalis taken up by the C-S-H phases has been discussed by different authors [3,4,7,28–30].While Sinitsyn et al.[7]modelled the Na uptake by C-S-H by the introduction of a Na-Ca-hydrate endTable4Parameters from Parrot and Killoh[26]used to calculate the hydration of the individual clinker phases as a function of timeParameter a ClinkersAlite Belite Aluminate Ferrite K1 1.50.5 1.00.37 N10.7 1.00.850.7K20.050.0060.040.015 K3 1.10.2 1.00.4N3 3.3 5.0 3.2 3.7a All parameters from Ref.[26]for OPC.B.Lothenbach,F.Winnefeld/Cement and Concrete Research36(2006)209–226213member (CaNaH 2SiO 4OH)into the C-S-H solid solution series,others [28,30]used empirical partition coefficients.Sinitsyn et al.[7]as well as Reardon [4]concluded that the uptake of alkalis in cementitious systems is significantly weaker than in pure C-S-H phases.In contrast,Brouwers and van Eijk [31]found no difference in the uptake of alkalis by C-S-H phases and OPC by comparing model calculations based on the data of Refs.[28]and [30]with experimental pore solutions gained from OPC.Hong and Glasser [29,30]determined experimentally the Na and K partitioning in C-S-H and C-A-S-H gels and derived distribution ratios R d from these data.The distribution ratios R d describe the partitioning of alkalis between C-S-H and solution as a function of the alkali concentration in the solution according to:R d ¼c s w c d s ml g ð4Þwhere c s corresponds to the alkali concentration in the solid phase [mol/l],c d to the alkali concentration in the solution [mol/l]and w /s is the water/solid ratio in ml/g.Hong and Glasser [30]observed in their experiments with C-S-H (i)that steady state distribution is attained rapidly,(ii)that for both Na and K the same R d value is obtained and (iii)that the value of R d does not depend on the alkali concentration but only on the C /S ratio.2The distribution ratio R d decreases with increasing C/S ratio (from 4.5ml/g at C /S=0.85to 0.42ml/g at C /S =1.8).The uptake of alkalis by the precipitating C-S-H phases in fresh cements—which exhibit a high C /S ratio—is calculated in this paper using a distribution ratio R d of 0.42ml/g C-S-H gel for both Na and K corresponding to the mean of the values determined by Ref.[30]at a C/S ratio of 1.8.5.Modelling results5.1.Thermodynamic equilibriumUsing the calculated composition of the cement (Tables 1and 2)and the dissolution of the clinkers as a function of time (cf.Table 4)as input parameters,the evolution of the pore solution and the precipitating solids as a function of time were calculated assuming thermodynamic equilibrium between the liquid phase and precipitating solids.The calculations were carried out using the Gibbs energy minimisation program GEMS [21];the amount of free pore water was calculated from the original water content of the cement /water system,the progress of the dissolution (hydration)and the composition of the precipitated solids.The calculated changes in the pore solution during cement hydration agree with the observations in the pore solution of the OPC used (Fig.4).At the employed w /c of 0.5,the alkali sulphates present dissolve completely in the pore solution,while anhydrite and calcite dissolve partly until equilibrium with the pore solution is reached.Sulphate is removed from the solution as it precipitates as ettringite;its concentration in solution,however,remains constant as long as anhydrite and/or gypsum are present.The thermo-dynamic model predicts,based on the rate of aluminate hydration calculated from Ref.[26],a decrease of S and Ca-concentration only after roughly 12h as the calcium sulphate phases are depleted (cf.Figs.4-6).The analysis of the pore solution has shown that the solutions are oversaturated with respect to gypsum,por-tlandite and ettringite during the first 12h but are in equilibrium with the dissolution of anhydrite (cf.Fig.2),as the precipitation from the only slightly oversaturated solutions seems to proceed in the investigated system relatively slow.Thus,as indicated in Fig.4,the presence of anhydrite (CaSO 4)but not of gypsum (CaSO 4I 2H 2O)is considered in the calculations.Similarly,the solutions are initially oversaturated with respect to syngenite,portlandite and ettringite,resulting in the calculated hydroxide,Ca and Al concentrations being somewhat lower then the measured values (Fig.4).Such an oversaturation with respect to portlandite,gypsum,syngenite or ettringite during early cement hydration has also been observed in other studies [4,8,17].A more precise prediction of concentrations in the pore solution during early cement hydration would be obtained by the use of a kinetic model for the precipitation,where the rates of nucleation and precip-2Hong and Glasser [30]reported at very high K and Na concentrations (>300mM)a decrease of the uptake due to saturation effects.However,as we use a significantly higher solid/water ratio such a decrease due to saturation effects will occur only at even higher alkali concentrations.0%10%20%30%40%50%60%0.01110010000time [hours]% u n h y d r a t e dparison of the calculated amount of clinker present in OPC as a function of hydration time with the results of the semi-quantitative evaluation of the XRD patterns.Calculations are based on Eqs.(1)(2)(3)and the data given in Table 4.Experimental data are scaled such that the percentages in the unhydrated cement correspond to the calculated composition of the cement as given in Table 1.B.Lothenbach,F .Winnefeld /Cement and Concrete Research 36(2006)209–226214itation could be calculated as a function of the relative oversaturation in the solution for each of the solids.Due to the lack of kinetic data for many of the solids,a more simple approach has been used here,as discussed in the next section,assuming during the first 12h of the cement hydration the precipitation of somewhat ‘‘less crystalline’’(more soluble)solids than the pure standard phases,which is equivalent to the assumption of a constant degree of oversaturation.5.2.Oversaturation during the first 12hBased on the comparison of experimental and modelled results for Ca and hydroxide,a constant (over)saturation ratio =(IAP /K S0)1/n of 100.15was applied to all calculations referring to the first 12h,increasing the solubility product of all precipitating solids (i.e.portlandite,gypsum,syngen-ite,brucite,tobermorite-II,jennite,ettringite and Fe-ettringite)by n times 0.15log units,where n corresponds to the number of ions in the formula unit of the respective mineral and IAP to the ion activity product (for reactions and the equilibrium constants cf.Table A.1).Thus,assuming the precipitation of less crystalline and more soluble solids during the first 12h,a better agreement between the calculated Ca,hydroxide and S concentrations in the pore solution and the measured data is obtained (Fig.5)and no gypsum is predicted to precipitate under these conditions.Only the calculated Al and Fe concentrations are still lower than the measured concentrations during the first 12h,indicating an even stronger oversaturation with respect to ettringite than considered in the calculations.A similar large oversaturation relative to ettringite has also been observed by Rothstein et al.[8]during the first 6h of their experiments.The modelled composition of the pore solution (Fig.5)is constant during the first 12h and dominated by the presence of K,S,and hydroxide,as observed in the experimental data.Also the calculated concentrations Na,Ca and Si concentrations agree well with the measured concentrations (Fig.5).The model calculations predict the presence of anhydrite and calcite as well as the precipitation of portlandite,C-S-H,ettringite and small amounts of brucite during the first few hours (Fig.6)which agrees well with observations made in the TGA and XRD analysis (cf.Fig.1).Only brucite has not been detected,which might be due to the low fraction of brucite likely to be present (<1%)or due to the uptake of Mg by the newly forming C-S-H phase (which is not considered in the model).5.3.Solid and liquid phase after 1dayThe prediction of K and Na concentrations as a function of time reproduces the measured data very well (Fig.5).The concept of alkali release,pore solution decrease and uptake of alkalis by using the distributions ratio determined by Hong and Glasser [30]for C-S-H describes the measured K and Na concentrations in the presence of OPC very well.This suggests that C-S-H is in fact the main binder of alkalis in hydrating OPC as already suggested by Brouwers and van Eijk [31]based on data of another OPC.The concentration of hydroxide after 1day or longer is dominated by the concentrations of K and Na present and the agreement between measured and predicted values is excellent.The thermodynamic modelling in combination with the calculated hydration rates [26]predicts the depletion of anhydrite and gypsum after half a day and a drastic decrease of the sulphate concentrations in the pore solutions as01002003004005006007008000.010.1110100100010000time [hours][mM]parison of the modelled evolution of the pore solution during the hydration of OPC assuming thermodynamic equilibrium with the concentrations measured in the pore solution of OPC.The solid phases in equilibrium with the calculated pore solution are indicated in italics.Note that free concentrations are only given for hydroxide,while all other concentrations refer to total dissolved elemental concentrations.B.Lothenbach,F .Winnefeld /Cement and Concrete Research 36(2006)209–226215。
水性聚氨酯的合成PPT改
实验步骤
(1)预聚物的合成
在通干燥氮气的的条件下,在装有搅拌器、温度计及滴液漏斗的四口 瓶中,按计量投入聚乙二醇(PEG,式量1000)与2,2-二羟甲基丙 酸,并加入少量丙酮,将温度升至80℃除尽丙酮的同时最大化溶解 DMPA固体,将白色固体DMPA完全溶解后,节回流冷凝管,然后缓 慢将温度回至60℃,按配方计量缓慢滴加液态MDI,将温度保持在 60℃-65℃,恒温反应4小时,将温度再次升至80℃,反应30分钟。
HHS.I指针式电热恒 温水浴锅
Electric Heat Constant Temperature Water Bath Boiler
37—100℃
上海华连医疗器械有 限公司
FA1004型电子天平ຫໍສະໝຸດ DHG-9070A烘箱 DHG-9053A型电热恒 温鼓风干燥箱
Electronic Weighing Balances 精度0。0001g 0—1000℃ Electrically-heated Blast Desiccator 0--200℃
阴离子水性聚氨酯的合成
合成机理
(1) 聚合物多元醇与异氰酸酯反应,制备预聚体。 (2) 在预聚体中加入亲水性扩链剂DMPA,制备含 羧基的预聚体,并用成盐剂中和羧基成盐。 (3) 将上述产物分散于水中,端羟基预聚体与水进 行扩链反应形成大分子,大分子疏水部分卷曲聚 集形成微粒中心,亲水部分分布在微粒表面形成 水合层,成为稳定的水分散PU 乳液。
(2)中和乳化及分散
将NAOH按与-COOH摩尔比为1:1的计量,加入去离子水中配成 NAOH水溶液,然后将聚合产物滴加到NAOH水溶液中,室温下,高 速剪切搅拌,带预聚物全部乳化后,保持30分钟 。
Thermodynamics培训课件
指系统从某一初始状态出发,经历一系列变 化后又回到初始状态的过程。
03
第一定律
定义和内容
定义
第一定律又称为热力学第一定律,是指能量守恒定律在系统 和环境间的应用。
内容
能量不能被创造或消失,只能从一种形式转化为另一种形式 ,系统的总能量保持不变。
热力学能和焓
热力学能
热力学能是指系统在一定压力和温度下的总能量,包括内能和动能。
Understand energy conversion: 了解能量 转换过程
Understand the design of systems: 了 解系统设计中的热力学 应用
Understand the behavior of the environment: 了解环 境中热力学avior of matter in the universe: 了解宇宙 中物质在热力学下的行 为
状态变量
描述系统状态的物理量或化学量,称为状态变量 。
基本状态变量
温度、压力、体积、物质的量等。
过程与循环
过程
热过程
指系统从某一初始状态出发,通过输入或输 出物质或能量,变为另一状态的过程。
指只涉及温度变化的过程,热过程中不发生 化学反应和相变。
平衡过程
循环过程
指系统中所有位置上的物理量和化学量都保 持恒定的过程。
3
该定律有几种表述方式,如克劳修斯表述、开 尔文表述、熵增加原理等。
熵和熵增加原理
熵是描述系统“不可用”能量的一个物理量,可以表示能量的“混乱度”或“无 序度”。
熵增加原理是指,封闭系统中的熵永不减少,只能增加或保持不变。
热力学第二定律指出,在一个封闭系统中,过程总是朝着熵增加的方向进行,即 系统的熵永不减少。
基于热固耦合的双螺杆挤压机机筒有限元分析
第43卷 第7期 包 装 工 程2022年4月PACKAGING ENGINEERING ·218·收稿日期:2021-06-02基金项目:宁夏回族自治区重点研发计划(22019BFF02004)作者简介:张培建(1993—),男,天津科技大学硕士生,主攻多场耦合及优化设计。
通信作者:邢鸿雁(1969—),女,硕士,天津科技大学副教授,主要研究方向为CAD/CAE 。
基于热固耦合的双螺杆挤压机机筒有限元分析张培建1,2,邢鸿雁1,2,卫静怡1,2(1.天津市轻工与食品工程机械装备集成设计与在线监控重点实验室,天津 300222;2.天津科技大学 机械工程学院,天津 300222)摘要:目的 研究双螺杆挤压机在食品加工过程中出现卡顿、抱死的原因,为双螺杆挤压机设计及应用提供理论指导。
方法 应用ABAQUS 软件构建双螺杆挤压机仿真模型,通过传感器反馈的温度值设定温度载荷,同时以双螺杆挤压机运转时的低压工况、正常工况、极限工况分别设定压力载荷,运用热固耦合理论对机筒的温度分布、应力和变形进行仿真分析。
结果 在最大温度工况条件下,机筒轴向热变形量为2.356 mm ,总热变形量为2.358 mm ,x 方向上的热变形量为0.1324 mm ,y 方向上的热变形量为0.1592 mm ;在最大温度工况和极限压力耦合作用下,机筒总变形量为2.088 mm 。
温度引起的热膨胀是机筒变形的主要原因,机筒的轴向热变形量与总热变形量相当,并且远大于其他两方向的热变形量;与常温环境相比,在加热温度工况条件下机筒的变形量随着压力的增大而减小。
结论 要充分考虑温度对挤压机性能的影响,应用过程中要合理的设置温度参数。
关键词:双螺杆挤压机;机筒;热固耦合;有限元中图分类号:TB486;TH114+.7 文献标识码:A 文章编号:1001-3563(2022)07-0218-07DOI :10.19554/ki.1001-3563.2022.07.028 Finite Element Analysis of Twin-screw Extruder Cylinder Basedon Thermo-mechanical CouplingZHANG Pei-jian 1,2, XING Hong-yan 1,2, WEI Jing-yi 1,2(1.Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food EngineeringMachinery and Equipment, Tianjin 300222, China; 2.School of Mechanical Engineering,Tianjin University of Science and Technology, Tianjin 300222, China) ABSTRACT: The work aims to study the causes of clatter and locking in the food extrusion process of twin-screw ex-truder, and to provide theoretical guidance for the design and application of twin-screw extruder. ABAQUS software was used to construct the simulation model of the twin-screw extruder. The temperature load was set according to the tem-perature feedback from the sensor. At the same time, the pressure load was set under the low pressure condition, normal condition and limit condition of the twin-screw extruder. The temperature distribution, stress and deformation of the cylinder were simulated and analyzed by the thermo-mechanical coupling theory. Under the maximum temperature condition, the axial thermal deformation of the cylinder was 2.356 mm, the total thermal deformation was 2.358 mm, the thermal deformation in the x direction was 0.1324 mm, and the thermal deformation in the y direction was 0.1592 mm. Under the coupling effect of maximum temperature condition and ultimate pressure, the total deformation of the barrel. All Rights Reserved.第43卷第7期张培建,等:基于热固耦合的双螺杆挤压机机筒有限元分析·219·was 2.088 mm. The thermal expansion caused by temperature was the main reason for the deformation of the cylinder, and the axial thermal deformation of the cylinder was equivalent to the total thermal deformation, and was much larger than that of the other two directions. Compared with the normal temperature environment, the deformation of the cylinder decreased with the increase of pressure under the condition of heating temperature. The effects of tem-perature on the performance of the extruder should be considered and reasonable temperature parameters should be set in application.KEY WORDS: twin screw extruder; cylinder; thermo-solid coupling; finite element随着生活水平的提高,人们对挤压膨化食品的营养和口感有更高的要求;膨化食品的生产通常是由双螺杆挤压机完成的。
THERMOCOUPLE ASSEMBLY 在这里可以填写中文名字,例如:锡电极装置说明书
Compact InstructionsThermocouple Assembly in flanged ThermowellTH54Supplementary documentationAll important Temperature Operating Instructions, particularly with regard to head and field transmitters are available on CD–ROM, find enclosed or order by order number: SONDTT-AG .Measuring SystemThermocouple assembly provided with flanged thermowells and connection head TH54 for heavy industries process applications.They are made up of a MgO insulated thermocouple as a measurement probe and a thermowell made of bar-stock material.The thermocouple sensor complies with the ASTM E-230 and IEC60584 specifi-cations. The sensor is designed to ensure highest accuracy and long term stability.MaterialMax. temp. ratingApplication notes316SS 1700 °F (927 °C)Superior corrosion resistance. Duplex version of type N is not available with 316SS sheats.Inconel 6002100 °F (1149 °C)1Excellent oxidation and corrosion resistance at high temperature. Not to be used in sulphurous atmospheres over1000 °F (538 °C). Types T & J are not available with Inconel 600 sheats.1) Max. working temperature under oxidizing conditions: reducing conditions reduce max. temp. to 1900 °F (1038 °C).Performance CharacteristicsMaximum measured errorType Temperature range Standard Tolerance in % and °C* (whichever is greater)°C°FIEC class 1IEC class 2E 0 to 87032 to 1600± 1 or ± 0.4%± 1.7 or ± 0.5%J 0 to 76032 to 1400± 1.1 or ± 0.4%± 2.2 or ± 0.75%K 0 to 126032 to 2300± 1.1 or ± 0.4%± 2.2 or ± 0.75%T 0 to 37032 to 700± 0.5 or ± 0.4%± 1 or ± 0.75%N 0 to 126032 to 2300± 1.1 or ± 0.4%± 2.2 or ± 0.4%* For measurement errors in °F, calculate using equation above in °C, then multiply the outcome by 1.8.Insulation resistance = 1,000 MΩ at 77 °F (25 °C).Insulation resistance for MgO insulated TC with ungrounded hot junction between terminals and probe sheath, test voltage 500 V DC. Value applies also between each TC wire at single and duplex construction with ungrounded hot junction.I m p o r t a n t N o t i c ec k c o u ld c a u se d e a t h o r s e r i o u s i n j u r y . If t h e s e n s o r i s i n s t a l l e d i n a h igh v o l t a g e e n vi r o n m e n t a n d a f a u l t o r i n s t a l l a t i o n e r r o r o c c u r s , h i g h v o l t a g em a y b e p r e s e n t o n t h e c o n n e c t i o n t e r m i n a l s o r t h e p r o b e i t s e l f .S a f e a n d s e c u r e o p e r a t i o n o f t h e t e m p e r a t u r e s e n s o r c a n o n l y b e g u a r a n t e e d i f t h e o p e r a t i n g i n s t r u c t i o n s o f t h e u s e d t r a n s m i t t e r s a n d a l l i n c l u d e d s a f e t y n o t e s a r e r e a d , u n d e r s t o o d a n d f o l l o w e d . F o r E n d r e s s +H a u s e r t e m p e r a t u r e t r a n s m i t t e r s s e ee n c l o s e d C D –R O M .C o r r e c t u s eT h e m a n u f a c t u r e r c a n n o t b e h e l d r e s p o n s i b l e f o r d a m a g e c a u s e d b y m i s u s e o f t h e u n i t . T h e i n s t a l l a t i o n c o n d i t i o n s a n d c o n n e c t i o n v a l u e s i n d i c a t e d i n t h e o p e r a t i n gi n s t r u c t i o n s m u s t b e f o l l o w e d !I n s t a l l a t i o n G u i d e l i n e s a n d S a f e t y i n s t r u c t i o n s1. I n s t a l l t h e u n i t a c c o r d i n g t o t h e r e l e v a n t N E C C o d e a n d l o c a l r e g u l a t i o n s .2. A v o i d a n y s p a r k d u e t o i m p a c t , f r i c t i o n a n d i n s t a l l a t i o n . A n t i -s p a r k i n gw r e n c h e s s h o u l d b e u t i l i z e d .3. T h e t e m p e r a t u r e s e n s o r s h o u l d b e c o n n e c t e d t o t h e p o w e r s u p p l y o r o t h e re x t e r n a l c i r c u i t u s i n g t h e a p p r o p r i a t e c a b l e g l a n d s a n d w i r e e n t r i e s .4. F o r a m b i e n t t e m p e r a t u r e h i g h e r t h a n 158 °F , s u i t a b l e c a b l e s , c o n d u i t a n dc o nd u c t o r s m u s t be u s e d . O n l y u s e a p p r o v e d w i r e e n t r i e s .5. W h e n u t i l i z e d i n d u s t a t m o s p h e r e s , t h e c o n n e c t i o n b e t w e e n t h e h o u s i n g ,fi t t i n g s a n d t h e r m o w e l l s h o u l d p r o v i d e a m i n i m u m d e g r e e o f I n g r e s s P r o t e c t i o n . L i q u i d /g a s s e a l a n t s s h o u l d b e u s e d . L o c a l r e g u l a t i o n s n e e d t o b er e s p e c t e d .n e c t e q u i p m e n t u n l e s s p o w e r h a s b e e n s w i t c h e d o ff o r t h e a r e a i sn o t h a z a r d o u s .T h e a c c e s s o r i e s f o r p i p e c o n n e c t i o n s a n d t h e a p p r o p r i a t e g a s k e t s a n d s e a l i n g r i n g sa r e n o t s u p p l i e d w i t h t h e s e n s o r s . T h e s e a r e t h e c u s t o m e r ’s r e s p o n s ib i l i t y .D e p e n d i n g o n t e m p e r a t u r e a n d p r e s s u r e o p e r a t i n gc o nd i t i o n s , t he g a s k e t s , t h es e a l i n g a n d t h e a p p l i c a b l e t o r q u e s m u s t b e s e l e c t e d b y t h e u s e r .F o r f u r t h e r i n f o r m a t i o n r e g a r d i n g c o n n e c t i o n s , p l e a s e r e f e r t o t h e c o r r e s p o n d i n gS t a n d a r d s .I n s t a l l a t i o n a n d o p e r a t i o nT h e u n i t i s c o n s t r u c t e d u s i n g t h e m o s t u p t o d a t e p r o d u c t i o n e q u ip m e n t a n dc o mp l i e s w i t h t h e s a f e t y r e q u i r e m e n t s o f t h e l o c a l g u i d e l i n e s . H o w e v e r , i f i t i s i n s t a l l e d i n c o r r e c t l y o r m i s u s e d , c e r t a i n a p p l i c a t i o n d a n g e r s c a n o c c u r . I n s t a l l a t i o n ,w i r i n g a n d m a i n t e n a n c e o f t h e u n i t m u s t o n l y b e c o m p l e t e d b y t r a i n e d , s k i l l e d p e r s o n n e l w h o a r e a u t h o r i z e d t o d o s o b y t h e p l a n t o p e r a t o r . T h e p l a n t o p e r a t o r m u s t m a k e s u r e t h a t t h e m e a s u r e m e n t s y s t e m h a s b e e n c o r r e c t l y w i r e d t o t h ec o n n e c t i o n s c h e m a t i c s . P r o c ed u re s i n d i c a t e d i n t h e s e i n s t r u c t i o n s m u s t b ef o l l o w e d .R e t u r n sP l e a s e f o l l o w t h e R e t u r n A u t h o r i z a t i o n P o l i c y w h i c h i s a t t a c h e d w i t h t h i s m a n u a l .S a f e t y p i c t o g r a m s a n d s y m b o l ss d r a w a t t e n t i o n t o a c t i v i t i e s o r p r o c e d u r e s t h a t c a n h a v e a d i r e c t i n fl u e n c e o n o p e r a t i o n o r t r i g g e r a n u n f o r e s e e n d e v i c e r e a c t i o n i f t h e y a r e n o t c a r r i e d o u tp r o p e r l y . a t t e n t i o n t o a c t i v i t i e s o r p r o c e d u r e s t h a t c a n l e a d t o p e r s o n s b e i n g s e r i o u s l y i n j u r e d , t o s a f e t y r i s k s o r t o t h e d e s t r u c t i o n o f t h e d e v i c e i f t h e y a r e n o tc a r r i ed o u t p r o pe r l y .T h o u g h t h e i n f o r m a t i o n p r o v i d e d h e r e i n i s b e l i e v e d t o b e a c c u r a t e , b e a d v i s e d t h a t t h e i n f o r m a t i o n c o n t a i n e dh e r e i n i s N O T a g u a r a n t e e o f s a t i s f a c t o r y r e s u l t s . S p e c i fi c a l l y , t h i s i n f o r m a t i o n i s n e i t h e r a w a r r a n t y n o r g u a r a n t e e , e x p r e s s e d o r i m p l i e d , r e g a r d i n g p e r f o r m a n c e ; m e r c h a n t a b i l i t y , fi t n e s s , o r o t h e r m a t t e r w i t h r e s p e c tt o t h e p r o d u c t s ; a n d r e c o m m e n d a t i o n f o r t h e u s e o f t h e p r o d u c t /p r o c e s s i n f o r m a t i o n i n c o n fl i c t w i t h a n y p a t e n t . P l e a s e n o t e t h a t E n d r e s s +H a u s e r r e s e r v e s t h e r i g h t t o c h a n g e a n d /o r i m p r o v e t h e p r o d u c t d e s i g n a n ds p e c i fi c a t i o n s w i t h o u t n o t i c e .KA00197R/24/EN/13.1271208016DimensionsU Thermowell Immersion length Q Thermowell diameterE Extension X A = A Immersion length TC sensor = thermowell drilled depth (A = U + 2” + T)TLag dimensionXInsert overall length (X = A + E)For spare part insert, TU121, please contact Endress+Hauser!Recommended minimum immersion for thermowell:Tapered TW = 4½”¾” straight TW = 4”InstallationInstallation locationsExamples of installation. In pipes of a small section the axis line of the duct must be reached and if possible slightly exceeded by the tip of the probe (=U).A: Pipe installationB: Container installationFor installation proceed as follows:1. Attach thermowell to pipe or process container wall.Install and tighten the Thermowell before applying process pressure.2. Make sure that the process fitting matches the maximum specified process pressure.3. Seal the extension nipples with TFE tape before screwing the sensor into the thermowell.4. Thermowells are used in measuring the temperature of a moving fluid in aconduit, where the stream exerts an appreciable force. The limiting value for the thermowells is governed by the temperature, the pressure and the speed of themedium, the immersion length, the materials of the thermowell and the medium, etc.For operating conditions, a stress calculation should be carried out.Technical dataUpper temperature limits for various thermocouple types in °F (°C)Sheath OD Type T Type JType EType KType Nؼ”700 °F (370 °C)1330 °F (720 °C)1510 °F (820 °C)2100 °F (1150 °C)Thermocouple color codes as per ASTM E-230Ambient temperature limits*Housing without head-mounted transmitter Aluminium pressure die-cast housing -40 to 300 °F (-40 to 150 °C)Plastic housing-40 to 185 °F (-40 to 85 °C)Deep drawn SS housing without display -40 to 300 °F (-40 to 150 °C)Housing with head-mounted transmitter-40 to 185 °F (-40 to 85 °C)Deep drawn SS housing with display -4 to 160 °F (-20 to 70 °C)Field transmitter with display -40 to 158 °F (-40 to 70 °C)without display-40 to 185 °F (-40 to 85 °C)*For hazardous areas refer to the transmitter control drawingShock and vibration resistance 4g/2 to 150 Hz as per IEC 60 068-2-6WeightFrom 1 to 10 lbsElectrical connection-wiring diagramsHead mounted transmitter (single/dual) Field mounted transmitterendsFlying leads, standard 3” for wiring in terminal head, head transmitter or terminal block mountedFlying leads, 5½” for wiring with field housing or field transmitter assemblyThe blocks and transmitters are shown as they will sit inside the heads in reference to the conduit opening. ALWAYS terminate leads to the outside screw!。
实验室剪切乳化机 Model.AE300L-P 说明书
实验室剪切乳化机Model.AE300L-PLaboratory shear emulsifying machine上海昂尼仪器仪表有限公司ShangHai Angni Instruments & Met ers Co.,Ltd.上海昂尼仪器仪表有限公司ShangH ai Angni Instr uments & Meter s Co.,Ltd.公司地址/ADD:上海市民星路201号37幢邮编/P.C:200433电话/TEL:021-******** 55086046传真/FAX:021-******** 55086046E-mail:***************全国服务热线:400-0185-099 021-********http://w 请保持说明书的完整性以供将来使用时之参考请在产品组装前按说明书中的装箱清单核对零部件使用说明书Operation manual内附保修单产品装箱清单:名 称单位数量台1乳 化 主 机支撑固定架机 座立 柱支 柱件根根套1211序号789101113调速控制箱台11234987651225 50/60 H Z 510 W 300 W 0.96 N.m S 1 (连续)调速控制箱200~12000 rpm 无级92.0 N.cmAC 220 V 转子最大线速度工作头质材工作头直径工作头定子配置处理量(H 2O )允许环境温度允许相对湿度乳化机外形尺寸控制箱外形尺寸整机重量18 m /sSS 304 (不锈钢 )Φ 70 mm 25 / 20 / 50 mm 500~40000 ml 不大于 40 ℃不大于 80 %215×310×720 mm 240×120×150 mm 13.8 kg额定电压额定频率输入功率输出功率额定转矩工作制式运行控制方式转速调节范围转速控制型式工作头最大扭矩2. 技术参数1. 产品概述感谢您采用“AN 昂尼仪器 ”液体介质混合实验仪器设备。
赛默飞摇床说明书
赛默飞摇床说明书
摘要:
1.赛默飞摇床简介
2.赛默飞摇床的安装与使用
3.赛默飞摇床的维护与保养
4.赛默飞摇床的安全注意事项
5.赛默飞摇床的故障处理与售后服务
正文:
一、赛默飞摇床简介
赛默飞摇床是一款高科技的实验设备,主要用于实验室样品的摇晃、混合和培养等操作。
它采用微电脑控制系统,具有操作简便、精度高等特点,是实验室工作人员的得力助手。
二、赛默飞摇床的安装与使用
在安装赛默飞摇床时,需要确保仪器放置在平稳、坚固的台面上,并接通电源。
开启电源后,通过触摸屏控制面板进行各项参数的设置,包括温度、速度、时间等。
使用过程中,应遵循操作规程,确保实验样品的安全与准确。
三、赛默飞摇床的维护与保养
为了保证赛默飞摇床的正常运行和延长使用寿命,需要定期进行维护与保养。
首先,要保持仪器的清洁,避免灰尘和污垢影响设备性能。
其次,定期检查各部件的连接,确保紧固。
最后,定期进行保养,如润滑、更换易损件等。
四、赛默飞摇床的安全注意事项
在使用赛默飞摇床时,需要注意以下几点安全事项:
1.确保仪器接地良好,避免触电事故;
2.避免在运行过程中突然关闭电源,防止设备损坏;
3.实验样品应放置在密封容器中,防止泄漏;
4.切勿让未经培训的人员操作设备,防止意外事故。
五、赛默飞摇床的故障处理与售后服务
在使用过程中,如遇到设备故障,应立即切断电源,并联系售后服务人员进行检查和维修。
同时,赛默飞公司提供完善的售后服务,包括设备安装、培训、维修等,确保客户使用的满意度。
总之,赛默飞摇床作为一款高科技实验设备,在实验室中发挥着重要作用。
"双模织物"实现智能控温
"双模织物"实现智能控温
佚名
【期刊名称】《纺织科学研究》
【年(卷),期】2018(0)1
【摘要】近日,斯坦福大学材料科学的崔屹团队研发了一款全新材料——人体辐射式加热/制冷双模织物(以下简称“双模织物”)。
据了解,该织物由纳米材料制成。
该团队称,这项发明有望将体感温度的舒适区间扩大14.7℃左右,从而在很大的温度范围内保持人体舒适。
该成果已经发表在《SCIENCE ADVANCES》杂志上。
【总页数】1页(P12-12)
【关键词】织物;双模;控温;智能;斯坦福大学;材料科学;体感温度;温度范围
【正文语种】中文
【中图分类】TS101.923
【相关文献】
1.应用内环流智能控温系统实现准低温储粮试验 [J], 王宝堂;李建;刘梦觉;白丽利
2.食具消毒柜智能控温设计与实现 [J], 严炼;冯明雨
3.仿人工智能控温算法的研究与实现 [J], 李维祥;郑程军
4.智能控温无叶风扇的设计与实现 [J], 张文奎;孙小羊;易照龙;张小龙
5.精准控温更入味美的控温智能灶XQ1S邂逅美好食光 [J], 智电网
因版权原因,仅展示原文概要,查看原文内容请购买。