2019版高考数学(文)培优增分一轮全国经典版增分练第1章 集合与常用逻辑用语 1-3a Word版含解析

合集下载

2019版高考数学微一轮全国通用版第一章集合与常用逻辑用语第1章-第3节微课练

2019版高考数学微一轮全国通用版第一章集合与常用逻辑用语第1章-第3节微课练
微课时 (三 )
基础对点练
(时间: 30 分钟 )
1.(2018 ·郑州第一次质量预测 )已知命题 p:? x>0,x3>0,那么 綈 p 是( )
A.? x≤0,x3≤ 0 C.? x>0,x3≤ 0
B.? x>0, x3≤ 0 D.? x<0,x3≤ 0
解析: “? x>0,x3> 0” 的否定应为 “ ? x> 0, x3≤0”,故选 C.
答案: C 2.(2018 ·天津质检 )已知命题 p:? x> 0,总有 (x+ 1)ex>1,则綈 p 为( )
A.? x0≤0,使得 (x0+1)ex0≤1
B.? x0> 0,使得 (x0+ 1)ex0≤1 C.? x>0,总有 (x+1)ex≤ 1 D.? x≤0,总有 (x+1)ex≤ 1
B.p∨(綈 q)
C.p∧(綈 q)
D.(綈 p)∧ q
解析: 直线 l: y=kx+1 经过定点 P(0,1),显然点 P 在圆 C 内,所以直线 l
和圆 C 恒相交, 故命题 p 为假命题;命题 q,因为 c2>0(分母不为零 ),
所以该命题为真命题.
所以 (綈 p)∧q 为真命题. 故选 D.
解析: “对 x∈R,关于 x 的不等式 f(x)>0 有解 ”的意思就是 ? x0∈R,使得
f(x0)>0 成立,故选 A.
答案: A 4.已知命题 p:? k∈R,使得直线 l:y=kx+1 和圆 C:x2+y2= 2 相离;q:

a c2
b <c2
,则
a<b.则下列命题是真命题的是
(
)
A.p∧q
即- 2≤ m≤ 2.
综上知, m 的取值范围是 0≤ m≤ 2.
故选 B. 答案: B 7.命题“ ? x0∈R, cos x0≤1”的否定是 ________. 解析:因为特称命题的否定是把特称量词改为全称量词, 且对结论否定, 所

高考数学一轮复习第一章 集合与常用逻辑用语、不等式答案

高考数学一轮复习第一章 集合与常用逻辑用语、不等式答案

第一章 集合与常用逻辑用语、不等式第1讲 集合及其运算链教材·夯基固本 激活思维 1. D 2. A 3.ABD【解析】 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}.因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3},所以A∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2},(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.4.4【解析】因为集合A 必须含有元素5,元素1和3不确定,所以集合A 的本质是{1,3}的所有子集与元素5组成的集合,共4个.5.7【解析】A ={x∈Z |-1≤x ≤4}={-1,0,1,2,3,4},B ={x |1<x <e 2},所以A ∩B ={2,3,4},所以A ∩B 的真子集的个数为23-1=7.知识聚焦1. (1) 确定性 互异性 无序性2. 2n 2n -1 4. U A 研题型·融会贯通 分类解析【答案】 (1) D (2) B (3) A 【题组·高频强化】 1. C 2. C3. C【解析】 由题意知A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,所以满足条件的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.4.B【解析】由x 2-4≤0,得A ={x |-2≤x ≤2}.由2x +a ≤0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≤-a 2.因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B.5. B【解析】 由图可知,阴影区域为∁U (A∪B ).由题知A ∪B ={1,3,5},U ={1,3,5,7},则由补集的概念知,∁U (A ∪B )={7}.故选B.(1) 【答案】 {1,-1} 【解析】若集合{x |x 2+2kx +1=0}中有且仅有一个元素,则方程x 2+2kx +1=0有且只有一个实数根,即Δ=(2k )2-4=0,解得k =±1,所以k 的取值集合是{1,-1}.(2) 【答案】 -1 【解析】因为A ∩B 中只有一个元素,又a ≠0且a ≠2.若a =1,则a 2-a =0,不满足题意;若a ≠1,显然a 2-a ≠0,故a 2-a =2或a 2-a =a ,解得a =-1.综上,a =-1.(3) 【答案】 [0,+∞) ∅ 【解析】由题知集合A 是函数y =x 2的定义域,即A =R ,集合B 是函数y =x 2的值域,即B =[0,+∞),所以A ∩B =[0,+∞),集合C 是函数y =x 2的图象上的点集,故A ∩C =∅.(1) 【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,14 【解析】 当k =0时,A ={-1},符合题意;当k ≠0时,若集合A 只有一个元素,由一元二次方程判别式Δ=1-4k =0,得k =14.综上,当k =0或k =14时,集合{x |kx 2+x +1=0}中有且只有一个元素.(2) 【答案】 -2或1 【解析】因为集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},所以⎩⎪⎨⎪⎧a +1=-1,a2-2=2或⎩⎪⎨⎪⎧a +1=2,a2-2=-1,解得a =-2或a =1.(1) 【答案】 D【解析】 当B =∅时,a =0,此时B ⊆A .当B ≠∅时,则a ≠0,所以B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =-1a . 又B ⊆A ,所以-1a∈A ,所以a =±1.综上可知,实数a 的所有可能取值的集合为{-1,0,1}. (2) 【答案】 [2,3]【解析】 由A ∩B =B 知,B ⊆A .(例3(2))又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3,则实数m 的取值范围为[2,3].【答案】 B【解析】 由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2). 因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3].【解答】 (1) 由题知⎩⎪⎨⎪⎧x<0,⎝ ⎛⎭⎪⎪⎫12x -3<1或⎩⎪⎨⎪⎧x ≥0,x<1,解得-2<x <0或0≤x <1, 所以A ={x |-2<x <1}. (2) 因为A ∪B =A ,所以B ⊆A .(ⅰ) 当B =∅时,2a >a +1,所以a >1满足题意;(ⅱ) 当B ≠∅时,⎩⎪⎨⎪⎧2a ≤a +1,2a>-2,a +1<1,解得-1<a <0.综上,a ∈(-1,0)∪(1,+∞). 课堂评价1. BCD 【解析】 对于选项A ,因为xy >0⇔⎩⎪⎨⎪⎧x>0,y>0或⎩⎪⎨⎪⎧x<0,y<0,所以集合{(x ,y )|xy >0}表示直角坐标平面内第一、三象限的点的集合,故A 正确;对于选项B ,方程|x -2|+|y +2|=0的解集为{(2,-2)},故B 错误; 对于选项C ,集合{(x ,y )|y =1-x }表示直线y =1-x 上的点, 集合{x |y =1-x }表示函数y =1-x 中x 的取值范围,故集合{(x ,y )|y =1-x }与{x |y =1-x }不相等,故C 错误;对于选项D ,A ={x ∈Z |-1≤x ≤1}={-1,0,1},所以-1.1∉A ,故D 错误. 2. ABC3. B 【解析】 由x 2-3x -4>0得x <-1或x >4, 所以集合A ={x |x <-1或x >4}.由x 2-3mx +2m 2<0(m >0)得m <x <2m , 所以集合B ={x |m <x <2m }. 又B ⊆A ,所以2m ≤-1(舍去)或m ≥4. 故实数m 的取值范围是[4,+∞). 4. [2 020,+∞)【解析】 由x 2-2 021x +2 020<0,解得1<x <2020,故A ={x |1<x <2 020}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 020.(第4题)5.(-∞,2]【解析】当a >1时,A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),当且仅当a -1≤1时,A ∪B =R ,故1<a ≤2;当a =1时,A =R ,B ={x |x ≥0},A ∪B =R ,满足题意;当a <1时,A =(-∞,a ]∪[1,+∞),B =[a -1,+∞),又因为a -1<a ,所以A ∪B =R ,故a <1满足题意.综上可知a ∈(-∞,2].第2讲 充分条件、必要条件、充要条件链教材·夯基固本 激活思维 1. A 2. B 3. BCD【解析】由x 2-x -2<0,解得-1<x <2,所以(-1,2)(-2,a ),所以a ≥2,所以实数a 的值可以是2,3,4.4. [-2,1] 【解析】 因为綈p :x ≤-1或x ≥3,綈q :x ≤m -2或x ≥m +5,且綈p 是綈q 的必要不充分条件,所以⎩⎪⎨⎪⎧m -2≤-1,m +5≥3,且等号不能同时取到,解得-2≤m ≤1.5. 充要 必要 【解析】 因为q ⇒s ⇒r ⇒q ,所以r 是q 的充要条件.又q ⇒s ⇒r ⇒p ,所以p 是q 的必要条件.知识聚焦1. (1) 充分 必要 非充分 非必要 (2) ①充分不必要 ②必要不充分 ③充要 ④既不充分也不必要研题型·融会贯通 分类解析(1) 【答案】 A【解析】 因为1x >1,所以x ∈(0,1).因为e x -1<1,所以x <1,所以“1x >1”是“e x -1<1”的充分不必要条件.(2) 【答案】 A 【解析】当a >0,b >0时,得4≥a +b ≥2ab ,即ab ≤4,充分性成立;当a =4,b =1时,满足ab ≤4,但a +b =5>4,不满足a +b ≤4,必要性不成立.故“a +b ≤4”是“ab ≤4”的充分不必要条件.【题组·高频强化】 1. A 【解析】 由a 2>a 得a >1或a <0,据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A.2.B【解析】由2-x ≥0,得x ≤2;由|x -1|≤1,得-1≤x -1≤1,即0≤x ≤2.所以“2-x ≥0”是“|x -1|≤1”的必要不充分条件.故选B.3.C【解析】当存在k∈Z ,使得α=k π+(-1)k β时,若k 为偶数,则sin α=sin(k π+β)=sin β;若k 为奇数,则sin α=sin(k π-β)=sin[(k -1)π+π-β]=sin(π-β)=sin β.当sin α=sin β时,α=β+2m π或α+β=π+2m π,m ∈Z ,即α=k π+(-1)k β(k =2m )或α=k π+(-1)k β(k =2m +1),亦即存在k ∈Z ,使得α=k π+(-1)k β,所以“存在k∈Z ,使得α=k π+(-1)k β”是“sin α=sin β”的充要条件.故选C.4. B【解析】 依题意知m ,n ,l 是空间不过同一点的三条直线,当m ,n ,l 在同一平面内时,可能m ∥n∥l ,故不一定得出m ,n ,l 两两相交.当m ,n ,l 两两相交时,设m ∩n =A ,m ∩l =B ,n ∩l =C ,可知m ,n 确定一个平面α,而B ∈m ⊂α,C ∈n ⊂α,可知直线BC 即l ,l ⊂α,所以m ,n ,l 在同一平面内.综上所述,“m ,n ,l 在同一平面内”是“m ,n ,l 两两相交”的必要不充分条件.故选B.(1) 【答案】 (-∞,-2]∪[2,+∞) 【解析】由y =x +1x在⎝ ⎛⎭⎪⎪⎫12,1上单调递减,在(1,2)上单调递增,得2≤y <52,所以A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪2≤y<52. 由x +m 2≥6,得x ≥6-m 2,所以B ={x |x ≥6-m 2}. 因为“x ∈A ”是“x ∈B ”的充分不必要条件, 所以A B ,所以6-m 2≤2,解得m ≥2或m ≤-2, 故实数m 的取值范围是(-∞,-2]∪[2,+∞). (2) 【答案】 (2,+∞)【解析】 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.(1) 【答案】 (0,2]【解析】 由|2x +1|<m (m >0),得-m <2x +1<m ,所以-m +12<x <m -12,且-m +12<0.由x -12x -1>0,得x <12或x >1. 因为p 是q 的充分不必要条件, 所以m -12≤12,所以0<m ≤2.(2) 【答案】 (0,2]【解析】 由题可得p :x >3或x <-1,q :x 2-2x +1-a 2≥0,[x -(1-a )]·[x -(1+a )]≥0, 因为a >0,所以1-a <1+a ,解得x ≥1+a 或x ≤1-a . 因为q 是p 的必要不充分条件, 所以⎩⎪⎨⎪⎧1+a ≤3,1-a ≥-1,a>0,解得0<a ≤2.【解答】 因为mx 2-4x +4=0是一元二次方程,所以m ≠0. 又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都有实根, 所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1. 因为两方程的根都是整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m2-4m -5∈Z ,所以m 为4的约数.又因为m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1,所以m =-1或1. 当m =-1时,第一个方程x 2+4x -4=0的根不是整数;当m =1时,两方程的根均为整数.所以两方程的根均为整数的充要条件是m =1. 课堂评价 1. A 2. A【解析】 “∀x ∈[-1,1],|x |<a 恒成立”等价于“∀x ∈[-1,1],a >|x |max ”,所以a >1.故充要条件为a >1.3. A 【解析】 因为f (x )是偶函数,所以f (x )=f (|x |). 又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立; 若f (a )>f (b ),则等价于f (|a |)>f (|b |),即|a |>|b |, 即a >|b |或a <-|b |,故必要性不成立.则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 4. ABC【解析】 对于选项A ,由 A ∩B =A ,可得A ⊆B . 由 A ⊆B可得A ∩B =A ,故A 满足条件.对于选项B ,由∁S A ⊇∁S B 可得A ⊆B ,由A ⊆B 可得∁S A ⊇∁S B ,故∁S A ⊇∁S B 是A ⊆B 的充要条件,故B 满足条件.对于选项C ,由∁S B ∩A =∅,可得A ⊆B ,由A ⊆B 可得∁S B ∩A =∅,故∁S B ∩A =∅是A ⊆B 的充要条件,故C 满足条件.对于选项D ,由∁S A ∩B =∅,可得B ⊆A ,不能推出A ⊆B ,故∁S A ∩B =∅不是A ⊆B 的充要条件,故D 不满足条件.故选ABC.5.(-∞,0]【解析】由⎝ ⎛⎭⎪⎪⎫13x 2-x -6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.第3讲 全称量词和存在量词链教材·夯基固本 激活思维 1. C 2. B 3.(-∞,2)【解析】设f (x )=⎝ ⎛⎭⎪⎪⎫12x+1,x ∈[0,+∞),若p 为真命题,则a <f (x )max =f (0)=2.4. (-∞,2] 【解析】 若“∃x 0∈(0,+∞),λx >x 2+1”是假命题,则“∀x ∈(0,+∞),λx ≤x 2+1”是真命题,所以当x ∈(0,+∞)时,λ≤x +1x恒成立.又x +1x≥2x ·1x =2,当且仅当x =1时取“=”,所以实数λ的取值范围是(-∞,2]. 5.⎝ ⎛⎦⎥⎥⎤54,2【解析】当命题p 为真命题时,x 2+x +a >1恒成立,即x 2+x +a -1>0恒成立,所以Δ=1-4(a -1)<0,解得a >54.当命题q 为真命题时,2a ≤(2x 0)max ,x 0∈[-2,2],所以a ≤2.故54<a ≤2,所以实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤54,2. 知识聚焦1. 全体 全称量词 ∀x ∈M ,p (x )2. 部分 ∃ 存在量词 ∃x 0∈M ,p (x 0)3. ∃x ∈M ,綈p (x )4. 不是 不一定是 不都是 小于或等于 大于或等于 或 一个也没有 至多有n -1个 至少有两个 存在一个x 不成立研题型·融会贯通 分类解析【解答】 (1) 綈p :∃x ∈R ,x 2-x +14<0,假命题.(2) 綈q :至少存在一个正方形不是矩形,假命题. (3) 綈r :所有的实数都有平方根,假命题.(4) 綈s :存在一个末位数字是0或5的整数不能被5整除,假命题.(1) 【答案】 C(2) 【答案】 ∀x ∈R ,x 2-x +1≠0 (1) 【答案】 (-∞,-2] 【解析】由命题p 为真,得a ≤0.由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a≤-2.(2) 【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪⎪a ≤52【解析】 若命题p :∃x ∈[2,3],x 2-ax +1<0为假命题,则“∀x ∈[2,3],x 2-ax +1≥0,即a ≤x +1x ”为真命题.令g (x )=x +1x ,易知g (x )在[1,+∞)上单调递增,所以当x ∈[2,3]时,g (x )∈[g (2),g (3)].又∀x ∈[2,3],a ≤x +1x恒成立等价于∀x ∈[2,3],a ≤g (x )min ,而g (x )min =g (2)=52,所以“∀x ∈[2,3],x 2-ax +1≥0”为真命题时,a ≤52.(1) 【答案】 ⎝ ⎛⎭⎪⎪⎫56,+∞ 【解析】由“∀x∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫56,+∞. (2) 【答案】 (-2,-1]【解析】 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0为真命题,可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立为真命题,得Δ=m 2-4<0,可得-2<m <2.综上,m ∈(-2,-1].【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 ①当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,对任意x 1∈[0,3],存在x 2∈[1,2],使得f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)min ,即0≥14-m ,所以m ≥14.②当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )max =g (1)=12-m ,对任意x 1∈[0,3],任意x 2∈[1,2],有f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)max ,即0≥12-m ,所以m ≥12.【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 依题意知对x 1∈⎣⎢⎢⎡⎦⎥⎥⎤12,1,x 2∈[2,3],f (x 1)max ≤g (x 2)max . 因为f (x )=x +4x 在⎣⎢⎢⎡⎦⎥⎥⎤12,1上是减函数, 所以f (x )max =f ⎝ ⎛⎭⎪⎪⎫12=172.又g (x )=2x +a 在[2,3]上是增函数,所以g (x )max =8+a , 因此172≤8+a ,则a ≥12.课堂评价 1. ABC 2. D3. A 【解析】 因为命题“∃x ∈[1,2],x 2+ln x -a ≤0”为假命题,所以当x ∈[1,2]时,x 2+ln x >a 恒成立,只需a <(x 2+ln x )min ,x ∈[1,2].又函数y =x 2+ln x 在[1,2]上单调递增,所以当x =1时,y min =1,所以a <1.故选A.4. B 【解析】 由题可知,命题“∀x ∈R ,(k 2-1)x 2+4(1-k )x +3>0”是真命题. 当k 2-1=0,得k =1或k =-1.若k =1,则原不等式为3>0,恒成立,符合题意;若k =-1,则原不等式为8x +3>0,不恒成立,不符合题意. 当k 2-1≠0时,依题意得⎩⎪⎨⎪⎧k2-1>0,16(1-k )2-4(k 2-1)×3<0,即⎩⎨⎧(k +1)(k -1)>0,(k -1)(k -7)<0,解得1<k <7. 综上所述,实数k 的取值范围为{k |1≤k <7}. 5.(-3,+∞) 【解析】 假设∀x ∈[1,2],x 2+2ax +2-a ≤0.设f (x )=x 2+2ax +2-a ,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0,所以⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0,解得a ≤-3.因为假设成立,所以a >-3,所以实数a 的取值范围是(-3,+∞).第4讲 不等式的性质、一元二次不等式链教材·夯基固本 激活思维 1. AC 2.ACD【解析】由1a<1b<0,得a <0,b <0且a >b ,所以a +b <0,ab >0,A 正确;|a |<|b |,B 错误;a 3>b 3,C 正确;因为函数y =2x 在R 上单调递增,故D 正确.故选ACD.3. ABD4. -112 7125.(-∞,-2)∪(2,+∞)【解析】由x 2-2x +k 2-2>0,得k 2>-x 2+2x +2.设f (x )=-x 2+2x +2=-(x -1)2+3,当x ≥2时,f (x )max =2,则k 2>f (x )max =2,所以k >2或k <-2.知识聚焦2. {x |x <x 1或x >x 2} R {x |x 1<x <x 2} ∅ ∅ 研题型·融会贯通 分类解析(1) 【答案】 AC【解析】 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以B 错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln4>0,所以D 错误.因为1a <1b<0,所以a +b <0,但ab >0,所以1a +b <1ab ,A 正确;a -1a -⎝ ⎛⎭⎪⎪⎫b -1b =a -b -⎝ ⎛⎭⎪⎪⎫1a -1b =a -b -⎝ ⎛⎭⎪⎪⎫b -a ab =(a -b )⎝ ⎛⎭⎪⎪⎫1+1ab ,因为1a<1b <0,所以0>a >b ,所以a -b >0,1+1ab>0,所以a -1a-⎝ ⎛⎭⎪⎪⎫b -1b >0,所以a -1a >b -1b ,C 正确. (2) 【答案】 B 【解析】 p -q =b2a +a2b -a -b=b2-a2a +a2-b2b =(b 2-a 2)·⎝ ⎛⎭⎪⎪⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab , 因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-π,π8 【解析】 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,所以⎩⎪⎨⎪⎧m =12,n =32,即2α-β=12(α+β)+32(α-β).因为π<α+β<5π4,-π<α-β<-π3,所以π2<12(α+β)<5π8,-3π2<32(α-β)<-π2,所以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以2α-β的取值范围是⎝ ⎛⎭⎪⎪⎫-π,π8. 【题组·高频强化】 1.A【解析】 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c<bd,所以C ,D 错,故选A. 2.C【解析】因为a +b +c =0,且a <b <c ,所以a <0,c >0.因为b <c ,a <0,所以ab >ac ,所以B 不成立;因为a <b ,c >0,所以ac <bc ,所以C 成立;当b =0时,A ,D 都不成立.故选C.3. BD4. ABC 【解析】 取a =13,b =12,可知A ,B ,C 错误.因为0<a <b <1,所以b -a∈(0,1),所以lg(b -a )<0,故D 正确.故选ABC.5.(-4,2) (1,18)【解析】因为-1<x <4,2<y <3,所以-3<-y <-2,所以-4<x -y <2.因为-3<3x <12,4<2y <6,所以1<3x +2y <18.【解答】(1)原不等式转化为6x 2+5x -1>0,因为方程6x 2+5x -1=0的解为x 1=16,x 2=-1,所以根据二次函数y =6x 2+5x -1的图象可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<-1或x>16.(2) 若a =0,原不等式转化为-x +1<0,即x >1. 若a <0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)>0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1, 所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1.若a >0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)<0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1. 当1a=1,即a =1时,原不等式的解集为∅; 当1a >1,即0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当1a <1,即a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1. 综上所述,当a =0时,原不等式的解集为{x |x >1}; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1;当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当a =1时,原不等式的解集为∅; 当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1.【解答】 (1) 由不等式x -3x >-2,可得x >2或x <1.由x>2,得x >4;由x<1,得x <1且x ≥0,即0≤x <1.所以不等式的解集为{x |x >4或0≤x <1}.(2)原不等式转化为(x -a )(x -a 2)<0.当a 2>a ,即a >1时,不等式的解集为{x |a <x <a 2};当a 2<a ,即0<a <1时,不等式的解集为{x |a 2<x <a };当a 2=a ,即a =1时,不等式的解集为∅.(1) 【答案】 [0,4] 【解析】当a =0时,原不等式变为1≥0,恒成立,符合题意;当a ≠0时,由ax 2-ax +1≥0恒成立,得⎩⎪⎨⎪⎧a>0,Δ=a2-4a ≤0,解得0<a ≤4.综上,实数a 的取值范围为[0,4].(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 方法一:当a =0时,原不等式可化为x <0,易知不合题意;当a ≠0时,令f (x )=ax 2-x +a ,要满足题意,需⎩⎪⎨⎪⎧a>0,12a ≤1,f (1)≥0或⎩⎪⎨⎪⎧a>0,12a>1,f ⎝ ⎛⎭⎪⎪⎫12a >0,解得a ≥12,所以a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12,+∞. 方法二:ax 2-x +a >0⇔ax 2+a >x ⇔a >x x2+1,因为x ∈(1,+∞)时,x x2+1=1x +1x<12,所以a ≥12. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-1+72,1+32 【解析】已知不等式可化为(x 2-1)m +(1-2x )<0.设f (m )=(x 2-1)m +(1-2x ),这是一个关于m 的一次函数(或常数函数),从图象上看,要使f (m )<0在-2≤m ≤2时恒成立,其等价条件是⎩⎨⎧f (2)=2(x 2-1)+(1-2x )<0,f (-2)=-2(x 2-1)+(1-2x )<0,即⎩⎪⎨⎪⎧2x2-2x -1<0,2x2+2x -3>0,解得-1+72<x <1+32,所以实数x 的取值范围是⎝ ⎛⎭⎪⎪⎫-1+72,1+32. 【解答】 (1) 因为当x ∈R 时,x 2+ax +3-a ≥0恒成立, 所以Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,所以实数a 的取值范围是[-6,2].(2) 由题意,可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g⎝ ⎛⎭⎪⎪⎫-a 2=-a24-a +3≥0,解得-6≤a ≤2,所以-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,所以-7≤a <-4.综上,满足条件的实数a 的取值范围是[-7,2]. (3) 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立, 只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x2+4x +3≥0,x2+6x +3≥0,解得x ≤-3-6或x ≥-3+6, 所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).课堂评价 1.C【解析】 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A ,B ,D 项均不正确;C 项,|b||a|<|b|+1|a|+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,因为a <b <0,所以|b |<|a |成立,故选C. 2. C3. ABCD 【解析】 关于实数x 的一元二次不等式a (x -a )(x +1)>0,则a ≠0. 当a =-1时,原不等式的解集为∅,故A 正确;当a >0时,原不等式的解集为(-∞,-1)∪(a ,+∞),故D 正确; 当-1<a <0时,原不等式的解集为(-1,a ),故B 正确; 当a <-1时,原不等式的解集为(a ,-1),故C 正确. 4.BCD【解析】对于A ,因为2x 2-x -1=(2x +1)(x -1),所以由2x 2-x -1>0得(2x +1)(x -1)>0,解得x>1或x <-12,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x>1或x<-12,故A 错误;对于B ,因为-6x 2-x +2≤0,所以6x 2+x -2≥0, 所以(2x -1)(3x +2)≥0,所以x ≥12或x ≤-23,故B 正确;对于C ,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根,所以-7×(-1)=21a,所以a =3,经检验符合题意,故C 正确; 对于D ,依题意知q,1是方程x 2+px -2=0的两个根,则q +1=-p ,即p +q =-1,故D 正确.故选BCD.5.-3【解析】因为函数f (x )=-x 2+ax +b (a ,b∈R )的值域为(-∞,0],所以Δ=0,即a 2+4b =0,所以b =-14a 2.又关于x 的不等式f (x )>c -1的解集为(m -4,m ),所以方程f (x )=c -1的两根分别为m -4,m ,即方程-x 2+ax -14a 2=c -1的两根分别为m -4,m .又方程-x 2+ax -14a 2=c -1的根为x =a2±1-c ,所以两根之差为21-c =m -(m -4)=4,解得c =-3.第5讲 基本不等式链教材·夯基固本 激活思维1. C 【解析】 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎪⎫x +y 22=81,当且仅当x =y =9时取等号,故(xy )max =81. 2. D【解析】 因为1x +3y =1,所以x +3y =(x +3y )⎝ ⎛⎭⎪⎪⎫1x +3y =10+3y x +3x y ≥10+23y x ·3x y =16,当且仅当3y x =3x y 且1x +3y=1,即x =y =4时取等号,故选D. 3.BD【解析】A 不正确,因为a ,b 不满足同号,故不能用基本不等式;B 正确,因为lg x 和lg y 一定是正实数,故可用基本不等式;C 不正确,因为x 和4x 不是正实数,故不能直接利用基本不等式;D 正确,因为 2x 和2-x 都是正实数,且2x ≠1,2-x ≠1,故2x +2-x >22x ·2-x =2成立,故D 正确.故选BD.4. 5 【解析】 令t =sin x ∈(0,1],由y =t +4t 在(0,1]上单调递减,得y min =1+41=5.5. 1【解析】 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时取等号,故f (x )=4x -2+14x -5的最大值为1.知识聚焦1. (1) a >0,b >02. (1) x =y 2p (2) x =yp24研题型·融会贯通 分类解析【解答】 (1) 当a =0时,xy =x +4y ,两边同除以xy 得1y+4x=1,则x +y =(x +y )⎝ ⎛⎭⎪⎪⎫1y +4x =x y +4y x +1+4≥2x y ·4y x +5=9,当且仅当xy=4y x,即x =6,y =3时取“=”,即当a =0时,x +y 的最小值为9.(2) 当a =5时,xy =x +4y +5≥24xy +5=4xy +5,即有(xy )2-4xy -5=(xy -5)(xy +1)≥0, 所以xy ≥5,即xy ≥25,当且仅当x =4y ,即x =10,y =52时取“=”,即当a =5时,xy 的最小值为25. 【题组·高频强化】 1.20【解析】 因为log 5x +log 5y =2,所以x 和y 均为正数,由指数和对数的关系可得xy =52=25,所以x +4y ≥2x ·4y=20,当且仅当x =4y ,即x =10且y =52时等号成立,所以x +4y 的最小值是20.2. 45 【解析】 因为5x 2y 2+y 4=1,所以y ≠0且x 2=1-y45y2,所以x 2+y 2=1-y45y2+y 2=15y2+4y25≥215y2·4y25=45,当且仅当15y2=4y25,即x 2=310,y 2=12时取等号,所以x 2+y 2的最小值为45.3. 5+26 【解析】 因为x +y =1,所以x +2xy =x +2(x +y )xy =3x +2y xy =2x +3y=⎝ ⎛⎭⎪⎪⎫2x +3y (x +y )=2y x +3x y +5≥5+26,当且仅当⎩⎪⎨⎪⎧2y x =3x y ,x +y =1,即⎩⎪⎨⎪⎧x =6-2,y =3-6时取等号.4. 6 【解析】 方法一(换元消元法): 由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号, 即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 方法二(代入消元法):由x +3y +xy =9,x >0,y >0,得x =9-3y1+y ,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y =9+3y21+y =3(1+y )2-6(1+y )+121+y =3(1+y )+121+y-6≥23(1+y )·121+y -6=12-6=6, 当且仅当3(1+y )=121+y,即y =1,x =3时取等号,所以x +3y 的最小值为6.5. 94 【解析】 1a +1+4b +1=⎝ ⎛⎭⎪⎪⎫1a +1+4b +1·(a +1)+(b +1)4 =14⎣⎢⎢⎡⎦⎥⎥⎤1+4+b +1a +1+4(a +1)b +1≥14⎣⎢⎢⎡⎦⎥⎥⎤5+2b +1a +1·4(a +1)b +1=94,当且仅当b +1a +1=4(a +1)b +1,即a =13,b =53时取等号,所以1a +1+4b +1的最小值为94.【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,174 【解析】 对于正实数x ,y ,由x +y +4=2xy , 得x +y +4=2xy ≤(x +y )22,解得x +y ≥4.不等式x 2+2xy +y 2-ax -ay +1≥0可化为(x +y )2-a (x +y )+1≥0,令t =x +y (t ≥4),则该不等式可化为t 2-at +1≥0,即a ≤t +1t 对于任意的t ≥4恒成立.令u (t )=t +1t(t ≥4),则u ′(t )=1-1t2=t2-1t2>0对于任意的t ≥4恒成立,从而函数u (t )=t +1t(t ≥4)为单调增函数,所以u (t )min =u (4)=4+14=174,所以a ≤174.(1) 【答案】 4【解析】 原不等式变形为k (x -1)+4x -1+k ≥12, 则原问题转化成不等式k (x -1)+4x -1≥12-k 在(1,+∞)上恒成立,所以只需12-k ≤⎣⎢⎡⎦⎥⎤k (x -1)+4x -1min 即可.根据均值定理可知,k (x -1)+4x -1≥2k (x -1)·4x -1=4k ,当且仅当k (x -1)=4x -1时等号成立,所以只需12-k ≤4k 成立,即(k+6)(k -2)≥0,所以k ≥4,即k min =4.(2) 【答案】 (-∞,22]【解析】 因为x >y >0,且xy =1,所以由x 2+y 2≥a (x -y ), 得a ≤x2+y2x -y.又x2+y2x -y=(x -y )2+2xyx -y =x -y +2x -y≥2(x -y )·2x -y=22,所以a ≤22.【解答】 (1) 设休闲区的宽为a m ,则长为ax m , 由a 2x =4 000,得a =2010x.则S (x )=(a +8)(ax +20) =a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010⎝ ⎛⎭⎪⎪⎫2x +5x +4 160(x >1). (2) 由(1)知, S (x )=8010⎝⎛⎭⎪⎪⎫2x +5x +4 160 ≥8010×22x ×5x +4 160=1 600+4 160=5 760, 当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100.所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100 m ,宽40 m.【解答】 (1) 设污水处理池的宽为x m ,则长为162x m ,总造价y =400×⎝ ⎛⎭⎪⎪⎫2x +2×162x +248×2x +80×162 =1 296x +1 296×100x +12 960=1 296⎝ ⎛⎭⎪⎪⎫x +100x +12 960 ≥1 296×2x ×100x+12 960=38 880(元),当且仅当x =100x(x >0),即x =10时取等号,所以当污水处理池的长为16.2 m ,宽为10 m 时总造价最低,最低为38 880元. (2) 由限制条件知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,所以818≤x ≤16.设g (x )=x +100x ⎝ ⎛⎭⎪⎪⎫818≤x ≤16,则g (x )在⎣⎢⎢⎡⎦⎥⎥⎤818,16上是增函数, 所以当x =818时,g (x )有最小值,即f (x )有最小值,即y min =1 296×⎝ ⎛⎭⎪⎪⎫818+80081+12 960=38 882(元). 所以当污水处理池的长为16 m ,宽为818 m 时总造价最低,最低为38 882元.课堂评价 1.BCD【解析】不等式a +b ≥2ab 恒成立的条件是a ≥0,b ≥0,故A 不正确;当a 为负数时,不等式a +1a≤2成立,故B 正确;由基本不等式可知C 正确;2x +1y =⎝ ⎛⎭⎪⎪⎫2x +1y (x +2y )=4+4y x +x y ≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =12,y =14时取等号,故D 正确. 2. ABD 【解析】 若m ,n >0,m +n =2,则1m +2n =12(m +n )⎝ ⎛⎭⎪⎪⎫1m +2n =12⎝ ⎛⎭⎪⎪⎫3+n m +2m n ≥3+222,当且仅当n =2m =4-22时等号成立,A 正确.m +n =2≥2mn ,解得mn ≤1,所以mn 2≤12,(m+n )2=m +n +2mn ≤4,即m +n ≤2,B 正确,C 错误.m 2+n 2≥(m +n )22=2,当且仅当m =n =1时取等号,D 正确.故选ABD.3. (-1,4) 【解析】 由正实数x ,y 满足1x +4y =1,则x +y4=⎝ ⎛⎭⎪⎪⎫x +y 4⎝ ⎛⎭⎪⎪⎫1x +4y =2+4x y +y 4x≥2+24x y ·y4x=4,当且仅当y =4x =8时取等号,所以x +y 4的最小值为4.由x+y4>m2-3m恒成立,可得m2-3m<4,解得m∈(-1,4).4. 4 【解析】因为a>0,b>0,所以a+b>0,ab=1,所以12a+12b+8a+b=b2ab+a2ab+8a+b=a+b2+8a+b≥2a+b2·8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3或a=2+3,b=2-3时等号成立.5. 2105【解析】因为4x2+y2+xy=1,所以(2x+y)2-3xy=1,即(2x+y)2-32·2xy=1,所以(2x+y)2-32·⎝⎛⎭⎪⎪⎫2x+y22≤1,解得(2x+y)2≤85,即2x+y≤2105。

2019版高考数学(文)一轮培优增分练(全国通用)第1章 集合与常用逻辑用语1-2aWord版含解析

2019版高考数学(文)一轮培优增分练(全国通用)第1章 集合与常用逻辑用语1-2aWord版含解析

板块四模拟演练·提能增分[A级基础达标]1.[2018·江西模拟]若集合A={2,4},B={1,m2},则“A∩B={4}”是“m=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当m=2时,有A∩B={4};若A∩B={4},则m2=4,解得m=±2,不能推出m=2.故选B.2.下列命题是真命题的为()A.若1x=1y,则x=y B.若x2=1,则x=1C.若x=y,则x=y D.若x<y,则x2<y2答案 A解析取x=y=-1,排除B,C;取x=-2,y=-1,排除D.故选A.3.[2018·天津模拟]设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析|x-2|<1⇔-1<x-2<1⇔1<x<3;x2+x-2>0⇔x<-2或x>1.由于(1,3)(-∞,-2)∪(1,+∞),所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.4.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.5.[2018·长春模拟]设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若“(a -b )a 2<0”,则“a <b ”,是真命题;而若“a <b ”,则“(a -b )a 2<0”当a =0时不成立,是假命题.故选A.6.[2018·安徽模拟]设条件p :a 2+a ≠0,条件q :a ≠0,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 条件p :a 2+a ≠0,即a ≠0且a ≠-1.故条件p :a 2+a ≠0是条件q :a ≠0的充分不必要条件.也可利用逆否命题的等价性解决.7.设a ,b ∈R ,若p :a <b ,q :1b <1a <0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 B解析 若p :-1<1,则p ⇒/q ;若q :1b <1a <0,则a <b <0,q ⇒p ,所以p 是q 的必要不充分条件.故选B.8.若“x 2-2x -8>0”是“x <m ”的必要不充分条件,则m 的最大值为________.答案 -2解析 不等式解集为(-∞,-2)∪(4,+∞),题目等价于(-∞,m )是(-∞,-2)∪(4,+∞)的真子集,故有m ≤-2,即m 的最大值为-2.9.[2018·贵阳模拟]下列不等式: ①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为________. 答案 ②③④解析 由于x 2<1即-1<x <1,①显然不能使-1<x <1一定成立,②③④满足题意.10.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-12,43解析 由|x -m |<1得m -1<x <1+m ,又因为|x -m |<1的充分不必要条件是13<x <12,借助数轴,所以⎩⎪⎨⎪⎧m -1≤13,m +1≥12,解得-12≤m ≤43.[B 级 知能提升]1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 不是偶数,则x 与y 都不是偶数B .若x +y 是偶数,则x 与y 不都是偶数C .若x +y 是偶数,则x 与y 都不是偶数D .若x +y 不是偶数,则x 与y 不都是偶数 答案 D解析 “都是”的否定是“不都是”,选D 项.2.[2018·株洲模拟]设a ,b ∈R ,那么“e a b>e ”是“a >b >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由e ab >e ,得ab >1,解得a >b >0或a <b <0,所以“e ab >e ”是“a >b >0”的必要不充分条件.3.[2018·湖北模拟]设U 为全集,A ,B 是集合,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 因为B ⊆∁U C ,所以B ∩C =∅.又因为A ⊆C ,所以A ∩B =∅.反之,若A ∩B =∅,则存在集合C 使得A ⊆C ,B ⊆∁U C . 4.[2017·天津大港模拟]已知集合A ={ y | y =x 2-32x +1,x ∈⎭⎬⎫⎣⎢⎡⎦⎥⎤34,2 ,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解 y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716, 因为x ∈⎣⎢⎡⎦⎥⎤34,2,所以716≤y ≤2,所以A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪716≤y ≤2.由x +m 2≥1,得x ≥1-m 2,所以B ={x |x ≥1-m 2}. 因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.5.[2018·保定模拟]已知p :x 2≤5x -4,q :x 2-(a +2)x +2a ≤0. (1)若p 是真命题,求对应x 的取值范围;(2)若p 是q 的必要不充分条件,求a 的取值范围. 解 (1)因为x 2≤5x -4, 所以x 2-5x +4≤0,即(x -1)(x -4)≤0,所以1≤x ≤4, 即对应x 的取值范围为[1,4].(2)设p 对应的集合为A ={x |1≤x ≤4}. 由x 2-(a +2)x +2a ≤0, 得(x -2)(x -a )≤0.当a =2时,不等式的解为x =2,对应的解集为B ={2}; 当a >2时,不等式的解为2≤x ≤a ,对应的解集为B ={x |2≤x ≤a };当a <2时,不等式的解为a ≤x ≤2,对应的解集为B ={x|a≤x≤2}.若p是q的必要不充分条件,则B A,当a=2时,满足条件;当a>2时,因为A={x|1≤x≤4},B={x|2≤x≤a},要使B A,则满足2<a≤4;当a<2时,因为A={x|1≤x≤4},B={x|a≤x≤2},要使B A,则满足1≤a<2.综上,a的取值范围为[1,4].。

2019版高考数学(理)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-2a

2019版高考数学(理)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-2a

[基础送分提速狂刷练]一、选择题1.下列命题中是真命题的是( )①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若x-3是有理数,则x是无理数”的逆否命题.A.①②B.①③C.②③D.①②③答案 B解析 对于①,其否命题是“若x2+y2=0,则x,y全为零”,这显然是正确的,故①为真命题;对于②,其逆命题是“若两多边形相似,则它们一定是正多边形”,这显然是错误的,故②为假命题;对于③,原命题为真,故逆否命题也为真.因此是真命题的是①③.故选B.2.(2018·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c答案 A解析 否命题是将原命题的条件和结论都否定,故命题“若a>b,则a+c>b+c”的否命题是“若a≤b,则a+c≤b+c”.故选A.3.(2018·曲阜模拟)已知p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,q:函数g(x)=log a(x+1)(a>0且a≠1)在(-1,+∞)上是增函数,则綈p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析 易知p 成立⇔a ≤1,q 成立⇔a >1,所以綈p 成立⇔a >1,则綈p 是q 的充要条件.故选C.4.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“+≥2”的充分必要条件b a a b C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0”D .命题p :∃x ∈R ,x 2+x -1<0,则綈p :∀x ∈R ,x 2+x -1≥0答案 D解析 若p ∨q 为真命题,则p ,q 中至少有一个为真,那么p ∧q 可能为真,也可能为假,故A 错误;若a >0,b >0,则+≥2,又当a <0,b <0时,也有+≥2,所以“a >0,b >0”是b a a b b a a b “+≥2”的充分不必要条件,故B 错误;命题“若b a a b x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,故C 错误,易知D 正确.故选D.5.“a <-1”是“∃x 0∈R ,a sin x 0+1<0”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案 B解析 由题意知“∃x 0∈R ,a sin x 0+1<0”等价于“(a sin x +1)min <0”,即“当a >0时,-a +1<0,即a >1;当a <0时,a +1<0,即a <-1”,所以“a <-1”是“∃x 0∈R ,a sin x 0+1<0”的充分不必要条件,故选B.6.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题, 即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.7.(2017·衡水联考)“a =0”是“函数f (x )=sin x -+a 为奇函1x 数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -,f (-x )=sin(-x )-=-sin x +=-=-f (x ),1x 1-x 1x (sin x -1x )故f (x )为奇函数;反之,当f (x )=sin x -+a 为奇函数时,f (-x )+f (x )=0,1x 又f (-x )+f (x )=sin(-x )-+a +sin x -+a =2a ,故a =0,1-x 1x 所以“a =0”是“函数f (x )=sin x -+a 为奇函数”的充要条1x件.故选C.8.(2018·天津模拟)已知f (x )=2x +3(x ∈R ),若|f (x )-1|<a 的必要条件是|x +1|<b (a ,b >0),则a ,b 之间的关系是( )A .b ≥B .b <C .a ≤D .a >a 2a 2b 2b 2答案 A解析 ∵f (x )=2x +3,且|f (x )-1|<a ,∴|2x +2|<a .∴-a <2x +2<a ,∴<x <.-2-a 2-2+a 2∵|x +1|<b ,∴-b <x +1<b ,∴-b -1<x <b -1.∵|f (x )-1|<a 的必要条件是|x +1|<b (a ,b >0),∴⊆(-b -1,b -1),(-2-a 2,-2+a 2)∴Error!解得b ≥.故选A.a 29.(2018·江西一联)已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >0”是“点M 在第四象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 复数z =(1-2i)(a +i)=a +2-2a i +i =a +2+(1-2a )i 在复平面内对应的点为M (a +2,1-2a ).若a >0,则a +2>0,但1-2a 的正负不确定,所以点M 是否在第四象限也是不确定的;若点M在第四象限,则Error!解得a >,此时可推出a >0.所以“a >0”是“点12M 在第四象限”的必要不充分条件.故选B.10.(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -y +3=0的距离为31,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -y +3=03的距离d ==2.当r ∈(0,1)时,直线与圆相离,圆上|1-3×0+3|2没有到直线的距离为1的点;当r =1时,直线与圆相离,圆上只有一个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆上有两个点到直线的距离为1;当r =2时,直线与圆相切,圆上有两个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆上有两个点到直线的距离为1.综上,当r ∈(0,3)时,圆上至多有2个点到直线的距离为1,又由圆上至多有两个点到直线的距离为1可得0<r <3,故p 是q 的充分必要条件.故选C.二、填空题是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.答案 (-1,+∞)解析 12.已知条件p:x∈A,且A={x|a-1<x<a+1},条件x2-3x+2q:x∈B,且B={x|y=}.若p是q的充分条件,则实数a的取值范围是________.答案 (-∞,0]∪[3,+∞)解析 易得B={x|x≤1或x≥2},且A={x|a-1<x<a+1},由p是q的充分条件,可知A⊆B,故a+1≤1或a-1≥2,即a≤0或a≥3.即所求实数a的取值范围是(-∞,0]∪[3,+∞).13.(2018·泰安模拟)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足Error!若p是q的必要不充分条件,则实数a 的取值范围是________.答案 (1,2]解析 ∵p是q的必要不充分条件,⇒/∴q⇒p,且p q.设A={x|p(x)},B={x|q(x)},则B A.又B={x|2<x≤3},当a>0时,A={x|a<x<3a};当a<0时,A={x|3a<x<a}.故当a>0时,有Error!解得1<a≤2;当a<0时,显然A∩B=∅,不合题意.综上所述,实数a的取值范围是(1,2].14.(2017·长沙模拟)r(x):已知r(x)=sin x+cos x>m;s(x):x2+mx+1>0.如果∀x∈R,r(x)与s(x)有且仅有一个是真命题,则实数m的取值范围是________.答案 (-∞,-2]∪[-,2)2解析 由sin x +cos x =sin,2(x +π4)得sin x +cos x 的最小值为-.2若∀x ∈R 时,命题r (x )为真命题,则m <-.若命题s (x )为真2命题,即∀x ∈R ,不等式x 2+mx +1>0恒成立,则Δ=m 2-4<0,解得-2<m <2.若命题r (x )为真命题,命题s (x )为假命题,则m ≤-2;若命题r (x )为假命题,命题s (x )为真命题,则-≤m <2.2综上所述,实数m 的取值范围是(-∞,-2]∪[-,2).2三、解答题15.(2017·沂水模拟)已知f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.解 (1)逆命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.是真命题.(用反证法证明)假设a +b <0,则有a <-b ,b <-a .∵f (x )在(-∞,+∞)上是增函数,∴f (a )<f (-b ),f (b )<f (-a ).∴f (a )+f (b )<f (-a )+f (-b ),这与题设中f (a )+f (b )≥f (-a )+f (-b )矛盾,故假设不成立.从而a +b ≥0成立.逆命题为真.(2)逆否命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )<f (-a )+f (-b ),则a +b <0.是真命题.原命题为真,证明如下:∵a +b ≥0,∴a ≥-b ,b ≥-a .又∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ).∴原命题为真命题,∴其逆否命题也为真命题.16.(2017·江苏兴化月考)已知命题:“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解 (1)由题意知,方程x 2-x -m =0在(-1,1)上有解,即m 的取值范围就为函数y =x 2-x 在(-1,1)上的值域,易知M ={m .|-14≤m <2}(2)因为x ∈N 是x ∈M 的必要条件,所以M ⊆N .当a =1时,解集N 为空集,不满足题意;当a >1时,a >2-a ,此时集合N ={x |2-a <x <a },则Error!解得a >;94当a <1时,a <2-a ,此时集合N ={x |a <x <2-a },则Error!解得a <-.14综上,a >或a <-.9414。

2019版高考数学一轮复习第1章集合与常用逻辑用语12命题及其关系、充分条件与必要条件.doc

2019版高考数学一轮复习第1章集合与常用逻辑用语12命题及其关系、充分条件与必要条件.doc

1. 2命题及其关系、充分条件与必要条件E课后作业孕谀[基础送分提速狂刷练]一、选择题1.下列命题中是真命题的是()①“若/+yV0,则池y不全为零”的否命题;②“正多边形都相似”的逆命题;丄2③“若x-3 是有理数,则/是无理数”的逆否命题.A.①②B.①③C.②③D.①②③答案B解析对于①,其否命题是“若^2+/ = 0,则昭y全为零”,这显然是正确的,故① 为真命题;对于②,其逆命题是“若两多边形相似,则它们一定是正多边形”,这显然是错误的,故②为假命题;对于③,原命题为真,故逆否命题也为真.因此是真命题的是①③. 故选B.2.(2018 •河南八市联考)命题"若段>方,则白+c>b+c”的否命题是()A.若aWb,则a+c^b+cB.若日+cWZ?+c,则aWbC.若a+c>b+ c,则自〉方D.若 Qb,则a+ c^b+c答案A解析否命题是将原命题的条件和结论都否定,故命题“若Qb,则a+c>b+c ff的否命题是“若&Wb,则.故选A.3.(2018 •曲阜模拟)己知Q:函数f\x) = \x+ci\在(一8, —1)上是单调函数,q:函数gd)=10ga(卄1)30且自Hl)在(一1, +8)上是增函数,则繍Q是0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析易知Q成立0日Wl, Q成立OQ1,所以纟弟Q成立O日〉1,则絲Q是Q的充耍条件.故选C.4.下列命题正确的是()A.若为真命题,则p/\q为真命题b aB.“臼>0,方>0”是“一+了$2”的充分必要条件a bC.命题“若3/+2=0,则x=\或/=2”的逆否命题为“若“H1或/H2,则x~ 3卄2工0”D.命题“:x + x—1X0,则繍 q: V/WR, x x—120答案D解析若Zq为真命题,则P,Q屮至少有一个为真,那么pt\q可能为真,也可能为假,h o h ry故A错误;若臼>0,方>0,贝lj-+y^2,又当水0, 〃〈0时,也有一+了$2,所以“&>0, 〃>0” a ba bh o是“-十7三2”的充分不必要条件,故B错误;命题“若#—3卄2 = 0,则尸1或心2”的a b逆否命题为“若xHl且xH2,则3x+2H0”,故C错误,由此可知D正确.故选D.5.(2018・广东广州质检)已知p: 3^>0, e—ax< 1成立,q:函数f(力=—(曰一1)"在R上是减函数,则门是0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析若3%>0, e—ax<\成立,则3^r>0,使得e<ax+\.由于直线y= ax+1恒过点(0, 1),且y=e'在点(0, 1)处的切线方程为y=x+l t因此p:臼>1;若函数f(x) = — (a—1)' 是减函数,则自一1〉1,则$>2,则g:日>2.故由Q可以推出p,由p推不出故p是Q的必要不充分条件.故选B.6.(2018 •合肥模拟)祖噸原理:“幕势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,〃为两个同高的几何体,p: A,〃的体积不相等,q; A,〃在等高处的截面积不恒相等,根据祖眶原理可知,p是^的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析设命题念“若P,则q” ,可知命题臼是祖咆原理的逆否命题,则曰是真命题.故P是Q 的充分条件.设命题弘“若q,则P”,若力比〃在某些等髙处的截而积小一些,在另一些等高处的截血积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题力是假命题,即Q不是Q的必耍条件.综上所述,Q是G的充分不必要条件.故选A.7.(2017 •衡水联考)0=0”是“函数f^=sinx~-+a为奇函数”的()XA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析的定义域为{”xH0},关于原点对称,当日=0时,f(0=sinx—丄,f{~x) x=sin(—劝=—sin/+丄=—(sin/—丄]=—f(x), 故f(x)为奇函数;反之,当f{x) =sinx—~+a为奇函数吋,f{~x) +f(x) =0,x又f\~x) +f\x) =sin( —%) —^—+ a+ si nx—~+ a=2a f故已=0,—x x所以“日=0”是“函数f(x)=sinx—丄+日为奇函数”的充要条件.故选C.X& (2018 •天津模拟)已知f3=2x+3C¥WR),若| /V ) - 11 的必要条件是丨才+1|<AU, b>0),则g, b 之间的关系是()B.答案A解析 I f(x) =2卄3, .&| f(x) 一 11 <臼, :.\2x+2\<a. :.-a<2x+2<a f 一2一白 —2 +臼…~2-* ~2~•・・・|%+1|〈方,A-ZK^+KZ?,:.-b~l<x<b-l.*.* I f\x) —1 \<a 的必要条件是| /+11〈力(日,力〉0), (~2~a -2 + <A z 、 • Q ‘ 2 I —( — b — 1, b~ 1) •、一2 + & 方一恃飞一 解得bdg 故选A.9. (2018 -江西一联)已知i 为虚数单位,日为实数,复数2=(1—2i )@+i )在复平面内 对应的点为必则“日>0”是“点朋在第四象限”的()A.充分不必要条件B.必要不充分条件B.充要条件 D.既不充分也不必要条件答案B解析 复数z=(l —2i )(日+i )=w+2 —2曰i + i=m+2+(l —2Qi 在复平面内对应的点 为〃(&+2,1—2日).若Q0,则$+2>0,但1一2$的正负不确定,所以点於是否在第四象限 中+2〉0, 1 也是不确定的;若点〃在第四象限,贝U 解得小刁此时可推出日〉0.所以“日>0”是“点』/在第四象限”的必要不充分条件.故选B.10. (2017 •湖北七市联考)已知圆 Q : (x-l )2+y 2=r (r>0).设 p : 0</<3, q :圆 C 上至多有2个点到直线L 萌y+3 = 0的距离为1,则门是§的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析 圆C : (X — I )2+ y = z*2的圆心(1,0)到直线x —y[^y+ 3 = 0的距离d=D. b a>2=2.当re (0, 1)时,直线与圆相离,圆上没有到直线的距离为1的点;当r=1吋,直线与圆相离,圆上只有一个点到直线的距离为1;当re (1,2)时,直线与圆相离, 圆上有两个点到直线的距离为1;当厂=2时,直线与圆相切,圆上有两个点到直线的距离为 1;当re (2,3)时,直线与圆相交,圆上有两个点到直线的距离为1.综上,当re (0, 3)时, 圆上至多有2个点到直线的距离为1,又由圆上至多有两个点到直线的距离为1可得0<K3, 故P 是Q 的充分必要条件.故选C.二、填空题11. (2017 •上海模拟)己知集合A= {x/ log_[ x+2 <0},集合”匕一日)匕一2方)<0},若“心一3”是“加狞0”的充分条件,则实数〃的取值范围是 ___________ .答案(一1, +<-) 解析 A= {x/ log 丄 x+2<0} = {x\%> —1}, 2B= {x\ (x —ci )= ( — 3, Z?)或(力,—3),由“SQ 狞0”,得&>一1,故方的取值范围为(一1, +8).12. 己知条件 p : xE : A,且 A= {x\a~\<x<a+\},条件 q : xW B,且 B= {x\ y=心_3卄2}.若p 是Q 的充分条件,则实数日的取值范围是 ______________ .答案(一8, 0]U[3, +8)解析 易得1或 心2},且A= {x\ a —\<x<a+\},由”是q 的充分条件,可知AUB,故曰+1W1或曰一 1M2,即已W0或已23.即所求实数自的取值范围是(一0]U[3, +-).13. (2018 •泰安模拟)设°:实数*满足#一4站+3歆0,其中$H0, q :实数/满足x~x —6W0,2, n OXA 若”是q 的必要不充分条件,则实数臼的取值范围是y+2^—8>0,答案(1,2]解析・・#是Q 的必要不充分条件,• •H. q.设 A= UIpU )}, B= {X \ q{x )},则〃 A.又 〃={”2<A <3},当臼〉0 时,〃={”以*3引; 当 X0 时,A — {x\ 3臼〈*臼}. 际2,故当白>0时,有解得1JW2;3®,当水0吋,显然AHB=0f 不符合题意. 综上所述,实数日的取值范围是仃,2].14. (2017 •长沙模拟)r (%):已知厂3 =sinx+cosQ 刃;s (x ) : x +/ZZA + l>0.如果X/x WR,厂匕)与s (x )有且仅有一个是真命题,则实数刃的取值范围是 ________ .|1 一 £xo + 3|2答案(一8, —2] U [―边,2)解析由sin^r+ cos^=^2sin^A z+—J,得sin^+cos%的最小值为一迈.若VxWR时,命题厂(x)为真命题,则区_蟲.若命题sd)为真命题,即V%ER,不等式x + mx+1 >0恒成立,贝ij A =爪—4〈0,解得一2</X2.若命题于(劝为真命题,命题s(力为假命题,则—2;若命题厂(方为假命题,命题s(x)为真命题,则一边W〃K2.综上所述,实数刃的取值范围是(一g, —2]U [—谑,2).三、解答题15.(2017 •沂水模拟)已知fd)是(一8, +8)上的增函数,自,z,eR,对命题“若自+ 於0,则e+/U)Nf(—日)+/*(—力)”・(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.解(1)逆命题:已知函数fd)是(一8, +8)上的增函数,&, Z?eR,若f(a)+/U)Nf(-a)+/*D,则a+b^0.是真命题.(用反证法证明)假设已+貳0,则有a〈_b, K-a.•/ f^X)在(一°°, +°°)上是增函数,血心(一日).・・・r@)+f(b)〈f(—刃+f(—方),这与题设中r+c—勿矛盾,故假设不成立.从而a+b^0成立.逆命题为真.(2)逆否命题:已知函数f(x)是(一8, +8)上的增函数,a, Z?eR,若f(白)+f(方)〈f(—白)+f(—Z?),则&+ZKO.是真命题.原命题为真,证明如下::• a2 — b, b2 _a.又Tf(x)在(一°°, + ^)上是增函数,:./'(a) 2 /'(—H), /'(H) 2 /'(—a)•/. f(ci) + f(方)Mf(—a) +/(—方).・・・原命题为真命题,.••其逆否命题也为真命题.16.(2017 •江苏兴化月考)已知命题:“日/丘{”一1〈水1},使等式x~x~m= 0成立” 是真命题.(1)求实数刃的取值集合必(2)设不等式(/—自)匕+自一2)〈0的解集为僦若圧川是圧財的必要条件,求实数臼的取值范围.解(1)由题意知,方程-x—m= 0在(-1,1)±有解,即刃的取值范围就为函数y=rX—X在(一1,1)上的值域,易知5 —*W〃K2».⑵因为/已V是的必要条件,所以兀用当已=1时,解集沖为空集,不满足题意;当&>1 时,a>2-a,此时集合N=[x\2~a<x<a} f2 —a<_Q则4解得咛;、心2,当日〈1时,从2 —日,此时集合N={x\a<x<2-a}fa<—7, 1则 4 解得X--.2 —臼M2,9、 1综上,Q才或日〈一亍。

2019版高考数学培优增分一轮全国经典版:第1章 集合与常用逻辑用语 1-3

2019版高考数学培优增分一轮全国经典版:第1章 集合与常用逻辑用语 1-3
(1)确定命题的构成形式; (2)判断其中命题 p,q 的真假; (3)确定“p∧q”“p∨q”“綈 p”等形式命题的真假.
【变式训练 1】 在一次驾照考试中,甲、乙两位学员 各试驾一次.设命题 p 是“甲试驾成功”,q 是“乙试驾成 功”,则命题“至少有一位学员没有试驾成功”可表示为 ()
A.(綈 p)∨(綈 q) B.p∨(綈 q)
板块三 启智培优·破译高考
题型技法系列 2——利用逻辑推理解决实际问题 [2017·全国卷Ⅱ]甲、乙、丙、丁四位同学一起去向老师 询问成语竞赛的成绩.老师说:你们四人中有 2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给 丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根 据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
∴p 为真命题,綈 p 为假命题. ∵当 a=-1,b=-2 时,(-1)2<(-2)2,但-1>-2, ∴q 为假命题,綈 q 为真命题.
根据真值表可知 p∧(綈 q)为真命题,p∧q,(綈 p)∧q,
(綈 p)∧(綈 q)为假命题.故选 B.
触类旁通 “p∨q”“p∧q”“綈 p”形式命题真假的判断步骤
4.[2018·重庆模拟]已知命题 p:对任意 x∈R,总有 2x>0; q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题 的是( )
A.p∧q
B.(綈 p)∧(綈 q)
C.(綈 p)∧q D.p∧(綈 q)
解析 依题意,命题 p 是真命题.由 x>2⇒x>1,x>1⇒/ x>2,知“x>1”是“x>2”的必要不充分条件,故命题 q 是假命

近年高考数学一轮复习第一章集合与常用逻辑用语课时训练(2021年整理)

近年高考数学一轮复习第一章集合与常用逻辑用语课时训练(2021年整理)

2019版高考数学一轮复习第一章集合与常用逻辑用语课时训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第一章集合与常用逻辑用语课时训练)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第一章集合与常用逻辑用语课时训练的全部内容。

第一章集合与常用逻辑用语第1课时集合的概念一、填空题1。

以下对象的全体能够构成集合的是________.(填序号)①中国古代四大发明;② 地球上的小河流;③ 方程x2-1=0的实数解;④ 周长为10 cm的三角形.答案:①③④解析:根据集合中元素的特征,可知①③④符合.2. 下面有四个命题:①集合N中最小的数是1;②若-a不属于N,则a属于N;③若a∈N,b∈N,则a+b的最小值为2;④ x2+1=2x的解集可表示为{1,1}.其中正确命题的个数为________ .答案:0解析:① 最小的数应该是0;② 反例:-0。

5∉N,但0。

5∉N;③ 反例:当a=0,b=1时,a+b=1;④ 不满足元素的互异性.3. 下列集合中表示同一集合的是________.(填序号)① M={(3,2)},N={(2,3)};② M={2,3},N={3,2};③ M={(x,y)|x+y=1},N={y|x+y=1};④ M={2,3},N={(2,3)}.答案:②解析:①中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合;③中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N={y|x+y=1}=R,故集合M与N不是同一个集合;④中的集合M有两个元素,而集合N只含有一个元素,故集合M 与N不是同一个集合;对于②,由集合元素的无序性,可知M,N表示同一个集合.4. 方程组错误!的解集是____________.答案:{(5,-4)}解析:由错误!得错误!该方程组的解集为{(5,-4)}.5. 设集合A={3,m},B={3m,3},且A=B,则实数m的值是____________.答案:0解析:由{3,m}={3m,3},得m=3m,m=0.6. 设非空数集M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有________个.答案:6解析:集合{1,2,3}的所有子集共有23=8(个),不含奇数元素的集合有{2},∅,共2个,故满足要求的集合M共有8-2=6(个).7。

通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件

通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件

2. [考点二]已知“x>k”是“x+3 1<1”的充分不必要条件,则k的
取值范围是
()
A.[2,+∞)
B.[1,+∞)
C.(2,+∞)
D.(-∞,-1]
解析:由
3 x+1
<1,得
3 x+1
-1=
-x+2 x+1
<0,解得x<-1或
x>2.因为“x>k”是“
3 x+1
<1”的充分不必要条件,所以
k≥2. 答案:A
②命题α是命题β的逆命题,且命题γ是命题β的否命题;
③命题β是命题α的否命题,且命题γ是命题α的逆否命题.
A.①③
B.②
C.②③ D.①②③
解析:命题的四种形式,逆命题是把原命题中的条件和结论
互换,否命题是把原命题的条件和结论都加以否定,逆否命
题是把原命题中的条件与结论先都否定,然后交换条件与结
论所得,因此①正确,②错误,③正确,故选A. 答案:A
题三个命题中,真命题只有一个.
答案:C
4.[考点一、二]有下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中为真命题的是________(填写所有真命题的序号).
[全析考法]
充分条件与必要条件的判断
[例1] (1)(2017·浙江高考)已知等差数列{an}的公差为d,前
n项和为Sn,则“d>0”是“S4+S6>2S5”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件

高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词全称量词与存在量词学案文

高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词全称量词与存在量词学案文

第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、﹁p的真假判断p q p∧q p∨q ﹁p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的元素x0,使p(x0)成立∃x0∈M,p(x0)命题命题的否定∀x∈M,p(x)∃x0∈M,﹁p(x0)∃x0∈M,p(x0)∀x∈M,﹁p(x)常用结论(1)含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与﹁p→真假相反.(2)含有一个量词的命题的否定规律是“改量词,否结论”.(3)“p ∨q ”的否定是“(﹁p )∧(﹁q )”,“p ∧q ”的否定是“(﹁p )∨(﹁q )”. (4)逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题. ( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反. ( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ 二、易错纠偏常见误区| (1)全称命题或特称命题的否定出错; (2)不会利用真值表判断命题的真假; (3)判断命题真假时忽视对参数的讨论. 1.命题“正方形都是矩形”的否定是________. 答案:存在一个正方形,这个正方形不是矩形2.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③﹁q 为真命题,则p ∧(﹁q )为真命题;④﹁p 为假命题,则(﹁p )∨q 为假命题.答案:②③3.若p :∀x ∈R ,ax 2+4x +1>0是假命题,则实数a 的取值范围为________. 答案:(-∞,4]含有逻辑联结词的命题的真假判断(自主练透)1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p ∨q B .p ∧q C .qD .﹁p解析:选B .取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.2.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②﹁p ∨q ③p ∧﹁q ④﹁p ∧﹁q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A .通解:作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .优解:在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .3.(2020·高考全国卷Ⅱ)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题是________.(填序号) ①p 1∧p 4 ②p 1∧p 2 ③﹁p 2∨p 3④﹁p 3∨﹁p 4解析:方法一:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则由l 1∩l 2=A ,知l 1,l 2共面,设此平面为α,由B ∈l 2,l 2⊂α,知B ∈α,由C ∈l 1,l 1⊂α,知C ∈α,所以l 3⊂α,所以l 1,l 2,l 3共面于α,所以p 1是真命题.对于p 2,当A ,B ,C 三点不共线时,过A ,B ,C 三点有且仅有一个平面;当A ,B ,C 三点共线时,过A ,B ,C 的平面有无数个,所以p 2是假命题,﹁p 2是真命题.对于p 3,若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,﹁p 3是真命题.对于p 4,若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l ,所以p 4是真命题,﹁p 4是假命题.故p 1∧p 4为真命题,p 1∧p 2为假命题,﹁p 2∨p 3为真命题,﹁p 3∨﹁p 4为真命题.综上可知,真命题的序号是①③④.方法二:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则A ,B ,C 三点不共线,所以此三点确定一个平面α,则A ∈α,B ∈α,C ∈α,所以AB ⊂α,BC ⊂α,CA ⊂α,即l 1⊂α,l 2⊂α,l 3⊂α,所以p 1是真命题.以下同方法一.答案:①③④判断含有逻辑联结词命题真假的步骤全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2021·成都市诊断性检测)已知命题p :∀x ∈R ,2x -x 2≥1,则﹁p 为( )A .∀x ∉R ,2x -x 2<1 B .∃x 0∉R ,2x 0-x 20<1 C .∀x ∈R ,2x-x 2<1 D .∃x 0∈R ,2x 0-x 20<1(2)(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( ) A .∃x 0∈(0,+∞),x 130=x 150 B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 130=x 150 D .∀x ∈(-∞,0),x 13=x 15【解析】 (1)全称命题的否定是特称命题,所以﹁p :∃x 0∈R ,2x 0-x 20<1. (2)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 130=x 150,故选A .【答案】 (1)D (2)A全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;(2)否定结论:对原命题的结论进行否定. 角度二 全称命题、特称命题的真假判断(1)下列命题中的假命题是( )A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x>0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,所以-2≤sin x+cos x ≤2,所以D 错误.(2)对于B .当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题为真 否定为假 假 存在一个对象使命题为假 否定为真 特称命题真 存在一个对象使命题为真 否定为假 假所有对象使命题为假否定为真[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0B .x >1是x 2>1的充分不必要条件 C .∀x ∈N ,x 3>x 2D .若a >b ,则a 2>b 2解析:选B .对于x 2+2x +3=0,Δ=-8<0,故方程无实根,即∃x 0∈R ,x 20+2x 0+3=0错误,即A 错误;x 2>1⇔x <-1或x >1,故x >1是x 2>1的充分不必要条件,故B 正确;当x ≤1时,x 3≤x 2,故∀x ∈N ,x 3>x 2错误,即C 错误; 若a =1,b =-1,则a >b ,但a 2=b 2,故D 错误.故选B .2.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 解析:选C .易知f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0,故选C .由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).【迁移探究1】 (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围. 解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 【迁移探究2】 (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是______. 解析:因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t -a ≥0”为真命题,所以Δ=(-2)2-4×1×(-a )=4a +4≤0,即a ≤-1.答案:(-∞,-1]2.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.解析:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)。

2019版高考数学(理)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-3a

2019版高考数学(理)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-3a

[基础送分提速狂刷练]一、选择题1.(2018·武邑模拟)已知命题p:∀x>0,总有(x+1)e x>1,则綈p 为()A.∃x0≤0,使得(x0+1)e x0≤1B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤1答案 B解析“∀x>0,总有(x+1)e x>1”的否定是“∃x0>0,使得(x0+1)e x0≤1”.故选B.2.下列四个命题:其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4答案 D解析3.已知a >0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)答案 C解析 由题知:x 0=-b2a 为函数f (x )图象的对称轴方程,所以f (x 0)为函数的最小值,即对所有的实数x ,都有f (x )≥f (x 0),因此∀x ∈R ,f (x )≤f (x 0)是错误的.故选C.4.(2018·广东五校一诊)下列命题错误的是( ) A .若p ∨q 为假命题,则p ∧q 为假命题B .若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π16C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,x 2+x +1≥0”D .已知函数f (x )可导,则“f ′(x 0)=0”是“x 0是函数f (x )的极值点”的充要条件答案 D解析 选项A ,若p ∨q 为假命题,则p 为假命题,q 为假命题,故p ∧q 为假命题,正确;选项B ,使不等式a 2+b 2<14成立的a ,b ∈⎝ ⎛⎭⎪⎫0,12,故不等式a 2+b 2<14成立的概率是14×π×⎝ ⎛⎭⎪⎫1221×1=π16,正确;选项C ,特称命题的否定是全称命题,正确;选项D ,令f (x )=x 3,则f ′(0)=0,但0不是函数f (x )=x 3的极值点,错误.故选D.5.(2017·河西区三模)已知命题p :∀x ∈[1,2],使得e x -a ≥0.若綈p 是假命题,则实数a 的取值范围为( )A .(-∞,e 2]B .(-∞,e]C .[e ,+∞)D .[e 2,+∞)答案 B解析 命题p :∀x ∈[1,2],使得e x -a ≥0. ∴a ≤(e x )min =e ,若綈p 是假命题,∴p 是真命题,∴a ≤e. 则实数a 的取值范围为(-∞,e].故选B.6.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2) 答案 C解析 由题可知若p ∧q 为真命题,则命题p 和命题q 均为真命题,对于命题p 为真,则m <0,对于命题q 为真,则m 2-4<0,即-2<m <2,所以命题p 和命题q 均为真命题时,实数m 的取值范围是(-2,0).故选C.7.(2018·黄冈模拟)下列四个结论: ①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”;③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件; ④命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0<0”.其中正确结论的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上递增,则当x >0时,x -sin x >0-0=0,即当x >0时,x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”,故②正确;对于③,命题p ∨q 为真即p ,q 中至少有一个为真,p ∧q 为真即p ,q 都为真,可知“p ∧q 为真”是“p ∨q 为真”的充分不必要条件,故③正确;对于④,命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0≤0”,故④错误.综上,正确结论的个数为3.故选C.8.(2017·广东七校联考)已知命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( ) A .綈p B .p ∧q C .(綈p )∨q D .p ∧(綈q )答案 D解析 设h (x )=x +a x +1.易知当a =-12时,函数h (x )为增函数,且h ⎝ ⎛⎭⎪⎫12=16>0,则此时函数f (x )在⎣⎢⎡⎦⎥⎤12,3上必单调递增,即p 是真命题;∵g ⎝ ⎛⎭⎪⎫12=-12<0,g (1)=1>0,∴g (x )在⎝ ⎛⎭⎪⎫12,+∞上有零点,即q 是假命题,根据真值表可知p ∧(綈q )是真命题.故选D.9.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 作出y =e x 与y =ax +1的图象,如图.当a =1时,e x ≥x +1恒成立,故当a ≤1时,e x -ax <1不恒成立;当a >1时,可知存在x ∈(0,x 0),使得e x -ax <1成立,故p 成立,即p :a >1,由函数f (x )=-(a -1)x 是减函数,可得a -1>1,得a >2,即q :a >2,故p 推不出q ,q 可以推出p ,p 是q 的必要不充分条件.故选B.10.(2017·泰安模拟)已知命题p :存在x 0∈R ,mx 20+1<1,q :对任意x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2]C .[0,2]D .R答案 C解析 对于命题p ,mx 2+1<1,得mx 2<0,若p 为真命题,则m <0,若p 为假命题,则m ≥0;对于命题q ,对任意x ∈R ,x 2+mx +1≥0,若命题q 为真命题,则m 2-4≤0,即-2≤m ≤2,若命题q 为假命题,则m <-2或m >2.因为p ∨(綈q )为假命题,则需要满足命题p 为假命题且命题q 为真命题,即⎩⎨⎧m ≥0,-2≤m ≤2,解得0≤m ≤2,故选C.二、填空题11.若∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,则cos ⎝ ⎛⎭⎪⎫θ-π6的值为________.答案 12解析 因为∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,所以sin θ≥1.又sin θ∈[-1,1],所以sin θ=1,故θ=π2+2k π(k ∈Z ).所以cos ⎝ ⎛⎭⎪⎫θ-π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2+2k π-π6=cos ⎝ ⎛⎭⎪⎫π3+2k π=cos π3=12.12.已知命题p :方程x 2-mx +1=0有实数解,命题q :x 2-2x +m >0对任意x 恒成立.若命题q ∨(p ∧q )真、綈p 真,则实数m 的取值范围是________.答案 (1,2)解析 由于綈p 真,所以p 假,则p ∧q 假,又q ∨(p ∧q )真,故q 真,即命题p 假、q 真.当命题p 假时,即方程x 2-mx +1=0无实数解,此时m 2-4<0,解得-2<m <2;当命题q 真时,4-4m <0,解得m >1.所以所求的m 的取值范围是1<m <2.13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案 ⎝⎛⎦⎥⎤0,12 解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是⎝ ⎛⎦⎥⎤0,12.14.(2017·衡水调研)直线x =1与抛物线C :y 2=4x 交于M ,N 两点,点P 是抛物线C 准线上的一点,记OP →=aOM →+bON →(a ,b ∈R ),其中O 为抛物线C 的顶点.(1)当OP →与ON →平行时,b =________;(2)给出下列命题:①∀a ,b ∈R ,△PMN 不是等边三角形; ②∃a <0且b <0,使得OP →与ON →垂直;③无论点P 在准线上如何运动,a +b =-1恒成立. 其中,所有正确命题的序号是________. 答案 (1)-1 (2)①②③解析 (1)∵OM →=(1,2),ON →=(1,-2), ∴OP →=aOM →+bON →=(a +b,2a -2b ). ∵OP →∥ON →,∴2a -2b +2(a +b )=0,∴a =0.∵抛物线的准线为x =-1,点P 在准线上, ∴P 点的横坐标为-1,∴a +b =-1,∴b =-1.(2)对于①,假设是等边三角形,则P (-1,0),|PM |=22,|MN |=4,|MN |≠|PM |,这与假设矛盾,∴假设不成立,原结论正确;对于②,OP →与ON →垂直,OP →·ON →=0,得到a =53b ,∴②正确;③显然成立.三、解答题15.(2018·吉林大学附中模拟)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x +7.若“∃x ∈[0,+∞),f (x )<a +1”是假命题,求实数a 的取值范围.解 y =f (x )是定义在R 上的奇函数,故可求解析式为f (x )=⎩⎪⎨⎪⎧9x +a 2x -7,x >0,0,x =0,9x +a 2x +7,x <0.又“∃x ≥0,f (x )<a +1”是假命题,则∀x ≥0,f (x )≥a +1是真命题,①当x =0时,0≥a +1,解得a ≤-1;②当x >0时,9x +a 2x -7≥a +1,结合基本不等式有6|a |-7≥a +1,得a ≥85或a ≤-87,①②取交集得a 的取值范围是a ≤-87.16.(2018·福建晨曦中学联考)已知命题p :函数y =x 2-2x +a 在区间(1,2)上有1个零点,命题q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∧q 是假命题,p ∨q 是真命题,求a 的取值范围.解 若命题p 为真,则函数y =x 2-2x +a 在区间(1,2)上有1个零点,因为二次函数图象开口向上,对称轴为x =1,所以⎩⎨⎧12-2×1+a <0,22-2×2+a >0,所以0<a <1.若命题q 为真,则函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点,由Δ=(2a -3)2-4>0,得4a 2-12a +5>0,解得a <12或a >52.因为p ∧q 是假命题,p ∨q 是真命题,所以p ,q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧0<a <1,12≤a ≤52,所以12≤a <1;②若p 假q 真,则⎩⎪⎨⎪⎧a ≤0或a ≥1,a <12或a >52,所以a ≤0或a >52.故实数a 的取值范围是a ≤0或12≤a <1或a >52.。

2019高考数学文一轮分层演练:第1章集合与常用逻辑用语 章末总结 Word版含解析

2019高考数学文一轮分层演练:第1章集合与常用逻辑用语 章末总结 Word版含解析

章末总结一、点在纲上,源在本里一、选择题1.(必修1 P 11练习T 4改编)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},B ={1,3,5,7},则(∁U A )∩B =( )A .{1,3,5,6,7}B .{1,3,7}C .{5}D .{3,5,7}解析:选B.(∁U A )∩B ={1,3,6,7}∩{1,3,5,7}={1,3,7}.2.(必修1 P 12A 组T 3(3)改编)设A ={x ∈Z |-3<2x -1≤3},B ={x |3x ≥4-2x },则A ∩B =( )A .{1,2}B .{2}C .⎩⎨⎧⎭⎬⎫x ⎪⎪45≤x ≤2 D .{0,1} 解析:选A.A ={x ∈Z |-1<x ≤2}={0,1,2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥45,所以A ∩B ={1,2}. 3.(必修1 P 8例5改编)设集合A ={x |-1<x <2},B ={x |1<x <3},则( )A .A ∩B ={x |-1<x <3}B .A ∪B ={x |1<x <2}C .(∁R A )∩B ={x |2≤x <3}D .A ⊆B解析:选C.因为A ={x |-1<x <2},B ={x |1<x <3},所以A ∩B ={x |1<x <2},A ∪B ={x |-1<x <3}.(∁R A )∩B ={x |x ≤-1或x ≥2}∩{x |1<x <3}={x |2≤x <3}.A 与B 无包含关系.故选C.4.(必修1 P 11练习T 2改编)设A ={x |x 2-4x -5<0},B ={x |x 2<4},则A ∪B =( )A .(-1,2)B .(-2,5)C .(2,5)D .(-2,-1)解析:选B.A ={x |-1<x <5},B ={x |-2<x <2},所以A ∪B ={x |-2<x <5}.5.(必修1 P 83B 组T 1改编)设集合A ={y |y =log 2(|sin x |+1),x ∈R },B ={y |y =2cos x ,x ∈R },则A ∩B =( )A .[0,2]B .[1,2]C .[0,1] D.⎣⎡⎦⎤12,1解析:选D.因为|sin x |+1∈[1,2],所以A ={y |y =log 2(|sin x |+1),x ∈R }={y |0≤y ≤1},又cos x ∈[-1,1],所以B ={y |y =2cos x ,x ∈R }=⎩⎨⎧⎭⎬⎫y ⎪⎪12≤y ≤2, 所以A ∩B =[0,1]∩⎣⎡⎦⎤12,2=⎣⎡⎦⎤12,1.6.(选修1-1 P 12练习T 2(2)改编)已知条件p :x -3>0,条件q :(x -3)(x -4)≥0,则( )A .p 是q 的充分条件B .p 是﹁q 的必要条件C .p 是﹁q 的充分条件D .p 是q 的必要条件解析:选B.将条件p 、q 转化为用集合表示:p :A ={x |x -3>0}={x |x >3}.﹁p :B ={x |x -3≤0}={x |x ≤3}.q :C ={x |(x -3)(x -4)≥0}={x |x ≤3或x ≥4}.﹁q :D ={x |(x -3)(x -4)<0}={x |3<x <4}.显然,A 不是C 的子集,故A 错;D ⊆A ,即p 是﹁q 的必要条件,故B 正确,C 错;C 不是A 的子集,故D 错,所以选B.二、填空题7.(必修1 P 7练习T 2(6)改编)已知集合A ={x |x 2-2x -3<0},B ={x |-m <x <m }.若B ⊆A ,则m 的范围为________.解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |x 2-2x -3<0} ={x |-1<x <3}.当B ⊆A 时,用数轴表示有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的范围为m ≤1. 答案:m ≤18.(选修1-1 P 25探究(3)改编)命题p :∀x ∈R ,x 2+1>0的否定是________. 解析:根据全称命题的否定形式. p :∀x ∈R ,x 2+1>0的否定是﹁p :∃x 0∈R ,x 20+1≤0.答案:∃x 0∈R ,x 20+1≤0。

2019版高考数学理培优增分一轮全国经典版培优讲义:第

2019版高考数学理培优增分一轮全国经典版培优讲义:第

第3讲简单的逻辑联结词、全称量词与存在量词板块一知识梳理·自主学习[必备知识]考点1全称量词和存在量词1.全称量词有:所有的,任意一个,任给一个,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.2.含有全称量词的命题,叫做全称命题.“对M中任意一个x,有p(x)成立”用符号简记为:∀x∈M,p(x).3.含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成立”用符号简记为:∃x0∈M,p(x0).考点2含有一个量词的命题的否定[必会结论]12.“p∨q”的否定是“(綈p)∧(綈q)”;“p∧q”的否定是“(綈p)∨(綈q)”.3.“且”“或”“非”三个逻辑联结词,对应着集合中的“交”“并”“补”,所以含有逻辑联结词的问题常常转化为集合问题处理.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题p∧q为假命题,则命题p,q都是假命题.()(2)命题p和綈p不可能都是真命题.()(3)若命题p,q至少有一个是真命题,则p∨q是真命题.()(4)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.()答案(1)×(2)√(3)√(4)×2.已知命题p:∀x>0,总有(x+1)e x>1,则綈p为()A.∃x0≤0,使得(x0+1)e x0≤1B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤1答案 B解析全称命题的否定是特称命题,选B项.3.命题“存在一个无理数,它的平方是有理数”的否定是() A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数答案 B解析特称命题的否定规律是“改变量词,否定结论”,特称命题的否定是全称命题,选B项.4.[2018·重庆模拟]已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是() A.p∧q B.(綈p)∧(綈q)C.(綈p)∧q D.p∧(綈q)答案 D解析依题意,命题p是真命题.由x>2⇒x>1,x>1⇒/x>2,知“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则綈q是真命题,p∧(綈q)是真命题.故选D.5.[课本改编]命题“任意x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是()A.a≥4 B.a≤4 C.a≥5 D.a≤5答案 C解析命题“任意x∈[1,2],x2-a≤0”为真命题的充要条件是a≥4.故其充分不必要条件是集合[4,+∞)的真子集,正确选项为C.板块二典例探究·考向突破考向含有逻辑联结词的命题的真假例1[2017·山东高考]已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)答案 B解析∵一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,∴x2-x+1>0恒成立,∴p为真命题,綈p为假命题.∵当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,∴q为假命题,綈q为真命题.根据真值表可知p∧(綈q)为真命题,p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题.故选B.触类旁通“p∨q”“p∧q”“綈p”形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p,q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.【变式训练1】在一次驾照考试中,甲、乙两位学员各试驾一次.设命题p是“甲试驾成功”,q是“乙试驾成功”,则命题“至少有一位学员没有试驾成功”可表示为()A.(綈p)∨(綈q) B.p∨(綈q)C.(綈p)∧(綈q) D.p∨q答案 A解析命题“至少有一位学员没有试驾成功”包含以下三种情况:“甲、乙均没有试驾成功”“甲试驾成功,乙没有试驾成功”“乙试驾成功,甲没有试驾成功”.故选A.考向全称命题、特称命题命题角度1全称命题、特称命题的否定例2[2016·浙江高考]命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x0∈R,∃n∈N*,使得n<x20D.∃x0∈R,∀n∈N*,使得n<x20答案 D解析先将条件中的全称量词变为存在量词,存在量词变为全称量词,再否定结论.故选D.命题角度2 全称命题、特称命题真假的判断例 3 下列命题中为假命题的是( )A .∀x ∈R ,e x >0B .∀x ∈N ,x 2>0C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin πx 02=1 答案 B解析 e x >0对∀x ∈R 恒成立,A 为真;当x =0时,x 2>0不成立,B 为假;存在0<x 0<e ,使ln x 0<1,C 为真;当x 0=1时,有sin π2=1成立,D 为真.选B 项.触类旁通全(特)称命题真假的判断方法(1)全称命题真假的判断方法①要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立.②要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成立即可.(2)特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.考向 利用复合命题的真假求参数范围 例 4 已知命题p :关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},命题q :函数y =lg (ax 2-x +a )的定义域为R ,如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.解 由关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},知0<a <1;由函数y =lg (ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,解得a >12. 因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”,故⎩⎨⎧ a ≥1,a >12或⎩⎨⎧ 0<a <1,a ≤12,解得a ≥1或0<a ≤12,故实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 本例条件不变,若p ∧q 为真,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1 解析 由p ∧q 为真,知p ,q 都为真,∴a 的取值范围是⎝ ⎛⎭⎪⎫12,1. 触类旁通根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)然后再求出每个命题是真命题时参数的取值范围;(3)最后根据每个命题的真假情况,求出参数的取值范围.【变式训练2】 命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( )A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)答案 D 解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以命题綈p :∃x 0∈R ,ax 20+ax 0+1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0, 解得a <0或a >4.核心规律1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”“且”“非”字眼,要结合语句的含义理解.2.含有逻辑联结词的命题真假判断口诀:p ∨q →见真即真,p ∧q →见假即假,p 与綈p →真假相反.3.要写一个命题的否定,需先分清其是全称命题还是特称命题,对照否定结构去写,否定的规律是“改量词,否结论”.满分策略1.判断命题的真假要注意:全称命题为真需证明,为假举反例即可;特称命题为真需举一个例子,为假则要证明全称命题为真.2.命题的否定与否命题的区别“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.板块三 启智培优·破译高考题型技法系列2——利用逻辑推理解决实际问题[2017·全国卷Ⅱ]甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩解题视点解决此题的关键是弄清实际问题的含义,结合数学的逻辑分析去判断真假.解析由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.答案 D答题启示在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.跟踪训练a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a 的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.答案c,a,b解析显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.板块四模拟演练·提能增分[A级基础达标]1.[2018·沈阳模拟]命题“∃x0∈∁R Q,x30∈Q”的否定是() A.∃x0∉∁R Q,x30∈Q B.∃x0∈∁R Q,x30∈QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q答案 D解析该特称命题的否定为“∀x∈∁R Q,x3∉Q”.2.命题“所有奇数的立方都是奇数”的否定是()A.所有奇数的立方都不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方不是奇数D.不存在一个奇数,它的立方是奇数答案 C解析全称命题的否定是特称命题,即“存在一个奇数,它的立方不是奇数”.3.[2018·安徽六校素质测试]设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,有x∈P B.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈P D.∃x0∈P,使得x0∉Q答案 B解析因为P∩Q=P,所以P⊆Q,所以∀x∉Q,有x∉P.故选B.4.以下四个命题既是特称命题又是真命题的是()A.锐角三角形有一个内角是钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,1 x>2答案 B解析当x=0时,x2=0,满足x2≤0,所以B既是特称命题又是真命题.5.[2018·湖南模拟]已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是()A.①③B.①④C.②③D.②④答案 C解析当x>y时,-x<-y,故命题p为真命题,从而綈p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而綈q为真命题.由真值表知,①p∧q为假命题;②p∨q为真命题;③p∧(綈q)为真命题;④(綈p)∨q为假命题.故选C.6.[2018·浙江模拟]命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0答案 D解析全称命题的否定是特称命题.选D项.7.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.若a,b∈R,则“ab≠0”是“a≠0”的充分不必要条件C.命题“∃x0∈R,x20+x0+1<0”的否定是“∀x∈R,x2+x+1>0”D.若“p且q”为假命题,则p,q全是假命题答案 B解析命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,所以A错误;ab≠0等价于a≠0且b≠0,所以“ab≠0”是“a≠0”的充分不必要条件,B正确;命题“∃x0∈R,x20+x0+1<0”的否定为“∀x∈R,x2+x+1≥0”,C错误;若“p且q”为假命题,则p,q至少有一个为假命题,D错误.综上所述,故选B.8.已知p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析∵p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.9.[2018·河南模拟]若命题“∃x0∈R,使得x20+ax0+a+3<0”为假命题,则实数a的取值范围是________.答案-2≤a≤6解析由命题“∃x0∈R,使得x20+ax0+a+3<0”为假命题,得命题“∀x∈R,都有x2+ax+a+3≥0”为真命题,则Δ=a2-4(a+3)≤0,解得-2≤a≤6.10.对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.答案一解析由题可知:甲、乙、丙均为“p且q”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名.[B级知能提升]1.[2018·青岛模拟]下列命题中,是真命题的是()A .∃x 0∈R ,e x ≤0B .∀x ∈R,2x >x 2C .已知a ,b 为实数,则a +b =0的充要条件是a b =-1D .已知a ,b 为实数,则a >1,b >1是ab >1的充分条件答案 D解析 对于A ,对任意x ∈R ,e x >0,所以A 为假命题;对于B ,当x =2时,有2x =x 2,所以B 为假命题;对于C ,a b =-1的充要条件为a +b =0且b ≠0,所以C 为假命题;对于D ,当a >1,b >1时,显然有ab >1,充分性成立,当a =4,b =12时,满足ab >1,但此时a >1,b <1,必要性不成立,所以“a >1,b >1”是“ab >1”的充分不必要条件,所以D 为真命题.故选D.2.已知命题p :∀x >0,x +4x ≥4;命题q :∃x 0∈(0,+∞),2x 0=12,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题 答案 C解析 p :∵x >0,∴x +4x ≥2x ·4x =4,∴p 为真命题. q :当x >0时,2x >1,∴q 为假命题.∴p ∧(綈q )是真命题.故选C.3.已知命题p :方程x 2-mx +1=0有实数解,命题q :x 2-2x +m >0对任意x 恒成立.若命题q ∨(p ∧q )真、綈p 真,则实数m 的取值范围是________.答案 (1,2)解析 由于綈p 真,所以p 假,则p ∧q 假,又q ∨(p ∧q )真,故q 真,即命题p 假、q 真.当命题p 假时,即方程x 2-mx +1=0无实数解,此时m 2-4<0,解得-2<m <2;当命题q 真时,4-4m <0,解得m >1.所以所求的m 的取值范围是1<m <2.4.[2018·桂林模拟]给定两个命题:p :对任意实数x ,都有ax 2+ax +1>0恒成立,q :函数y =3x -a 在x ∈[0,2]上有零点,如果(綈p )∧q 为假命题,綈q 为假命题,求a 的取值范围.解 若p 为真命题,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,即0≤a <4,故当p 为真命题时,0≤a <4.若q 为真命题时,方程3x -a =0在x ∈[0,2]上有根.∵当x ∈[0,2]时,有1≤3x ≤9,∴1≤a ≤9,即当q 为真命题时,1≤a ≤9.∵(綈p )∧q 为假命题,∴綈p ,q 中至少有一个为假命题. 又∵綈q 为假命题,∴q 为真命题.∴綈p 为假命题,p 为真命题.∴当p ,q 都为真时,⎩⎪⎨⎪⎧0≤a <4,1≤a ≤9,即1≤a <4. 故所求a 的取值范围是[1,4).5.已知m ∈R ,命题p :对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立;命题q :存在x ∈[-1,1],使得m ≤ax 成立.(1)若p 为真命题,求m 的取值范围;(2)当a =1,若p 且q 为假,p 或q 为真,求m 的取值范围. 解 (1)∵对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立,∴(2x -2)min ≥m 2-3m .即m 2-3m ≤-2.解得1≤m ≤2.因此,若p 为真命题时,m 的取值范围是[1,2].(2)∵a =1,且存在x ∈[-1,1],使得m ≤ax 成立,∴m ≤x ,命题q 为真时,m ≤1.∵p 且q 为假,p 或q 为真,∴p ,q 中一个是真命题,一个是假命题.当p 真q 假时,则⎩⎪⎨⎪⎧ 1≤m ≤2,m >1,解得1<m ≤2; 当p 假q 真时,⎩⎪⎨⎪⎧m <1或m >2,m ≤1,即m <1. 综上所述,m 的取值范围为(-∞,1)∪(1,2].。

全国近年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练(2021年整理)

全国近年高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练(2021年整理)

(全国版)2019版高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第1章集合与常用逻辑用语第1讲集合的概念与运算增分练的全部内容。

第1讲集合的概念与运算板块四模拟演练·提能增分[A级基础达标]1.[2017·全国卷Ⅱ]设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3} B.{1,0}C.{1,3}D.{1,5}答案C解析∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C。

2.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则()A.M=N B.M⊆NC.N⊆M D.M∩N=∅答案C解析M={x||x|≤1}=[-1,1],N={y|y=x2,|x|≤1}=[0,1],所以N⊆M。

故选C。

3.[2017·山东高考]设函数y=4-x2的定义域为A,函数y=ln (1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1) D.[-2,1)答案D解析∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D。

4.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是()A.(-∞,-2)B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)答案D解析因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.故选D。

2019版+全国版+高考数学一轮复习第1章集合与常用逻辑用语第3讲简单的逻辑联结词增分练.doc

2019版+全国版+高考数学一轮复习第1章集合与常用逻辑用语第3讲简单的逻辑联结词增分练.doc

简单的逻辑联结词、全称量词与存在量词板块四模拟演练•提能增分[A级基础达标]1.[2018 •沈阳模拟]命题“ 3x o e[R Q,怎日”的否定是()A.3AO^[R Q,并EQB.日颍丘加,并WQC. V A^[R Q, %eQD. V^e[R Q,来络Q答案D解析该特称命题的否定为“ V/[R Q,虫Q” .2.[2017 •湖北武汉调研]命题“y=f3 g血是奇函数”的否定是()A. 3 xW M, f(— x) = — f(x)B.V xWM, f(— *) H —f\x)C.*xW阴,f(—x)= — f(x)D.M, f\~x) — f\x)答案D解析命题“ y=f^是奇函数”的否定是%已肌f( —x)H —f(x),故选D.3.[2018 •安徽六校素质测试]设非空集合只0满足PC Q= P,贝9()A.PxWQ,有xWPB. ▽於0,有対PC. 使得x.^PD. 使得必钩答案B解析因为PCQ=P,所以匹",所以V対0,有対P,故选B.4.以下四个命题既是特称命题又是真命题的是( )A.锐角三角形有一个内角是钝角B.至少有一个实数x,使#W0C.两个无理数的和必是无理数D.存在一个负数乙->2X答案B解析当x=0时,,=0,满足(W0,所以B既是特称命题又是真命题.5.[2018 •湖南模拟]已知命题p:若x>y,则一x< — y\命题q:若x>y,则x>y.在命题①p/\g;②/A/g;®p\ q);④(綁RVg中,真命题是()A.①③B.①④C.②③D.②④答案C解析当x>y时,一* —y,故命题p为真命题,从而続Q为假命题.当Qy吋,不一定成立,故命题g为假命题,从而純g为真命题.rh真值表知,©pA Q为假命题;®p\/ Q为真命题;③Q/\(絲Q)为真命题;④P) V <7 为假命题.故选c.6.[2018 •浙江模拟]命题“ V/7ehT, A/;) EN*且的否定形式是( )A. V/?eN*, 且代刀)>门B.V/?^N*, f(/?)年N*或/*(刀) >刀C.3/Jb^N*, A/A>)年N*且f(%)>rhD.3^eN*, fg)年N*或fg)〉%答案D解析全称命题的否定是特称命题.选D项.7.下列说法正确的是()A.命题“若*=1,则x=l v的否命题为“若2=1,则好]”B.若日,0WR,则“如0”是“日H0”的充分不必要条件C.命题怎+心+1<0"的杏定是"\7X UR,#+X+1〉0"D.若“"且q”为假命题,则p, Q全是假命题答案B解析命题“若#=1,则尸1”的否命题为“若,工1,则xHl”,所以A错误;"H0 等价于日H0且狞0,所以“MH0”是OHO”的充分不必要条件,B正确;命题“ £+及+1〈0”的否定为“\/xER, , +x+120”,C错误;若■且q”为假命题,则p, q 至少有一个为假命题,D错误.综上所述,故选B.&已知3 f二_2>0,则綁Q对应的以的集合为___________ •答案{”一1W点2}解析Vp:丁」一〉0U>x>2 或 *一1,・•・纟弟p:—1W JV W2.x — x—29.[2018 •河南模拟]若命题“ 3x o eR,使得怎+輕+日+3〈0”为假命题,则实数日的取值范围是 _______ ・答案一2W臼W6解析由命题使得滋+自必+日+3〈0"为假命题,得命题都有Y + &x+&+32:0” 为真命题,贝9 A=a—4(白+3) WO,解得一2W&W6.10.对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:屮国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第_______ 名.答案一解析由题可知:甲、乙、丙均为“刀且q”形式,所以猜对一半者也说了错误“命题”, 即只有一个为真,所以可知丙是真命题,因此屮国足球队得了第一名.[B级知能提升]1.[2018 •青岛模拟]下列命题屮,是真命题的是()A. 3 AoR, eWOB.V A^ER,2X>XC.已知仪,方为实数,则自+方=0的充要条件是扌=—1D.已知自,力为实数,则Q1, 41是日方>1的充分条件答案D解析对于A,对任意%eR,龄0,所以A为假命题;对于B,当”=2时,有2'=/, 所以B为假命题;对于C,号=—1的充要条件为臼+方=0且方H0,所以C为假命题;对于D, 当曰>1, 〃〉1时,显然有日力>1,充分性成立,当日=4, 5=*时,满足日力>1,但此时$>1, ZK1, 必要性不成立,所以“Q1,方>1”是“册”的充分不必要条件,所以D为真命题.故选D.4 12.己知命题a Vx>0, /+-24;命题°:(0, +8), 2xo=-,则下列判断正确x乙的是()A.。

2019版高考数学(文)培优增分一轮全国经典版培优讲义:第1章 集合与常用逻辑用语 第2讲命题及其关系

2019版高考数学(文)培优增分一轮全国经典版培优讲义:第1章 集合与常用逻辑用语 第2讲命题及其关系

4.原命题 p:“设 a,b,c∈R,若 a>b,则 ac2>bc2”以及它
的逆命题、否命题、逆否命题中,真命题的个数为( )
A.0
B.1
C.2
D.4
答案 C
解析 当 c=0 时,ac2=bc2,所以原命题是错误的;由于原命
题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为
“设 a,b,c∈R,若 ac2>bc2,则 a>b”,它是真命题;由于否命题
答案 C 答题启示 注意区分以下两种不同的说法,1A 是 B 的充分不必 要条件,是指 A⇒B 但 B⇒/ A; 2A 的充分不必要条件是 B,是指 B⇒A 但 A⇒/ B.,以上两种说法 在充要条件的推理判断中经常出现且容易混淆,在解题中一定要注
意问题的设问方式,弄清它们的区别,以免出现错误判断. 跟踪训练
x=0,则一定能推出(2x-1)x=0.
故“(2x-1)x=0”是“x=0”的必要不充分条件.
3.[2018·安徽模拟]设 p:1<x<2,q:2x>1,则 p 是 q 成立的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案 A
解析 ∵(1,2)(0,+∞),∴p 是 q 的充分不必要条件.
答案 ①③ 解析 ①命题“若 x+y=0,则 x,y 互为相反数”的逆命题为 “若 x,y 互为相反数,则 x+y=0”,显然①为真命题;②不全等的 三角形的面积也可能相等,故②为假命题;③原命题正确,所以它 的逆否命题也正确,故③为真命题;④若 ab 是正整数,但 a,b 不 一定都是正整数,例如 a=-1,b=-3,故④为假命题.
核心规律

2019版高考数学(文)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-3a

2019版高考数学(文)高分计划一轮狂刷练:第1章 集合与常用逻辑用语 1-3a

[基础送分 提速狂刷练]一、选择题1.(2018·武邑模拟)已知命题p :∀x >0,总有(x +1)e x >1,则綈p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤1答案 B解析 “∀x >0,总有(x +1)e x >1”的否定是“∃x 0>0,使得(x 0+1)e x 0≤1”.故选B.2.下列四个命题:p 1:∃x 0∈(0,+∞),x 0<x 0;(12)(13)p 2:∃x 0∈(0,1),log x 0>log x 0;12 13p 3:∀x ∈(0,+∞),x >log x ;(12)12p 4:∀x ∈,x <log x .(0,13)(12)13其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4答案 D解析 对于p 1,当x 0∈(0,+∞)时,总有 x 0> x0成立,故(12)(13)p 1是假命题;对于p 2,当x 0=时,有1=log =log >log 成立,12 1212 1313 1312故p 2是真命题;对于p 3,结合指数函数y =x 与对数函数y =log x (12)12在(0,+∞)上的图象,可以判断p 3是假命题;对于p 4,结合指数函数y =x与对数函数y =log x 在上的图象可以判断p 4是真命(12)13(0,13)题.故选D.3.已知a >0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)答案 C解析 由题知:x 0=-为函数f (x )图象的对称轴方程,所以b2a f (x 0)为函数的最小值,即对所有的实数x ,都有f (x )≥f (x 0),因此∀x ∈R ,f (x )≤f (x 0)是错误的.故选C.4.(2018·广东五校一诊)下列命题错误的是( )A .若p ∨q 为假命题,则p ∧q 为假命题B .若a ,b ∈[0,1],则不等式a 2+b 2<成立的概率是14π16C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,x 2+x +1≥0”D .已知函数f (x )可导,则“f ′(x 0)=0”是“x 0是函数f (x )的极值点”的充要条件答案 D解析 选项A ,若p ∨q 为假命题,则p 为假命题,q 为假命题,故p ∧q 为假命题,正确;选项B ,使不等式a 2+b 2<成立的a ,b ∈14,故不等式a 2+b 2<成立的概率是=,正确;(0,12)1414×π×(12)21×1π16选项C ,特称命题的否定是全称命题,正确;选项D ,令f (x )=x 3,则f ′(0)=0,但0不是函数f (x )=x 3的极值点,错误.故选D.5.(2017·河西区三模)已知命题p :∀x ∈[1,2],使得e x -a ≥0.若綈p 是假命题,则实数a 的取值范围为( )A .(-∞,e 2]B .(-∞,e]C .[e ,+∞)D .[e 2,+∞)答案 B解析 命题p :∀x ∈[1,2],使得e x -a ≥0.∴a ≤(e x )min =e ,若綈p 是假命题,∴p 是真命题,∴a ≤e.则实数a 的取值范围为(-∞,e].故选B.6.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2)答案 C解析 由题可知若p ∧q 为真命题,则命题p 和命题q 均为真命题,对于命题p 为真,则m <0,对于命题q 为真,则m 2-4<0,即-2<m <2,所以命题p 和命题q 均为真命题时,实数m 的取值范围是(-2,0).故选C.7.(2018·黄冈模拟)下列四个结论:①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”;③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件;④命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-lnx 0<0”.其中正确结论的个数是( )A .1B .2C .3D .4答案 C解析 对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上递增,则当x >0时,x -sin x >0-0=0,即当x >0时,x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”,故②正确;对于③,命题p ∨q 为真即p ,q 中至少有一个为真,p ∧q 为真即p ,q 都为真,可知“p ∧q 为真”是“p ∨q 为真”的充分不必要条件,故③正确;对于④,命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0≤0”,故④错误.综上,正确结论的个数为3.故选C.8.(2017·广东七校联考)已知命题p :∃a ∈,函数(-∞,-14)f (x )=在上单调递增;命题q :函数g (x )=x +log 2x 在|x +a x +1|[12,3]区间上无零点.则下列命题中是真命题的是( )(12,+∞)A .綈p B .p ∧q C .(綈p )∨q D .p ∧(綈q )答案 D解析 设h (x )=x +.易知当a =-时,函数h (x )为增函数,ax +112且h =>0,则此时函数f (x )在上必单调递增,即p 是真命题;(12)16[12,3]∵g =-<0,g (1)=1>0,∴g (x )在上有零点,即q 是假(12)12(12,+∞)命题,根据真值表可知p ∧(綈q )是真命题.故选D.9.已知命题p :∃x 0∈(-∞,0),使得3x 0<4x 0;命题q :∀x ∈,有tan x >x ,则下列命题中的真命题是( )(0,π2)A .p ∧q B .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q答案 D解析 由3x <4x 得x >1,当x <0时不等式不成立,故p 为假命(43)题;由图象知tan x >x 在上恒成立,故q 为真命题.故D 项为(0,π2)真.故选D.10.(2017·泰安模拟)已知命题p :存在x 0∈R ,mx +1<1,q :20对任意x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2]C .[0,2]D .R 答案 C解析 对于命题p ,mx 2+1<1,得mx 2<0,若p 为真命题,则m <0,若p 为假命题,则m ≥0;对于命题q ,对任意x ∈R ,x 2+mx +1≥0,若命题q 为真命题,则m 2-4≤0,即-2≤m ≤2,若命题q 为假命题,则m <-2或m >2.因为p ∨(綈q )为假命题,则需要满足命题p 为假命题且命题q 为真命题,即Error!解得0≤m ≤2.故选C.二、填空题11.若∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,则cos的值为________.(θ-π6)答案 12解析 因为∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,所以sin θ≥1.又sin θ∈[-1,1],所以sin θ=1,故θ=+2k π(k ∈Z ).所以π2cos =cos =cos =cos =.(θ-π6)[(π2+2k π)-π6](π3+2k π)π31212.已知命题p :方程x 2-mx +1=0有实数解,命题q :x 2-2x +m >0对任意x 恒成立.若命题q ∨(p ∧q )真、綈p 真,则实数m 的取值范围是________.答案 (1,2)解析 由于綈p 真,所以p 假,则p ∧q 假,又q ∨(p ∧q )真,故q 真,即命题p 假、q 真.当命题p 假时,即方程x 2-mx +1=0无实数解,此时m 2-4<0,解得-2<m <2;当命题q 真时,4-4m <0,解得m >1.所以所求的m 的取值范围是1<m <2.13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案 (0,12]解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a ,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤.又a >0,12故a 的取值范围是.(0,12]14.(2017·衡水调研)直线x =1与抛物线C :y 2=4x 交于M ,N 两点,点P 是抛物线C 准线上的一点,记=a +b (a ,b ∈R ),OP → OM → ON →其中O 为抛物线C 的顶点.(1)当与平行时,b =________;OP → ON→(2)给出下列命题:①∀a ,b ∈R ,△PMN 不是等边三角形;②∃a <0且b <0,使得与垂直;OP → ON→ ③无论点P 在准线上如何运动,a +b =-1恒成立.其中,所有正确命题的序号是________.答案 (1)-1 (2)①②③解析 (1)∵=(1,2),=(1,-2),OM → ON→ ∴=a +b =(a +b,2a -2b ).OP → OM → ON → ∵∥,∴2a -2b +2(a +b )=0,OP → ON→ ∴a =0.∵抛物线的准线为x =-1,点P 在准线上,∴P 点的横坐标为-1,∴a +b =-1,∴b =-1.(2)对于①,假设是等边三角形,则P (-1,0),|PM |=2,|MN |=4,|MN |≠|PM |,这与假设矛盾,∴假设不成立,2原结论正确;对于②,与垂直,·=0,得到OP → ON → OP → ON → a =b ,∴②正确;③显然成立.53三、解答题15.(2018·吉林大学附中模拟)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x ++7.若“∃x ∈[0,+∞),a 2x f (x )<a +1”是假命题,求实数a 的取值范围.解 y =f (x )是定义在R 上的奇函数,故可求解析式为f (x )=Error!又“∃x ≥0,f (x )<a +1”是假命题,则∀x ≥0,f (x )≥a +1是真命题,①当x =0时,0≥a +1,解得a ≤-1;②当x >0时,9x +-7≥a +1,结合基本不等式有6|a |-7≥a +1,得a ≥或a 2x 85a ≤-,①②取交集得a 的取值范围是a ≤-.878716.(2018·福建晨曦中学模拟)已知命题p :函数y =x 2-2x +a 在区间(1,2)上有1个零点,命题q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∧q 是假命题,p ∨q 是真命题,求a 的取值范围.解 若命题p 为真,则函数y =x 2-2x +a 在区间(1,2)上有1个零点,因为二次函数图象开口向上,对称轴为x =1,所以Error!所以0<a <1.若命题q 为真,则函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点,由Δ=(2a -3)2-4>0,得4a 2-12a +5>0,解得a <或12a >.52因为p ∧q 是假命题,p ∨q 是真命题,所以p ,q 一真一假.①若p 真q 假,则Error!所以≤a <1;12②若p 假q 真,则Error!所以a ≤0或a >.52故实数a 的取值范围是a ≤0或≤a <1或a >.1252。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块四模拟演练·提能增分
[级基础达标]
.[·沈阳模拟]命题“∃∈∁,∈”的否定是( )
.∃∈∁,∈
.∃∉∁,∈
.∀∈∁,∉
.∀∉∁,∈
答案
解析该特称命题的否定为“∀∈∁,∉”..[·湖北武汉调研]命题“=()(∈)是奇函数”的否定是( )
.∃∈,(-)=-()
.∀∈,(-)≠-()
.∀∈,(-)=-()
.∃∈,(-)≠-()
答案
解析命题“=()(∈)是奇函数”的否定是∃∈,(-)≠-(),故
选.
.[·安徽六校素质测试]设非空集合,满足∩=,则( )
.∀∉,有∉
.∀∈,有∈
.∃∈,使得∉
.∃∉,使得∈
答案
解析因为∩=,所以⊆,所以∀∉,有∉,故选.
.以下四个命题既是特称命题又是真命题的是( )
.锐角三角形有一个内角是钝角
.至少有一个实数,使≤
.两个无理数的和必是无理数
.存在一个负数,>
答案
解析当=时,=,满足≤,所以既是特称命题又是真命题..[·湖南模拟]已知命题:若>,则-<-;命题:若>,则>.在命题①∧;②
∨;③∧(綈);④(綈)∨中,真命题是( )
.①④
.①③
.②④
.②③
答案解析当>时,-<-,故命题为真命题,从而綈为假命题.
当>时,>不一定成立,故命题为假命题,从而綈为真命题.
由真值表知,①∧为假命题;②∨为真命题;③∧(綈)为真命题;
④(綈)∨为假命题.故选.
.[·浙江模拟]命题“∀∈*,()∈*且()≤”的否定形式是( )
.∀∈*,()∉*且()>
.∀∈*,()∉*或()>
.∃∈*,()∉*且()>
.∃∈*,()∉*或()>
答案
解析全称命题的否定是特称命题.选项.
.下列说法正确的是( )
.命题“若=,则=”的否命题为“若=,则≠”
.若,∈,则“≠”是“≠”的充分不必要条件
.命题“∃∈,++<”的否定是“∀∈,++>”
.若“且”为假命题,则,全是假命题
答案
解析命题“若=,则=”的否命题为“若≠,则≠”,所以错
误;≠等价于≠且≠,所以“≠”是“≠”的充分不必要条件,正确;命题“∃∈,++<”的否定为“∀∈,++≥”,错误;若“且”为假命题,则,至少有一个为假命题,错误.综上所述,故选.
.已知:>,则綈对应的的集合为.
答案{-≤≤}。

相关文档
最新文档