2019年九年级数学上册期末模拟试题(有答案)

合集下载

浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)

浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)

2019-2020浙江省宁波市实验学校九年级数学上册期末模拟试卷解析版一、选择题(共10题;共20分)1.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D. 2.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是( ) A. 12 B. 13 C. 23 D. 1 3.如图,直线a ∥b ∥c ,点A ,B 在直线a 上,点C ,D 在直线c 上,线段AC ,BD 分别交直线b 于点E ,F ,则下列线段的比与 AE AC 一定相等的是( )A. CE ACB. BF BDC. BF FDD. ABCD4.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan ∠APD 的值是( )A. 2B. √2C. 12D. √22 5.对于函数y=(x-2)2+5,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线x=2对称D. 函数最大值为5 6.如图,等腰直角三角形ABC 的直角边AB 的长为 √3 ,将△ABC 绕点A 逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点D ,则图中阴影△ADC′的面积等于( )A. 3√32cm 2B. 3−√32cm 2C. 2√3cm 2D. 6cm 2 7.如图等腰三角形的顶角 ∠A =45°,以AB 为直径的半圆O 与BC ,AC 相较于点D ,E 两点,则弧AE 所对的圆心角的度数为( )A. 40°B. 50°C. 90°D. 100°8.如图,点A 的坐标为(-3,-2),⊙A 的半径为1,P 为坐标轴上一动点,PQ 切⊙A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A. (0,-2)B. (0,-3)C. (-3,0)或(0,-2)D. (-3,0) 9.如图,在矩形ABCD 中,AB=4,AD=a ,点P 在AD 上,且AP=2,点E 是边AB 上的动点,以PE 为边作直角∠EPF ,射线PF 交BC 于点F ,连接EF ,给出下列结论:①tan ∠PFE= 12 ;②a 的最小值为10.则下列说法正确的是( )A. ①②都对B. ①②都错C. ①对②错D. ①错②对 10.已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论:①abc >0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;≥2.④ a+b+cb其中,符合题意结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分,共24分)11.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.12.如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.14.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.15.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。

上海市长宁区2019届九年级上学期期末(一模)数学试题(解析版)

上海市长宁区2019届九年级上学期期末(一模)数学试题(解析版)

2019年上海市长宁区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.抛物线y=2(x+2)2﹣3的顶点坐标是()A. (2,﹣3)B. (﹣2,﹣3)C. (﹣2,3)D. (2,3)【答案】B【解析】【分析】利用二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),顶点坐标是(h,k)进行解答.【详解】∵y=2(x+2)2﹣3∴抛物线的顶点坐标是(﹣2,﹣3)故选B.【点睛】本题主要是对抛物线中顶点式的对称轴,顶点坐标的考查.2.如图,点D、E分别在△ABC的边AB、AC上,下列条件中能够判定DE∥BC的是()A. B. C. D.【答案】D【解析】【分析】如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.根据平行线分线段成比例定理对各个选项进行判断即可.【详解】A.由,不能得到DE∥BC,故本选项不合题意;B.由,不能得到DE∥BC,故本选项不合题意;C.由,不能得到DE∥BC,故本选项不合题意;D.由,能得到DE∥BC,故本选项符合题意;故选D.【点睛】本题考查了平行线分线段成比例定理的应用,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.3.在Rt△ABC中,∠C=90°,如果cosB=,BC=a,那么AC的长是()A. 2aB. 3aC. aD. a【答案】A【解析】【分析】依据cos B=,BC=a,即可得到AB=3a,再根据勾股定理,即可得到AC的长.【详解】如图,∵cos B=,BC=a,∴AB=3a,∵∠C=90°,∴Rt△ABC中,AC=,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理.在直角三角形中,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.如果||=2,=-,那么下列说法正确的是()A. ||=2||B. 是与方向相同的单位向量C. 2-=D. ∥【答案】D【解析】【分析】根据平面向量的模和向量平行的定义解答.【详解】A、由=-得到||=||=1,故本选项说法错误.B、由=-得到是与的方向相反,故本选项说法错误.C、由=-得到2+=,故本选项说法错误.D、由=-得到∥,故本选项说法正确.故选D.【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.5.在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,那么r的值可以取()A. 5B. 4C. 3D. 2【答案】B【解析】【分析】先根据两点间的距离公式分别计算出OA、OB的长,再由点A、B中有一点在圆O内,另一点在圆O外求出r的范围,进而求解即可.【详解】∵点A的坐标是(3,2),点B的坐标是(3,﹣4),∴OA=,OB==5,∵以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,∴<r<5,∴r=4符合要求.故选B.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了坐标与图形性质.6.在△ABC中,点D在边BC上,联结AD,下列说法错误的是()A. 如果∠BAC=90°,AB2=BD•BC,那么AD⊥BCB. 如果AD⊥BC,AD2=BD•CD,那么∠BAC=90°C. 如果AD⊥BC,AB2=BD•BC,那么∠BAC=90°D. 如果∠BAC=90°,AD2=BD•CD,那么AD⊥BC【答案】D【解析】【分析】根据相似三角形的判定定理证明相应的三角形相似,根据相似三角形的性质判断即可.【详解】如图:A、∵AB2=BD•BC,∴,又∠B=∠B,∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴,又∠B=∠B,∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选:D.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.若线段a、b、c、d满足,则的值等于_____.【答案】【解析】【分析】根据等比的性质即可求出的值.【详解】∵线段a、b、c、d满足,∴.故答案为:.【点睛】考查了比例线段,关键是熟练掌握等比的性质.8.如果抛物线y=(3﹣m)x2﹣3有最高点,那么m的取值范围是_____.【答案】m>3【解析】【分析】根据二次函数y=(3﹣m)x2﹣3的顶点是此抛物线的最高点,得出抛物线开口向下,即3﹣m<0,即可得出答案.【详解】∵抛物线y=(3﹣m)x2﹣3的顶点是此抛物线的最高点,∴抛物线开口向下,∴3﹣m<0,∴m>3,故答案为m>3.【点睛】此题主要考查了利用二次函数顶点坐标位置确定图象开口方向,此题型是中考中考查重点,同学们应熟练掌握.9.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于_____.【答案】【解析】【分析】根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长之比是,∴其相似比等于1:4,∴它们的面积比是:=1:16,故答案为:1:16.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比是解答此题的关键.10.边长为6的正六边形的边心距为_____.【答案】【解析】试题分析:连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=360°÷6=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵OM⊥AB,∴AM=BM=1,在△OAM中,由勾股定理得:OM==考点:正多边形和圆11.如图,已知AD∥BE∥CF,若AB=3,AC=7,EF=6,则DE的长为_____.【答案】【解析】【分析】根据AB=3,AC=7,可得BC=4,再根据AD∥BE∥CF,即可得出,即,进而得到DE的长.【详解】∵AB=3,AC=7,∴BC=4,∵AD∥BE∥CF,∴,即,解得DE=,故答案为:.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例定理是解决问题的关键.12.已知点P在线段AB上,满足AP:BP=BP:AB,若BP=2,则AB的长为_____.【答案】【解析】【分析】根据黄金分割点的定义,知AP是较长线段,得出BP=AB,代入数据即可得出AB的长.【详解】∵点P在线段AB上,满足AP:BP=BP:AB,∴P为线段AB的黄金分割点,且BP是较长线段,∴BP=AB,∴AB=2,解得AB=.故答案为:.【点睛】本题考查了比例线段、黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.13.若点A(﹣1,7)、B(5,7)、C(﹣2,﹣3)、D(k,﹣3)在同一条抛物线上,则k的值等于_____.【答案】6.【解析】【分析】由抛物线的对称性解答即可.【详解】∵抛物线经过A(﹣1,7)、B(5,7),∴点A、B为抛物线上的对称点,∴抛物线对称轴为直线x==2.∵C(﹣2,﹣3)、D(k,﹣3)为抛物线上的对称点,即C(﹣2,﹣3)与D(k,﹣3)关于直线x=2对称,∴,解得:k=6.故答案为:6.【点睛】本题考查了二次函数的性质.熟练掌握二次函数的对称性是解题的关键.14.如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于_____千米.(结果保留根号)【答案】(2+2)【解析】【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD、AD的长,然后在Rt△BCD中求得BD的长,即可得到码头A、B之间的距离.【详解】如图,作CD⊥AB于点D.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),AD=AC•cos30°=4×=2(km),∵Rt△BCD中,∠CDB=90°,∠CBD=45°,∴BD=CD=2(km),∴AB=AD+BD=2+2(km),故答案是:(2+2).【点睛】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得CD的长是关键.15.在矩形ABCD中,AB=2,AD=4,若圆A的半径长为5,圆C的半径长为R,且圆A与圆C内切,则R的值等于_____.【答案】5﹣2或5+2【解析】【分析】先利用勾股定理计算出AC=2,讨论:当点C在⊙A内时,5﹣R=2;当点A在⊙C内时,R﹣5=2,然后分别解关于R的方程即可.【详解】如图,∵在矩形ABCD中,AB=2,AD=4,∴AC==2,当点C在⊙A内时,∵圆A与圆C内切,∴5﹣R=2,即R=5﹣2;当点A在⊙C内时,∵圆A与圆C内切,∴R﹣5=2,即R=5+2;综上所述,R的值为5﹣2或5+2.故答案为5﹣2或5+2.【点睛】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).16.如图,在等腰△ABC中,AB=AC,AD、BE分别是边BC、AC上的中线,AD与BE交于点F,若BE =6,FD=3,则△ABC的面积等于_____.【答案】9【解析】【分析】过E作EG⊥BC于G,根据已知条件得到点F是△ABC的重心,求得AD=3DF=9,根据等腰三角形的性质得到AD⊥BC,BD=CD,根据平行线分线段成比例定理得到EG=AD=,CG=CD,根据勾股定理得到BG=,根据三角形的面积公式即可得到结论.【详解】过E作EG⊥BC于G,∵AD、BE分别是边BC、AC上的中线,∴点F是△ABC的重心,∴AD=3DF=9,∵AB=AC,AD是边BC上的中线,∴AD⊥BC,BD=CD,∵BE是边AC上的中线,∴AE=CE,∵AD⊥BC,EG⊥BC,∴EG∥AD,∴EG=AD=,CG=CD,∵BE=6,∴BG=,∴BC=BG=2,∴△ABC的面积=×9×2=9,故答案为:9.【点睛】本题考查了三角形的重心,等腰三角形的性质,三角形的面积,平行线分线段成比例定理,正确的作出辅助线是解题的关键.17.已知点P在△ABC内,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC 相似,那么就称点P为△ABC的自相似点.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,如果点P为Rt△ABC的自相似点,那么∠ACP的余切值等于_____.【答案】【解析】【分析】先找到Rt△ABC的内相似点,再根据三角函数的定义计算∠ACP的余切即可.【详解】∵AC=12,BC=5,∴∠CAB<∠CBA,故可在∠CAB内作∠CBP=∠CAB,又∵点P为△ABC的自相似点,∴过点C作CP⊥PB,并延长CP交AB于点D,则△BPC∽△ACB,∴点P为△ABC的自相似点,∴∠BCP=∠CBA,∴∠ACP=∠BAC,∴∠ACP的余切=,故答案为:.【点睛】本题主要考查相似三角形的判定和性质,利用条件先确定出P点的位置是解题的关键.18.如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线上,如果AB=5,AD=8,tanB=,那么BP的长为_____.【答案】或7【解析】【分析】①如图1,过A作AH⊥BC于H,连接DB′,设AH=4x,BH=3x,根据勾股定理得到AB==5x=5,根据旋转的性质得到AB′=AB=5,AM=DM=AD=4,∠AMN=∠HNM=90°,根据勾股定理得到MB′==3,求得HN=MN=4,根据相似三角形的性质即可得到结论;②如图2,由①知,MN=4,MB′=3,BN=7,求得NB=NB′,推出点P与N重合,得到BP=BN =7.【详解】①如图1,过A作AH⊥BC于H,连接DB′,设BB′与AP交于E,AD的垂直平分线交AD于M,BC于N,∵tan B=,∴设AH=4x,BH=3x,∴AB==5x=5,∴x=1,∴AH=4,BH=3,∵将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线MN上,∴AB′=AB=5,AM=DM=AD=4,∠AMN=∠HNM=90°,∴四边形AHNM是正方形,MB′==3,∴HN=MN=4,∴BN=7,B′N=1,∴BB′=,∴BE=BB′=,∵∠BEP=∠BNB′=90°,∠PBE=∠B′BN,∴△BPE∽△BB′N,∴,∴,∴BP=;②如图2,由①知,MN=4,MB′=3,BN=7,∴NB=NB′,∴点N在BB′的垂直平分线上,∵将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线上,∴点P也在BB′的垂直平分线上,∴点P与N重合,∴BP=BN=7,综上所述,BP的长为或7.故答案为:或7.【点睛】本题考查了翻折变换(折叠问题),线段垂直平分线的性质,勾股定理,正确的作出图形是解题的关键.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.【详解】原式====﹣.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.如图,AB与CD相交于点E,AC∥BD,点F在DB的延长线上,联结BC,若BC平分∠ABF,AE=2,BE=3.(1)求BD的长;(2)设=,=,用含、的式子表示.【答案】(1)(2)【解析】【分析】(1)利用角平分线的性质和平行线的性质得到AB=AC=5,然后结合平行线截线段成比例求得BD的长度.(2)由平行线截线段成比例和平面向量的三角形法则解答.【详解】(1)∵BC平分∠ABF,∴∠ABC=∠CBF.∵AC∥BD,∴∠CBF=∠ACB.∴∠ABC=∠ACB.∴AC=AB.∵AE=2,BE=3,∴AB=AC=5.∵AC∥BD,∴.∴.∴BD=;(2)∵AC∥BD,∴.∵=,∴=.∴=+=﹣.【点睛】考查了平行线的性质和平面向量,需要掌握平行线截线段成比例和平面向量的三角形法则,难度不大.21.如图,AB是圆O的一条弦,点O在线段AC上,AC=AB,OC=3,sinA=.求:(1)圆O的半径长;(2)BC的长.【答案】(1)5(2)【解析】【分析】(1)过点O作OH⊥AB,垂足为点H,设OH=3k,AO=5k,则AH=,得到AB=2AH=8k,求得AC=AB=8k,列方程即可得到结论;(2)过点C作CG⊥AB,垂足为点G,在Rt△ACG中,∠AGC=90°,解直角三角形即可得到结论.【详解】(1)过点O作OH⊥AB,垂足为点H,在Rt△OAH中中,∠OHA=90°,∴sinA=,设OH=3k,AO=5k,则AH=,∵OH⊥AB,∴AB=2AH=8k,∴AC=AB=8k,∴8k=5k+3,∴k=1,∴AO=5,即⊙O的半径长为5;(2)过点C作CG⊥AB,垂足为点G,在Rt△ACG中,∠AGC=90°,∴sinA=,∵AC=8,∴CG=,AG=,BG=,在Rt△CGB中,∠CGB=90°,∴BC=.【点睛】本题考查了圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.22.如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)【答案】(1)瞭望台DE的顶端D到江面AB的距离为11米(2)渔船A到迎水坡BC的底端B的距离为5.1米【解析】【分析】(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,利用坡度表示出CG,BG的长,进而求出答案;(2)在Rt△ADF中,利用cotA=,得出AF的长,进而得出答案.【详解】(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,由题意可知CE=GF=2,CG=EF在Rt△BCG中,∠BGC=90°,∴i=,设CG=4k,BG=3k,则BC==5k=10,∴k=2,∴BG=6,∴CG=EF=8,∵DE=3,∴DF=DE+EF=3+8=11(米),答:瞭望台DE的顶端D到江面AB的距离为11米;(2)由题意得∠A=40°,在Rt△ADF中,∠DFA=90°,∴cotA=,∴≈1.19,∴AF≈11×1.19=13.09(m),∴AB=AF﹣BG﹣GF=5.09≈5.1(米),答:渔船A到迎水坡BC的底端B的距离为5.1米.【点睛】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.23.如图,点D、E分别在△ABC的边AC、AB上,延长DE、CB交于点F,且AE•AB=AD•AC.(1)求证:∠FEB=∠C;(2)连接AF,若,求证:EF•AB=AC•FB.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)证明△AED∽△ACB即可解决问题;(2)证明△EFB∽△F AB,可得,由AF=AC,可得结论.【详解】(1)∵AE•AB=AD•AC.∴,又∵∠A=∠A,∴△AED∽△ACB,∴∠AED=∠C,又∵∠AED=∠FEB,∴∠FEB=∠C.(2)∵∠FEB=∠C,∠EFB=∠CFD,∴△EFB∽△CFD,∴∠FBE=∠FDC,∵,∴,∴△FBA∽△CDF,∴∠FEB=∠C∴AF=AC,∵∠FEB=∠C,∴∠FEB=∠AFB,又∵∠FBE=∠ABF,∴△EFB∽△FAB,∴,∵AF=AC,∴EF•AB=AC•FB.【点睛】本题考查相似三角形的判定和性质,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.24.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN的面积的2倍,求的值.【答案】(1)a=﹣1,b=4(2)(,)(3)【解析】【分析】(1)过点B作BH⊥x轴,垂足为点H,根据等腰直角三角形的性质可求点A(4,0),用待定系数法可求抛物线的表达式;(2)根据平行线的性质可得BM∥OA,可求点M坐标,用待定系数法可求直线BO,直线AB,直线PM 的解析式,即可求点P坐标;(3)延长MP交x轴于点D,作PG⊥MN于点G,根据等腰直角三角形的性质可得AC=CN,PG=NG,根据锐角三角函数可得tan∠BOA=3=tan∠MPG=,可得MG=3PG=3NG,根据面积关系可求.【详解】(1)如图,过点B作BH⊥x轴,垂足为点H,∵点B(1,3)∴BH=3,OH=1,∵∠BAO=45°,∠BHA=90°∴AH=BH=3,∴OA=4∴点A(4,0)∵抛物线过原点O、点A、B,∴设抛物线的表达式为y=ax2+bx(a≠0)∴解得:a=﹣1,b=4∴抛物的线表达式为:y=﹣x2+4x(2)如图,∵PM∥OB∴∠PMB+∠OBM=180°,且∠BMP=∠AOB,∴∠AOB+∠OBM=180°∴BM∥OA,设点M(m,3),且点M在抛物线y=﹣x2+4x上,∴3=﹣m2+4m,∴m=1(舍去),m=3∴点M(3,3),∵点O(0,0),点A(4,0),点B(1,3)∴直线OB解析式为y=3x,直线AB解析式为y=﹣x+4,∵PM∥OB,∴设PM解析式为y=3x+n,且过点M(3,3)∴3=3×3+n,∴n=﹣6∴PM解析式为y=3x﹣6∴解得:x=,y=∴点P(,)(3)如图,延长MP交x轴于点D,作PG⊥MN于点G,∵PG⊥MN,MC⊥AD∴PG∥AD∴∠MPG=∠MDC,∠GPN=∠BAO=45°,又∵∠PGC=90°,∠ACG=90°,∴AC=CN,PG=NG,∵PM∥OB,∴∠BOA=∠MDC,∴∠MPG=∠BOA∵点B坐标(1,3)∴tan∠BOA=3=tan∠MPG=∴MG=3PG=3NG,∴MN=4PG,∵△ANC的面积等于△PMN的面积的2倍,∴×AC×NC=2××MN×PG,∴NC2=2×MN×MN=MN2,∴.【点睛】本题是二次函数综合题,考查了待定系数法可求函数解析式,平行线的性质,锐角三角函数等知识,正确作出辅助线是解题的关键.25.已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【答案】(1)16(2)(3)或【解析】【分析】(1)由锐角三角函数可求AC=15,根据勾股定理和三角形面积公式可求AB,AF的长,即可求EF的长;(2)通过证△FAE∽△FCA和△BDE∽△CFA,可得y关于x的函数解析式;(3)分△ADF∽△CEA,△ADF∽△CAE两种情况讨论,通过等腰三角形的性质和相似三角形性质可求BD的长.【详解】(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN=,∴∴AC=15∴AB==20∵S△ABC=×AB×AC=×BC×AF,∴AF==12,∵AF⊥BC∴cos∠EAF=cos∠MBN=∴AE=20∴EF==16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH==16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△FAE∽△FCA∴,∠AEF=∠FAC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF=∴BE=BF+EF=∵∠MBN=∠ACB,∠AEF=∠FAC,∴△BDE∽△CFA∴∴∴y=(0<x≤)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S△ABC=×AB×AC=×BC×AF,∴AF==12,∴BF=,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN=,∴BE=,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴设CE=3k,AE=4k,(k≠0)∴BE=k,∵BC=BE﹣CE=25∴k=∴AE=,CE=,BE=∵∠ACB=∠FAE,∠AFC=∠AFE,∴△AFC∽△EFA,∴,设AF=7a,EF=20a,∴CF=a,∵CE=EF﹣CF=a=,∴a=,∴EF=,∵AC∥DF,∴,∴,∴DF=,综上所述:当BD为或时,△ADF与△ACE相似【点睛】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。

2019年唐山市九年级数学上期末模拟试卷(附答案)

2019年唐山市九年级数学上期末模拟试卷(附答案)

2019年唐山市九年级数学上期末模拟试卷(附答案)一、选择题1.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2 C .(24−54π)cm 2D .(24−256π)cm 2 2.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点3.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 4.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣55.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A.59B.49C.56D.136.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A.AC BCAB AC=B.2·BC AB BC=C.512ACAB-=D.0.618≈BCAC7.方程x2=4x的解是()A.x=0B.x1=4,x2=0C.x=4D.x=2 8.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y ﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件( )A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.69.已知点P(﹣b,2)与点Q(3,2a)关于原点对称点,则a、b的值分别是()A.﹣1、3B.1、﹣3C.﹣1、﹣3D.1、310.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°11.若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A.﹣3B.﹣1C.1D.312.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )A.10B.8C.5D.3二、填空题13.从五个数1,2,3,4,5中随机抽出1个数,则数3被抽中的概率为_________.14.如图,将半径为6的半圆,绕点A逆时针旋转60°,使点B落到点B′处,则图中阴影部分的面积是_____.15.抛物线y=2(x −3)2+4的顶点坐标是__________________.16.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .17.一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ .18.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.19.已知二次函数,当x _______________时,随的增大而减小.20.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.三、解答题21.4张相同的卡片上分别写有数字1、2、3、4,将卡片背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1、2、3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出1个球,将摸到的球的标号作为减数. (1)求这两个数的差为0的概率;(2)游戏规则规定:当抽到的这两个数的差为非负数时,甲获胜;否则,乙获胜.这样的规则公平吗?如果不公平,请设计一个公平的规则,并说明理由.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m 2?23.解方程:(1)x 2-3x+1=0;(2)x (x+3)-(2x+6)=0.24.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%. (1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可.【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm , ∴22228610AC AB BC =+=+=cm , 则2AC =5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A .【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.2.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm ,根据题意得x (x-20)=300,故选A .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .5.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.6.B解析:B【解析】【详解】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:AC BCAB AC=51-≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.7.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.8.C解析:C【解析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.9.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.10.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.11.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 14.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB ′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.15.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.16.1【解析】【分析】(1)根据求出扇形弧长即圆锥底面周长;(2)根据即求圆锥底面半径【详解】该圆锥的底面半径=故答案为:1【点睛】圆锥的侧面展开图是扇形解题关键是理解扇形弧长就是圆锥底面周长解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 17.2【解析】【分析】根据一元二次方程根的意义可得+2=0根据一元二次方程根与系数的关系可得=2把相关数值代入所求的代数式即可得【详解】由题意得:+2=0=2∴=-2=4∴=-2+4=2故答案为:2【点解析:2【解析】【分析】根据一元二次方程根的意义可得2114x x -+2=0,根据一元二次方程根与系数的关系可得12x x =2,把相关数值代入所求的代数式即可得.【详解】由题意得:2114x x -+2=0,12x x =2,∴2114x x -=-2,122x x =4,∴2111242x x x x -+=-2+4=2,故答案为:2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.18.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm ∵扇形的圆心角为135°弧长为3πcm ∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm ,∵扇形的圆心角为135°,弧长为3πcm , ∴135180R π⨯=3π, 解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm 2), 故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质20.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.三、解答题21.(1)P(两个数的差为0)14=;(2)游戏不公平,设计规则:当抽到的这两个数的差为正数时,甲获胜;否则,乙获胜,理由见解析.【解析】【分析】(1)利用列表法列举出所有可能,进而求出概率;(2)利用概率公式进而得出甲、乙获胜的概率即可得出答案.【详解】(1)用列表法表示为:被减数差减数1234 10123 2-1012 3-2-101∴P(两个数的差为0)31 124 ==;(2)由列表法或树状图可知:共有12种等可能的结果,其中“两个数的差为非负数”的情况有9种,∴P(两个数的差为非负数)93124==;其中“两个数的差为负数”的情况有3种,∴P (两个数的差为负数)31124==,∴游戏不公平. 设计规则:当抽到的这两个数的差为正数时,甲获胜;否则,乙获胜.因为P (两个数的差为正数)61122==,∴P (两个数的差为非正数)61122==. 【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.所围矩形猪舍的长为12m 、宽为8m【解析】【分析】设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m .根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m ,由题意得x(27﹣2x+1)=96,解得:x 1=6,x 2=8,当x =6时,27﹣2x+1=16>15(舍去),当x =8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m 、宽为8m .【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.23.(1)x 1=32+,x 2=32-;(2)x 1=-3,x 2=2. 【解析】试题分析:(1)直接利用公式法求出x 的值即可;(2)先把原方程进行因式分解,再求出x 的值即可.试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1,∴△=b 2-4ac=(-3)2-4×1×1=5.∴==.即x 1x 2 (2)∵因式分解得 (x+3)(x-2)=0,∴x+3=0或x-2=0,解得 x 1=-3,x 2=2.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.24.10%;3327.5万元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.25.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。

2019年上海浦东新区初三上册期末数学试卷有答案(一模)-(沪科版)-精编.doc

2019年上海浦东新区初三上册期末数学试卷有答案(一模)-(沪科版)-精编.doc

浦东新区第一学期初三教学质量检测数 学 试 卷(完卷时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸...规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸...的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果把一个锐角三角形三边的长都扩大为原的两倍,那么锐角A 的余切值 (A )扩大为原的两倍; (B )缩小为原的21; (C )不变; (D )不能确定. 2.下列函数中,二次函数是(A )54+-=x y ; (B ))32(-=x x y ; (C )22)4(x x y -+=;(D )21x y =. 3.已知在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子中正确的是(A )75sin =A ; (B )75cos =A ; (C )75tan =A ; (D )75cot =A . 4.已知非零向量a ,b ,c ,下列条件中,不能判定向量a与向量b 平行的是(A )//,//; (B=(C )=,2=; (D )=+.5.如果二次函数2y ax bx c =++的图像全部在轴的下方,那么下列判断中正确的是 (A )0<a ,0<b ; (B )0>a ,0<b ; (C )0<a ,0>c ;(D )0<a ,0<c .6.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF ∥CD ,还需添加一个条件,这个条件可以是 (A )EF ADCD AB=; (B )AE ADAC AB=; (C )AF AD AD AB=;(D )AF AD AD DB=.BAFE CD (第6题图)二、填空题:(本大题共12题,每题4分,满分48分)7.已知23=y x ,则yx y x +-的值是 ▲ . 8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 ▲ cm .9.已知△ABC ∽△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是23,BE 、B 1E 1分别是它 们对应边上的中线,且BE =6,则B 1E 1= ▲ . 10.计算:132()2a ab +-= ▲ . 11.计算:3tan30sin45︒+︒= ▲ .12.抛物线432-=x y 的最低点坐标是 ▲ .13.将抛物线22x y =向下平移3个单位,所得的抛物线的表达式是 ▲ .14.如图,已知直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,且l 1∥l 2∥l 3,AB =4,AC =6,DF =9,则DE = ▲ .15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为米,花圃面积为S 平方米,则S 关于的函数解析式是 ▲ (不写定义域).16.如图,湖心岛上有一凉亭B ,在凉亭B 的正东湖边有一棵大树A ,在湖边的C 处测得B 在北偏西45°方向上,测得A 在北偏东30°方向上,又测得A 、C 之间的距离为100米,则A 、B 之间的距离是 ▲ 米(结果保留根号形式).17.已知点(-1,m )、(2,n )在二次函数122--=ax ax y 的图像上,如果m >n ,那么a ▲ 0(用“>”或“<”连接).18.如图,已知在Rt △ABC 中,∠ACB =90°,54cos =B ,BC=8,点D 在边BC 上,将 △ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、DE ,当∠BDE =∠AEC 时,则BE 的长是 ▲ .(第15题图)A DEB CFl 1 l 2 l 3l 4(第14题图)l 5 (第16题图)CBA45° 30° CBA(第18题图)三、解答题:(本大题共7题,满分78分)19.(本题满分10分)将抛物线542+-=x x y 向左平移4个单位,求平移后抛物线的表达式、顶点坐标 和对称轴.20.(本题满分10分,每小题5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC , 且DE 经过△ABC 的重心,设BC a =. (1)=DE ▲ (用向量a 表示); (2)设AB b =,在图中求作12b a +.(不要求写作法,但要指出所作图中表示结论的向量.)21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,已知G 、H 分别是□ABCD 对边AD 、BC 上的点,直线GH 分别交BA 和DC 的延长线于点E 、F . (1)当81=∆CDGHCFH S S 四边形时,求DGCH 的值; (2)联结BD 交EF 于点M ,求证:MG ME MF MH ⋅=⋅.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,为测量学校旗杆AB 的高度,小明从旗杆正前方3米处的点C出发,沿坡度为3:1=i 的斜坡CD 前进32米到达点D ,在点D 处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A 、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直. (1)求点D 的铅垂高度(结果保留根号); (2)求旗杆AB 的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,73.13≈.)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC上, 联结BD 交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅. 24.(本题满分12分,每小题4分)(第20题图)ABCD E(第22题图)A (第23题图)DEFBC(第21题图)ABH F EC G D已知抛物线y =a 2+b +5与轴交于点A (1,0)和点B (5,0),顶点为M .点C 在轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l 在第三象限上的点,联结AP ,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CP A 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E ,使得∠AEM =∠AMB .若存在,求出点E 的坐标;若不存在,请说明理由.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△ABC 中,∠ACB=90°,BC =2,AC =4,点D 在射线BC 上,以点D 为圆心,BD 为半径画弧交边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F ,射线ED 交射线AC 于点G . (1)求证:△EFG ∽△AEG ;(2)设FG =,△EFG 的面积为y ,求y 关于的函数解析式并写出定义域; (3)联结DF ,当△EFD 是等腰三角形时,请直接..写出FG 的长度.(第24题图)ABCABC浦东新区第一学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.51;8.252-; 9.4;10.5a b -;11.223+;12.(0,-4);13.322-=x y ; 14.6; 15.x x S 1022+-=;16.50350+;17.>;18.539.三、解答题:(本大题共7题,满分78分)19.解:∵54442+-+-=x x y =1)2(2+-x .…………………………………(3分)∴平移后的函数解析式是1)2(2++=x y .………………………………(3分)顶点坐标是(-2,1).……………………………………………………(2分) 对称轴是直线2x =-.………………………………………………… (2分)20.解:(1)=23a .……………………………(5分) (2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).21.(1)解:∵81=∆CDGHCFH S S 四边形,∴91=∆∆DFG CFH S S .……………………………………………………(1分) ∵ □ABCD 中,AD //BC ,(第25题备用图)(第25题备用图)(第20题图)B∴ △CFH ∽△DFG . ………………………………………………(1分) ∴91)(2==∆∆DG CH S S DFG CFH .…………………………………………… (1分)∴31=DG CH . …………………………………………………………(1分)(2)证明:∵ □ABCD 中,AD //BC ,∴ MGMH MD MB =. ……………………………………(2分) ∵ □ABCD 中,AB //CD , ∴MDMBMF ME =.……………………………………(2分) ∴ MGMH MF ME =.……………………………………(1分) ∴ MH MF ME MG ⋅=⋅. ……………………………(1分)22.解:(1)延长ED 交射线BC 于点H .由题意得DH ⊥BC .在Rt △CDH 中,∠DHC =90°,tan ∠DCH=i =……………(1分) ∴ ∠DCH =30°.∴ CD =2DH .……………………………(1分) ∵ CD=∴ DH,CH =3 .……………………(1分) 答:点D 的铅垂高度是3米.…………(1分) (2)过点E 作EF ⊥AB 于F .由题意得,∠AEF 即为点E 观察点A 时的仰角,∴ ∠AEF =37°. ∵ EF ⊥AB ,AB ⊥BC ,ED ⊥BC , ∴ ∠BFE =∠B =∠BHE =90°. ∴ 四边形FBHE 为矩形.∴ EF =BH =BC +CH =6. ……………………………………………(1分) FB =EH =ED +DH =1.5+3. ……………………………………(1分) 在Rt △AEF 中,∠AFE =90°,5.475.06tan ≈⨯≈∠⋅=AEF EF AF .(1分) ∴ AB =AF +FB =6+3 ………………………………………………(1分) 7.773.16≈+≈. ……………………………………………(1分) 答:旗杆AB 的高度约为7.7米. …………………………………(1分)(第21题图)ABHFEC GD M (第22题图)23.证明:(1)∵ DF FB FC EF ⋅=⋅,∴FCFBDF EF =. ………………………(1分) ∵ ∠EFB =∠DFC , …………………(1分) ∴ △EFB ∽△DFC . …………………(1分) ∴ ∠FEB =∠FDC . ………………… (1分) ∵ CE ⊥AB ,∴ ∠FEB = 90°.……………………… (1分) ∴ ∠FDC = 90°.∴ BD ⊥AC . ………………………… (1分) (2)∵ △EFB ∽△DFC ,∴ ∠ABD =∠ACE . …………………………………………… (1分)∵ CE ⊥AB ,∴ ∠FEB = ∠AEC= 90°.∴ △AEC ∽△FEB . ……………………………………………(1分) ∴ EBECFE AE =.……………………………………………………(1分) ∴EBFEEC AE =. …………………………………………………(1分) ∵ ∠AEC =∠FEB = 90°,∴ △AEF ∽△CEB .………………………………………………(1分) ∴EBEFCB AF =,∴ AF BE BC EF ⋅=⋅. ………………………(1分) 24.解:(1)∵ 抛物线52++=bx ax y 与轴交于点A (1,0),B (5,0),∴ ⎩⎨⎧=++=++.0552505b a b a ; ……………………… …(1分) 解得⎩⎨⎧-==.61b a ;…………………………(2∴ 抛物线的解析式为562+-=x x y .……(1 (2)∵ A (1,0),B (5,0), ∴ OA=1,AB=4.∵ AC=AB 且点C 在点A 的左侧,∴ AC=4 .∴ CB=CA+AB=8. ………………………………………………(1分)∵ 线段CP 是线段CA 、CB 的比例中项,∴CBCP CP CA =. ∴ CP=24. ……………………………………………………(1分)l yA(第23题图)D EFBC又 ∵ ∠PCB 是公共角,∴ △CP A ∽△CBP .∴ ∠CP A= ∠CBP . ………………………………………………(1分)过P 作PH ⊥轴于H .∵ OC=OD=3,∠DOC=90°,∴ ∠DCO=45°.∴ ∠PCH=45° ∴ PH=CH=CP 45sin =4,∴ H (-7,0),BH=12. ∴ P (-7,-4). ∴ 31tan ==∠BH PH CBP ,31tan =∠CPA . ………………………(1分) (3) ∵ 抛物线的顶点是M (3,-4),………………………………… (1分) 又 ∵ P (-7,-4),∴ PM ∥轴 . 当点E 在M 左侧, 则∠BAM=∠AME . ∵ ∠AEM=∠AMB ,∴ △AEM ∽△BMA .…………………………………………………(1分)∴BA AM AM ME =. ∴45252=ME . ∴ ME=5,∴ E (-2,-4). …………………………………(1分) 过点A 作AN ⊥PM 于点N ,则N (1,-4). 当点E 在M 右侧时,记为点E ', ∵ ∠A E 'N=∠AEN ,∴ 点E '与E 关于直线AN 对称,则E '(4,-4).………………(1分) 综上所述,E 的坐标为(-2,-4)或(4,-4).25.解:(1)∵ ED =BD ,∴ ∠B =∠BED .………………………………(1∵ ∠ACB =90°, ∴ ∠B +∠A =90°. ∵ EF ⊥AB , ∴ ∠BEF =90°. ∴ ∠BED +∠GEF =90°.∴ ∠A =∠GEF . ………………………………(1∵ ∠G 是公共角, ……………………………(1∴ △EFG ∽△AEG . …………………………(1分) (2)作EH ⊥AF 于点H .∵ 在Rt △ABC 中,∠ACB =90°,BC =2,AC =4, ∴ 21tan ==AC BC A . ∴ 在Rt △AEF 中,∠AEF =90°,21tan ==AE EF A . ∵ △EFG ∽△AEG , ∴21===AE EF GA GE EG FG .……………………………………………(1分) ∵ FG =, ∴ EG =2,AG =4.∴ AF =3. ……………………………………………………………(1分) ∵ EH ⊥AF ,∴ ∠AHE =∠EHF =90°. ∴ ∠EF A +∠FEH =90°. ∵ ∠AEF =90°, ∴ ∠A +∠EF A =90°. ∴ ∠A =∠FEH . ∴ tan A =tan ∠FEH .∴ 在Rt △EHF 中,∠EHF =90°,21tan ==∠EH HF FEH . ∴ EH =2HF .∵ 在Rt △AEH 中,∠AHE =90°,21tan ==AH EH A . ∴ AH =2EH . ∴ AH =4HF . ∴ AF =5HF . ∴ HF =x 53. ∴ x EH 56=.…………………………………………………………(1分) ∴ 253562121x x x EH FG y =⋅⋅=⋅⋅=.………………………………(1分) 定义域:(340≤<x ).……………………………………………(1分)(3)当△EFD 为等腰三角形时,FG 的长度是:25425,,27312.……(5分)。

2019年山西省太原市九年级上册期末考试数学试题(有答案)

2019年山西省太原市九年级上册期末考试数学试题(有答案)

太原市第一学期九年级期末考试数学试卷考试时间上午8.00—9.30说明本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置 1.一元二次方程2+4=0的一根为=0,另一根为A.=2B.=-2C.=4D.=-4 【答案】D 【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12 D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A13 B 16 C 19 D 23【答案】A 【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A23 B 49 C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于轴对称 B.与原四边形关于原点位似,相似比为12 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为21 【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或-.8,股市规定股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为,则满足的方程是A.(1+10%)(1-)2=1B.(1-10%)(1+)2=1C.(1-10%)(1+2)=1D.(1+10%)(1-2)=1 【答案】A【解析】(1+10%)(1-)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上 11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四 【解析】当>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随的增大而减小; 当<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随的增大而增大;两个分支无限接近和y 轴,但永远不会与轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形. ∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________【答案】3【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴12AM AD =即32DM DA -=同理可得DN DB =∵∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DMAB DA=即2MN =∴3MN =14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】14【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+ 化简得4m n =∴袋中红、白两种颜色小球的数量比应为mn=1415.如图,点A,C 分别在反比例函数4-y x= (<0)与9y x = (>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】B(0,) 【解析】如图,作AD ⊥轴,垂足为D ,CE ⊥轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由字形结论可得AD ODOE CE =即49m m nn--=化简得mn=-6 再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴B m n y ==== ∴B(0,三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程(每题4分,共8分) (1)2-8+1=0; 解:移项得:2-8=-1 配方得:2-8+42=-1+42 即(-4)2=15直接开平方得4x -=∴原方程的根为1244x x ==(2)(-2)+-2=0解:提取公因式(-2)得(-2)(+1)=0 ∴原方程的根为122,1x x ==- 17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证四边形ADEF 是正方形.DE【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m 【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,个月还清,且y 是的反比例函数,其图象如图所示 (1)求y 与的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与之间的函数关系式为ky x= (≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k =解得=60 ∴y 与之间的函数关系式为60y x= (>0) (2)90;∵王叔叔每月偿还贷款本金y 万元,个月还清∴贷款金额y=60万元∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,=300由图,y ≤2000的图像位于Ⅱ区域即≥300 ∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分Ⅱ0.2割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种(1, 4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是21=.12621.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解设这种商品的涨价元,根据题意,得(40-30+)(600-10)=10000即(10+)(60-)=1000 ()()x x++-=+=⨯=106070(205070,20501000)解得1=10,2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元答售价应定为50元.22.(本题12分)综合与实践问题情境如图1,矩形ABCD中,BD为对角线,AD k=,且>1.将△ABD以B为旋转中AB Array心,按顺时针方向旋转,得到△FBE(点D的对应点为点E,点A的对应点为点F),直线EF 交直线AD 于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含的式子表示); 【答案】(1)△DBE;【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠ ∴△ABF ∽△DBE ∵ADk AB=∴△DBE 与△ABF相似比为BD AB = 数学思考(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时的值为______【解析】由旋转性质可得△ABD ≌△FBE∴BD=BE ,AD=FE ∵ 矩形ABCD ∴AD=BC ∴EF=BC ∵BD FE DE BC =(等面积转换) ∴BD=DE ∴等边三角形BDE∴tan 603AD AB==实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBCA BOD= OG, OE=OBOD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题 请从A,B 两题中任选一题作答,我选择 A 当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或【解析】如图B 当AB 的对应边FB 在直线BD 上时,直接写出DG AB的值 【答案】51063或【解析】如图 情况1:4m3m3mG3mE425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD m BD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(≠0)的图象上(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明过点A 作AE ⊥轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(≠0)的表达式. 4mCG【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123k k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题请从A,B 两题中任选一题作答,我选择___________ A 若点B 的对应点B’恰好落在反比例函数ky x= (≠0)的图象上,求m 的值,并直接写出此时S 的值 【解析】连接BB’△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B 若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO212A MN ABO S A H A H S AH AH'''⎛⎫==∴= ⎪⎝⎭∵AH=4, ∴AH '=∴AA’=AH -A’H=4- 即m=4- (4)如图3,连接BC,交AO于点D,点P 是反比例函数ky x= (≠0)的图象上的一点,请从A,B 两题中任选一题作答,我选择____________A 在轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0); PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B 在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由 【答案】存在,点Q 的坐标如下()()()12344,24,10,5,(2,4)Q Q Q Q ---【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=,P 2(m ,n )∴n=m 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m ==直线12y x =与12y x =联立解得x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩∴((24,P P -22202Q A P O x x x x =+-=-+=,22404Q A P O y y y y =+-==∴()24Q同理4(2,4)Q -设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--= 116042Q P O A y y y y =+-=+-= ∴()14,2Q同理()310,5Q --。

2019年青岛市市南区九年级上期末数学试卷(有答案)

2019年青岛市市南区九年级上期末数学试卷(有答案)

山东省青岛市市南区九年级(上)期末数学试卷一.选择题(本题满分24分,共有8道小题,每小题3分)1.一元二次方程2=2的根是()A.0B.2C.0和2D.0和﹣22.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.若关于的一元二次方程2﹣2﹣1=0有两个不相等的实数根,则的取值范围是()A.>﹣1B.>﹣1且≠0C.<1D.<1且≠04.把抛物线y=(+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(+2)2+2B.y=(+2)2﹣2C.y=2+2D.y=2﹣25.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)6.如图,反比例函数和正比例函数y2=2的图象都经过点A(﹣1,2),若y1>y2,则的取值范围是()A.﹣1<<0B.﹣1<<1C.<﹣1或0<<1D.﹣1<<0或>17.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5C.D.8.抛物线y=a2+b+c(a≠0)中自变量和函数值y的部分对应值如下表:①抛物线与轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,﹣2);③抛物线的对称轴是:=1;④在对称轴左侧,y随增大而增大.A.1B.2C.3D.4二.填空题(本题满分18分,共有6道小题,每小题3分)9.在Rt△ABC中,∠C=90°,sin A=,则tan A=.10.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.11.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为,根据题意,可列出方程为.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,且AH=2HB,BC=5HB,则的值为.13.如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则tan∠EGB等于.14.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.作图题(本题满分4分)15.用圆规、直尺作围,不写作法,但要保留作围痕迹.如图,已知∠α,线段b,求作:菱形ABCD,使∠ABC=∠α,边BC=b.四.解答题(本大题满分74分,共有9道小题)16.(8分)解下列方程:(1)2﹣5+2=0(2)2(﹣3)2=(﹣3)17.(6分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.18.(6分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为∠α=48°,∠β=65°,矩形建筑物宽度AD=20m,高度DC =33m.计算该信号发射塔顶端到地面的高度FG(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)19.(6分)一天晚上,李明利用灯光下的影子长测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.20.(8分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分):(1)分别求出线段AB和曲线CD的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?21.(8分)如图,在△ABC中,点D,E分别是边AB和AC的中点,过点C作CF∥AB,交DE的延长线于点F,连接AF,BF.(1)求证:△ADE≌△CFE;(2)若∠AFB=90°,试判断四边形BCFD的形状,并加以证明.22.(10分)某水果店销售某种水果,原每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价元,每星期的销售量为y箱.(1)求y与之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?23.(10分)[归纳探究]把长为n(n为正整数)个单位的线段,切成长为1个单位的线段,允许边切边调动,最少要切多少次?我们可以先从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.不妨假设最少能切m次,我们探究m与n之间的关系.如图,当n=1时,最少需要切0次,即m=0.如图,当n=2时,从线段中间最少需要切1,即m=1.如图,当n=3时,第一次切1个单位长的线段,第二次继续切剩余线段1个单位长即可,最少需要切2次,即m=2.如图,当n=4时,第一次切成两根2个单位长的线段,再调动重叠切第二次即可,最少需要切2次,即m=2.如图,当n=5时,第一次切成2个单位长和3个单位长的线段.将两根线段适当调动重叠,再切二次即可,最少需要切3次,即m=3.仿照上述操作方法,请你用语言叙述,当n=16时,所需最少切制次数的方法,如此操作实验,可获得如下表格中的数据:当1<n≤2时,m=1.当2<n≤4时,m=2.当4<n≤8时,m=3.当8<n≤16时,m=.…根据探究请用m的代数式表示线段n的取值范围:当n=1180时,m=[类比探究]由一维的线段我们可以联想到二维的平面,类比上面问题解决的方法解决如下问题.把边长n(n为正整数)个单位的大正方形,切成边长为1个单位小正方形,允许边切边调动,最少要切多少次?不妨假设最少能切m次,我们探究m与n之间的关系.通过实验观察:当n=1时,从行的角度分析,最少需要切0次,从列的角度分析,最少需要切0次.最少共切0,即m=0.当n=2时,从行的角度分析,最少需要切1次,从列的角度分析,最少需要切1次,最少共切2,当1<n≤2时,m=2.当n=3时,从行的角度分析,最少需要切2次,从列的角度分析,最少需要切2次,最少共切4,当2<n≤4时,m=4.…当n=8时,从行的角度分析,最少需要切3次,从列的角度分析,最少需要切3次,最少共切6,当4<n≤8时,m=6.当8<n≤16时,m=…根据探究请用m的代数式表示线段n的取值范围:[拓广探究]由二维的平面我们可以联想到三维的立体空间,类比上面问题解决的方法解决如下问题.问题(1):把棱长为4个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次.问题(2):把棱长为8个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次,问题(3):把棱长为n(n为正整数)个单位长的大正方体,切成边长为1个单位小正方体,允许边切边调动,最少要切次.请用m的代数式表示线段n的取值范围:.24.(12分)如图,在平行四边形ABCD中,AC⊥BC,AB=10.AC=6.动点P在线段BC上从点B出发沿BC方向以每秒1个单位长的速度匀速运动;动点Q在线段DC上从点D出发沿DC的力向以每秒1个单位长的速度匀速运动,过点P作PE⊥BC.交线段AB于点E.若P、Q两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.(1)当t为何值时,QE∥BC?(2)设△PQE的面积为S,求出S与t的函数关系式:(3)是否存在某一时刻t,使得△PQE的面积S最大?若存在,求出此时t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使得点Q在线段EP的垂直平分线上?若存在,求出此时t的值;若不存在,请说明理由.山东省青岛市市南区九年级(上)期末数学试卷参考答案与试题解析一.选择题(本题满分24分,共有8道小题,每小题3分)1.一元二次方程2=2的根是()A.0B.2C.0和2D.0和﹣2【分析】根据一元二次方程的特点,用提公因式法解答.【解答】解:移项得,2﹣2=0,因式分解得,(﹣2)=0,解得,1=0,2=2,故选:C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.若关于的一元二次方程2﹣2﹣1=0有两个不相等的实数根,则的取值范围是()A.>﹣1B.>﹣1且≠0C.<1D.<1且≠0【分析】根据根的判别式及一元二次方程的定义得出关于的不等式组,求出的取值范围即可.【解答】解:∵关于的一元二次方程2﹣2﹣1=0有两个不相等的实数根,∴,即,解得>﹣1且≠0.故选:B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.4.把抛物线y=(+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(+2)2+2B.y=(+2)2﹣2C.y=2+2D.y=2﹣2【分析】先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:抛物线y=(+1)2的顶点坐标为(﹣1,0),∵向下平移2个单位,∴纵坐标变为﹣2,∵向右平移1个单位,∴横坐标变为﹣1+1=0,∴平移后的抛物线顶点坐标为(0,﹣2),∴所得到的抛物线是y=2﹣2.故选:D.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.5.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)【分析】由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,利用相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比为1:2,又由点B的坐标为(﹣4,6),即可求得答案.【解答】解:∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC,∵矩形OA′B′C′的面积等于矩形OABC面积的,∴位似比为:1:2,∵点B的坐标为(﹣4,6),∴点B′的坐标是:(﹣2,3)或(2,﹣3).故选:D.【点评】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用.6.如图,反比例函数和正比例函数y2=2的图象都经过点A(﹣1,2),若y1>y2,则的取值范围是()A.﹣1<<0B.﹣1<<1C.<﹣1或0<<1D.﹣1<<0或>1【分析】易得两个交点坐标关于原点对称,可求得正比例函数和反比例函数的另一交点,进而判断在交点的哪侧相同横坐标时反比例函数的值都大于正比例函数的值即可.【解答】解:根据反比例函数与正比例函数交点规律:两个交点坐标关于原点对称,可得另一交点坐标为(1,﹣2),由图象可得在点A的右侧,y轴的左侧以及另一交点的右侧相同横坐标时反比例函数的值都大于正比例函数的值;∴﹣1<<0或>1,故选D.【点评】用到的知识点为:正比例函数和反比例函数的交点关于原点对称;求自变量的取值范围应该从交点入手思考.7.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5C.D.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=,表示出AD与DE,利用勾股定理列出关于的方程,求出方程的解得到的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=,则有DE=DC﹣EC=AB﹣EC=3﹣,AD=BC=AB•tan30°=×3=,根据勾股定理得:2=(3﹣)2+()2,解得:=2,∴EC=2,=EC•AD=,则S△AEC故选:D.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.8.抛物线y=a2+b+c(a≠0)中自变量和函数值y的部分对应值如下表:①抛物线与轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,﹣2);③抛物线的对称轴是:=1;④在对称轴左侧,y随增大而增大.A.1B.2C.3D.4【分析】③由点(﹣1,﹣2)、(0,﹣2)在抛物线y=a2+b+c上结合抛物线的对称性,即可得出抛物线的对称轴为直线=﹣,结论③错误;①由抛物线的对称轴及抛物线与轴一个交点的坐标,即可得出抛物线与轴的另一交点为(﹣2,0),结论①正确;②根据表格中数据,即可找出抛物线与y轴的交点为(0,﹣2),结论②正确;④根据表格中数据结合抛物线的对称轴为直线=﹣,即可得出在对称轴左侧,y随增大而减小,结论④错误.综上即可得出结论.【解答】解:③∵点(﹣1,﹣2)、(0,﹣2)在抛物线y=a2+b+c上,∴抛物线的对称轴为直线=﹣,结论③错误;①∵抛物线的对称轴为直线=﹣,∴当=﹣2和=1时,y值相同,∴抛物线与轴的一个交点为(﹣2,0),结论①正确;②∵点(0,﹣2)在抛物线y=a2+b+c上,∴抛物线与y轴的交点为(0,﹣2),结论②正确;④∵﹣>﹣2>﹣,抛物线的对称轴为直线=﹣,∴在对称轴左侧,y随增大而减小,结论④错误.故选:B.【点评】本题考查了抛物线与轴的交点以及二次函数的性质,逐一分析四条结论的正误是解题的关键.二.填空题(本题满分18分,共有6道小题,每小题3分)9.在Rt△ABC中,∠C=90°,sin A=,则tan A=.【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,运用三角函数的定义解答.【解答】解:由sin A==知,可设a=3,则c=5,b=4.∴tan A===.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.10.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有15个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.【解答】解:∵共试验400次,其中有240次摸到白球,∴白球所占的比例为=0.6,设盒子中共有白球个,则=0.6,解得:=15,故答案为:15.【点评】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.11.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为,根据题意,可列出方程为50(1+)+50(1+)2=120.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为,根据“计划二、三月份共生产120台”,即可列出方程.【解答】解:设二、三月份每月的平均增长率为,则二月份生产机器为:50(1+),三月份生产机器为:50(1+)2;又知二、三月份共生产120台;所以,可列方程:50(1+)+50(1+)2=120.故答案是:50(1+)+50(1+)2=120.【点评】本题考查了由实际问题抽象出一元二次方程,可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+)2=b,a为起始时间的有关数量,b为终止时间的有关数量.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,且AH=2HB,BC=5HB,则的值为.【分析】求出AB:BC,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:设BH=a,则AH=2a,BC=5a,AB=AH+BH=3a,∴AB:BC=3a:5a=3:5,∵l1∥l2∥l3,∴==,故答案为.【点评】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.13.如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则tan∠EGB等于.【分析】根据翻折的性质可得DF=EF,设EF=,表示出AF,然后利用勾股定理列方程求出,从而得到AF、EF的长,再求出△AEF和△BGE相似,根据相似三角形对应边成比例列式求出BG,然后根据解直角三角形列式计算即可得解.【解答】解:由翻折的性质得,DF=EF,设EF=,则AF=6﹣,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣)2=2,解得=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴=,即=,解得BG=4,∴tan∠EGB=.故答案为:.【点评】本题考查了翻折变换的性质,勾股定理,相似三角形的判定与性质,熟记性质并求出△AEF的各边的长,然后利用相似三角形的性质,求出△EBG的各边的长是解题的关键.14.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走27个小正方体.【分析】留下靠墙的正方体,以及墙角处向外的一列正方体,依次数出搬走的小正方体的个数相加即可.【解答】解:第1列最多可以搬走9个小正方体;第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体.9+8+3+5+2=27个.故最多可以搬走27个小正方体.故答案为:27.【点评】本题考查了组合体的三视图,解题的关键是依次得出每列可以搬走小正方体最多的个数,难度较大.三.作图题(本题满分4分)15.用圆规、直尺作围,不写作法,但要保留作围痕迹.如图,已知∠α,线段b,求作:菱形ABCD,使∠ABC=∠α,边BC=b.【分析】先作∠MBN=∠α,再在BM和BN上分别截取BA=b,BC=b,然后分别一点A、C为圆心,b为半径画弧,两弧相交于点D,则四边形ABCD满足条件.【解答】解:如图,菱形ABCD为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四.解答题(本大题满分74分,共有9道小题)16.(8分)解下列方程:(1)2﹣5+2=0(2)2(﹣3)2=(﹣3)【分析】(1)公式法求解可得;(2)因式分解法求解可得.【解答】解:(1)∵a=1、b=﹣5,c=2,∴△=25﹣4×1×2=17>0,则=;(2)∵2(﹣3)2﹣(﹣3)=0,∴(﹣3)(﹣6)=0,则﹣3=0或﹣6=0,解得:=3或=6.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键17.(6分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)根据题意,我们可以画出如下的树形图:或者:根据题意,我们也可以列出下表:而和为偶数的结果共有6个,所以小敏看比赛的概率P(和为偶数)==.(2)哥哥去看比赛的概率P(和为奇数)=1﹣=,因为<,所以哥哥设计的游戏规则不公平;如果规定点数之和小于等于10时则小敏(哥哥)去,点数之和大于等于11时则哥哥(小敏)去.则两人去看比赛的概率都为,那么游戏规则就是公平的.或者:如果将8张牌中的2、3、4、5四张牌给小敏,而余下的6、7、8、9四张牌给哥哥,则和为偶数或奇数的概率都为,那么游戏规则也是公平的.(只要满足两人手中点数为偶数(或奇数)的牌的张数相等即可.)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为∠α=48°,∠β=65°,矩形建筑物宽度AD=20m,高度DC =33m.计算该信号发射塔顶端到地面的高度FG(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识求得线段FG的长即可.【解答】解:如图,延长AD交FG于点E.(1分)在Rt△FCG中,tanβ=,∴CG=.在Rt△FAE中,tanα=,∴AE=.∵AE﹣CG=AE﹣DE=AD,∴﹣=AD.即﹣=AD.∴FG==115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.【点评】本题考查了仰角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.19.(6分)一天晚上,李明利用灯光下的影子长测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN ∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=米,∴△ABN∽△ACD,∴=,即=,解得:=5.4.经检验,=5.4是原方程的解,∴路灯高CD为5.4米.【点评】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.20.(8分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分):(1)分别求出线段AB和曲线CD的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【分析】(1)分别从图象中找到其经过的点,利用待定系数法求得函数的解析式即可;(2)根据上题求出的AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(3)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【解答】解:(1)设线段AB所在的直线的解析式为y1=1+20,把B(10,40)代入得,1=2,∴y1=2+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,2=1000,∴y2=.(2)当1=5时,y1=2×5+20=30,当2=30时,y2==,∴y1<y2∴第30分钟注意力更集中.(3)令y1=36,∴36=2+20,∴1=8。

人教版2019学年九年级上册数学期末试卷含答案(共10套)

人教版2019学年九年级上册数学期末试卷含答案(共10套)

人教版2019学年九年级数学期末试卷(一)本试卷共8大题,计23小题,满分150分,考试时间120分钟.一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项写在题后的表格中,不选、错选或多选的,一律得0分.1.若=,则的值为:A.1 B.C.D.2.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中不一定成立的是:A.b=atanB B.a=ccosB C.D.a=bcosA3.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为:第3题图第4题图第5题图A.30°B.40°C.50°D.80°4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是:A.∠ABP=∠C B.∠APB=∠A BC C.=D.=5.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为:A.5cosαB.C.5sinαD.2A.﹣11 B.﹣2 C.1 D.﹣57.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有:A.1个B.2个C.3个D.4个8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为:A.B.2﹣2 C.2﹣D.﹣2第7题图第9题图第10题图9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为:A.2:5 B.4:25 C.4:31 D.4:3510.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是:A B C D二.填空题(本大题共4小题,每小题5分,满分20分)11.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.第12题图第14题图13.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.14.如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.三.(本大题共2小题,每小题8分,满分16分)15.计算:4sin60°+tan45°﹣.16.已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求此函数图象抛物线的顶点坐标;(2)直接写出函数y随自变量增大而减小的x的取值范围.四、(本大题共2小题,每小题8分,满分16分)17.如图,在6×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的格点上.请按要求画图:(1)以点B为位似中心,在方格内将△ABC放大为原来的2倍,得到△EBD,且点D、E 都在单位正方形的顶点上.2,点F、G、H都在(2)在方格中作一个△FGH,使△FGH∽△ABC,且相似比为1:单位正方形的顶点上。

上海市长宁区2019届九年级上学期期末(一模)数学试题 (解析版)

上海市长宁区2019届九年级上学期期末(一模)数学试题 (解析版)

2019年上海市长宁区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.抛物线y=2(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)2.如图,点D、E分别在△ABC的边AB、AC上,下列条件中能够判定DE∥BC的是()A.=B.=C.=D.=3.在Rt△ABC中,∠C=90°,如果cos B=,BC=a,那么AC的长是()A.2a B.3a C.a D.a4.如果||=2,=,那么下列说法正确的是()A.||=2||B.是与方向相同的单位向量C.2=D.5.在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,那么r的值可以取()A.5B.4C.3D.26.在△ABC中,点D在边BC上,联结AD,下列说法错误的是()A.如果∠BAC=90°,AB2=BD•BC,那么AD⊥BCB.如果AD⊥BC,AD2=BD•CD,那么∠BAC=90°C.如果AD⊥BC,AB2=BD•BC,那么∠BAC=90°D.如果∠BAC=90°,AD2=BD•CD,那么AD⊥BC二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】第11题图BACDEF7.若线段a、b、c、d满足==,则的值等于.8.如果抛物线y=(3﹣m)x2﹣3有最高点,那么m的取值范围是.9.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于.10.边长为6的正六边形的边心距为.11.如图,已知AD∥BE∥CF,若AB=3,AC=7,EF=6,则DE的长为.12.已知点P在线段AB上,满足AP:BP=BP:AB,若BP=2,则AB的长为.13.若点A(﹣1,7)、B(5,7)、C(﹣2,﹣3)、D(k,﹣3)在同一条抛物线上,则k的值等于.14.如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于千米.(结果保留根号)15.在矩形ABCD中,AB=2,AD=4,若圆A的半径长为5,圆C的半径长为R,且圆A与圆C 内切,则R的值等于.16.如图,在等腰△ABC中,AB=AC,AD、BE分别是边BC、AC上的中线,AD与BE交于点F,若BE=6,FD=3,则△ABC的面积等于.17.已知点P在△ABC内,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称点P为△ABC的自相似点.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,如果点P为Rt△ABC的自相似点,那么∠ACP的余切值等于.18.如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP翻折,点B恰好落在边AD 的垂直平分线上,如果AB=5,AD=8,tan B=,那么BP的长为.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:60°+.20.(10分)如图,AB与CD相交于点E,AC∥BD,点F在DB的延长线上,联结BC,若BC平分∠ABF,AE=2,BE=3.(1)求BD的长;(2)设=,=,用含、的式子表示.21.(10分)如图,AB是圆O的一条弦,点O在线段AC上,AC=AB,OC=3,sin A=.求:(1)圆O的半径长;(2)BC的长.22.(10分)如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i =1:0.75,坡长BC=10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)23.(12分)如图,点D、E分别在△ABC的边AC、AB上,延长DE、CB交于点F,且AE•AB=AD•AC.(1)求证:∠FEB=∠C;(2)连接AF,若=,求证:EF•AB=AC•FB.24.(12分)如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN的面积的2倍,求的值.25.(14分)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.2019年上海市长宁区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.抛物线y=2(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)【分析】利用二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),顶点坐标是(h,k)进行解答.【解答】解:∵y=2(x+2)2﹣3∴抛物线的顶点坐标是(﹣2,﹣3)故选:B.【点评】本题主要是对抛物线中顶点式的对称轴,顶点坐标的考查.2.如图,点D、E分别在△ABC的边AB、AC上,下列条件中能够判定DE∥BC的是()A.=B.=C.=D.=【分析】如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.根据平行线分线段成比例定理对各个选项进行判断即可.【解答】解:A.由=,不能得到DE∥BC,故本选项不合题意;B.由=,不能得到DE∥BC,故本选项不合题意;C.由=,不能得到DE∥BC,故本选项不合题意;D.由=,能得到DE∥BC,故本选项符合题意;故选:D.【点评】本题考查了平行线分线段成比例定理的应用,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.3.在Rt△ABC中,∠C=90°,如果cos B=,BC=a,那么AC的长是()A.2a B.3a C.a D.a【分析】依据cos B=,BC=a,即可得到AB=3a,再根据勾股定理,即可得到AC的长.【解答】解:∵cos B=,BC=a,∴AB=3a,∵∠C=90°,∴Rt△ABC中,AC===2a,故选:A.【点评】本题考查了锐角三角函数的定义以及勾股定理.在直角三角形中,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.如果||=2,=,那么下列说法正确的是()A.||=2||B.是与方向相同的单位向量C.2=D.【分析】根据平面向量的模和向量平行的定义解答.【解答】解:A、由=得到||=||=1,故本选项说法错误.B、由=得到是与的方向相反,故本选项说法错误.C、由=得到2=,故本选项说法错误.D、由=得到,故本选项说法正确.故选:D.【点评】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.5.在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,那么r的值可以取()A.5B.4C.3D.2【分析】先根据两点间的距离公式分别计算出OA、OB的长,再由点A、B中有一点在圆O内,另一点在圆O外求出r的范围,进而求解即可.【解答】解:∵点A的坐标是(3,2),点B的坐标是(3,﹣4),∴OA==,OB==5,∵以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O 外,∴<r<5,∴r=4符合要求.故选:B.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了坐标与图形性质.6.在△ABC中,点D在边BC上,联结AD,下列说法错误的是()A.如果∠BAC=90°,AB2=BD•BC,那么AD⊥BCB.如果AD⊥BC,AD2=BD•CD,那么∠BAC=90°C.如果AD⊥BC,AB2=BD•BC,那么∠BAC=90°D.如果∠BAC=90°,AD2=BD•CD,那么AD⊥BC【分析】根据相似三角形的判定定理证明相应的三角形相似,根据相似三角形的性质判断即可.【解答】解:A、∵AB2=BD•BC,∴=,又∠B=∠B∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴=,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴=,又∠B=∠B∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选:D.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】第11题图BACDEF7.若线段a、b、c、d满足==,则的值等于.【分析】根据等比的性质即可求出的值.【解答】解:∵线段a、b、c、d满足==,∴=.故答案为:.【点评】考查了比例线段,关键是熟练掌握等比的性质.8.如果抛物线y=(3﹣m)x2﹣3有最高点,那么m的取值范围是m>3.【分析】由于抛物线y=(3﹣m)x2﹣3有最高点,这要求抛物线必须开口向下,由此可以确定m的范围.【解答】解:∵抛物线y=(3﹣m)x2﹣3有最高点,∴3﹣m<0,即m>3.故答案为m>3.【点评】本题主要考查二次函数的最值的知识点,解答此题要掌握二次函数图象的特点,本题比较基础.9.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于1:16.【分析】由两个相似三角形的周长的比等于1:4,即可求得它们的相似比,根据相似三角形的面积比等于相似比的平方,即可求得它们的面积的比.【解答】解:∵两个相似三角形的周长的比等于1:4,∴它们的相似比为1:4,∴它们的面积的比等于1:16.故答案为:1:16.【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方,相似三角形的对应高线、角平分线、中线的比等于相似比.10.边长为6的正六边形的边心距为3.【分析】已知正六边形的边长为6,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形求解即可.【解答】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,∴OG=OA•cos30°=6×=3,故答案为3.【点评】本题考查了正多边形和圆的计算问题,属于常规题.11.如图,已知AD∥BE∥CF,若AB=3,AC=7,EF=6,则DE的长为.【分析】根据AB=3,AC=7,可得BC=4,再根据AD∥BE∥CF,即可得出=,即=,进而得到DE的长.【解答】解:∵AB=3,AC=7,∴BC=4,∵AD∥BE∥CF,∴=,即=,解得DE=,故答案为:.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例定理是解决问题的关键.12.已知点P在线段AB上,满足AP:BP=BP:AB,若BP=2,则AB的长为.【分析】根据黄金分割点的定义,知AP是较长线段,得出BP=AB,代入数据即可得出AB 的长.【解答】解:∵点P在线段AB上,满足AP:BP=BP:AB,∴P为线段AB的黄金分割点,且BP是较长线段,∴BP=AB,∴AB=2,解得AB=+1.故答案为:+1.【点评】本题考查了比例线段、黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.13.若点A(﹣1,7)、B(5,7)、C(﹣2,﹣3)、D(k,﹣3)在同一条抛物线上,则k的值等于6.【分析】利用抛物线的对称性得到A和B点,C点和D点为抛物线上的两组对称点,由点A、B的坐标得到抛物线的对称轴,然后利用对称轴求出k的值.【解答】解:∵抛物线经过A(﹣1,7)、B(5,7),∴点A、B为抛物线上的对称点,∴抛物线解析式为直线x=2,∵C(﹣2,﹣3)、D(k,﹣3)为抛物线上的对称点,即C(﹣2,﹣3)与D(k,﹣3)关于直线x=2对称,∴k﹣2=2﹣(﹣2),∴k=6.故答案为6.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于(2+2)千米.(结果保留根号)【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD、AD的长,然后在Rt△BCD中求得BD的长,即可得到码头A、B之间的距离.【解答】解:如图,作CD⊥AB于点D.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),AD=AC•cos30°=4×=2(km),∵Rt△BCD中,∠CDB=90°,∠CBD=45°,∴BD=CD=2(km),∴AB=AD+BD=2(km),故答案是:(2+2).【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得CD的长是关键.15.在矩形ABCD中,AB=2,AD=4,若圆A的半径长为5,圆C的半径长为R,且圆A与圆C 内切,则R的值等于5﹣2或5.【分析】先利用勾股定理计算出AC=2,讨论:当点C在⊙A内时,5﹣R=2;当点A在⊙C 内时,R﹣5=2,然后分别解关于R的方程即可.【解答】解:∵在矩形ABCD中,AB=2,AD=4,∴AC==2,当点C在⊙A内时,∵圆A与圆C内切,∴5﹣R=2,即R=5﹣2;当点A在⊙C内时,∵圆A与圆C内切,∴R﹣5=2,即R=5+2;综上所述,R的值为5﹣2或5+2.故答案为5﹣2或5+2.【点评】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R ﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).16.如图,在等腰△ABC中,AB=AC,AD、BE分别是边BC、AC上的中线,AD与BE交于点F,若BE=6,FD=3,则△ABC的面积等于9.【分析】过E作EG⊥BC于G,根据已知条件得到点F是△ABC的重心,求得AD=3DF=9,根据等腰三角形的性质得到AD⊥BC,BD=CD,根据平行线分线段成比例定理得到EG=AD=,CG=CD,根据勾股定理得到BG==,根据三角形的面积公式即可得到结论.【解答】解:过E作EG⊥BC于G,∵AD、BE分别是边BC、AC上的中线,∴点F是△ABC的重心,∴AD=3DF=9,∵AB=AC,AD是边BC上的中线,∴AD⊥BC,BD=CD,∵BE是边AC上的中线,∴AE=CE,∵AD⊥BC,EG⊥BC,∴EG∥AD,∴EG=AD=,CG=CD,∵BE=6,∴BG==,∴BC=BG=2,∴△ABC的面积=×9×2=9,故答案为:9.【点评】本题考查了三角形的重心,等腰三角形的性质,三角形的面积,平行线分线段成比例定理,正确的作出辅助线是解题的关键.17.已知点P在△ABC内,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称点P为△ABC的自相似点.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,如果点P为Rt△ABC的自相似点,那么∠ACP的余切值等于.【分析】先找到Rt△ABC的内相似点,再根据三角函数的定义计算∠ACP的余切即可.【解答】解:∵AC=12,BC=5,∴∠CAB<∠CBA,故可在∠CAB内作∠CBP=∠CAB,又∵点P为△ABC的自相似点,∴过点C作CP⊥PB,并延长CP交AB于点D,则△BPC∽△ACB,∴点P为△ABC的自相似点,∴∠BCP=∠CBA,∴∠ACP的余切==,故答案为:.【点评】本题主要考查相似三角形的判定和性质,利用条件先确定出P点的位置是解题的关键.18.如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP翻折,点B恰好落在边AD 的垂直平分线上,如果AB=5,AD=8,tan B=,那么BP的长为或7.【分析】①如图1,过A作AH⊥BC于H,连接DB′,设AH=4x,BH=3x,根据勾股定理得到AB==5x=5,根据旋转的性质得到AB′=AB=5,AM=DM=AD=4,∠AMN=∠HNM=90°,根据勾股定理得到MB′==3,求得HN=MN=4,根据相似三角形的性质即可得到结论;②如图2,由①知,MN=4,MB′=3,BN=7,求得NB=NB′,推出点P与N重合,得到BP=BN=7.【解答】解:①如图1,过A作AH⊥BC于H,连接DB′,设BB′与AP交于E,AD的垂直平分线交AD于M,BC于N,∵tan B==,∴设AH=4x,BH=3x,∴AB==5x=5,∴x=1,∵将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线MN上,∴AB′=AB=5,AM=DM=AD=4,∠AMN=∠HNM=90°,∴四边形AHNM是正方形,MB′==3,∴HN=MN=4,∴BN=7,B′N=1,∴BB′==5,∴BE=BB′=,∵∠BEP=∠BNB′=90°,∠PBE=∠B′BN,∴△BPE∽△BB′N,∴=,∴=,∴BP=;②如图2,由①知,MN=4,MB′=3,BN=7,∴NB=NB′,∴点N在BB′的垂直平分线上,∵将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线上,∴点P也在BB′的垂直平分线上,∴点P与N重合,∴BP=BN=7,综上所述,BP的长为或7.故答案为:或7.【点评】本题考查了翻折变换(折叠问题),线段垂直平分线的性质,勾股定理,正确的作出图形是解题的关键.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:60°+.【分析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.【解答】解:原式=×()2+=×+=﹣(+)=﹣﹣.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)如图,AB与CD相交于点E,AC∥BD,点F在DB的延长线上,联结BC,若BC平分∠ABF,AE=2,BE=3.(1)求BD的长;(2)设=,=,用含、的式子表示.【分析】(1)利用角平分线的性质和平行线的性质得到AB=AC=5,然后结合平行线截线段成比例求得BD的长度.(2)由平行线截线段成比例和平面向量的三角形法则解答.【解答】解:(1)∵BC平分∠ABF,∴∠ABC=∠CBF.∵AC∥BD,∴∠CBF=∠ACB.∴∠ABC=∠ACB.∴AC=AB.∵AE=2,BE=3,∴AB=AC=5.∵AC∥BD,∴=.∴=.∴BD=;(2)∵AC∥BD,∴==.∵=,∴=﹣.∴=+=﹣﹣.【点评】考查了平行线的性质和平面向量,需要掌握平行线截线段成比例和平面向量的三角形法则,难度不大.21.(10分)如图,AB是圆O的一条弦,点O在线段AC上,AC=AB,OC=3,sin A=.求:(1)圆O的半径长;(2)BC的长.【分析】(1)过点O作OH⊥AB,垂足为点H,设OH=3k,AO=5k,则AH=,得到AB=2AH=8k,求得AC=AB=8k,列方程即可得到结论;(2)过点C作CG⊥AB,垂足为点G,在Rt△ACG中,∠AGC=90°,解直角三角形即可得到结论.【解答】解:(1)过点O作OH⊥AB,垂足为点H,在Rt△OAH中中,∠OHA=90°,∴sin A==,设OH=3k,AO=5k,则AH=,∵OH⊥AB,∴AB=2AH=8k,∴AC=AB=8k,∴8k=5k+3,∴k=1,∴AO=5,即⊙O的半径长为5;(2)过点C作CG⊥AB,垂足为点G,在Rt△ACG中,∠AGC=90°,∴sin A==,∵AC=8,∴CG=,AG==,BG=,在Rt△CGB中,∠CGB=90°,∴BC===.【点评】本题考查了圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i =1:0.75,坡长BC=10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)【分析】(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,利用坡度表示出CG,BG 的长,进而求出答案;(2)在Rt△ADF中,利用cot A=,得出AF的长,进而得出答案.【解答】解:(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,由题意可知CE=GF=2,CG=EF在Rt△BCG中,∠BGC=90°,∴i===,设CG=4k,BG=3k,则BC==5k=10,∴k=2,∴BG=6,∴CG=EF=8,∵DE=3,∴DF=DE+EF=3+8=11(米),答:瞭望台DE的顶端D到江面AB的距离为11米;(2)由题意得∠A=40°,在Rt△ADF中,∠DFA=90°,∴cot A=,∴≈1.19,∴AF≈11×1.19=13.09(m),∴AB=AF﹣BG﹣GF=5.09≈5.1(米),答:渔船A到迎水坡BC的底端B的距离为5.1米.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.23.(12分)如图,点D、E分别在△ABC的边AC、AB上,延长DE、CB交于点F,且AE•AB=AD•AC.(1)求证:∠FEB=∠C;(2)连接AF,若=,求证:EF•AB=AC•FB.【分析】(1)证明△AED∽△ACB即可解决问题;(2)证明△EFB∽△FAB,可得=,由AF=AC,可得结论;【解答】证明:(1)∵AE•AB=AD•AC.∴=,又∵∠A=∠A,∴△AED∽△ACB,∴∠AED=∠C,又∵∠AED=∠FEB,∴∠FEB=∠C.(2)∵∠FEB=∠C,∠EFB=∠CFD,∴△EFB∽△CFD,∴∠FBE=∠FDC,∵=,∴=,∴△FBA∽△CDF,∴∠FEB=∠C∴AF=AC,∵∠FEB=∠C,∴∠FEB=∠AFB,又∵∠FBE=∠ABF,∴△EFB∽△FAB,∴=,∵AF=AC,∴EF•AB=AC•FB.【点评】本题考查相似三角形的判定和性质,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(12分)如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN的面积的2倍,求的值.【分析】(1)过点B作BH⊥x轴,垂足为点H,根据等腰直角三角形的性质可求点A(4,0),用待定系数法可求抛物线的表达式;(2)根据平行线的性质可得BM∥OA,可求点M坐标,用待定系数法可求直线BO,直线AB,直线PM的解析式,即可求点P坐标;(3)延长MP交x轴于点D,作PG⊥MN于点G,根据等腰直角三角形的性质可得AC=CN,PG =NG,根据锐角三角函数可得tan∠BOA=3=tan∠MPG=,可得MG=3PG=3NG,根据面积关系可求的值.【解答】解:(1)如图,过点B作BH⊥x轴,垂足为点H,∵点B(1,3)∴BH=3,OH=1,∵∠BAO=45°,∠BHA=90°∴AH=BH=3,∴OA=4∴点A(4,0)∵抛物线过原点O、点A、B,∴设抛物线的表达式为y=ax2+bx(a≠0)∴解得:a=﹣1,b=4∴抛物的线表达式为:y=﹣x2+4x(2)如图,∵PM∥OB∴∠PMB+∠OBM=180°,且∠BMP=∠AOB,∴∠AOB+∠OBM=180°∴BM∥OA,设点M(m,3),且点M在抛物线y=﹣x2+4x上,∴3=﹣m2+4m,∴m=1(舍去),m=3∴点M(3,3),∵点O(0,0),点A(4,0),点B(1,3)∴直线OB解析式为y=3x,直线AB解析式为y=﹣x+4,∵PM∥OB,∴设PM解析式为y=3x+n,且过点M(3,3)∴3=3×3+n,∴n=﹣6∴PM解析式为y=3x﹣6∴解得:x=,y=∴点P(,)(3)如图,延长MP交x轴于点D,作PG⊥MN于点G,∵PG⊥MN,MC⊥AD∴PG∥AD∴∠MPG=∠MDC,∠GPN=∠BAO=45°,又∵∠PGC=90°,∠ACG=90°,∴AC=CN,PG=NG,∵PM∥OB,∴∠BOA=∠MDC,∴∠MPG=∠BOA∵点B坐标(1,3)∴tan∠BOA=3=tan∠MPG=∴MG=3PG=3NG,∴MN=4PG,∵△ANC的面积等于△PMN的面积的2倍,∴×AC×NC=2××MN×PG,∴NC2=2×MN×MN=MN2,∴【点评】本题是二次函数综合题,考查了待定系数法可求函数解析式,平行线的性质,锐角三角函数等知识,正确作出辅助线是解题的关键.25.(14分)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【分析】(1)由锐角三角函数可求AC=15,根据勾股定理和三角形面积公式可求AB,AF的长,即可求EF的长;(2)通过证△FAE∽△FCA和△BDE∽△CFA,可得y关于x的函数解析式;(3)分△ADF∽△CEA,△ADF∽△CAE两种情况讨论,通过等腰三角形的性质和相似三角形性质可求BD的长.【解答】解:(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN==,∴∴AC=15∴AB==20∵S=×AB×AC=×BC×AF,△ABC∴AF==12,∵AF⊥BC∴cos∠EAF=cos∠MBN==∴AE=20∴EF==16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH==16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△FAE∽△FCA∴,∠AEF=∠FAC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF=∴BE=BF+EF=∵∠MBN=∠ACB,∠AEF=∠FAC,∴△BDE∽△CFA∴∴∴y=(0<x≤)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,=×AB×AC=×BC×AF,∵S△ABC∴AF==12,∴BF==16,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN=,∴BE=,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴==设CE=3k,AE=4k,(k≠0)∴BE=k,∵BC=BE﹣CE=25∴k=∴AE=,CE=,BE=∵∠ACB=∠FAE,∠AFC=∠AFE,∴△AFC∽△EFA,∴=,设AF=7a,EF=20a,∴CF=a,∵CE=EF﹣CF=a=,∴a=,∴EF=,∵AC∥DF,∴,∴,∴DF=,综上所述:当BD为或时,△ADF与△ACE相似【点评】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。

2019-2020年临沂市临沭县九年级上册期末数学模拟试卷(有答案)

2019-2020年临沂市临沭县九年级上册期末数学模拟试卷(有答案)

山东省临沂市临沭县九年级(上)期末数学模拟试卷一.选择题(共14 小题,满分42 分,每小题 3 分)1.一元二次方程2﹣2=0 的解是()A.1=2=0 B.1=2=2 C.1=0 或2=2 D.无实数解2.若P1(1,y1),P2(2,y2)是函数y=图象上的两点,当1>2>0时,下列结论正确的是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<0 3.在Rt△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值为()A.B.C.D.4.如图,AB∥CD,OH 分别与AB、CD 交于点F、H,OG 分别与AB、CD 交于点E、G,若,OF=12,则OH 的长为()A.39 B.27 C.12 D.265.如图,四边形ABCD 内接于⊙O,E 为AD 延长线上一点,若∠CDE=80°,则∠B 等于()A.60°B.70°C.80°D.90°6.如图,在6×4 的正方形网格中,△ABC 的顶点均为格点,则sin∠ACB=()A.B.2 C.D.7.二次函数y=(﹣4)2+3 的最小值是()A.2 B.3 C.4 D.58.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3 的倍数的概率等于()A.B.C.D.9.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当<0 时,图象在第二象限C.无论取何值时,y 随的增大而增大D.图象是轴对称图形,但不是中心对称图形10.如图,将△ABC 沿角平分线BD 所在直线翻折,顶点A 恰好落在边BC 的中点E 处,AE=BD,那么tan∠ABD=()A.B.C.D.11.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.6cm B.3cm C.5 cm D.3 cm12.如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,tan∠ABD=,则线段AB 的长为()A.B.2 C.5 D.1013.如图,在△ABC 中,点D 在AB 边上,DE∥BC,与边AC 交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S214.函数y=a2+2a+m(a<0)的图象过点(2,0),则使函数值y<0成立的的取值范围是()A.<﹣4 或>2 B.﹣4<<2 C.<0 或>2 D.0<<2二.填空题(共5 小题,满分15 分,每小题 3 分)15.若△ABC∽△A′B′C′,且△ABC 与△A′B′C′的面积之比为1:3,则相似比为.16.若关于的一元二次方程a2+b﹣2019=0 有一个根为1,则a+b=.17.林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).18.如图,在△ABC 中,AD 平分∠BAC,DE∥AC,EF∥BC,若AB=15,AF=4,则DE=.19.如图,在平面直角坐标系中,反比例函数y=(>0)的图象与正比例函数y=、y=(>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB 的面积是.三.解答题(共7 小题,满分63 分)20.计算:sin30°•tan60°+ .21.解方程.(1)2﹣5=0;(2)2﹣3=1;(3)(﹣3)(+3)=2.22.如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A 点测得∠MAB=60°,在B 点测得∠MBA=45°,AB=600 米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD⊥ AE 于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O 的半径.24.如图,在平面直角坐标系Oy 中,已知直线y=与反比例函数y=(≠0)的图象交于点A,且点A 的横坐标为1,点B 是轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B 的坐标;(3)先在∠AOB 的内部求作点P,使点P 到∠AOB 的两边OA、OB 的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)25.如图,在平面直角坐标系中,直线y=﹣+3 与抛物线y=﹣2+b+c 交于A、B 两点,点A在轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P 作y 轴的平行线,交直线AB 于点Q,当PQ 不与y 轴重合时,以PQ 为边作正方形PQMN,使MN 与y 轴在PQ 的同侧,连结PM.设点P 的横坐标为m.(1)求b、c 的值.(2)当点N 落在直线AB 上时,直接写出m 的取值范围.(3)当点P 在A、B 两点之间的抛物线上运动时,设正方形PQMN 周长为c,求c 与m 之间的函数关系式,并写出c 随m 增大而增大时m 的取值范围.(4)当△PQM 与y 轴只有1 个公共点时,直接写出m 的值.26.已知四边形ABCD 中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN 绕B 点旋转到AE≠CF 时,在图2 和图3 这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF 又有怎样的数量关系?请写出你的猜想,不需证明.参考答案一.选择题(共14 小题,满分42 分,每小题3 分)1.【解答】解:∵2﹣2=0,∴(﹣2)=0,解得,1=0,2=2,故选:C.2.【解答】解:把点P1(1,y1)、P2(2,y2)代入y=得y1=,y2=,则y 1﹣y2=﹣=,∵1>2>0,∴12>0,2﹣1<0,∴y1﹣y2=<0,即y1<y2.故选:A.3.【解答】解:∵Rt△ABC 中,∠C=90°,BC=3,AB=5,∴sin A==.故选:A.4.【解答】解:∵EF∥GH,∴==,∴=,∴FH=27,∴OH=OF+FH=12+27=39,故选:A.5.【解答】解:∵四边形ABCD 内接于⊙O,∴∠B=∠CDE=80°,故选:C.6.【解答】解:如图所示,∵BD=2、CD=1,∴BC===,则sin∠BCA===,故选:C.7.【解答】解:二次函数y=(﹣4)2+3 的最小值是:3.故选:B.8.【解答】解:根据题意,得到的两位数有31、32、33、34、35、36 这6 种等可能结果,其中两位数是3 的倍数的有33、36 这2 种结果,∴得到的两位数是3 的倍数的概率等于故选:B.9.【解答】解:当=﹣1 时,y=﹣=4≠﹣4,故点(﹣1,﹣4)不在函数图象上,故A 不正确;在y=﹣中,=﹣4<0,∴当<0 时,其图象在第二象限,在每个象限内y 随的增大而增大,图象既是轴对称图形也是中心对称图形,故B 正确,C、D 不正确;故选:B.10【解答】解:如图,作CM⊥AE 交AE 的延长线于M,作DN⊥AB 于N,DF⊥BC 于F,AE 与BD 交于点,设D=a.∵AB=BE=EC,∴BC=2AB,∵DB 平分∠ABC,∵,∴,,∵DB⊥AM,CM⊥AM,∴D∥CM,∴,∠BE=∠MCE,∴CM=3a,在△BE 和△CME 中,,∴△BE≌△CME,∴B=CM=3a,∴BD=AE=4a,∴A=E=2a,∴tan∠ABD=.故选:B.11【解答】解:设圆锥的底面圆半径为r,∵半径为9cm 的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=•2π•9=12π,∴r=6.故选:A.12【解答】解:∵四边形ABCD 是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB 中,由勾股定理得:AB===5,故选:C.13【解答】解:∵如图,在△ABC 中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A 不符合题意,选项B 不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C 不符合题意,选项D 符合题意.故选:D.14【解答】解:抛物线y=a2+2a+m 的对称轴为直线=﹣=﹣1,而抛物线与轴的一个交点坐标为(2,0),∴抛物线与轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当<﹣4 或>2 时,y<0.故选:A.二.填空题(共5 小题,满分15 分,每小题 3 分)15【解答】解:∵△ABC∽△A′B′C′,△ABC 与△A′B′C′的面积之比为1:3,∴△ABC 与△A′B′C′的相似比为1:.故答案为:1:.16【解答】解:根据题意,一元二次方程a2+b﹣2019=0 有一个根为1,即=1 时,a2+b﹣2019=0 成立,即a+b=2019,故答案为:2019.17【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.18【解答】解:∵AD 平分∠BAC,∴∠1=∠2,∵DE∥AC,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE∥AC,EF∥BC,∴四边形DEFC 为平行四边形,∴DE=CF,设DE=,则AE=CF=,∵EF∥BC,∴=,即=,整理得2+4﹣60=0,解得1=6,2=﹣10(舍去),∴DE =6. 故答案为 6.19【解答】解:如图,过 B 作 BD ⊥ 轴于点 D ,过 A 作 AC ⊥y 轴于点 C设点 A 横坐标为 a ,则 A (a ,)∵A 在正比例函数 y = 图象上∴ =a∴=同理,设点 B 横坐标为 b ,则 B (b ,)∴∴∴∴ab =2当点 A 坐标为(a ,)时,点 B 坐标为(,a )∴OC =OD=将△AOC 绕点O 顺时针旋转90°,得到△ODA′∵BD⊥轴+∴B 、D 、A ′共线∵∠AOB =45°,∠AOA ′=90°∴∠BOA ′=45°∵OA =OA ′,OB =OB∴△AOB ≌△A ′OB∵S △BOD =S △AOC =2×=1∴S △AOB =2 故答案为:2三.解答题(共 7 小题,满分 63 分)20【解答】解:sin30°•tan60°+= ×+= ﹣2 =﹣2.21.【解答】解:(1)∵2﹣5=0,∴(﹣5)=0, 则 =0 或 ﹣5=0,∴=0 或 =5;(2)∵2﹣3=1,∴2﹣3﹣1=0,∵a =1、b =﹣3、c =﹣1,∴△=9﹣4×1×(﹣1)=13>0, 则 =;(3)方程整理可得 2﹣2﹣9=0,∵a =1、b =﹣2、c =﹣9,∴△=4﹣4×1×(﹣9)=40>0,则==1±.22【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM 中,;在Rt△BDM 中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M 到AB 的距离.(2)过点N 作NE⊥AB 于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN 为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB 中,,∴,∴.23【解答】(1)证明:如图,连接OA,∵AE 为⊙O 的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O 的半径为2.5.24【解答】解:(1)由题意,设点A的坐标为(1,m),∵点A 在正比例函数y=的图象上,∴m=.∴点A的坐标(1,),∵点A 在反比例函数y=的图象上,∴=,解得=,∴反比例函数的解析式为y=.(2)过点A 作AC⊥OB⊥,垂足为点C,可得OC=1,AC=.∵AC⊥OB,∴∠ACO=90°.由勾股定理,得AO=2,∴OC=AO,∴∠OAC=30°,∴∠ACO=60°,∵AB⊥OA,∴∠OAB=90°,∴∠ABO=30°,∴OB=2OA,∴OB=4,∴点B的坐标是(4,0).(3)如图作∠AOB 的平分线OM,AB 的垂直平分线EF,OM 与EF 的交点就是所求的点P,∵∠POB=30°,∴可以设点P坐标(m,m),∵PA2=PB2,∴(m﹣1)2+(m﹣)2=(m﹣4)2+(m)2,解得m=3,∴点P的坐标是(3,).25.【解答】(1)把y=0代入y=﹣+3,得=3.∴点A的坐标为(0,3),把=﹣1 代入y=﹣+3,得y=4.∴点B的坐标为(﹣1,4),把(0,3)、(﹣1,4)代入y=﹣2+b+c,解得:b=1,c=6;(2)当0<m<3 时,以PQ 为边作正方形PQMN,使MN 与y 轴在PQ 的同侧,此时,N 点在直线AB 上,同样,当m<﹣1,此时,N 点也在直线AB 上,故:m 的取值范围为:0<m<3 或m<﹣1;(3)当﹣1<m<3 且m≠0 时,PQ=﹣m2+m+6﹣(﹣m+3)=﹣m2+2m+3,∴c=4PQ=﹣4m2+8m+12;c 随m 增大而增大时m 的取值范围为﹣1<m≤1 且m≠0,(4)点P(m,﹣m2+m+6),则Q(m,﹣m+3),①当﹣1<m≤3 时,当△PQM 与y 轴只有1 个公共点时,PQ=P,即:﹣m2+m+6+m﹣3=m,解得:(舍去负值);②当m≤﹣1 时,△PQM 与y 轴只有1 个公共点时,PQ=Q,即﹣m+3+m2﹣m﹣6=m,整理得:m2﹣3m﹣3=0,解得:m=(不合题意,均舍去),故:m 的值为:.26 .【解答】解:∵ AB ⊥ AD ,BC ⊥ CD ,AB =BC ,AE =CF ,在△ABE 和△CBF 中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF 为等边三角形;∴AE+CF=BE+ BF=BE=EF;图2 成立,图3 不成立.证明图2.延长DC 至点,使C=AE,连接B,在△BAE 和△BC 中,则△BAE≌△BC,∴BE=B,∠ABE=∠BC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠BC=60°,∴∠BF=∠FBE=60°,在△BF 和△EBF 中,∴△BF≌△EBF,∴F=EF,∴C+CF=EF,即AE+CF=EF.图3 不成立,AE、CF、EF 的关系是AE﹣CF=EF.。

上海市宝山区2019届九年级上学期期末教学质量监测(一模)数学试题(解析版)

上海市宝山区2019届九年级上学期期末教学质量监测(一模)数学试题(解析版)

2019年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论正确的是()A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:CD=1:22.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似3.已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣14.如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.5.设m,n为实数,那么下列结论中错误的是()A.m(n)=(mn)B.(m+n)=m+nC.m()=m+m D.若m=,那么=6.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.抛物线y=x2﹣1的顶点坐标是.8.将二次函数y=2x2的图象向右平移3个单位,所得图象的对称轴为.9.请写出一个开口向下且过点(0,2)的抛物线解析式:.10.若2||=3,那么3||=.11.甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,那么图上4.5cm的两地之间的实际距离为千米.12.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于.13.Rt△ABC中,∠C=90°,AB=2AC,那么sin B=.14.直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为.15.如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE=2BD,BE =1,那么DC=.16.⊙O的直径AB=6,C在AB延长线上,BC=2,若⊙C与⊙O有公共点,那么⊙C的半径r的取值范围是.17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于.18.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=5,点P为AC上一点,将△BCP沿直线BP 翻折,点C落在C′处,连接AC′,若AC′∥BC,那么CP的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°tan30°+cos60°cot30°.20.(10分)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF •CE=AB2.21.(10分)如图,已知:△ABC中,点D、E分别在AB、AC上,AB=9,AC=6,AD=2,AE =3.(1)求的值;(2)设=,=,求(用含、的式子表示).22.(10分)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.(12分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.24.(12分)如图,已知:二次函数y=x2+bx的图象交x轴正半轴于点A,顶点为P,一次函数y =x﹣3的图象交x轴于点B,交y轴于点C,∠OCA的正切值为.(1)求二次函数的解析式与顶点P坐标;(2)将二次函数图象向下平移m个单位,设平移后抛物线顶点为P′,若S△ABP =S△BCP,求m的值.25.(14分)如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB =5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.(1)若AP=,求DE的长;(2)联结CP,若CP=EP,求AP的长;(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.2019年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.如图,已知AB∥CD∥EF,BD:DF=1:2,那么下列结论正确的是()A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:CD=1:2【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质对各选项进行判断.【解答】解:∵AB∥CD∥EF,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:CE=1:3,CE:EA=2:3.故选:A.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.2.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似【分析】根据相似三角形的判定方法对A、C进行判断;利用反例可对B、D进行判断.【解答】解:两个直角三角形不一定相似,两个矩形不一定相似,两个菱形不一定相似,而两个等边三角形一定相似.故选:C.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣1【分析】把已知点的坐标代入抛物线解析式可得到a的值.【解答】解:把(1,﹣2)代入y=ax2﹣1得a﹣1=﹣2,解得a=﹣1.故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.4.如图,直角坐标平面内有一点P(2,4),那么OP与x轴正半轴的夹角α的余切值为()A.2B.C.D.【分析】过点P作PA⊥x轴于点A.由P点的坐标得PA、OA的长,根据余切函数的定义得结论.【解答】解:过点P作PA⊥x轴于点A.由于点P(2,4),∴PA=4,OA=2∴cotα==.故选:B.【点评】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形.5.设m,n为实数,那么下列结论中错误的是()A.m(n)=(mn)B.(m+n)=m+nC.m()=m+m D.若m=,那么=【分析】根据平面向量的性质,即可判断A、B,C正确,根据向量的计算法则即可得D错误.【解答】解:A、如果m、n为实数,那么m(n)=(mn),故本选项结论正确;B、如果m、n为实数,那么(m+n)=m+n,故本选项结论正确;C、如果m、n为实数,那么m()=m+m,故本选项结论正确;D、如果m为实数,那么若m=,那么m=0或=,故本选项结论错误.故选:D.【点评】此题考查了平面向量的性质.题目比较简单,注意向量是有方向性的,掌握平面向量的性质是解此题的关键.6.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定【分析】先根据两点间的距离公式计算出PA的长,然后比较PA与半径的大小,再根据点与圆的关系的判定方法进行判断.【解答】解:∵圆心A的坐标是(1,2),点P的坐标是(5,2),∴AP==4<5,∴点P在⊙A内,故选:A.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了坐标与图形性质.二、填空题(本大题共12题,每题4分,满分48分)7.抛物线y=x2﹣1的顶点坐标是(0,﹣1).【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1).故答案是:(0,﹣1).【点评】本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.8.将二次函数y=2x2的图象向右平移3个单位,所得图象的对称轴为直线x=3.【分析】直接利用二次函数平移规律得出平移后解析式进而得出答案.【解答】解:将二次函数y=2x2的图象向右平移3个单位,所得解析式为:y=2(x﹣3)2,故其图象的对称轴为:直线x=3.故答案为:直线x=3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.9.请写出一个开口向下且过点(0,2)的抛物线解析式:y=﹣x2+2(答案不唯一).【分析】根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,2)得出即可.【解答】解:∵开口向下且过点(0,2)的抛物线解析式,∴可以设顶点坐标为(0,2),故解析式为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).【点评】本题考查了二次函数图象的性质,是开放型题目,答案不唯一.10.若2||=3,那么3||=.【分析】实数的乘除运算法则同样适用于向量的运算.【解答】解:由2||=3得到:||=,故3||=3×=.故答案是:.【点评】考查了平面向量的知识,解题时,可以与实数的运算法则联系起来考虑,属于基础题.11.甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,那么图上4.5cm的两地之间的实际距离为225千米.【分析】依据甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,即可得到比例尺,即可得出图上4.5cm的两地之间的实际距离.【解答】解:∵甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm,∴比例尺==,设图上4.5cm的两地之间的实际距离为xcm,则=,解得x=22500000,∵22500000cm=225km,∴图上4.5cm的两地之间的实际距离为225千米.故答案为:225.【点评】本题主要考查了比例线段,解题时注意:比例尺等于图上距离与实际距离的比值.12.如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于1:16.【分析】由两个相似三角形的周长的比等于1:4,即可求得它们的相似比,根据相似三角形的面积比等于相似比的平方,即可求得它们的面积的比.【解答】解:∵两个相似三角形的周长的比等于1:4,∴它们的相似比为1:4,∴它们的面积的比等于1:16.故答案为:1:16.【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方,相似三角形的对应高线、角平分线、中线的比等于相似比.13.Rt△ABC中,∠C=90°,AB=2AC,那么sin B=.【分析】根据锐角的正弦等于对边比斜边,可得答案.【解答】解:由题意,得sin B==,故答案为:.【点评】本题考查了锐角三角函数的定义,利用锐角的正弦等于对边比斜边是解题关键.14.直角三角形的重心到直角顶点的距离为4cm,那么该直角三角形的斜边长为12cm.【分析】根据三角形的重心的性质求出CD,根据直角三角形的性质计算即可.【解答】解:由题意得,CG=4,∵点G是△ABC的重心,∴CD=CG=6,CD是△ABC的中线,在Rt△ACB中,∠ACB=90°,CD是△ABC的中线,∴AB=2CD=12(cm),故答案为:12cm.【点评】本题考查的是三角形的重心的概念和性质,直角三角形的性质,掌握三角形的重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.15.如图,四边形ABCD中,AB∥DC,点E在CB延长线上,∠ABD=∠CEA,若3AE=2BD,BE =1,那么DC=.【分析】根据平行线的性质得到∠ABD=∠BDC,推出△AEB∽△BDC,根据相似三角形的性质即可得到结论.【解答】解:∵AB∥DC,∴∠ABD=∠BDC,∵∠ABD=∠CEA,∴∠AEB=∠BDC,∴∠EAB=180°﹣∠AEB﹣∠ABE,∠CBD=180°﹣∠ABD﹣∠ABE,∴∠EAB=∠CBD,∴△AEB∽△BDC,∴=,∵3AE=2BD,BE=1,∴CD=,故答案为:.【点评】本题考查了平行线的性质,相似三角形的判定和性质,证得△AEB∽△BDC是解题的关键.16.⊙O的直径AB=6,C在AB延长线上,BC=2,若⊙C与⊙O有公共点,那么⊙C的半径r的取值范围是2≤r≤8.【分析】利用⊙C与⊙O相切或相交确定r的范围.【解答】解:∵⊙O的直径AB=6,C在AB延长线上,BC=2,∴CA=8,∵⊙C与⊙O有公共点,即⊙C与⊙O相切或相交,∴r=2或r=8或2<r<8,即2≤r≤8.故答案为2≤r≤8.【点评】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R ﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于或.【分析】根据题意,可以求得底边的长,然后利用分类讨论的方法和锐角三角函数可以求得相应的角的三角函数值.【解答】解:设等腰三角形的底边长为a,|5﹣a|=3,解得,a=2或a=8,当a=2时,这个等腰三角形底角的余弦值是:,当a=8时,这个等腰三角形底角的余弦值是:,故答案为:或【点评】本题考查解直角三角形、等腰三角形的性质、锐角三角函数,解答本题的关键是明确题意,求出相应的角的三角函数值.18.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=5,点P为AC上一点,将△BCP沿直线BP 翻折,点C落在C′处,连接AC′,若AC′∥BC,那么CP的长为.【分析】过点C'作C'D⊥BC于点D,通过题意可证四边形C'DCA是矩形,可得CD=AC',C'D=AC =4,根据勾股定理可求BD=3,即CD=AC'=2,根据勾股定理可求CP的长.【解答】解:过点C'作C'D⊥BC于点D,∵A'C∥BC,∠ACB=90°,∴∠C'AC=∠ACB=90°,且C'D⊥BC,∴四边形C'DCA是矩形,∴CD=AC',C'D=AC=4,∵折叠∴BC'=BC=5,CP=C'P,在Rt△BDC'中,BD==3∴CD=BC﹣BD=2∴AC'=2,在Rt△AC'P中,C'P2=C'A2+AP2,∴CP2=4+(4﹣CP)2,∴CP=故答案为:【点评】本题是翻折变换,考查了矩形的判定和性质,折叠的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:sin30°tan30°+cos60°cot30°.【分析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.【解答】解:原式=×+×=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF •CE=AB2.【分析】利用两角对应成比例可得△ABF∽△ECA,对应边成比例可得相应的比例式,整理可得所求的乘积式.【解答】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点评】此题考查了相似三角形的判定与性质.注意证得△ABF∽△ECA是解此题的关键.21.(10分)如图,已知:△ABC中,点D、E分别在AB、AC上,AB=9,AC=6,AD=2,AE =3.(1)求的值;(2)设=,=,求(用含、的式子表示).【分析】(1)根据已知∠AED=∠ABC,∠A=∠A,进而得出△ADE∽△ACB,由该相似三角形的性质解答;(2)由三角形法则解答即可.【解答】解:(1)∵∠AED=∠ABC,∠A=∠A∴△ADE∽△ACB,∴===,即=.(2)=+=﹣+.【点评】考查了平面向量和相似三角形的判定与性质.注意:平面向量是有方向的.22.(10分)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.【分析】(1)证△ABC∽△FAC,得=,将相关线段的长代入计算可得;(2)作CH⊥AB,先计算AB=5,据此可得CH==,AH==,EH=AE ﹣AH=,依据tan D=tan∠ECH=可得答案.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△FAC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.【点评】本题主要考查解直角三角形与相似三角形的判定和性质,解题的关键是添加辅助线构造与∠D相等的角,并熟练掌握相似三角形的判定与性质、勾股定理等知识点.23.(12分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.【分析】根据题意作出合适的辅助线,然后根据锐角三角函数即可求得电梯AB的坡度,然后根据勾股定理即可求得AB的长度.【解答】解:作BC⊥PA交PA的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD=,∴tan14°=,即0.25=,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC==,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB==19.5,即电梯AB的坡度是5:12,长度是19.5米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.24.(12分)如图,已知:二次函数y=x2+bx的图象交x轴正半轴于点A,顶点为P,一次函数y =x﹣3的图象交x轴于点B,交y轴于点C,∠OCA的正切值为.(1)求二次函数的解析式与顶点P坐标;(2)将二次函数图象向下平移m个单位,设平移后抛物线顶点为P′,若S△ABP =S△BCP,求m的值.【分析】(1)先由直线解析式求出点B,C坐标,利用∠OCA正切值求得点A坐标,再利用待定系数法求解可得;(2)由平移知点P′坐标为(1,﹣1﹣m),设抛物线对称轴与x轴交于点H,与BC交于点M,知M(1,﹣),先得出S△ABP′=AB•P′H=2(m+1),S△BCP′=S△P′MC+S△P′MB=P′M•OB=3|﹣m|,根据S△ABP =S△BCP列出方程求解可得.【解答】解:(1)∵y=x﹣3,∴x=0时,y=﹣3,当y=0时,x﹣3=0,解得x=6,∴点B(6,0),C(0,﹣3),∵tan∠OCA==,∴OA=2,即A(2,0),将A(2,0)代入y=x2+bx,得4+2b=0,解得b=﹣2,∴y=x2﹣2x=(x﹣1)2﹣1,则抛物线解析式为y=x2﹣2x,顶点P的坐标为(1,﹣1);(2)如图,由平移知点P′坐标为(1,﹣1﹣m),设抛物线对称轴与x轴交于点H,与BC交于点M,则M(1,﹣),S△ABP′=AB•P′H=×4(m+1)=2(m+1),S △BCP ′=S △P ′MC +S △P ′MB =P ′M •OB =|﹣1﹣m +|×6=3|﹣m |,∴2(m +1)=3|﹣m |,解得m =或m =.【点评】本题主要考查抛物线与x 轴的交点,解题的关键是掌握待定系数法求函数解析式,二次函数的图象与性质及三角函数的应用等知识点.25.(14分)如图,已知:梯形ABCD 中,∠ABC =90°,∠DAB =45°,AB ∥DC ,DC =3,AB=5,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 于射线CB 交于点F .(1)若AP =,求DE 的长;(2)联结CP ,若CP =EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似?若相似,求FG 的值;若不相似,请说明理由.【分析】(1)如图,过点A ,作AH ∥BC ,交CD 的延长线于点H ,在Rt △AHE 中求出AE ,即可求求解;(2)设:AP =x ,利用△APE ∽△PEC ,得出PC 2=CE •AP ,利用勾股定理得出PC 2=PB 2+BC 2,即可求解;(3)利用△ADE ∽△FGE ,得到3α=45°,进而求出相应线段的长度,再利相似比=,即可求解.【解答】解:(1)如图1中,过点A ,作AH ∥BC ,交CD 的延长线于点H .∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP=,根据勾股定理得,HE==3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EPA=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴=,即:PE2=AE•CE,而EC=2PB=2(5﹣x),即:PC2=CE•AP=2(5﹣x)x,而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,∴2(5﹣x)x=(5﹣x)2+22,解得:x=(不合题意值已舍去),即:AP=;(3)如图3中,在线段CF上取一点G,连接EG.设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,则:∠EAP=180°﹣2∠APE=2α,∵△ADE∽△FGE,设∠DAE=∠F=α,由∠DAB=45°,可得3α=45°,2α=30°,在Rt△ADH中,AH=DH=2,在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,∴HE=AH•tan∠HAE=2,∴DE=HE﹣HD=2﹣2,EC=HC﹣HE=5﹣2,∵△ADE∽△FGE,∴∠ADC=∠EGF=135°,则∠CEG=45°,∴EG=EC=5﹣2,∴=,即:=,解得:FG=3﹣1.【点评】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题.第21 页共21 页。

2019年青岛市城阳区九年级上册期末数学试卷(有答案)-优质资料

2019年青岛市城阳区九年级上册期末数学试卷(有答案)-优质资料

山东省青岛市城阳区九年级(上)期末数学试卷一、选择题1.如图,是一个几何体的三视图,则这个三视图,则这个几何体是( )A .长方体B .圆柱体C .球体D .圆锥体2.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,则sin B 的值为( )A .B .C .D .3.已知反比例函数y =的图象经过点(﹣5,3),则的值为( )A .﹣15B .C .﹣2D .4.菱形ABCD 的周长为20cm ,∠ABC =120°,则对角线BD 等于( )A .4cmB .6cmC .5cmD .10cm5.如图,在△ABC 中,点D 在AB 上一点,下列条件中,能使△ABC 与△BDC 相似的是( )A .∠B =∠ACD B .∠ACB =∠ADC C .AC 2=AD •AB D .BC 2=BD •AB6.一个密闭不透明的盒子里由若干个白球,在不允许将球倒出数的情况下,为估计白球的个数,小刚向其中放入10个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子,不断重复,共摸球200次,其中40次摸到黑球,则可以估计盒中大约有白球( )A .30个B .35个C .40个D .50个7.若≠0,则函数y =和y =+3在同一直角坐标系上的图象大致是( )A .B .C .D .8.若二次函数y=a2﹣2﹣1的图象和轴有交点,则a的取值范围为()A.a>﹣1 B.a>﹣1且a≠0 C.a≥﹣1 D.a≥﹣1且a≠0二、填空题9.已知=,则=.10.计算:cos60°+tan60°=.11.高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为米.12.如图,在平面直角坐标系中,点A在反比例函数y=(<0,<0)的图象上,过点A作AB∥y轴交轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是8,则=.13.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.该矩形草坪BC边的长是米.14.如图,矩形ABCD中,AB=2,E为对角线BD上一点,且BE=3DE,CE⊥BD于E,则BC=.15.已知A(0,3)和B(2,3)在抛物线y=2+b+c上,则二次函数y=2+b+c的对称轴为直线.16.已知反比例函数y=的图象,当取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M…,M n,则=.3三、作图题17.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.四、解答题18.计算(1)2+6﹣2=0(配方法)(2)已知关于的方程22+(﹣2)+1=0有两个相等的实数根,求的值.19.小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.20.在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y与之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)如果为了防汛工作的紧急需要,必须在10天内完成任务,那么每天至少要完成多少米?21.某商店经销一种销售成本为每件40元的商品,根据市场分析,当销售定价为52元时,每月可售出180件,定价每增加1元,销售量就将减少10件;定价每减少1元,销售量就将增加10件.若商店想在销售成本不高于7200元的情况下,使该商品的月销售利润达到2000元,则销售价应定为每件多少元?22.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)23.如图,在▱ABCD中,AC⊥CD.(1)延长DC到E,使CE=CD,连接BE,求证:四边形ABEC是矩形;(2)若点F,G分别是BC,AD的中点,连接AF,CG,试判断四边形AFCG是什么特殊的四边形?并证明你的结论.24.如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y(m)与水平距离(m)之间的关系式可以用y=﹣2+b+c表示,且抛物线经过点B(,2),C(2,).请根据以上信息,解答下列问题;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?25.(8分)△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF 中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=;(3)求第10次剪取后,余下的所有小三角形的面积之和.26.如图,在矩形ABCD中,AB=6,BC=8.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点时停止运动.点P也同时停止.点P,Q运动速度均为每秒1个单位长度,连接PQ,设运动时间为t(t>0)秒.(1)当点Q从B点向A点运动时(未到达A点),①当t=时PQ∥BC②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求此时的t的值和AE的长;②当l经过点B时,求t的值.参考答案一、选择题1.如图,是一个几何体的三视图,则这个三视图,则这个几何体是()A.长方体B.圆柱体C.球体D.圆锥体【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:圆柱体的主视图和左视图均为矩形,俯视图是圆,故选:B.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sin B的值为()A.B.C.D.【分析】利用勾股定理求出AB的长度,然后根据sin B=代入数据进行计算即可得解.【解答】解:∵∠C=Rt∠,AC=4,BC=3,∴AB===5,∴sin B==.故选:D.【点评】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知反比例函数y=的图象经过点(﹣5,3),则的值为()A.﹣15 B.C.﹣2 D.【分析】将点的坐标代入反比例函数解析式中可求的值.【解答】解:∵反比例函数y=的图象经过点(﹣5,3),∴=﹣5×3=﹣15故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,掌握图象上的点的坐标满足解析式是本题的关键.4.菱形ABCD的周长为20cm,∠ABC=120°,则对角线BD等于()A.4cm B.6cm C.5cm D.10cm【分析】由菱形的性质可得,AB=AD=5cm,∠A=60°,则△ABD是等边三角形,则对角线BD的长为5cm.【解答】解:∵菱形的周长为20cm,∴AB=BC=CD=AD=5cm,∵∠ABC=120°,∴∠A=60°,∴△ABD是等边三角形,∴BD=AB=5cm.故选:C.【点评】此题主要考查菱形的性质和等边三角形的判定.关键是掌握菱形的四条边相等.5.如图,在△ABC中,点D在AB上一点,下列条件中,能使△ABC与△BDC相似的是()A.∠B=∠ACD B.∠ACB=∠ADC C.AC2=AD•AB D.BC2=BD•AB【分析】根据两边成比例夹角相等的两个三角形相似,即可判断.【解答】解:选项A、B、C的条件无法判断△ABC与△BDC相似.正确答案是D.理由如下:∵BC2=BD•BA,∴=,∵∠B=∠B,∴△ABC∽△CBD(两边成比例夹角相等的两个三角形相似).故选:D.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.6.一个密闭不透明的盒子里由若干个白球,在不允许将球倒出数的情况下,为估计白球的个数,小刚向其中放入10个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子,不断重复,共摸球200次,其中40次摸到黑球,则可以估计盒中大约有白球()A.30个B.35个C.40个D.50个【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【解答】解:设盒子里有白球个,根据得:解得:=40.故选:C.【点评】本题主要考查利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.7.若≠0,则函数y=和y=+3在同一直角坐标系上的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,≠0,所以分>0和<0两种情况讨论.当两函数系数取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当>0时,y=+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当<0时,y=+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限.8.若二次函数y=a2﹣2﹣1的图象和轴有交点,则a的取值范围为()A.a>﹣1 B.a>﹣1且a≠0 C.a≥﹣1 D.a≥﹣1且a≠0【分析】直接利用根的判别式进行计算,“图象和轴有交点”说明△≥0,a≠0,即可得出结果.【解答】解:∵二次函数y=a2﹣2﹣1的图象和轴有交点,∴△=b2﹣4ac=4+4a≥0,a≠0,∴a≥﹣1,且a≠0;故选:D.【点评】本题考查了抛物线与轴的交点、判别式的应用;熟练掌握根的判别式的运用是解决问题的关键,本题的易错点是漏掉a≠0.二、填空题9.已知=,则=﹣.【分析】根据题意,设=3,y=4,代入即求得的值.【解答】解:设=3,y=4,∴==﹣.【点评】已知几个量的比值时,设一个未知数,把题目中的几个量用所设的未知数表示出,实现消元.10.计算:cos60°+tan60°= 2 .【分析】直接利用特殊角的三角函数值计算得出答案.【解答】解:cos60°+tan60°=+×=2.故答案为:2.【点评】此题主要考查了实数运算,正确记忆相关数据是解题关键.11.高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为40 米.【分析】设此建筑物的高度为h,再根据同一时刻物高与影长成正比即可得出h的值.【解答】解:设此建筑物的高度为h,∵同一时刻物高与影长成正比,∴,解得h=40m.故答案为:40m.【点评】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.12.如图,在平面直角坐标系中,点A在反比例函数y=(<0,<0)的图象上,过点A作AB∥y轴交轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是8,则=﹣16 .【分析】连接AO,利用同底等高三角形面积相等求出AOB面积,利用反比例函数的几何意义求出的值即可.【解答】解:接AO,由同底等高得到S△AOB=S△ABC=8,∴||=8,即||=16,∵反比例函数在第二象限过点A,∴=﹣16,故答案为:﹣16.【点评】此题考查了反比例函数系数的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数系数的几何意义是解本题的关键.13.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.该矩形草坪BC边的长是12 米.【分析】可设矩形草坪BC边的长为米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为米,则AB=CD=米,根据题意得:×=120,解得:1=12,2=20,∵20>16,∴2=20不合题意,舍去,故答案为:12.【点评】本题考查了一元二次方程的应用,注意得出结果后要判断所求的解是否符合题意,舍去不合题意的解.注意本题表示出矩形草坪的长和宽是解题的关键.14.如图,矩形ABCD 中,AB =2,E 为对角线BD 上一点,且BE =3DE ,CE ⊥BD 于E ,则BC = 2 .【分析】根据矩形的性质可得OA =OB =OC =OD ,由BE =3DE 可得OE =DE ,根据线段垂直平分线的性质可得OC =DC =2,根据勾股定理可求BC 的长.【解答】解:∵四边形ABCD 是矩形∴AO =BO =CO =DO ,AB =CD =2,∵BE =3DE∴BD =4DE ,OD =2DE ,∴OE =DE ,且CE ⊥DB ,∴CO =DC =2,∴AO =CO =2,∴AC =4在Rt △ABC 中,BC ==2故答案为2【点评】本题考查了矩形的性质,线段垂直平分线的性质,勾股定理,熟练运用矩形的性质是本题的关键.15.已知A (0,3)和B (2,3)在抛物线y =2+b +c 上,则二次函数y =2+b +c 的对称轴为直线 =1 .【分析】根据抛物线对称性求解可得.【解答】解:∵A (0,3)和B (2,3)在抛物线y =2+b +c 上,∴点A 和点B 是抛物线上关于对称轴对称的两点,∴对称轴为直线==1,故答案为:=1.【点评】此题考查了二次函数的性质与图象,解题的关键是熟练掌握抛物线的对称性.16.已知反比例函数y=的图象,当取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M…,M n,则=.3【分析】先确定M1(1,1),M2(2,),M3(3,),…,M n(n,),再根据三角形面积公式得到S△=×1×(1﹣),S△P2M2M3=×1×(﹣),…,S△Pn﹣1Mn﹣1Mn=×1×(﹣),然P1M1M2后把它们相加即可.【解答】解:∵M1(1,1),M2(2,),M3(3,),…,M n(n,),∴S△P1M1M2=×1×(1﹣),S△P2M2M3=×1×(﹣),…,S△Pn﹣1Mn﹣1Mn=×1×(﹣),∴=×1×(1﹣)+×1×(﹣)+…+×1×(﹣)=(1﹣+﹣+…+﹣)=•=.故答案为.【点评】本题考查了反比例函数y=(≠0)中比例系数的几何意义:过反比例函数图象上任意一点分别作轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为||.三、作图题17.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O 为位似中心,△ABC 与△A 1B 1C 1位似比为1:2,在y 轴的左侧,请画出△ABC 放大后的图形△A 1B 1C 1.【分析】利用位似比为1:2,进而将各对应点坐标扩大为原的2倍,进而得出答案.【解答】解:如图所示,△A 1B 1C 1即为所求.【点评】此题主要考查了位似变换,正确掌握位似比与坐标的关系是解题关键.四、解答题18.计算(1)2+6﹣2=0(配方法)(2)已知关于的方程22+(﹣2)+1=0有两个相等的实数根,求的值.【分析】(1)根据配方法的步骤计算可得;(2)由方程有两个相等的实数根知△=0,据此列出关于的方程,解之可得.【解答】解:(1)∵2+6﹣2=0,∴2+6=2,则2+6+9=2+9,即(+3)2=11,解得+3=±,∴=﹣3±,即1=﹣3+,2=﹣3﹣;(2)∵方程有两个相等的实数根,∴△=0,即(﹣2)2﹣4×2×1=0,整理,得:2﹣4﹣4=0,解得:1=2+2,2=2﹣2.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个相等的实数根,即可得△=0.19.小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸到的球颜色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次摸到的球颜色相同的结果数为6,所以游戏者获得纪念品的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.20.在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y (天)与每天完成工程量米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y 与之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)如果为了防汛工作的紧急需要,必须在10天内完成任务,那么每天至少要完成多少米?【分析】(1)将点(24,50)代入反比例函数的解析式,即可求得反比例函数的解析式;(2)用工作效率乘以工作时间即可得到工作量,然后除以工作效率即可得到工作时间;(3)工作量除以工作时间即可得到工作的效率.【解答】解:(1)设y =.∵点(24,50)在其图象上,∴所求函数表达式为y =;(2)由图象,知共需开挖水渠24×50=1200(m );2台挖掘机需要1200÷(2×30)=20天;(3)1200÷10=120(m ).故每天至少要完成120m .【点评】本题考查了反比例函数的应用,解题的关键是从中整理出解决实际问题的函数模型.21.某商店经销一种销售成本为每件40元的商品,根据市场分析,当销售定价为52元时,每月可售出180件,定价每增加1元,销售量就将减少10件;定价每减少1元,销售量就将增加10件.若商店想在销售成本不高于7200元的情况下,使该商品的月销售利润达到2000元,则销售价应定为每件多少元?【分析】设销售价应定为每件元,根据利润=2000,列出方程即可解决问题.【解答】解:设销售价应定为每件元,根据题意,得(﹣40)[180﹣10(﹣52)]=2000整理得2﹣110+3000=0解这个方程得1=50,2=60当=50时,销售成本为40×[180﹣10(50﹣52)]=8000(元)∵8000>7200,∴=50不合题意,应舍去当=60时,销售成本为40×[180﹣10(60﹣52)]=4000(元)答:销售价应定为每件60元【点评】本题考查一元二次方程的应用,解题的关键是正确寻找等量关系,列出方程解决问题.22.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可.【解答】解:作DH⊥AB于H,∵∠DBC=15°,BD=20,∴BC=BD•cos∠DBC=20×=19.2,CD=BD•sin∠DBC=20×=5,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:楼房AB的高度约为26m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.如图,在▱ABCD中,AC⊥CD.(1)延长DC到E,使CE=CD,连接BE,求证:四边形ABEC是矩形;(2)若点F,G分别是BC,AD的中点,连接AF,CG,试判断四边形AFCG是什么特殊的四边形?并证明你的结论.【分析】(1)根据平行四边形的性质得出AB∥CD,AB=CD,求出CE∥AB,CE=AB,根据平行四边形的判定得出四边形ABEC是平行四边形,根据矩形的判定得出即可.(2)根据平行四边形的性质得出AD=CB,AD∥CB,求出AG=CF,根据平行四边形的判定得出四边形AFCG是平行四边形,求出AG=CG,根据菱形的判定得出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CD=CE,∴CE∥AB,CE=AB,∴四边形ABEC是平行四边形,∵AC⊥CD,∴∠ACE=90°,∴四边形ABEC是矩形;(2)四边形AFCG是菱形,证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∵点F、G分别是BC、AD的中点,∴AG=DG=AD,BF=CF=BC,∴AG=CF,∴四边形AFCG是平行四边形,∵∠ACD=90°,G为AD的中点,∴AG=CG,∴四边形AFCG是菱形.【点评】本题考查了直角三角形的性质,矩形的判定,平行四边形的判定和性质,菱形的判定的应用,能综合运用知识点进行推理是解此题的关键.24.如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y(m)与水平距离(m)之间的关系式可以用y=﹣2+b+c表示,且抛物线经过点B(,2),C(2,).请根据以上信息,解答下列问题;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【分析】(1)根据抛物线y=﹣2+b+c表示,且经过点B(,2),C(2,),可以求得抛物线的解析式,然后令=0,求得y的值,即可得到OA的值;(2)将(1)中的函数解析式化为顶点式,即可求得喷出的水流距水面的最大高度;(3)根据题意和图象,求出抛物线与轴的交点,即可得到水池半径的最小值.【解答】解:(1)∵抛物线y=﹣2+b+c表示,且经过点B(,2),C(2,),∴,解得,,∴抛物线y=﹣2+2+,当=0时,y=,即抛物线的函数关系式是y=﹣2+2+,喷水装置OA的高度是米;(2)∵y =﹣2+2+=﹣(﹣1)2+,∴当=1时,y 取得最大值,此时y =,答:喷出的水流距水面的最大高度是米;(3)令﹣2+2+=0,解得,1=﹣0.5,2=2.5,答:水池的半径至少要2.5米,才能使喷出的水流不至于落在池外.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质解答.25.(8分)△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s 1;按照甲种剪法,在余下的△ADE 和△BDF 中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s 2(如图2),则s 2= ;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s 3,继续操作下去…,则第10次剪取时,s 10= ; (3)求第10次剪取后,余下的所有小三角形的面积之和.【分析】(1)分别求出甲、乙两种剪法所得的正方形面积,进行比较即可;(2)按图1中甲种剪法,可知后一个三角形的面积是前一个三角形的面积的,依此可知结果;(3)探索规律可知:,依此规律可得第10次剪取后,余下的所有小三角形的面积之和.【解答】解:(1)解法1:如图甲,由题意,得AE=DE=EC,即EC=1,S正方形CFDE=12=1如图乙,设MN=,则由题意,得AM=MQ=PN=NB=MN=,∴,解得∴又∵∴甲种剪法所得的正方形面积更大.说明:图甲可另解为:由题意得点D、E、F分别为AB、AC、BC的中点,S正方形OFDE=1.解法2:如图甲,由题意得AE=DE=EC,即EC=1,如图乙,设MN=,则由题意得AM=MQ=QP=PN=NB=MN=,则,解得,又∵,即EC>MN.∴甲种剪法所得的正方形面积更大.(2),.(3)解法1:探索规律可知:剩余三角形面积和为2﹣(S1+S2+…+S10)=2﹣(1++…+)=解法2:由题意可知,第一次剪取后剩余三角形面积和为2﹣S1=1=S1第二次剪取后剩余三角形面积和为,第三次剪取后剩余三角形面积和为,…第十次剪取后剩余三角形面积和为.【点评】本题考查了正方形的性质,勾股定理,等腰直角三角形的性质,得出甲、乙两种剪法,所得的正方形面积是解题的关键.26.如图,在矩形ABCD中,AB=6,BC=8.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点时停止运动.点P也同时停止.点P,Q运动速度均为每秒1个单位长度,连接PQ,设运动时间为t(t>0)秒.(1)当点Q从B点向A点运动时(未到达A点),①当t=秒时PQ∥BC②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求此时的t的值和AE的长;②当l经过点B时,求t的值.【分析】(1)①由题意得:BQ=AP=t,根据平行线分线段成比例定理得:,列关于t的方程,解出即可;②作高线PE,根据三角形面积公式可得:S关于t的函数关系式,并根据AB的长和点Q的速度确定t的取值范围;(2)①如图2,延长CD交QP于M,根据线段垂直平分线的性质可得:AQ=AP,即6﹣t=t,可得t的值,证明△AQP∽△CMP,列比例式可得CM的长,证明△AQE∽△DME,可得结论;②如图3,作辅助线,构建等腰三角形,根据平行线分线段成比例定理可得结论.【解答】解:(1)①由题意得:BQ=AP=t,∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6,BC=8,∴AC=10,AQ=6﹣t,∵PQ∥BC,∴,∴,t=,则当t=秒时,PQ∥BC,故答案为:秒;②如图1,过P作PE⊥AB于E,sin∠BAC=,∴,PE=t,∴S△APQ=S=AQ•PE=(6﹣t)t=﹣+t(0<t≤6);(2)①如图2,延长CD交QP于M,∵线段PQ的垂直平分线为l经过点A,∴AQ=AP,即6﹣t=t,∴t=3,∴AQ=AP=3,CP=10﹣3=7,∵AQ∥CD,∴△AQP∽△CMP,∴,∴,CM=7,∴DM=7﹣6=1,∵AQ∥DM,∴△AQE∽△DME,∴=,∵AE+DE=8,∴AE=6;②如图3,连接PB,过P作PG⊥AB于G,则PG∥BC,∵线段PQ的垂直平分线l经过点B,∴PB=BQ=t=AP,∴AG=BG,∴AP=PC=AC=5,∴t=5.【点评】本题是四边形综合题目,考查了矩形性质,等腰三角形性质,线段垂直平分线性质,勾股定理,相似三角形的性质和判定的应用等知识,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.。

人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A(能力提升 附答案详解)

人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A(能力提升 附答案详解)
(0°<β<180°),得到△A′B′C
(1)设A′B′与CB相交于点D,
①当旋转角为β=25°,∠B′DB=°;
②当AB∥CB′时,求证:D是A′B′的中点;
(2)如图2,E是AC边上的点,且 ,P是A′B′边上的点,且∠A′PC=60°,连接EP、CP,已知AC=10,①当β=°时,EP长度最大,最大值为;
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.
21.计算: cos45°.
22.(1)用计算器求图中∠A的正弦值、余弦值、正切值.
即S=y2﹣y1.
故选C.
点睛:本题是一道二次函数综合题,主要考查了二次函数的图象和性质.解题的关键在于要利用二次函数图象上的点并结合梯形面积公式由题意得: , ,故选答案B.
考点:函数的综合运用.
9.C
【解析】
∵直角△ABC中,∠C=90°,
∴tan∠BAC= ,
人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A
(能力提升附答案详解)
1.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是( )
A. B. C. D.
2.投一个普通骰子,有下述说法:①朝上一面的点数是偶数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数。将上述事件按可能性的大小从大到小排列为()
又∵AC=30cm,tan∠BAC= ,
∴BC=AC⋅tan∠BAC=30× = (cm).

2019年山西省太原市九年级上册期末考试数学试卷有答案

2019年山西省太原市九年级上册期末考试数学试卷有答案

太原市第一学期九年级数学期末考试一、选择题(本大题含1 0 个小题,每小题3 分,共3 0 分)1. 小明同学拿一个等边三角形木框在太阳光下观察投影,此木框在水平地面上的影子不可能()2.若四条线段a,b,c,d 成比例,且a=3cm,b=2cm,c=9cm,则线段d 的长为()A.4cm B.5cm C.6cm D.8cm3.小明所在班里共有50 名同学,他们给生日相同的小红与小亮过完生日后,对“多少人中必有2 人生日相同”进行了讨论,下列说法正确的是()A.50 人中必有2 人的生日相同B.100 人中必有2 人的生日相同C.365 人中必有2 人的生日相同D.367 人中必有2 人的生日相同4.如图所示,几何体的俯视图是()5.如图,在6×6 的方格纸上有△ABC 和△DEF,它们的顶点都在格点上,AG 和DH 分别是它们的高,则AG:DH 等于()A.1:2 B.2:3 C.1:3 D.3:46.顺次连接四边形ABCD 四边的中点得到的四边形是矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形7.如图,已知两个三角形是位似图形,则它们的位似中心是()A.点PB.点OC.点MD.点N第5题第7题第8题8.如图,在平面直角坐标系中,点A 是反比例函数y =mx的图象上的一点,过点A 作AB⊥轴于点B,点C 在y 轴的负半轴上,连接AC,BC,若△ABC 的面积为5,则m 的值为()A.-10B.10C.-5D.59.规定运算:对于函数y=n x (n 为正整数),规定1'n y nx -= .例如:对于函数y=4x ,有3'4y x =。

已知函数y =3x ,满足'y =18 的 的值为( )A.1x = 3 ,2x =-3B.1x = 2x = 0C.1x = ,2x =D.1x ,2x = -10.如图,点A,B,C,D 的坐标分别为(1,7),(1,1),(4,1),(6,1),若以点C,D,E 为顶点的三角形与△ABC 相似,则下列坐标中,不可能是点E 的坐标是( )A 、(6,0)B 、(6,3) C.、(6,5) D 、(4,2)二、 填空题(本大题含6 个小题,每小题3 分,共1 8 分)11.在△ABC 中,∠ACB=90°,AB=8,CD 为AB 边上的中线,则CD 的长等于____.12.若两个相似多边形的周长之比为13,则它们的面积之比为____.13.已知,反比例函数6y x=的图象经过点A (2,1y )和B (3,2y ),则1y ______2y .(填“>”或“<”) 14.有一面积为54cm 2的矩形纸片,将它的一边剪短5cm ,另一边剪短2cm ,恰好变成一个正方形, 求这个正方形的边长,设这个正方形的边长为x cm ,根据题意,列出的方程是_____.15.如图,在2×3的方格纸中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,AB 与 CD 相交于点E ,则EB 的长为_______.16. 如图,在矩形ABCD 中,对角线AC,BD 相交于点O ,OE ⊥BC 于点E ,连接DE 交OC 于点 F ,作FG ⊥BC 于点G ,则线段BG 与GC 的数量关系是_______第15题 第16题三、 解答题(本大题含8 个小题,共5 2 分)写出必要的文字说明、演算步骤和推理过程.17. (本题 5 分)解方程:2263x x +=18.(本题6 分)如图,为了测量一个大峡谷的宽度,位于峡谷一侧的地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A,B,D,使得AB⊥AO,DB⊥AB,然后确定DO和AB 的交点C,测得AC=120m,CB=60m,BD=50m,请你帮助他们求出峡谷的宽AO.19.(本题6 分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《大学》,《中庸》(依次用字母A,B,C 表示这三个材料).将A,B,C 分别写在3 张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上.比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片.他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.20.(本题5 分)从A,B 两题中任选一题做答,我选择A.如图(1)是两棵树在同一盏路灯下的影子.(1)确定该路灯灯泡所在的位置(2)如果此时小颖所在位置恰好与这两棵树所在的位置共线(三点在一条直线上),请画出图中表示小颖影子的线段AB.B. 如图(2),小明从点A 出发沿AB 方向匀速前进,2 秒后到达点D,此时他在某一灯光下的影子为DA,继续按此速度行走2 秒到达点F,此时他在同一灯光下的影子落在其身后的线段DF 上,测得此时影长MF 为1.2 米;然后他将速度提高到原的1.5 倍,再行走2 秒到达点H,他在同一灯光下的影子恰好是HB,图中线段CD,EF,GH 表示小明的身高.(1)请在图中画出小明的影子MF;(2)若A,B 两地相距12 米,则小明原的速度为.21.某农村居委会以16000 元的成本收购了一种农产品40 吨,目前就可以按600 元/吨的价格全部销往外地。

2019年山东省临清市九年级上册期末考试数学试题有答案-推荐

2019年山东省临清市九年级上册期末考试数学试题有答案-推荐

山东省临清市九年级上学期期末考试数学试题(时间120分钟 满分120分)一、选择题(每题3分,共36分) 1.函数y x m =+与(0)my m x=≠在同一坐标系内的图象如图,可以是( )ABCD2.用配方法解方程22310x x +-=,则方程可变形为( ) A 、()2311x += B 、2317()416x += C 、231()42x +=D 、21(3)3x +=3.关于x 的方程2(5)410a x x ---=有实数根,则a 的范围是( ) A 、1a ≥B 、1a >或5a ≠C 、1a ≥或5a ≠D 、5a ≠4.a ,b 是实数,点(2,)a ,(3,)b 在反比例函2y x=-上,则( ) A 、0a b <<B 、0b a <<C 、0a b <<D 、0b a <<5.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若:2:5EF AF =,则:DEF DBC S S ∆∆为( ) A.2:5 B.4:25 C.4:31D.4:356.在Rt ABC ∆中,90C ∠=︒,1cos 2B =,则sin A 的值为( )A.127.在平面直角坐标系中,平移二次函数243y x x =++的图象能够与二次函数2y x =的图象重合,则平移方式为( )A.向左平移2个单位,向下平移1个单位B.向左平移2个单位,向上平移1个单位C.向右平移2个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位8.如图,在半径为2,圆心角为90︒的扇形内,以BC 为直径作半圆,交弦AB与点D ,连接CD ,则阴影部分的面积为( ) A.1π-B.21π-C.112π-D.122π-9.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则下面所列方程正确的是( ) A.290(1)144x += B.290(1)144x -=C.90(12)144x +=D.290(1)90(1)14490x x +++=-10.在半径为1 ) A.90︒B.145︒C.90︒或270︒D.135︒或45︒11.如图,将一个含30︒角的三角尺绕点C 顺时针方向旋转到'''A B C ∆的位置.若15BC cm =,那么顶点A 从开始到结束所经过的路径长为( )A.10cm πB.30cm πC.20cm πD.15cm π12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴是1x =-,且过点(3,0)-,下列说法:①0abc <;②20a b -=;③420a b c ++<;④若125(5,),(,)2y y -是抛物线上两点,则12y y <,其中说法正确的是( ) A.①② B.②③ C.①②④D.②③④二、填空题(本题共5个小题,每题3分,共15分)13.函数y =x 的取值范围是__________. 14.关于x 的方程250x x m ++=的一个根为2-,则另一个根为__________.15.点1(2,)A y -、23(2,)(3,)B y C y 是二次函数22y x x m =-++的图象上两点,则________(用“>”连接12,y y 与3y ).16.如图所示,⊙M 与x 轴相交于点(2,0)A ,(8,0)B ,与y 轴相切于点C ,则圆心M 的坐标是__________.16题图17题图17.如图,ABC ∆中,90C ∠=︒,3AC =,5AB =,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB 、BC 均相切,则⊙O 的半径为__________. 三、解答题 18.计算(8分)(1)计算:202cos 30tan 45︒-(2)解方程()()22213x x +=-19.(8分)如图,甲船在港口P 的南偏西60︒方向,距港口86海里的A 处,沿AP 方向以每小时15海里的速度匀速驶向港口P .乙船从港口P 出发,沿南偏东45︒方向匀速驶离港口P ,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据: 1.414≈1,732≈2.236≈)20.(8分)如图,以等腰ABC ∆的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =(2)DE 为⊙O 的切线21.(8分)如图,在ABC ∆中,8AB cm =,16BC cm =,点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,点Q 从点B 开始沿边BC 向点4cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,经几秒钟PBQ ∆与ABC ∆相似?试说明理由.22.(8分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端B 处,其身体(看成一点)的路线是二次函数23315y x x =-++图象的一部分,如图. (1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.(第22题)23.(9分)已知:如图,在平面直角坐标系xOy 中,反比例函数1my x=的图象与一次函数2y kx b =+的图象交于点(4,1)A --和点和(1,)B n . (1)求这两个函数的表达式;(2)观察图象,当12y y >时,直接写出自变量x 的取值范围; (3)求AOB ∆的面积.24.(10分)某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:2080(2040)y x x =-+≤≤,设这种健身球每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?25.(10分)如图(1),抛物线22y x x k =-+与x 轴交于A ,B 两点,与y 轴交于点(0,3)C -.(1) (备用图) (备用图)(1)k =__________,点A 的坐标为_________,点B 的坐标为__________; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;第一学期期末检测 九年级数学评分说明一、选择题(每题3分,共36分)1.B2.B3.A4.A5.D6.A7.D8.A9.D 10.D 11.C 12.A二、填空题(本题共5个小题,每题3分,共15分) 13、1x ≥-且3x ≠ 14.3- 15.231y y y >>16.(5,4)17.67三、解答题 18.计算(8分)(1)计算:202cos 30tan 45︒-解:原式=2211)⨯-- 32=4分 (2)解方程()()22213x x +=- 解:移项得:22(21)(3)0x x +--= 即(213)(213)0x x x x ++-+-+= 即(32)(4)0x x -+= 从而320x -=或40x += ∴123x =24x =-……………………4分 此题用直接开平方方法也可。

2019年武汉市硚口区九年级上册期末数学模拟试卷(有答案)

2019年武汉市硚口区九年级上册期末数学模拟试卷(有答案)

湖北省武汉市硚口区九年级(上)期末数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.方程32﹣8﹣10=0的二次项系数和一次项系数分别为()A.3和8 B.3和﹣8 C.3和﹣10 D.3和102.不透明袋子中有2个红球、3个绿球,这些球除颜色外其它无差别.从袋子中随机取出1个球,则()A.能够事先确定取出球的颜色B.取到红球的可能性更大C.取到红球和取到绿球的可能性一样大D.取到绿球的可能性更大3.抛物线y=﹣2向左平移1个单位长度得到抛物线的解析式为()A.y=﹣(+1)2B.y=﹣(﹣1)2C.y=﹣2+1 D.y=﹣2﹣14.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越越大时,种植成活幼树的频率会越越稳定于0.95.如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB于D,则四边形OEAD为()A.正方形 B.菱形C.矩形D.平行四边形6.已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是()A.a=1,b=5 B.a=5,b=1 C.a=﹣5,b=1 D.a=﹣5,b=﹣17.Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径作⊙C,则正确的是()A.当r=2时,直线AB与⊙C相交B.当r=3时,直线AB与⊙C相离C.当r=2.4时,直线AB与⊙C相切D.当r=4时,直线AB与⊙C相切8.用配方法解方程2+6﹣4=0,下列变形正确的是()A.(+3)2=5 B.(+3)2=13 C.(﹣3)2=﹣13 D.(+3)2=﹣59.如图所示的抛物线是二次函数y=a2+b+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个B.2个 C.3个 D.4个10.如图,线段EF的长为4,O是EF的中点,以OF为边长做正方形OABC,连接AE、CF 交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°止,则点P运动的路径长为()A.πB.π C.2πD.2π二、填空题(本大题共6个小题,每小题3分,共18分)11.同时抛掷三枚质地均匀的硬币,三枚硬币全部正面向上的概率是.12.已知函数y=﹣2(+1)2+2,当>时,y随的增大而减小.13.某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出个小分支,则可得方程为.14.如图,圆锥形的烟囱冒的底面直径是80cm,母线长是50cm,制作一个这样的烟囱冒至少需要cm2的铁皮.15.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米,该抛物线的函数表达式为.16.若直线y=2+t﹣3与函数y=的图象有且只有两个公共点时,则t的取值范围是.三、解答题(共8题,共72分)17.已知关于的方程2+2﹣m=0(1)若=2是方程的根,求m的值;(2)若方程总有两个实数根,求m的取值范围.18.不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.19.如图,BE是⊙O的直径,半径OA⊥弦BC,点D为垂足,连AE,EC.(1)若∠AEC=28°,求∠AOB的度数;(2)若∠BEA=∠B,BC=6,求⊙O的半径.20.如图,点P是等边△ABC外一点,PA=3,PB=4,PC=5(1)将△APC绕点A逆时针旋转60°得到△P1AC1,画出旋转后的图形;(2)在(1)的图形中,求∠APB的度数.21.如图1,AB是⊙O的直径,AC是弦,点P是的中点,PE⊥AC交AC的延长线于E.(1)求证:PE是⊙O的切线;(2)如图2,作PH⊥AB于H,交BC于N,若NH=3,BH=4,求PE的长.22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价元,每星期的销售量为y件.(1)求y与之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?23.已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF (1)如图1,请直接给出线段MD、MF的数量及位置关系是;(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.24.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣22+4+2与C2:y2=﹣2+m+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.湖北省武汉市硚口区九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.方程32﹣8﹣10=0的二次项系数和一次项系数分别为()A.3和8 B.3和﹣8 C.3和﹣10 D.3和10【考点】一元二次方程的一般形式.【分析】一元二次方程a2+b+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:32﹣8﹣10=0的二次项系数和一次项系数分别为3,﹣8,故选:B.2.不透明袋子中有2个红球、3个绿球,这些球除颜色外其它无差别.从袋子中随机取出1个球,则()A.能够事先确定取出球的颜色B.取到红球的可能性更大C.取到红球和取到绿球的可能性一样大D.取到绿球的可能性更大【考点】可能性的大小.【分析】根据不同颜色的球的数量确定摸到哪种球的可能性的大小后即可确定正确的选项.【解答】解:∵不透明袋子中有2个红球、3个绿球,这些球除颜色外其它无差别,∴绿球数量大于红球数量,其摸球具有随机性,∴摸到绿球的可能性大于摸到红球的可能性,故选D.3.抛物线y=﹣2向左平移1个单位长度得到抛物线的解析式为()A.y=﹣(+1)2B.y=﹣(﹣1)2C.y=﹣2+1 D.y=﹣2﹣1【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的法则进行解答即可.【解答】解:抛物线y=﹣2向左平移1个单位长度得到抛物线的解析式为:y=﹣(+1)2.4.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越越大时,种植成活幼树的频率会越越稳定于0.9【考点】利用频率估计概率.【分析】根据用频率估计概率的意义即可确定正确的选项.【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A、B、C错误,D正确,故选D.5.如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB于D,则四边形OEAD为()A.正方形 B.菱形C.矩形D.平行四边形【考点】垂径定理.【分析】先根据垂径定理,由OD⊥AB,OE⊥AC得到AD=AB,AE=AC,且∠ADO=∠AEO=90°,加上∠DAE=90°,则可判断四边形ADOE是矩形,由于AB=AC,所以AD=AE,于是可判断四边形ADOE是正方形.【解答】证明:∵OD⊥AB于D,OE⊥AC于E,∵AD=AB,AE=AC,∠ADO=∠AEO=90°,∵AB⊥AC,∴∠DAE=90°,∴四边形ADOE是矩形,∴AD=AE,∴四边形ADOE是正方形;故选A.6.已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是()A.a=1,b=5 B.a=5,b=1 C.a=﹣5,b=1 D.a=﹣5,b=﹣1【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得a=﹣5,b=﹣1,故选:D.7.Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径作⊙C,则正确的是()A.当r=2时,直线AB与⊙C相交B.当r=3时,直线AB与⊙C相离C.当r=2.4时,直线AB与⊙C相切D.当r=4时,直线AB与⊙C相切【考点】直线与圆的位置关系;勾股定理.【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形面积公式求出CD,和⊙C 的半径比较即可.【解答】解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选C.8.用配方法解方程2+6﹣4=0,下列变形正确的是()A.(+3)2=5 B.(+3)2=13 C.(﹣3)2=﹣13 D.(+3)2=﹣5【考点】解一元二次方程-配方法.【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【解答】解:∵2+6=4,∴2+6+9=4+9,即(+3)2=13,故选:B.9.如图所示的抛物线是二次函数y=a2+b+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个B.2个 C.3个 D.4个【考点】抛物线与轴的交点;二次函数图象与系数的关系.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a<0,则可对②进行判断;利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线的对称性得到可对③进行判断;利用=﹣1时,y<0可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线=﹣=1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线=1的对称点的坐标为(4,0),∴抛物线与轴的另一个交点坐标为(4,0),所以③正确;∵=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选C.10.如图,线段EF的长为4,O是EF的中点,以OF为边长做正方形OABC,连接AE、CF 交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°止,则点P运动的路径长为()A.πB.π C.2πD.2π【考点】轨迹;正方形的性质;旋转的性质.【分析】如图,连接AC.首先证明∠EPF=135°,推出点P在与为圆心的圆上,点P的运动轨迹是,在⊙上取一点M,连接ME、MF、E、F,则∠M=180°﹣∠EPF=45°,推出∠EF=2∠M=90°,因为EF=4,所以E=F=2,根据弧长公式计算即可解决问题.【解答】解:如图,连接AC.∵AOCB是正方形,∴∠AOC=90°,∴∠AFC=∠AOC=45°,∵EF是直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠EPF=135°,∴点P在与为圆心的圆上,点P的运动轨迹是,在⊙上取一点M,连接ME、MF、E、F,则∠M=180°﹣∠EPF=45°,∴∠EF=2∠M=90°,∵EF=4,∴E=F=2,∴P运动的路径长==π,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11.同时抛掷三枚质地均匀的硬币,三枚硬币全部正面向上的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有8种等可能的结果数,再找出三枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中三枚硬币全部正面向上的结果数为1,所以三枚硬币全部正面向上的概率=.故答案为.12.已知函数y=﹣2(+1)2+2,当>1时,y随的增大而减小.【考点】二次函数的性质.【分析】由函数解析式可确定出其开口方向及对称轴,再利用函数的增减性可求得答案.【解答】解:∵y=﹣2(+1)2+2,∴抛物线开口向下,且对称轴为=﹣1,∴当>1时,y随的增大而减小,故答案为:﹣1.13.某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出个小分支,则可得方程为2++1=91.【考点】由实际问题抽象出一元二次方程.【分析】由题意设每个支干长出个小分支,每个小分支又长出个分支,则又长出2个分支,则共有2++1个分支,即可列方程.【解答】解:设每个支干长出个小分支,根据题意列方程得:2++1=91.故答案为2++1=91.14.如图,圆锥形的烟囱冒的底面直径是80cm,母线长是50cm,制作一个这样的烟囱冒至少需要2000πcm2的铁皮.【考点】圆锥的计算.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.【解答】解:圆锥形的烟囱冒的侧面积=?80π?50=2000π(cm2).故答案为2000π.15.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米,该抛物线的函数表达式为y=.【考点】二次函数的应用.【分析】根据题意可以得到抛物线的顶点坐标,可以设出抛物线的顶点式,然后根据抛物线过点(0,2),从而可以解答本题.【解答】解:由题意可得,抛物线的顶点坐标是(4,6),函数图象过点(0,2),设抛物线的解析式为y=a(﹣4)2+6,则2=a(0﹣4)2+6,解得,a=,即抛物线的解析式为y=,故答案为:y=.16.若直线y=2+t﹣3与函数y=的图象有且只有两个公共点时,则t的取值范围是t=0或t>1.【考点】二次函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】画出函数图象,利用图象分两种情形讨论即可.【解答】解:函数y=的图象如图所示,A(1,0).当直线y=2+t﹣3经过点A(1,0)时,直线与函数y的图象有3个交点,此时0=2+t﹣3,解得t=1,观察图象可知,t>1时,直线y=2+t﹣3与函数y的图象有且只有两个公共点,当直线y=2+t﹣3与y=2﹣2+1相切时,则有2﹣4﹣t+4=0,∵△=0,∴16﹣4t﹣16=0,∴t=0,此时直线为y=2﹣3,由解得,∴直线与y=2+2﹣3只有一个交点,∴t=0时,直线y=2﹣3与函数y有两个交点,综上所述,t>1或t=0时,直线y=2+t﹣3与函数y的图象有且只有两个公共点.故答案为t=0或t>1.三、解答题(共8题,共72分)17.已知关于的方程2+2﹣m=0(1)若=2是方程的根,求m的值;(2)若方程总有两个实数根,求m的取值范围.【考点】根的判别式;一元二次方程的解.【分析】(1)把=2代入方程,即可得出关于m的方程,求出方程的解即可;(2)根据已知得出△≥0,求出不等式的解集即可.【解答】解:(1)把=2代入方程2+2﹣m=0得:4+4﹣m=0,解得:m=8;(2)∵方程2+2﹣m=0有两个实数根,∴△=22﹣4×1×(﹣m)≥0,解得:m≥﹣1.18.不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.【考点】列表法与树状图法.【分析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和等于4的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为4,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和等于4的结果数为2,所以“两次取出的球标号和等于4”的概率==.19.如图,BE是⊙O的直径,半径OA⊥弦BC,点D为垂足,连AE,EC.(1)若∠AEC=28°,求∠AOB的度数;(2)若∠BEA=∠B,BC=6,求⊙O的半径.【考点】圆周角定理;勾股定理;垂径定理;圆心角、弧、弦的关系.【分析】(1)根据垂径定理得到=,根据圆周角定理解答;(2)根据圆周角定理得到∠C=90°,根据等腰三角形的性质得到∠B=30°,根据余弦的定义求出BE即可.【解答】解:(1)∵OA⊥BC,∴=,∴∠AEB=∠AEC=28°,由圆周角定理得,∠AOB=2∠AEB=56°;(2)∵BE是⊙O的直径,∴∠C=90°,∴∠CEB+∠B=90°,∵∠BEA=∠B,∠AEB=∠AEC,∴∠B=30°,∴BE==4,∴⊙O的半径为2.20.如图,点P是等边△ABC外一点,PA=3,PB=4,PC=5(1)将△APC绕点A逆时针旋转60°得到△P1AC1,画出旋转后的图形;(2)在(1)的图形中,求∠APB的度数.【考点】作图-旋转变换;等边三角形的性质;勾股定理的逆定理.【分析】(1)将△APC绕点A逆时针旋转60°得到△P1AC1如图所示.(2)只要证明△APP1是等边三角形,由PB2+PP12=P1B2,推出∠P1PB=90°,即可解决问题.【解答】解:(1)将△APC绕点A逆时针旋转60°得到△P1AC1,如图所示,(2)∵△AP1C1是由△APC旋转所得,∴△AP1C1≌△APC,∴P1C1=PC=5,AP=AP1=3,∠PAP1=60°,∴△APP1是等边三角形,∴PP1=AP=3,∠APP1=60°,∵PB=4,P1B=5,PP1=3,∴PB2+PP12=P1B2,∴∠P1PB=90°∴∠APB=∠BPP1﹣∠APP1=30°.21.如图1,AB是⊙O的直径,AC是弦,点P是的中点,PE⊥AC交AC的延长线于E.(1)求证:PE是⊙O的切线;(2)如图2,作PH⊥AB于H,交BC于N,若NH=3,BH=4,求PE的长.【考点】切线的判定;勾股定理;垂径定理;圆心角、弧、弦的关系.【分析】(1)连接BC、OP,由AB是⊙O的直径、PE⊥AE知PE∥BC,根据点P是的中点知OP⊥BC,即可得OP⊥PE,得证;(2)由(1)知,四边形PECQ是矩形,从而可设PE=CQ=BQ=,根据勾股定理求得BN的长,先证△BHN∽△BQO得,表示出BO、OQ的长,再证△PQN∽△BHN得,即,求出即可.【解答】解:(1)如图1,连接BC、OP,∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AE,又∵PE⊥AE,∴PE∥BC,∵点P是的中点,∴OP⊥BC,∴OP⊥PE,∴PE是⊙O的切线;(2)如图2,连接OP,由(1)知,四边形PECQ是矩形,∴设PE=CQ=BQ=,∵NH=3,BH=4,PH⊥AB,∴BN=5,∵∠B=∠B,∠BHN=∠BQO=90°,∴△BHN∽△BQO,∴,即,解得:BO=,OQ=,∴PQ=PO﹣OQ=BO﹣OQ=,∵∠PNQ=∠BNH,∠PQN=∠BHN=90°,∴△PQN∽△BHN,∴,即,解得:=8,∴PE=8.22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价元,每星期的销售量为y件.(1)求y与之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【考点】二次函数的应用;一元二次不等式.【分析】(1)根据售量y(件)与售价(元/件)之间的函数关系即可得到结论.(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.【解答】解:(1)y=300+30(60﹣)=﹣30+2100.(2)设每星期利润为W元,W=(﹣40)(﹣30+2100)=﹣30(﹣55)2+6750.∴=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(﹣40)(﹣30+2100)≥6480,解得52≤≤58,当=52时,销售300+30×8=540,当=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.23.已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF (1)如图1,请直接给出线段MD、MF的数量及位置关系是MD=MF,MD⊥MF;(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.【考点】四边形综合题;全等三角形的判定与性质;含30度角的直角三角形;正方形的性质.【分析】(1)延长DM交EF于点P,易证AM=EM,即可证明△ADM≌△EPM,可得DM=PM,根据△DFP是直角三角形即可解题;(2)延长DM交CE于点N,连接FN、DF,易证∠DAM=∠NEM,即可证明△ADM≌△ENM,可得EN=AD,DM=MN,可证CD=EN,即可证明△CDF≌△ENF,可得DF=NF,即可解题;(3)根据(1)可得MD=MF,MD⊥MF,若CF边恰好平分线段AE,则CF过点M,最后根据Rt△CDM中,∠DCF=30°,即可求得的值.【解答】解:(1)线段MD、MF的数量及位置关系是MD=MF,MD⊥MF,理由:如图1,延长DM交EF于点P,∵四边形ABCD和四边形FCGE是正方形,∴AD∥EF,∠MAD=∠MEP.∠CFE=90°.∴△DFP是直角三角形.∵M为AE的中点,∴AM=EM.在△ADM和△EPM中,,∴△ADM≌△EPM(ASA),∴DM=PM,AD=PE,∴M是DP的中点.∴MF=DP=MD,∵AD=CD,∴CD=PE,∵FC=FE,∴FD=FP,∴△DFP是等腰直角三角形,∴FM⊥DP,即FM⊥DM.故答案为:MD=MF,MD⊥MF;(2)MD=MF,MD⊥MF仍成立.证明:如图2,延长DM交CE于点N,连接FN、DF,∵CE是正方形CFEG对角线,∴∠FCN=∠CEF=45°,∵∠DCE=90°,∴∠DCF=45°,∵AD∥BC,∴∠DAM=∠NEM,在△ADM和△ENM中,,∴△ADM≌△ENM(ASA),∴EN=AD,DM=MN,∵AD=CD,∴CD=EN,在△CDF和△ENF中,,∴△CDF≌△ENF,(SAS)∴DF=NF,∴FM=DM,FM⊥DM.(3)如图所示,若CF边恰好平分线段AE,则CF过点M,由(1)可得FM=DM,FM⊥DM,设FM=DM=1,∵∠DCF=30°,∴Rt△DCM中,CM=,CD=2=CB,∴CF=+1=CG,∴=.24.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣22+4+2与C2:y2=﹣2+m+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.【考点】二次函数综合题.【分析】(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,﹣a2+2a+3).则OQ=,AQ=﹣a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.【解答】解:(1)∵y1=﹣22+4+2=﹣2(﹣1)2+4,∴抛物线C1的顶点坐标为(1,4).∵抛物线C1与C2顶点相同,∴=1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C2的解析式为y2=﹣2+2+3.(2)如图1所示:设点A的坐标为(a,﹣a2+2a+3).∵AQ=﹣a2+2a+3,OQ=a,∴AQ+OQ=﹣a2+2a+3+a=﹣a2+3a+3=﹣(a﹣)2+.∴当a=时,AQ+OQ有最大值,最大值为.(3)如图2所示;连接BC,过点B′作B′D⊥CM,垂足为D.∵B(﹣1,4),C(1,4),抛物线的对称轴为=1,∴BC⊥CM,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D⊥MC,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC.在△BCM和△MDB′中,,∴△BCM≌△MDB′.∴BC=MD,CM=B′D.设点M的坐标为(1,a).则B′D=CM=4﹣a,MD=CB=2.∴点B′的坐标为(a﹣3,a﹣2).∴﹣(a﹣3)2+2(a﹣3)+3=a﹣2.整理得:a2﹣7a+10=0.解得a=2,或a=5.当a=2时,M的坐标为(1,2),当a=5时,M的坐标为(1,5).综上所述当点M的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C2上.。

2019-2020年新沪科版九年级数学上学期期末模拟试题及答案解析

2019-2020年新沪科版九年级数学上学期期末模拟试题及答案解析

沪科版九年级上学期期末模拟测试数学试题一、填空题(每空3分,共30分.)1.(3分)(2007•福州)当x _________ 时,二次根式在实数范围内有意义.2.(3分)(2012•江津区模拟)方程4x2=3(4x﹣3)的根的情况是_________ .3.(3分)化简:= _________ .4.(3分)计算结果为_________ .5.(3分)某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打_________ 折出售此商品.6.(3分)(2013•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=_________ .7.(3分)(2012•江津区模拟)如图,AB是⊙O的直径,D是AC的中点,OD∥BC,若BC=8,则OD= _________ .8.(3分)(2008•茂名)如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC 的度数是_________ 度.9.(6分)如图,△ABC是等边三角形,点P是△ABC内一点.△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是_________ ,最小旋转角等于_________ 度.10.(3分)如图,Rt△ABC的边AB在直线L上,AC=1,AB=2,∠ACB=90°,将Rt△ABC 绕点B在平面内按顺时针方向旋转,使BC边落在直线L上,得到△A1BC1;再将△A1BC1绕点C1在平面内按顺时针方向旋转,使边A1C1落在直线L上,得到△A2B1C1,则点A所经过的两条弧AA1,A1A2的长度之和为_________ .二、选择题(每题3分,共24分)B D.11.(3分)下列计算中,正确的是()12.(3分)(2008•湛江)下面的图形中,是中心对称图形的是()B.13.(3分)△ABC中,点D在边AB上,点E在AC上,AB=6,AD=2,AC=9,若△ABC与△ADE相似,则AE的值等于().,3 ,3的值为()14.(3分)m是方程x2+x﹣1=0的根,则式子m3+2m2+200815.(3分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()17.(3分)(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB ()18.(3分)(2007•南平)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为()B.19.(3分)(2012•广州模拟)如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()三、解答题(共10小题,计96分)20.(5分)﹣+﹣20080﹣21.(6分)(2008•岳阳)先化简,再求值,其中a=1+,b=1﹣.22.(8分)(2000•内蒙古)某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)23.(10分)有时可以看到这样的转盘游戏:如图,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的奖金是多少.例如,当指针指向“2”区域的时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的奖金为0.2元,你就可得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?24.(10分)(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.25.(10分)(2005•中原区)顾客李某于今年“五•一”期间到电器商场购买空调,与营业员有如下的一段对话:顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?营业员:有,请看《购买A品牌系列空调的优惠办法》.根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:(1)求A品牌系列空调平均每次降价的百分率?(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?26.(10分)(2011•宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.27.(10分)梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O 的切线EF交BC于F,求证:(1)EF⊥BC;(2)BF•BC=BE•AE.28.(12分)(2008•大兴安岭)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A 顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A 旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.29.(12分)在直角坐标系XOY中,二次函数图象的顶点坐标为,且与x 轴的两个交点间的距离为6.(1)求二次函数解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC 相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.参考答案与试题解析一、填空题(每空3分,共30分.)1.(3分)(2007•福州)当x ≥3时,二次根式在实数范围内有意义.为二次根式,所以被开方数大于或等于概念:式子2.(3分)(2012•江津区模拟)方程4x2=3(4x﹣3)的根的情况是两个相等的实数根.3.(3分)化简:= 1 .==4.(3分)计算结果为.===故答案为:5.(3分)某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打7 折出售此商品.﹣500≥500×5%,6.(3分)(2013•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a= ﹣2或1 .7.(3分)(2012•江津区模拟)如图,AB是⊙O的直径,D是AC的中点,OD∥BC,若BC=8,则OD= 4 .8.(3分)(2008•茂名)如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC 的度数是25 度.∠AOB=25°,9.(6分)如图,△ABC是等边三角形,点P是△ABC内一点.△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是 A ,最小旋转角等于300 度.10.(3分)如图,Rt△ABC的边AB在直线L上,AC=1,AB=2,∠ACB=90°,将Rt△ABC 绕点B在平面内按顺时针方向旋转,使BC边落在直线L上,得到△A1BC1;再将△A1BC1绕点C1在平面内按顺时针方向旋转,使边A1C1落在直线L上,得到△A2B1C1,则点A所经过的两条弧AA1,A1A2的长度之和为.=π.二、选择题(每题3分,共24分)11.(3分)下列计算中,正确的是()B.D.=12.(3分)(2008•湛江)下面的图形中,是中心对称图形的是()B.13.(3分)△ABC中,点D在边AB上,点E在AC上,AB=6,AD=2,AC=9,若△ABC 与△ADE相似,则AE的值等于().,3 ,3若△ABC∽△AED,则AE=或14.(3分)m是方程x2+x﹣1=0的根,则式子m3+2m2+2008的值为()15.(3分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()17.(3分)(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB ()18.(3分)(2007•南平)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为()B..的面积是,一个小等边三角形的面积是,所以重叠部分的面积是19.(3分)(2012•广州模拟)如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()BM=BC=AD=5DF==,=BC•FD=10×=72三、解答题(共10小题,计96分)20.(5分)﹣+﹣20080﹣=2﹣+3﹣2+.21.(6分)(2008•岳阳)先化简,再求值,其中a=1+,b=1﹣.==,时,原式.22.(8分)(2000•内蒙古)某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)23.(10分)有时可以看到这样的转盘游戏:如图,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的奖金是多少.例如,当指针指向“2”区域的时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的奖金为0.2元,你就可得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?,而最终得到“2”“4”“6”奖的概率全部为24.(10分)(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.BD=AB=×16=8cm,然后根据勾股定理列出关于圆形截面半径的方程∴BD=AB=×16=8cm25.(10分)(2005•中原区)顾客李某于今年“五•一”期间到电器商场购买空调,与营业员有如下的一段对话:顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?营业员:有,请看《购买A品牌系列空调的优惠办法》.根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:(1)求A品牌系列空调平均每次降价的百分率?(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?26.(10分)(2011•宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.27.(10分)梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O 的切线EF交BC于F,求证:(1)EF⊥BC;(2)BF•BC=BE•AE.28.(12分)(2008•大兴安岭)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A 顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A 旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.中,29.(12分)在直角坐标系XOY中,二次函数图象的顶点坐标为,且与x 轴的两个交点间的距离为6.(1)求二次函数解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC 相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.)a=y=x x+CD==3y=﹣×10+=3;还存在一点故存在点或。

2019年初三数学上期末模拟试题(含答案)

2019年初三数学上期末模拟试题(含答案)

2019年初三数学上期末模拟试题(含答案)一、选择题1.一元二次方程的根是( )A .3x =B .1203x x ==-,C .1203x x ==,D .1203x x ==,2.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤3.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( ) A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点4.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .5.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 A .点A 在圆外 B .点A 在圆上 C .点A 在圆内D .不能确定6.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .137.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( ) A .0,4B .-3,5C .-2,4D .-3,18.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .459.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >410.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >211.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④ 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)二、填空题13.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.14.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.15.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .16.若直角三角形两边分别为6和8,则它内切圆的半径为_____. 17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.19.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________.20.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20°三、解答题21.4张相同的卡片上分别写有数字1、2、3、4,将卡片背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1、2、3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出1个球,将摸到的球的标号作为减数. (1)求这两个数的差为0的概率;(2)游戏规则规定:当抽到的这两个数的差为非负数时,甲获胜;否则,乙获胜.这样的规则公平吗?如果不公平,请设计一个公平的规则,并说明理由. 22.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率; (2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?23.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元. (1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠5a元()0a >,十月份乙种绿色植物每盆的价格比九月份的价格优惠2%5a .因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了1%2a ,十为份购买乙种绿色植物的数量比九月份的数量增加了%a .若该社区十月份的总花费与九月份的总花费恰好相同,求a 的值.24.如图,以△ABC 的边AB 为直径画⊙O ,交AC 于点D ,半径OE//BD ,连接BE ,DE ,BD ,设BE 交AC 于点F ,若∠DEB=∠DBC. (1)求证:BC 是⊙O 的切线;(2)若BF=BC=2,求图中阴影部分的面积.25.已知关于x 的一元二次方程x 2+(m +3)x +m +2=0. (1)求证:无论m 取何值,原方程总有两个实数根; (2)若x 1,x 2是原方程的两根,且x 12+x 22=2,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 x 2−3x=0, x(x−3)=0, ∴x 1=0,x 2=3. 故选:D.2.B解析:B 【解析】 【分析】由抛物线对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断即可. 【详解】Q ①对称轴在y 轴的右侧,ab 0∴<,由图象可知:c 0>,abc 0∴<,故①不正确;②当x 1=-时,y a b c 0=-+<,b ac ∴->,故②正确;③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确;bx 12a=-=Q ④, b 2a ∴=-, a b c 0-+<Q , a 2a c 0∴++<,3a c <-,故④不正确;⑤当x 1=时,y 的值最大.此时,y a b c =++,而当x m =时,2y am bm c =++, 所以()2a b c am bm c m 1++>++≠,故2a b am bm +>+,即()a b m am b +>+,故⑤正确, 故②③⑤正确, 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键.3.D解析:D 【解析】 【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误. 【详解】当1a =-时,()224125=--+=-++y x x x , ∴当2x =-时,函数取得最大值5,故A 正确; 当1a =时,()224125y x x x =--=--, ∴函数图象开口向上,对称轴为2x =, ∴当2x ≥时,y 随x 的增大而增大,故B 正确; 当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误; 故选D. 【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键.4.D解析:D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.C解析:C 【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可. 【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm , ∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内, 故选C .6.B解析:B 【解析】 【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得. 【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.7.B解析:B 【解析】 【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+= ∴整理方程即得:160a c += ∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --= 解得:13x =-,25x = 故选:B . 【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.8.C解析:C 【解析】 【分析】 【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷= 故选C9.B解析:B 【解析】 【分析】 【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <4. 故选B .10.D解析:D 【解析】 【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围. 【详解】依题意得图象与x 轴的交点是(-1,0),(2,0), 当y >0时,图象在x 轴的上方, 此时x <-1或x >2,∴x 的取值范围是x <-1或x >2, 故选D . 【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.11.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.二、填空题13.13【解析】【分析】【详解】试题分析:有6种等可能的结果符合条件的只有2种则完成的图案为轴对称图案的概率是考点:轴对称图形的定义求某个事件的概率解析:.【解析】【分析】【详解】试题分析:有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是..考点:轴对称图形的定义,求某个事件的概率 .14.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610 ) (810) (910) (109) (4解析:7 15.【解析】【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5)(4,5) (5,4) (6,4) (8,4) (9,4) (10,4) ∴一共有30种情况,点数和为偶数的有14个, ∴点数和是偶数的概率是1473015=; 故答案为715. 【点睛】 本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.15.1【解析】【分析】(1)根据求出扇形弧长即圆锥底面周长;(2)根据即求圆锥底面半径【详解】该圆锥的底面半径=故答案为:1【点睛】圆锥的侧面展开图是扇形解题关键是理解扇形弧长就是圆锥底面周长解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1【解析】【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8, ∴内切圆的半径为:6+810=22-;若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=71--. 故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 17.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣=﹣=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键. 18.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.19.1【解析】【分析】【详解】若x1x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m ;x1·x2=m2−m−1∵x1+x2=1-x1x2∴2m=1-(m2−m−1)解得:m1=-解析:1【解析】【分析】【详解】若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个实数根;∴x 1+x 2=2m ;x 1·x 2= m 2−m−1, ∵x 1+x 2=1-x 1x 2,∴2m=1-(m 2−m−1),解得:m 1=-2,m 2=1.又∵一元二次方程有实数根时,△ 0≥,∴22(2)4(1)0m m m ----≥,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程()20?0ax bx c a ++=≠的两根是12x x 、,则1212bc x x x x a a+=-⋅=,,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=24b ac -0≥.20.B 【解析】试题分析:根据AE 是⊙O 的切线A 为切点AB 是⊙O 的直径可以先得出∠BAD 为直角再由同弧所对的圆周角等于它所对的圆心角的一半求出∠B 从而得到∠ADB 的度数由题意得:∠BAD=90°∵∠B=∠解析:B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.三、解答题21.(1)P(两个数的差为0)14=;(2)游戏不公平,设计规则:当抽到的这两个数的差为正数时,甲获胜;否则,乙获胜,理由见解析.【解析】【分析】(1)利用列表法列举出所有可能,进而求出概率;(2)利用概率公式进而得出甲、乙获胜的概率即可得出答案.【详解】(1)用列表法表示为:被减数差减数1234 10123 2-1012 3-2-101∴P(两个数的差为0)31 124 ==;(2)由列表法或树状图可知:共有12种等可能的结果,其中“两个数的差为非负数”的情况有9种,∴P(两个数的差为非负数)93124==;其中“两个数的差为负数”的情况有3种,∴P(两个数的差为负数)31124==,∴游戏不公平.设计规则:当抽到的这两个数的差为正数时,甲获胜;否则,乙获胜.因为P(两个数的差为正数)61122==,∴P(两个数的差为非正数)61122==.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)20%;(2)每千克应涨价5元.【解析】【分析】(1)设每次下降的百分率为x ,根据相等关系列出方程,可求每次下降的百分率; (2)设涨价y 元(0<y ≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x )2=32解得:x 1=0.2,x 2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y 元(0<y ≤8)6000=(10+y )(500﹣20y )解得:y 1=5,y 2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.23.(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a 的值为25【解析】【分析】(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,根据甲、乙两种绿色植物共1100盆和共花费了27000元列二元一次方程组即可;(2)结合(1)根据题意列出关于a 的方程,用换元法,设%t a =,化简方程, 求解即可.【详解】解:(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,由题意知,1100203027000x y x y +=⎧⎨+=⎩ , 解得,600500x y =⎧⎨=⎩, 答:该社区九月份购买甲、乙两种绿色植物分别为600,500盆; (2)由题意知,12(20)600(1%)30(1%)500(1%)27000525aa a a -⨯++-⨯+=, 令%t a =,原式可化为240t t -=,解得,10t =(舍去),20.25t =,∴25a =,∴a 的值为25.【点睛】本题考查了二元一次方程组和一元二次方程在实际问题中的应用,根据题意正确列式是解题的关键.24.(1)证明见解析;(2)3324π-. 【解析】【分析】(1)求出∠ADB 的度数,求出∠ABD+∠DBC=90︒,根据切线判定推出即可;(2)连接OD ,分别求出三角形DOB 面积和扇形DOB 面积,即可求出答案.【详解】(1)AB Q 是O e 的直径, 90ADB ∴∠=︒,90A ABD ∴∠+∠=︒,A DEB ∠=∠Q ,DEB DBC ∠=∠,A DBC ∴∠=∠,90DBC ABD ∠+∠=︒Q ,BC ∴是O e 的切线;(2)连接OD ,2BF BC ==Q ,且90ADB ∠=︒,CBD FBD ∴∠=∠,//OE BD Q ,FBD OEB ∴∠=∠,OE OB Q =,OEB OBE ∴∠=∠,11903033CBD OEB OBE ADB ∴∠=∠=∠=∠=⨯︒=︒, 60C ∴∠=︒,323AB BC ∴==,O ∴e 3,∴阴影部分的面积=扇形DOB 的面积-三角形DOB 的面积1333336424ππ=⨯-=-.【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.25.(1)详见解析;(2)m=﹣3或m=﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m+3)2﹣4(m+2)=(m+1)2,∵无论m取何值,(m+1)2≥0,∴原方程总有两个实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1x2=m+2,∵x12+x22=2,∴(x1+x2)2﹣2x1x2=2,∴代入化简可得:m2+4m+3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.。

2019年九年级数学上期末模拟试卷带答案

2019年九年级数学上期末模拟试卷带答案

2019年九年级数学上期末模拟试卷带答案一、选择题1.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.如图,Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以2AC 的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分面积为()A.(24−254π)cm2B.254πcm2C.(24−54π)cm2D.(24−256π)cm23.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值是y1,y2,且y1=y2,设该函数图象的对称轴是x=m,则m的取值范围是()A.0<m<1B.1<m≤2C.2<m<4D.0<m<44.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.关于下列二次函数图象之间的变换,叙述错误的是()A.将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象B.将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象C.将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象D.将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2﹣1的图象6.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°7.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-8.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为( )A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.(1)2x x-=20709.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y ﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件( )A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.610.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是()A .14B .12C .23D .3411.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89πC .8-49πD .8-89π 12.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24二、填空题13.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.15.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.16.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.17.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 18.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°. 19.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.20.已知二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,求k 的取值范围_____.三、解答题21.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树?22.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为a 、十位上的数字为b ,三位数t 是“差数”,我们就记:()()F t b a b =⨯-,其中,19a ≤≤,09b ≤≤.例如三位数514.∵514-=,∴514是“差数”,∴()()5141514F =⨯-=.(1)已知一个三位数m 的百位上的数字是6,若m 是“差数”,()9F m =,求m 的值;(2)求出小于300的所有“差数”的和,若这个和为n ,请判断n 是不是“差数”,若是,请求出()F n ;若不是,请说明理由.23.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?24.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰兴市九年级数学上册期末模拟试卷一、选择题(本大题共10小题,共30.0分)1.下面关于的方程中:;;;实数;一元二方程的个数是A. 1B. 2C. 3D. 42.若关于的方程2-3-=0有实数根,则实数的取值范围是()A. B. 且 C. D.3.已知关于的方程2+3+a=0有一个根为-2,则另一个根为()A. 5B.C. 2D.4.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为,则可得方程()A. B.C. D.5.图,AB是⊙O直径,C,D是圆上两点,连接AC,BC,AD,CD.若∠CAB= °,则∠ADC的度数为()A.B.C.D.6.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC= 0°,则∠DBC的度数为()A. 0B. 0C. 0D. 07.已知关于的一元二次方程(a-1)2-2+1=0无实数根,则a的取值范围是()A. B. C. D. 且8.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.9.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球10.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD= 0°,则∠BAD为()A. 0B. 0C. 0D. 0二、填空题(本大题共8小题,共24.0分)11.已知等腰三角形的一边长为9,另一边长为方程2-8+15=0的根,则该等腰三角形的周长为______.12.设1、2是方程52-3-2=0的两个实数根,则+的值为______.13.对于任意实数,规定的意义是=ad-bc.则当2-3+1=0时,=_____14.图,AB是⊙O的直径,C、D是⊙O上的两点,若∠ABD= °,则∠BCD=______.15.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.16.如图,⊙O的半径为1,PA,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB= 0°,则△PAB的周长为______.17.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为______.18.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC= 0°,∠BCO= 0°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为______cm2.三、计算题(本大题共3小题,共18.0分)19.解下列方程(1)22+3+1=0(2)4(+3)2-9(-3)2=0.20.已知关于的方程2-5-m2-2m-7=0.(1)若此方程的一个根为-1,求m的值;(2)求证:无论m取何实数,此方程都有两个不相等的实数根.21.已知1,2 是关于的一元二次方程2-2(m+1)+m2+5=0的两实数根.(1)若(1-1)(2 -1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若1,2恰好是△ABC另外两边的边长,求这个三角形的周长.四、解答题(本大题共6小题,共48.0分)22.为进一步发展基础教育,自2014年以,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.23.如图,在△ABC中,∠C= 0°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.24.如图所示,已知在△ABC中,∠B= 0°,AB=6cm,BC=12cm,点Q从点A开始沿AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.25.在长方形ABCD中,,,点P从A开始沿边AB向终点B以的速度移动,与此同时,点Q从点B开始沿边BC向终点C以的速度移动,如果P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动设运动时间为t秒.填空:________,________用含t的代数式表示:当t为何值时,PQ的长度等于5cm?是否存在t的值,使得五边形APQCD的面积等于?若存在,请求出此时t的值;若不存在,请说明理由.26.黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时),A:t<1,B: ≤t<1.5,C: . ≤t <2,D:t≥ ,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人自不同班级的概率.27.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO= 0 °,∠E= 0°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.答案和解析1.【答案】B【解析】【分析】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.利用一元二次方程的定义判断即可.【解答】解:关于的方程中:①a2++2=0,不一定是;②3(-9)2-(+1)2=1,是;③,不是;④2-a=0(a为任意实数),是;⑤,不是,则一元二次方程的个数是2,故选B.2.【答案】C【解析】解:当=0时,方程化为-3-=0,解得=-;当≠0时,△=(-3)2- •(-)≥0,解得≥-1,所以的范围为≥-1.故选:C.讨论:当=0时,方程化为-3-=0,方程有一个实数解;当≠0时,△=(-3)2- •(-)≥0,然后求出两个中情况下的的公共部分即可.本题考查了根的判别式:一元二次方程a2+b+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.【答案】B【解析】【分析】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.根据关于的方程2+3+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【解答】解:∵关于的方程2+3+a=0有一个根为-2,设另一个根为m,∴-2+m=,解得,m=-1,故选B.4.【答案】D【解析】解:依题意得二月份的产量是560(1+),三月份的产量是560(1+)(1+)=560(1+)2,∴560+560(1+)+560(1+)2=1850.故选:D.增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为,则二月份的产量是560(1+)吨,三月份的产量是560(1+)(1+)=560(1+)2,再根据第一季度共生产钢铁1850吨列方程即可.能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.5.【答案】C【解析】解:∵AB是⊙O的直径,∴∠ACB= 0°,∵∠CAB= °,∴∠B= °,∴∠ADC=∠B= °.故选:C.推出Rt△ABC,求出∠B的度数,由圆周角定理即可推出∠ADC的度数.本题主要考查了圆周角的有关定理,关键作好辅助线,构建直角三角形,找到同弧所对的圆周角.6.【答案】C【解析】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC= 0°,∵AE⊥CD,∴∠AED= 0°,∴∠EAD= 0°- 0°= 0°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD= 0°.故选:C.根据四点共圆的性质得:∠GBC=∠ADC= 0°,由垂径定理得:,则∠DBC=2∠EAD= 0°.本题考查了四点共圆的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.7.【答案】B【解析】【分析】本题考查了根的判别式以及解一元一次不等式组,根据根的判别式结合一元二次方程的定义找出关于a的一元一次不等式组是解题的关键.根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于的一元二次方程(a-1)2-2+1=0无实数根,∴,解得:a>2.故选B.8.【答案】A【解析】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】【分析】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选A.10.【答案】C【解析】解:连接BD,∵∠ACD= 0°,∴∠ABD= 0°,∵AB为直径,∴∠ADB= 0°,∴∠BAD= 0°-∠ABD= 0°.故选:C.连接BD,根据直径所对的圆周角是直角,得∠ADB= 0°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠ACD,从而可得到∠BAD的度数.本题考查了圆周角定理,解答本题的关键是掌握圆周角定理中在同圆或等圆中,同弧或等弧所对的圆周角相等.11.【答案】19或21或23【解析】解:由方程2-8+15=0得:(-3)(-5)=0,∴-3=0或-5=0,解得:=3或=5,当等腰三角形的三边长为9、9、3时,其周长为21;当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;当等腰三角形的三边长为9、5、5时,其周长为19;综上,该等腰三角形的周长为19或21或23,故答案为:19或21或23.求出方程的解,分为两种情况,看看是否符合三角形三边关系定理,求出即可.本题考查了解一元二次方程和等腰三角形性质,三角形的三边关系定理的应用,因式分解法求出方程的解是根本,根据等腰三角形的性质分类讨论是关键.12.【答案】-【解析】解:∵方程1、2是方程52-3-2=0的两个实数根,∴1+2=,12=-,∴+===-.故答案为:-.根据根与系数的关系得到1+2、1•2的值,然后将所求的代数式进行变形并代入计算即可.本题考查了一元二次方程a2+b+c=0(a≠0)的根与系数的关系:若方程的两根为1,2,则1+2=-,1•2=.13.【答案】1【解析】【分析】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力.根据题意得出算式(+1)(-1)-3(-2),化简后把2-3的值代入求出即可.【解答】解:根据题意得:(+1)(-1)-3(-2)=2-1-32+6=-22+6-1=-2(2-3)-1,∵2-3+1=0,∴2-3=-1,原式=- ×(-1)-1=1,故答案为1.14.【答案】 °【解析】解:∵AB是⊙O的直径,∴∠ADB= 0°,∵∠ABD= °,∴∠A= 0°-∠ABD= °,∴∠BCD=∠A= °.故答案为 °.根据圆周角定理的推论由AB是⊙O的直径得∠ADB= 0°,再利用互余计算出∠A= 0°-∠ABD= °,然后再根据圆周角定理求∠BCD的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角, 0°的圆周角所对的弦是直径.15.【答案】11【解析】【分析】本题主要考查的是一元二次方程的应用,关键在于理解清楚题意找出等量关系,列出方程求出符合题意的解.设这块铁片的宽为cm,则铁片的长为2cm,剪去一个边长为3cm的小正方形后,组成的盒子的底面的长为(2-6)cm、宽为(-6)cm,盒子的高为3cm,所以该盒子的容积为3(2-6)(-6)cm3,又知做成盒子的容积是240cm3,盒子的容积一定,以此为等量关系列出方程,求出符合题意的值即可.【解答】解:设这块铁片的宽为cm,则铁片的长为2cm,由题意,得3(2-6)(-6)=240解得1=11,2=-2(不合题意,舍去)答:这块铁片的宽为11cm.故答案为11.16.【答案】3【解析】解:∵PA、PB是半径为1的⊙O的两条切线,∴OA⊥PA,OB⊥PB,OP平分∠APB,PA=PB,而∠APB= 0°,∴∠APO= 0°,△PAB是等边三角形,∴PA=AO=,∴△PAB的周长=.故答案为:3.根据切线的性质得到OA⊥PA,OB⊥PB,OP平分∠APB,PA=PB,推出△PAB是等边三角形,根据直角三角形的性质得到PA=AO=,于是得到结论.本题考查了切线的性质,直角三角形的性质,三角形的周长的计算,熟练掌握切线的性质是解题的关键.17.【答案】【解析】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.先求出5的总数,再根据概率公式即可得出结论.本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.18.【答案】π【解析】解:∵∠BOC= 0°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′= 0°,△BCO=△B′C′O,∴∠B′OC= 0°,∠C′B′O= 0°,∴∠B′OB= 0°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S==π,扇形B′OBS扇形C′OC==,∵∴阴影部分面积=S扇形B′OB +S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=π-=π;故答案为:π.根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.19.【答案】解:(1)(2+1)(+1)=0,2+1=0或+1=0,所以,2=-1;(2)[2(+3)-3(-3)][2(+3)+3(-3)]=0,2(+3)-3(-3)=0或2(+3)+3(-3)=0,所以1=15,.【解析】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(1)利用因式分解法把原方程转化为2+1=0或+1=0,然后解两个一次方程即可;(2)利用平方差公式把原方程转化为2(+3)-3(-3)=0或2(+3)+3(-3)=0,然后解两个一次方程即可.20.【答案】(1)解:把=-1代入2-5-m2-2m-7=0得1+5-m2-2m-7=0,解得m1=m2=-1,即m的值为1;(2)证明:△=(-5)2-4(-m2-2m-7)=4(m+1)2+49,∵4(m+1)2≥0∴△>0,∴方程都有两个不相等的实数根.【解析】(1)把=-1代入原方程得到关于m的一元二次方程,然后解关于m的一元二次方程即可;(2)进行判别式的值,利用完全平方公式变形得到△=4(m+1)2+49,然后利用非负数的性质可判断△>0,从而根据判别式的意义可判断方程根的情况.本题考查了根的判别式:一元二次方程a2+b+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.21.【答案】解:(1)根据题意得△=4(m+1)2-4(m2+5)≥0,解得m≥ ,1+2=2(m+1),12=m2+5,∵(1-1)(2 -1)=28,即12-(1+2)+1=28,∴m2+5-2(m+1)+1=28,整理得m2-2m-24=0,解得m1=6,m2=-4,而m≥ ,∴m的值为6;(2)∵1,2恰好是△ABC另外两边的边长,而等腰△ABC的一边长为7,∴=7必是一元二次方程2-2(m+1)+m2+5=0的一个解,把=7代入方程得49-14(m+1)+m2+5=0,整理得m2-14m+40=0,解得m1=10,m2=4,当m=10时,1+2=2(m+1)=22,解得2=15,而7+7<15,故舍去;当m=4时,1+2=2(m+1)=10,解得2=3,则三角形周长为3+7+7=17;若1=2,则m=2,方程化为2-6+9=0,解得1=2=3,则3+3<7,故舍去,所以这个三角形的周长为17.【解析】1)根据判别式的意义可得m≥ ,再根据根与系数的关系得1+2=2(m+1),12=m2+5,接着利用(1-1)(2-1)=28得到m2+5-2(m+1)+1=28,解得m1=6,m2=-4,于是可得m的值为6;(2)分类讨论:若1=7时,把=7代入方程得49-14(m+1)+m2+5=0,解得m1=10,m2=4,当m=10时,由根与系数的关系得1+2=2(m+1)=22,解得2=15,根据三角形三边的关系,m=10舍去;当m=4时,1+2=2(m+1)=10,解得2=3,则三角形周长为3+7+7=17;若1=2,则m=2,方程化为2-6+9=0,解得1=2=3,根据三角形三边的关系,m=2舍去.本题考查了根与系数的关系:若1,2是一元二次方程a2+b+c=0(a≠0)的两根时,1+2=-,12=.也考查了根的判别式和等腰三角形的性质.22.【答案】解:(1)设该县投入教育经费的年平均增长率为,根据题意得:6000(1+)2=8640解得:1=0.2=20%,2=-2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y= 0×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.【解析】(1)设该县投入教育经费的年平均增长率为,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为 0×(1+0.2),再进行计算即可.此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为,则经过两次变化后的数量关系为a( ±)2=b.23.【答案】证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF= 0°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C= 0°,∴AC是⊙O的切线;(2)如图,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE= 0°,∠HFE+∠BDE= 0°,∴∠CDE=∠HFE.在△CDE与△HFE中,∠ ∠∠ ∠ 0°,∴△CDE≌△HFE(AAS),∴CD=HF.(3)由(2)得CD=HF,又CD=1,∴HF=1,在Rt△HFE中,EF== 0,∵EF⊥BE,∴∠BEF= 0°,∴∠EHF=∠BEF= 0°,∵∠EFH=∠BFE,∴△EHF∽△BEF,,∴=,即 0=∴BF=10,∴OE=BF=5,OH=5-1=4,∴Rt△OHE中,cos∠EOA=,∴Rt△EOA中,cos∠EOA==,∴=,∴OA=,∴AF=-5=.【解析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C= 0°,所以∠AEO= 0°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.(3)先证得△EHF∽△BEF,根据相似三角形的性质求得BF=10,进而根据直角三角形斜边中线的性质求得OE=5,进一步求得OH,然后解直角三角形即可求得OA,得出AF.本题主要考查了切线的判定,全等三角形的判定与性质,三角形相似的判定和性质以及解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.【答案】解:(1)设t秒后,△PBQ的面积等于8cm2,根据题意得:× t(6-t)=8,解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于8cm2.(2)由题意得,× t(6-t)=10,整理得:t2-6t+10=0,b2-4ac=36-40=-4<0,此方程无解,所以△PBQ的面积不能等于10cm2.【解析】(1)分别表示出线段PB和线段BQ的长,然后根据面积为8列出方程求得时间即可;(2)根据面积为8列出方程,判定方程是否有解即可.本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB和QB的长是解答本题的关键.25.【答案】解:(1)2tcm;(5-t)cm;(2)由题意得:(5-t)2+(2t)2=52,解得:t1=0(不合题意舍去),t2=2;当t=2秒时,PQ的长度等于5cm;(3)存在t=1秒,能够使得五边形APQCD的面积等于26cm2.理由如下:长方形ABCD的面积是: × = 0(cm2),使得五边形APQCD的面积等于26cm2,则△PBQ的面积为30-26=4(cm2),,解得:t1=4(不合题意舍去),t2=1.即当t=1秒时,使得五边形APQCD的面积等于26cm2.【解析】【分析】此题主要考查了一元二次方程的应用,以及勾股定理的应用,关键是表示出BQ、PB的长度.(1)根据P、Q两点的运动速度可得BQ、PB的长度;(2)根据勾股定理可得PB2+BQ2=QP2,代入相应数据解方程即可;(3)根据题意可得△PBQ的面积为长方形ABCD的面积减去五边形APQCD的面积,再根据三角形的面积公式代入相应线段的长即可得到方程,再解方程即可.【解答】解:(1)∵P从点A开始沿边AB向终点B以1cm/s的速度移动,∴AP=tcm,∵AB=5cm,∴PB=(5-t)cm,∵点Q从点B开始沿边BC向终点C以2cm/s的速度移动,∴BQ=2tcm;(2)见答案(3)见答案.26.【答案】解:(1)共调查的中学生数是: 0÷ 0%= 00(人),C类的人数是:200-60-30-70=40(人),如图1:(2)本次抽样调查中,学习时间的中位数落在C等级内;× 0°= °,(3)根据题意得:α= 000(4)设甲班学生为A1,A2,乙班学生为B1,B2,B3,一共有20种等可能结果,其中2人自不同班级共有12种,∴P(2人自不同班级)==.【解析】(1)根据B类的人数和所占的百分比即可求出总数;求出C的人数从而补全统计图;(2)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(3)用B的人数除以总人数再乘以 0°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,B3根据题意画出树形图,再根据概率公式列式计算即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.【答案】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO= 0 °,∵∠E= 0°,∴∠OCE= °;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE= °,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E= 0°,∴GE=2,∴.【解析】(1)由切线性质知OC⊥CD,结合AD⊥CD得AD∥OC,即可知∠DAC=∠OCA=∠OAC,从而得证;(2)①由AD∥OC知∠EOC=∠DAO= 0 °,结合∠E= 0°可得答案;②作OG⊥CE,根据垂径定理及等腰直角三角形性质知CG=FG=OG,由OC=2得出CG=FG=OG=2,在Rt△OGE中,由∠E= 0°可得答案.本题主要考查圆的切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质,熟练掌握切线的性质、平行线的判定与性质、垂径定理及等腰直角三角形性质是解题的关键.。

相关文档
最新文档