奇偶性ppt

合集下载

《奇偶性的应用》课件

《奇偶性的应用》课件

奇偶性在数据可视化和信息呈现 中的应用
利用奇偶性可以设计更加直观和易于理解的数据可视化 图表和界面,提高数据分析和信息传递的效率。
奇偶性与量子计算的结合
奇偶性在量子算法设计中 的应用
利用奇偶性可以设计更加高效和稳定的量子 算法,为量子计算的发展和应用提供新的思 路和方法。
奇偶性与量子纠错码的结 合
$f(-x)=-f(x)$
偶函数
$f(-x)=f(x)$
非奇非偶函数
既不满足奇函数也不满足偶函数的函数。
02
奇偶性在数学中的应用
代数方程的奇偶性
奇次方程
一个代数方程中,未知数的最高次数 为奇数的方程称为奇次方程。奇次方 程关于原点对称,可以通过代入法求 解。
偶次方程
一个代数方程中,未知数的最高次数 为偶数的方程称为偶次方程。偶次方 程关于y轴对称,可以通过因式分解法 求解。
总结词
化学反应中的奇偶性表现在分子结构和 化学键的对称性上。
VS
详细描述
在化学反应中,分子结构和化学键的对称 性可以通过奇偶性来描述。例如,在有机 化学中,分子可能具有对称轴或对称面, 这种对称性可以通过奇偶性来分析。此外 ,化学键的形成和断裂也可以通过奇偶性 来解释。
生物现象中的奇偶性
总结词
生物现象中的奇偶性表现在细胞分裂、遗传规律等方面。
函数奇偶性的应用
奇函数
如果一个函数满足f(-x)=-f(x),则称该函数为奇函数。奇函数图像关于原点对 称,具有反函数的性质。
偶函数
如果一个函数满足f(-x)=f(x),则称该函数为偶函数。偶函数图像关于y轴对称, 具有对称性。
几何图形中的奇偶性
几何图形中的奇偶性是指图形中点、 线、面的数量关系。

奇偶性(共10张PPT)

奇偶性(共10张PPT)
x)x1 x
解:(1)定义域为(-∞,+∞) ∵ f(-x)=(-x)4=f(x) 即 f(-x)=f(x)
∴ f ( x) x是4 偶函数.
1 (4) f(x)x2
(2)定义域为(-∞,+∞)
∵ f(-x)=(-x)5= - x5 = -f(x) 即 f(-x) = -f(x)
∴ f ( x) x是5 奇函数.
情景1:数学中有许多对称美的图形,函数中也有不少具
有对称特征的美丽图像,比如
y x2, y等函1数图像.
x
f(x)=x2
如何从“数”的方面定量刻画这些函数图像的对称本质呢? 这就是本课时学习的函数的奇偶性.
观察下图,思考并讨论以下问题:
(1) 这两个函数图象有什么共同特征吗?
(2) 如何利用函数解析式描述函数图象的这个特征呢?
奇函数的图象关于原点对称,反过来,如果一个函数的 图象关于原点对称,那么这个函数是奇函数;
定义
偶函数:一般地,对于函数f(x)的定义域内的任意一个x, 都有f(-x)=f(x),那么f(x)就叫做偶函数.
定义:一般地,对于函数f(x)的定义域内的任意一个x,
都有f(-x)= -f(x),那么f(x)就叫做奇函数.
f(x)=x2
f(x)=|x|

是偶函数.
f(-3)=9=f(3)
f(-3)=3=f(3)
(2)定义域为(-∞,+∞)
f(-1)=-1=-f(1) 即 f(-x)=f(x)
f(-2)=4=f(2)
f(-2)=2=f(2)
(3)定义域为{x|x≠0}
f(-1)=1=f(1) 函数是奇函数或是偶函数称为函数的奇偶性.
个整体性质,它不同于函数的单调性是在一个区间 . 再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.

人教版函数的奇偶性-高中数学(共41张PPT)教育课件

人教版函数的奇偶性-高中数学(共41张PPT)教育课件

f(-x)= f(x) 函数f(x)叫作偶函数
图象关于 y轴 对称
f(-x)= -f(x) 函数f(x)叫作奇函数 图象关于 原点 对 称
3
知识点聚焦:
• 二、奇偶性
定义
如果函数f(x)是奇函数或是偶函数,那么就说函数 f(x)具有 奇偶性
图象特征 奇(偶)函数 图象关于原点或y轴对称
4
探究一 函数奇偶性的判断
∵f(x)是奇函数,

∴f(x)=-f(-x)=-[(-x)(1+x)]=x(1+x).
• 【答案】B
37
随堂训练
• 5.已知函数f(x)是定义域为R的奇函数且f(1)=-2,那么f(-1)+f(0)=( )

A.-2
B.0
C.1
D.2
38
解析:
• 【解析】函数f(x)是定义域为R的奇函数且f(1)=-2,

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。

奇偶性课件ppt百度文库

奇偶性课件ppt百度文库
代数证明方法还包括利用奇偶函数的定义和性质进行证明,如奇函数和偶函数的 定义、奇偶函数的性质等。
几何证明方法
几何证明方法是利用几何图形和图形 的对称性来证明奇偶性的方法。例如 ,对于函数$f(x)$,如果函数图像关 于原点对称,则函数$f(x)$是奇函数 。
几何证明方法还包括利用图形的对称 轴、对称中心等性质进行证明,如正 弦函数、余弦函数的图像和性质等。
归纳法证明方法
归纳法证明方法是利用数学归纳法来进行证明的方法。例如 ,对于函数$f(x)$,如果对于所有自然数$n$,都有$f(-n) = -f(n)$,则函数$f(x)$是奇函数。
归纳法证明方法还包括利用数学归纳法的原理和步骤进行证 明,如利用数学归纳法证明奇偶性的等式或不等式等。
04
奇偶性的实际应用
无理数的奇偶性
定义
无理数无法表示为两个整数的比 值,因此无理数没有奇偶性。
举例
例如,π是一个无理数,无法表示 为两个整数的比值,因此没有奇 偶性。
分数的奇偶性
定义
对于分数f(x)=p(x)/q(x),如果存在 整数m和n,使得mp(x)=nq(x),则 称该分数为奇函数;如果存在整数m 和n,使得mp(x)=-nq(x),则称该分 数为偶函数。
05
奇偶性的扩展知识
多项式的奇偶性
定义
如果一个多项式在定义域内对于所有 自变量都满足f(-x)=f(x),则称该多项 式为偶函数;如果对于所有自变量都 满足f(-x)=-f(x),则称该多项式为奇 函数。
举例
例如,多项式f(x)=x^3是奇函数,因 为f(-x)=-x^3=-f(x);而多项式 g(x)=x^2是偶函数,因为g(-x)=(x)^2=x^2=g(x)。

函数的奇偶性课件(共14张PPT)

函数的奇偶性课件(共14张PPT)

y
则f (x) f (x) 2x
即2 f (x) 2x
2
即f (x) x
-2 o
2
x
故解集为:- 2,-1 0,1
-2
高中数学必修1同步辅导课程——函数的奇偶性
变式2:定义在R 上的函数 f (x), 对任意x, y R都有 f (x y) f (x) f ( y) 1, 且x 0时,f (x) 1, f (1) 2
f (x)单调递减,则f (1 m) f (m) 成立的 m 取值范围 是 ________。
高中数学必修1同步辅导课程——函数的奇偶性
例2:定义在 3,3 上的函数 f (x), g(x)分别为偶函数、
奇函数,图像如下,则不等式 f (x) 0的解集是:
g(x)
(_2_,_1_)__(_0_,1_) __(_2,_3_) 。
(1)求证:f (x)是R上的增函数; (2)解不等式: f (3x 1) 7; (3)求证:g(x) f (x) 1是奇函数。
高中数学必修1同步辅导课程——函数的奇偶性
课堂总结:
1:函数奇偶性的定义: “数”与“形”的特征
2:利用函数的奇偶性求值、求解析式
3:函数奇偶性与单调性的联系: “模拟图像”
题型三:奇偶性与单调性的联系:
例:已知函数 y f (x)(x 0)为奇函数,在 x 0,
上为单调增函数,且 f (1) 0 ,则不等式 f (2x 1) 0 解集为__________.
高中数学必修1同步辅导课程——函数的奇偶性
变式:定义在 2,2上的偶函数 f (x),当x 0 时,
高中数学必修1同步辅导课程——函数的奇偶性

1 第1课时 函数奇偶性的概念(共45张PPT)

1 第1课时 函数奇偶性的概念(共45张PPT)

【解】 (1)因为 x∈R, 所以-x∈R, 又因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-(|x+1|-|x-1|) =-f(x), 所以 f(x)为奇函数. (2)因为函数 f(x)的定义域为{-1,1}, 关于原点对称,且 f(x)=0, 所以 f(-x)=-f(x),f(-x)=f(x), 所以 f(x)既是奇函数又是偶函数.
解:(1)由题意作出函数图象如图所示:
(2)由图可知,单调递增区间为(-1,1). (3)由图可知,使 f(x)<0 的 x 的取值集合为(-2,0)∪(2,+∞).
巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性. (2)作出函数在[0,+∞)(或(-∞,0])上对应的图象. (3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的 函数图象. [注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称 点为(-x0,-y0),关于 y 轴的对称点为(-x0,y0).
C.坐标原点对称
D.直线 y=x 对称
解析:选 C.函数 f(x)=1x-x 是奇函数,其图象关于坐标原点对称.
3.(2020·武汉高一检测)函数 f(x)=x+x22+a+8 3为奇函数,则实数 a=
(
)
A.-1
B.1
C.-32
D.32
解析:选 C.由题得 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0,所以 a=
探究点 2 奇、偶函数的图象 已知函数 y=f(x)是定义在 R 上的偶函数,且当 x≤0 时,f(x)=x2+2x.
现已画出函数 f(x)在 y 轴左侧的图象,如图所示.
(1)请补出完整函数 y=f(x)的图象; (2)根据图象写出函数 y=f(x)的递增区间; (3)根据图象写出使 f(x)<0 的 x 的取值集合.

函数的奇偶性(数学教学课件)课件

函数的奇偶性(数学教学课件)课件
例如
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、归 纳: 对于一个函数来说,它的奇偶性有四种可能: 是奇函数; 是偶函数; 既是奇函数又是偶函数 ; 既不是奇函数也不是偶函数. 3、奇函数、偶函数的图像特征:
1、教材第36页
1.(3)、(4) 2.
1 2、判断函数 y x 3 的奇偶性。 x
问题1、函数 f ( x)
x , x [1, 2] 是偶函数
(4)解:该函数定义域为R ,
f x 0

f ( x)
f x 0 f ( x)
∴f(x)为既是奇函数又是偶函数 (5)解:函数的定义域为R,
f(-x)=-x+1 f(-x) ≠f(x) 且 f(-x) ≠-f(x)
∴f(x)既不是奇果对于函数 f(x) 的 定义域内的任意一个x ,都有 f(-x)=f(x)。 那么函数f(x)就叫做偶函数.
奇函数定义:
一般地,如果对于函数 f(x) 的 定义域内的任意一个x ,都有 f(-x) =-f(x)。 那么函数f(x)就叫做奇函数。
问题:偶函数的图像有什么特征?
( x 3 x ) f ( x )
0 x
∴f(x)是奇函数
(2) 因为f(x)是奇函数 所以其图象关于原点对称.
1、用定义判断函数奇偶性的步骤:
(1)先确定函数定义域,并判断定义域是否 关于原点对称; (2)确定f(x)与f(-x)的关系: ①若f(-x)= f(x) 则f(x)是偶函数; ②若f(-x)= - f(x) 则f(x)是奇函数.
(1)判断函数 f ( x) x x 的奇偶性. 3 (2)如果右图是函数 f ( x) x x 图象的一部分,你能 根据f(x)的奇偶性的性质把它的图象补充完整吗?
3
(1)解:该函数定义域为R ,
因为对定义域内的每一个x都有
y
f ( x ) ( x )3 ( x ) x3 x
(4) f x 0
(5) f ( x) x 1
(2)解:该函数定义域为R , 因为对定义域内的每一个x都有
(1)解:该函数定义域为{x∣x≠0} . 因为对定义域内的每一个x都有
1 1 f ( x) x ( x ) f ( x) x x
即f(-x)=-f(x) ∴f(x)奇函数
偶函数y=x2
偶函数图象关于y轴对称
问题:奇函数的图像有什么特征?
奇函数y=x3
奇函数的图象关于 原点对称.
O
• 函数是偶函数或是奇函数称为函数的奇偶 性。 • 定义域关于原点对称是函数具有奇偶性的 前提条件。 • 判断函数奇偶性的方法:图象法,定义法。
例1、判断下列函数的奇偶性: 1 (1) f ( x) x (2) f ( x) x 4 (3) f ( x) x x
f ( x ) ( x ) x f ( x)
4
4
即f(-x)=f(x) ∴f(x)偶函数
(3) f ( x) x
(4) f x 0
(5) f ( x) x 1
(3)解:该函数定义域为为 [0 ,+∞) ∵ 定义域不关于原点对称 ∴f(x)为既不是奇函数也不是偶函数
2
吗?偶函数的定义域有什么特征? 不是偶函数 偶函数的定义域关于原点对称 问题2、函数 f ( x) x, x [1, 2] 是奇函数吗? 奇函数的定义域有什么特征? 不是奇函数 奇函数的定义域关于原点对称
§1.3.2 函数的奇偶性
授课教师:黄小华
知识探究 观察下列函数的图像,问答下面两个问题.
1.上面两个函数图象具有什么共同特征?
关于y轴对称
2.如何利用函数的解析式描述函数的图象关于y轴对称呢?填 f(-x)= f(x) 写下表,你们发现这两个函数的解析式具有什么共同征?
x
f(x)=x2
-3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 9 4 1 0 1 4 9 f(x)=|x| 3 2 1 0 1 2 3
相关文档
最新文档