2015年北京市各区高三一模二模分类汇编--立体几何

合集下载

2015北京高三物理各区二模试题汇总(包括东西朝海丰)

2015北京高三物理各区二模试题汇总(包括东西朝海丰)

北京市朝阳区高三年级第二次综合练习理科综合试卷2015.5 本试卷共16页,共300分。

考试时长150分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共120分)本部分共20小题,每小题6分,共120分。

在每小题列出的四个选项中,选出最符合题目要求的一项。

13.在下列四个核反应方程中,符号“X ”表示中子的是A .2712713012Al n Mg X +→+B .24241112Na Mg X →+ C .9412426Be He C X +→+D .2392399293U Np X →+14.一束光线从折射率为1.5的玻璃射向空气,入射角为45°。

下列四幅光路图中正确的是A B C D15.一列沿x 轴负方向传播的简谐机械横波,波速为2m/s 。

某时刻波形如图所示,下列说法中正确的是A .这列波的振幅为4cmB .这列波的周期为2sC .此时x = 4m 处质点沿y 轴正方向运动D .此时x = 4m 处质点的速度为016.如图所示,人造卫星A 、B 在同一平面内绕地球做匀速圆周运动。

则这两颗卫星相比A .卫星A 的线速度较大B .卫星A 的周期较大C .卫星A 的角速度较大D .卫星A 的加速度较大17.如图所示,在MNQP中有一垂直纸面向里匀强磁场。

质量和电荷量都相等的带电粒子a、b、c以不同的速率从O点沿垂直于PQ的方向射入磁场,图中实线是它们的轨迹。

已知O是PQ的中点,不计粒子重力。

下列说法中正确的是A.粒子a带负电,粒子b、c带正电B.射入磁场时粒子a的速率最小C.射出磁场时粒子b的动能最小D.粒子c在磁场中运动的时间最长18.如图甲所示,轻杆一端与一小球相连,另一端连在光滑固定轴上,可在竖直平面内自由转动。

现使小球在竖直平面内做圆周运动,到达某一位置开始计时,取水平向右为正方向,小球的水平分速度v x随时间t的变化关系如图乙所示。

2015年北京13城区中学考试一模数学分类总汇编 第26题 几何阅读题

2015年北京13城区中学考试一模数学分类总汇编 第26题 几何阅读题

第26题几何阅读题2015年中考一模数学试题—第26题 几何阅读题1.(西城)26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题: 如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC=°.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.2.(海淀)26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD=3,BE=5,求BC+DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).ADE CDEC G EC ABDF图1 图2 图3请回答:BC +DE 的值为_______. 参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.3.(东城)26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值. G F EO图1 图24.(丰台)26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+.所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请 你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到 ,整理,得 , 所以 .5.()26. (本小题6分)抛物线32--=mx x y 与x 轴的两个交点分别为A (-1,0)、B ,与y 轴的交点为C . (1)求抛物线的顶点D 的坐标; (2)求证:△BCD 是直角三角形;(3)在该抛物线上是否存在点P ,使得△ABP 的面积是△BCD 的图1图2a c cc c b a面积的103倍,若存在,直接写出....P点坐标;若不存在,请说明理由.6.(平谷)26.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.7.(通州)26.(1)请你根据下面画图要求,在图①中完成画图操作并填空.如图①,△ABC中,∠BAC=30°,∠ACB=90°,∠PAM=∠A.操作:(1)延长BC.(2)将∠PAM绕点A逆时针方向旋转60°后,射线AM交BC的延长线于点D.(3)过点D作DQ//AB.(4)∠PAM旋转后,射线AP交DQ于点G.(5)连结BG.结论:AB AG=.(2)如图②,△ABC中,AB=AC=1,∠BAC=36°,进行如下操作:将△ABC绕点A 按逆时针方向旋转α度角,并使各边长变为原来的n倍(n>1),得到△''AB C.当点B、C、'B在同一条直线上,且四边形''ABB C为平行四边形时(如图③),求α和n 的值.8.(延庆)26. 阅读下面资料:问题情境:(1)如图1,等边△ABC ,∠CAB 和∠CBA 的平分线交于点O ,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点与点O 重合,已知OA =2,则图中重叠部分△OAB 的面积是. 探究:(2)在(1)的条件下,将纸片绕O 点旋转至如图2所示位置,纸片两边分别与AB ,AC 交于点E ,F ,求图2中重叠部分的面积.(3)如图3,若∠ABC =α(0°<α<90°),点O 在∠ABC 的角平分线上,且BO =2,以O 为顶点的等腰三角形纸片(纸片足够大)与∠ABC 的两边AB ,AC 分别交于点E 、F ,∠EOF =180°﹣α,直接写出重叠部分的面积.(用含α的式子表示)9.(燕山)26.阅读下面材料:小军遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,点D 为BC 的中点,求AD 的取值围.小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD 到E ,使DE =AD ,连接BE ,构造△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:AD 的取值围是.参考小军思考问题的方法,解决问题:图3E ABP如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC 于点D.求证:PA•CD=PC•BD.10(房山) 26.小明遇到这样一个问题:如图1,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠AFE=∠ACB.小明是这样思考问题的:如图2,以BC为直径做半⊙O,则点F、E在⊙O上,∠BFE+∠BCE=180°,所以∠AFE=∠ACB.请回答:若∠ABC=40,则∠AEF的度数是 .参考小明思考问题的方法,解决问题:如图3,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠BDF=∠CDE.11.(怀柔)26.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中, ∠A=2∠B ,CD 平分∠ACB ,AD=2.2,AC=3.6 求BC 的长.小聪思考:因为CD 平分∠ACB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________.参考小聪思考问题的方法,解决问题: 如图3,已知△ABC 中,AB=AC, ∠A=20°, BD 平分∠ABC,BD=2.3,BC=2. 求AD 的长.12.(石景山) 26.阅读下面材料:小红遇到这样一个问题:如图1,在四边形ABCD 中,︒=∠=∠90C A ,︒=∠60D ,34=AB ,3=BC ,求AD 的长.小红发现,延长AB 与DC 相交于点E ,通过构造Rt △ADE ,经过推理和计算能够使问题得到解决(如图2). 请回答:AD 的长为 . 参考小红思考问题的方法,解决问题:如图3,在四边形ABCD 中,21tan =A ,︒=∠=∠135CB , 9=AB ,3=CD ,求BC 和AD 的长.13.(门头沟) 26.阅读下面材料:小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分∠ACB ,试判断BC 和AC 、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC 上截取CA ′=CA ,连接DA ′,得到一对全等的三角形,从而将问题解决(如图2).A'DDCB CBAA图1 图2图1 图2请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;(2)BC 和AC 、AD 之间的数量关系是 . 参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.图3 D CBA。

北京市西城区2015届高三二模数学理考试试题

北京市西城区2015届高三二模数学理考试试题

北京市西城区2015 年高三二模试卷数学(理科)2015.5本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1 至2 页,第Ⅱ卷3 至6 页,共150 分.考试时长120 分钟.考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回.1.设集合,集合,则A B =()A.(-1‚ 3)B.(1‚ 3]C.[1‚ 3)D.(-1‚ 3]2.已知平面向量,则实数k =()A.4 B.-4 C.8 D.-83.设命题p :函数在R上为增函数;命题q:函数为奇函数.则下列命题中真命题是()4.执行如图所示的程序框图,若输入的,则输出的s属于()A. {1‚ 2}B.{1‚ 3}C.{2 ‚ 3}D.{1‚ 3‚ 9}5.某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y(万元)与x满足函数关系,若欲使此设备的年平均花费最低,则此设备的使用年限x为( )A .3B .4C .5D .6 6.数列为等差数列,满足,则数列前21 项的和等于( )A .B .21C .42D .847.若“ x >1 ”是“不等式成立”的必要而不充分条件,则实数a 的取值范围是( )A .a >3B .a < 3C .a > 4D .a < 4 8.在长方体,点M 为AB 1 的中点,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP +PQ 的最 小值为( )第Ⅱ卷(非选择题 共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分. 9.复数=____10.双曲线C :的离心率为 ;渐近线的方程为 .11.已知角α的终边经过点(-3,4),则cos α= ;cos 2α= . 12.如图,P 为O 外一点,PA 是切线, A 为切点,割线PBC 与O 相交于点B 、C ,且 PC = 2PA , D 为线段 PC 的中点, AD 的延长线交O 于点 E .若PB =34,则PA = ;AD ·DE = .13.现有6 人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有 种.(用数字作答)14.如图,正方形ABCD 的边长为2, O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺 时针方向旋转至OD ,在旋转的过程中,记,OP 所经过的在正方形ABCD内的区域(阴影部分)的面积S = f (x),那么对于函数f (x)有以下三个结论:①;②任意,都有③任意其中所有正确结论的序号是.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13 分)在锐角△ABC 中,角A,B ,C 所对的边分别为a,b ,c ,已知a =7,b =3,.(Ⅰ)求角A 的大小;(Ⅱ)求△ABC 的面积.16.(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10 个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)当a = b =3时,记甲型号电视机的“星级卖场”数量为m ,乙型号电视机的“星级卖场”数量为n ,比较m ,n 的大小关系;(Ⅱ)在这10 个卖场中,随机选取2 个卖场,记X 为其中甲型号电视机的“星级卖场”的个数,求X 的分布列和数学期望.(Ⅲ)若a =1,记乙型号电视机销售量的方差为s2,根据茎叶图推断b为何值时,s2达到最小值.(只需写出结论)17.(本小题满分14 分)如图1,在边长为4 的菱形ABCD中,于点E ,将△ADE沿DE 折起到的位置,使,如图2.⑴求证:平面BCDE ;⑵求二面角的余弦值;⑶判断在线段EB上是否存在一点P ,使平面?若存在,求出的值;若不存在,说明理由.18.(本小题满分13 分)已知函数,其中a∈R .⑴当时,求f (x)的单调区间;⑵当a>0时,证明:存在实数m >0,使得对于任意的实数x,都有| f (x)|≤m成立.19.(本小题满分14 分)设分别为椭圆E:22221(0)x ya ba b+=>>的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且|AB|=2.⑴若椭圆E 的离心率为,求椭圆E 的方程;⑵设P 为椭圆E 上一点,且在第一象限内,直线与y 轴相交于点Q ,若以PQ 为直径的圆经过点F1,证明:20.(本小题满分13 分)无穷数列P :,满足,对于数列P ,记,其中表示集合中最小的数.(Ⅰ)若数列P :1‚ 3‚ 4 ‚ 7 ‚ …,写出;(Ⅱ)若,求数列P 前n项的和;(Ⅲ)已知=46,求的值.。

2015年高三二模数学(文)北京市丰台区试题Word版带解析.doc

2015年高三二模数学(文)北京市丰台区试题Word版带解析.doc

丰台区2015年高三年级第二学期统一练习(二) 2015.5高三数学(文科)第一部分 (选择题 共40分)选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数i(1i)-对应的点在(A) 第一象限 (B) 第二象限(C) 第三象限(D) 第四象限【答案】A【解析】2i(1i)i i 1i -=-=+,故对应点为(11),,在第一象限,故选A 【考点】 复数综合运算 【难度】 12. 已知0a >且1a ≠,命题“1x ∃>,log 0a x >”的否定是(A) ∃x ≤1,log 0a x > (B) ∃x >1,log 0a x ≤ (C) ∀x ≤1,log 0a x > (D) ∀x >1,log 0a x ≤【答案】D【解析】“1x ∃>,log 0a x >”的否定为1x ∀>,log 0a x ≤”,故选D 【考点】 全称命题与存在性命题 【难度】 23.已知函数()sin f x x =,[2,2]x ππ∈-,则方程1()2f x =的所有根的和等于 (A) 0 (B) π(C) -π(D) - 2π【答案】A【解析】由1()2f x =得1sin 2x =,所以1sin 2x =±,6x k ππ=±,因为[2,2]x ππ∈-, 所以当2k =-时,116x π=-;当1k =-时,76x π=-,56x π=-当0k =时,6x π=-;6x π=;当1k =时,76x π=,56x π=当2k =时,116x π=;所以所有根的和为 11117755066666666ππππππππ-+-+-+-+= 故选A 【考点】 三角函数【难度】 24. 如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图面积为(A) 2(B)3(C) 23(D)23 【答案】C【解析】左视图为三角形,底边长为3,高为3,所以面积为1322=,故选C 【考点】 三视图与直观图 【难度】 35.执行如图所示的程序框图,如果输入的x R ∈,则输出的h (x )的最小值是(A)34(B) 3 (C) 4 (D) 7【答案】B【解析】由程序框图可知2221,14()4,14x x x x x h x x x x x ⎧-+-+≥+⎪=⎨+-+<+⎪⎩,即21,13()4,13x x x x h x x x ⎧-+≤-≥=⎨+-<<⎩或 所以()h x 在(,1)-∞-递增,在[)1,-+∞递增 所以min ()(1)3h x h =-=,故选B 【考点】算法与程序框图;分段函数 【难度】 36.设O 是坐标原点,F 是抛物线2y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为6π,则 ||AF =(A)12(B)34(C) 1(D) 2+【答案】C【解析】依题意点A 在第一象限,1(0,)4F ,直线FAFA的方程为14y -=,联立方程214y x y x ⎧=⎪⎨-=⎪⎩得2484030y y -+=,即(121)(43)0y y --=,因为点A 在第一象限,所以34y =, 因为点A 在抛物线上,所以31144FA =+=,故选C俯视图正视图【考点】 抛物线 【难度】 37.某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用A 原料3吨,B 原料2吨;生产每吨乙种产品要用A 原料1吨,B 原料3吨.该工厂每天生产甲、乙两种产品的总量不少于2吨,且每天消耗的A 原料不能超过10吨,B 原料不能超过9吨.如果设每天甲种产品的产量为x 吨,乙种产品的产量为y 吨,则在坐标系xOy 中,满足上述条件的x ,y 的可行域用阴影部分表示正确的是(A)(B)(C)(D)【答案】A【解析】x ,y 所满足的可行域为231023900x y x y x y x y +≥⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,故选A【考点】 线性规划 【难度】 38.对于集合A ,B ,定义{,}A B x y x A y B +=+∈∈,下列命题:①A B B A +=+;②()()A B C A B C ++=++;③若A A B B +=+,则A B =;④若A C B C +=+,则A B =.其中正确的命题是 (A) ① (B) ①②(C) ②③(D) ①④【答案】B【解析】根据定义A B +的意义是集合A 中的每一个元素与集合B 中的每一个元素相加,故①正确; 设集合{}12,,,m A x x x =,{}12,,,n B y y y =,{}12,,,k C z z z ={}i p A B x y +=+(1,2,i m =,1,2,p n = ){}()i p q A B C x y z ++=++(1,2,i m =,1,2,p n =,1,2,q k =){}p q B C y z +=+(1,2,p n =,1,2,q k =){}()i p q A B C x y z ++=++(1,2,i m =,1,2,p n =,1,2,q k =)所以()A B C ++=()A B C ++,故②正确对于③,不妨设{}1,0,1A =-,{}1,1B =-,则{}2,1,0,1,2A A +=--,{}2,1,0,1,2B B +=-- 对于④,不妨设{}1A =,{}2B =,{}1,2,3C =,则A C B C +=+,但是A B ≠ 【考点】 【难度】第二部分 (非选择题 共110分)一、填空题共6小题,每小题5分,共30分.9.已知正实数x ,y 满足xy =3,则2x +y 的最小值是 .【答案】【解析】2x y +≥=2x y =时等号成立),所以2x y +的最小值是。

2015年北京市各区高三模拟数学试题(文科)分类汇编----复数

2015年北京市各区高三模拟数学试题(文科)分类汇编----复数

2015年北京高三模拟试题汇编----复数15年高三一模文试题汇编2.(15年西城一模文)复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( )(A )第一象限(B )第二象限 (C )第三象限 (D )第四象限(1)(15年东城一模文)在复平面内,复数12i z =-对应的点的坐标为(A )(1,2) (B )(2,1)(C ) (1,2)- (D )(2,1)-3.(15年顺义一模文)在复平面内,复数()212i +对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限 9. (15年延庆一模文)复数(1)(1)2i i z i +-=在复平面上对应的点的坐标为 .(9)(15年朝阳一模文)i 为虚数单位,计算1i 1i +-= . (10)(15年海淀一模文)若复数i i a z +=,且z ∈R ,则实数a =______. 9.(15年丰台一模文)复数312i i++= . 9. (15年房山一模文)若复数(1)(2)z m m i =-+-,(R )是纯虚数,复数在复平面内对应的点的坐标为_____.15年高三二模试题汇编(1)(15年海淀二模文)在复平面内,复数2i (1i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)(15年东城二模)若复数2()i m m m -+为纯虚数,则实数m 的值为(A )1- (B )0(C )1 (D )21. (15年丰台二模文)复数i(1i)-对应的点在(A) 第一象限(B) 第二象限 (C) 第三象限 (D) 第四象限 2. (15年昌平二模文)4||1i -等于 A.1B.C. 2D. m ∈z9. (15年西城二模)复数10i3i=+____.9.(15年朝阳二模)设i为虚数单位,则i(1i)-=.。

2015北京五城区高三二模试卷分类汇编

2015北京五城区高三二模试卷分类汇编

2015北京五城区高三二模试卷分类汇编高三2015-05-10 20:012015北京五城区高三二模试卷分类汇编2015高三东城二模一、本大题共5小题,每小题3分.共15分。

1.下列词语中,字形和加点的字读音全都正确的一项是A.抱不平合盘托出粗犷(kuàng)既往不咎(jiù)B.羊羯子计日程功山岚(fēng)寅吃卯(mǎo)粮C.座右铭良莠不齐打烊(yàng)诘(jí)屈聱牙D.蒸溜水唉声叹气洁癖(pǐ)改弦(xuán)更张2.下列句子中,加点的词语使用正确的一项是A.社会福利是社会保障体系的重要组成部分,与城乡中孤、老、残、幼及精神病患者的利益休戚相关。

B.瓦尔德照顾病情加重、生活不能自理的霍金,还帮助他整理资料,打印论文,并抚育三个孩子,无所不为。

C.春的气息伴着清风扑面而来,催开了娇艳的花朵,唤醒了蛰伏一冬的昆虫,春意阑珊的美景让人陶醉。

D.一批逼真的文物仿制品出口到海外,被一些中国藏家以天价购买后又回流到中国,这真令人啼笑皆非。

3.下列句子中,没有语病的一句是A.北京市绿化造林部门规划在潮白河、永定河、北运河、泃河、拒马河等五大干流河道及其主要支流河道两岸,建成林水相依的大森林景区。

B.为了更好地调动全体员工的工作积极性,公司管理层一定要做好考核员工的业绩,对于成绩突出的和无私奉献的要给予适当的物质奖励。

C.学会欣赏戏剧不易,能够创作一部优秀的戏剧作品更不易,小张对戏剧情有独钟,因此,他平时在这方面花了不少时间,做了很多努力。

D.领导干部如果不能带头读书学习,那么个人会由于能力不足遭到淘汰,单位的学习风气难以形成,工作也会因为思想贫乏难有起色。

4.下列有关文学常识的表述,有错误的一项是A.《过秦论》是西汉贾谊政论散文的代表作,文章旨在分析秦朝迅速灭亡的原因,以此作为汉王朝建立制度、巩固统治的借鉴,论证严密,气势磅礴,雄辩有力。

B.李白的《梦游天姥吟留别》、杜甫的《茅屋为秋风所破歌》和白居易的《长恨歌》《琵琶行》都属于古体诗,这种诗体押韵自由,对仗、平仄不拘,字数、句数不限。

北京各区2015届高三二模理科数学分类汇编(立体几何)

北京各区2015届高三二模理科数学分类汇编(立体几何)

北京各区二模理科数学分类汇编——立体几何1.(2015届西城二模) 8.在长方体,点M 为AB 1 的中点,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP +PQ 的最小值为( )2.(2015届西城二模) 17.(本小题满分14 分) 如图 1,在边长为4 的菱形ABCD 中,AB DE BAD ⊥=∠,600于点E ,将△ADE 沿DE折起到△A 1D E 的位置,使A 1D ⊥DC ,如图 2.⑴ 求证:A 1E ⊥平面BCDE ;⑵ 求二面角E —A 1B —C 的余弦值;⑶ 判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥A 1BC ?若存在,求出的值;若不存在,说明理由.EA 1BCD4.(2015届海淀二模)A(17)(本小题共14分) 如图,三棱柱ABC DEF -的侧面BEFC 是边长为1的正方形,侧面BEFC ⊥侧面ADEB ,4AB =,60DEB ∠= ,G 是DE 的中点.(Ⅰ)求证:CE ∥平面AGF ;(Ⅱ)求证:GB⊥平面BEFC ;(Ⅲ)在线段BC 上是否存在一点P ,使二面角P GE B --为45,若存在,求BP 的长;若不存在,说明理由.6.(2015届昌平二模) 6 一个几何体的三视图如图所示,则这个几何体的体积为A.36+B.33+C.33+D.侧视图 俯视图7.(2015届丰台二模) 5.某三棱锥的正视图和俯视图如图所示,则其左视图面积为( )(A) 6(B)29(C) 3(D) 238.(2015届丰台二模)17.(本小题共14分) 如图所示,在四棱柱1111D C B A ABCD -中,⊥1AA 底面ABCD ,BD AC⊥于O,124AA OC OA ===,点M 是棱1CC 上一点.(Ⅰ)如果过1A ,1B ,O 的平面与底面ABCD 交于直线l ,求证://l AB ;(Ⅱ)当M 是棱1CC 中点时,求证:1AO DM ⊥; (Ⅲ)设二面角1A BD M--的平面角为θ,当cos 25θ=时,求CM 的长.(Ⅲ)原题:设二面角1A BD M--,求CM 的长.俯视图正视图OMD 1C 1B 1A 1DCBA9.(2015届昌平二模) 17. (本小题满分14分)如图,已知等腰梯形ABCD 中,1//,2,2AD BC AB AD BC E===是BC 的中点,AE BD M=,将BAE ∆沿着AE 翻折成1B AE ∆,使平面1B AE ⊥平面AECD .(I ) 求证:1CD B DM ⊥平面;(II )求二面角1D AB E --的余弦值; (III )在线段1BC 上是否存在点P ,使得//MP 平面1B AD ,若存在,求出11B PB C的值;若不存在,说明理由.。

北京2015年高三二模(理)试题分类汇编-集合

北京2015年高三二模(理)试题分类汇编-集合

北京2015届高三二模试题分类汇编(理科)专题:集合一、 选择题。

(1)(2015年海淀区高三二模理科)已知全集U Z =,集合{1,2}A =,{1,2,3,4}A B =U ,那么()U C A B I =()(A )∅ (B ){3}x x Z ∈≥ (C ){3,4} (D ){1,2}(2)(2015年西城高三二模理科)设集合{|10}A x x =->,集合3{|}B x x =≤,则A B = ()(A )(1,3)-(B )(1,3] (C )[1,3) (D )[1,3]-(3)(2015年朝阳区高三二模理科)已知集合{}21A x x =>,集合{}(2)0B x x x =-<,则A B = A .{}12x x << B.{}2x x >C .{}02x x <<D .{1x x ≤,或}2x ≥(4)(2015年丰台区高三二模理科)已知{1}A x x =>,2{20}B x x x =-<,则A B = (A){0x x <或1}x ≥(B) {12}x x <<(C){0x x <或1}x >(D) {0}x x >(5)(2015年昌平区高三二模理科)已知集合{}2340A x x x =--=,{}0,1,4,5B =,则A B 中元素的个数为A .0个 B. 1个 C. 2个 D. 3个二、填空题。

(1)(2015年朝阳区高三二模理科)设集合{}{}123(,,)2,0,2,1,2,3i A m m m m i =?=,集合A 中所有元素的个数为;集合A 中满足条件“12325m m m ?+?”的元素个数为.(2)(2015年丰台区高三二模理科)已知非空集合A ,B 满足以下四个条件:①{1,2,3,4,5,6,7}A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么A =______;(ⅱ)有序集合对(A ,B )的个数是______.【答案与解析】一、 选择题。

基础大题答案 2015北京高考数学 各区一模试题汇编

基础大题答案 2015北京高考数学 各区一模试题汇编

2015北京高考数学 各区一模试题汇编--解析几何 答案--弦长与面积问题19.(本小题满分14分) 解:(Ⅰ)由题意可得2222,,c c a a bc =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b , 故椭圆的方程为22162x y +=. …….4分(Ⅱ)当直线l 斜率不存在时,A B的坐标分别为,(2,,||MN =, 四边形AMBN 面积为1||||42AMBN S MN AB =⋅=. 当直线l 斜率存在时,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,点,M N 到直线l 的距离分别为12,d d ,则四边形AMBN 面积为121||()2AMBN S AB d d =+. 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 则21221213k x x k +=+,212212613k x x k -=+, 所以||AB==.因为121224(4)13ky y k x x k-+=+-=+, 所以AB 中点22262(,)1313k kD k k -++. 当0k ¹时,直线OD 方程为30x ky +=, 由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得333,x ky =-232213y k =+. 所以121||()2AMBN S AB d d =+12=====当0k =时,四边形AMBN面积的最大值AMBN S =综上四边形AMBN面积的最大值为. …………………………14分19.(本小题满分14分)(Ⅰ)解:由点)23,1(P 和1F 关于点)43,0(C 对称,得1(1,0)F -, ………… 1分所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F , ……………… 2分 由椭圆定义,得 122||||4a PF PF =+=.所以 2a =,b = ……………… 4分故椭圆E 的方程为13422=+y x . ……………… 5分 (II )解:结论:存在直线l ,使得四边形PABQ 的对角线互相平分. ……… 6分 理由如下:由题可知直线l ,直线PQ 的斜率存在,设直线l 的方程为)1(-=x k y ,直线PQ 的方程为3(1)2y k x -=-. ……… 7分 由 221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 得2222(34)84120k x k x k +-+-=, ……………… 8分 由题意,可知0∆> ,设11(,)A x y ,22(,)B x y ,则2221438kk x x +=+,212241234k x x k -=+, ……………… 9分 由221,433(1),2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩消去y ,得2222(34)(812)41230k x k k x k k +--+--=, 由0∆>,可知12k ≠-,设),(33y x Q ,又)23,1(P ,则223431281k k k x +-=+,2234331241kk k x +--=⋅. ……………… 10分 若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以212231+=+x x x ,即3211x x x -=-, ……………… 11分 故2212123()4(1)x x x x x +-=-. ……………… 12分所以 2222222284124123()4(1)343434k k k k k k k ----⋅=-+++. 解得 34k =. 所以直线l 为3430x y --=时, 四边形PABQ 的对角线互相平分. …… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)19.解:(I )由题意,椭圆C 的标准方程为221.43x y += 所以224,3,a b ==从而222 1.c a b =-= 因此,2, 1.a c ==故椭圆C 的离心率1.2c e a ==..... ...........................................4分 (II )由题意可知,点P 的坐标为3(1,).2-设1l 的方程为3(1).2y k x =++则2l 的方程为3(1).2y k x =-++........................................5分由223(1)23412y k x x y ⎧=++⎪⎨⎪+=⎩得2222(43)(812)41230.k x k k x k k +++++-= 由于1x =-是此方程的一个解.所以此方程的另一解22412343A k k x k +-=-+ 同理22412343B k k x k --=-+............... ...........................................7分故直线AB 的斜率为33(1)(1)22B A B A ABB A B Ak x k x y y k x x x x -++-+--==-- 22286(2)143.24243k k k k k -+-++==-+ ........... ...........................................9分设直线AB 的方程为1.2y x m =-+由22123412y x m x y ⎧=-+⎪⎨⎪+=⎩得2230x mxm -+-=所以||AB ==又原点O 到直线AB 的距离为d =所以OAB ∆的面积12OAB S ∆==22(4)22m m +-≤⋅= 当且仅当224m m =-,即22,2m m ==±时.OAB ∆的面积达到最大................ ...........................................13分由题意可知,四边形ABMN 为平行四边形, 所以,四边形ABMN的面积4OAB S S ∆=≤故四边形ABMN面积的最大值为 ............... ...........................................14分中点与垂直问题(19)(本小题满分14分) 解:(Ⅰ)由题意可得2222,,3,c c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩解得a =b = 故椭圆的方程为22162x y +=. ……… 5分 (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 所以21221213k x x k+=+. 因为121224(4)13ky y k x x k-+=+-=+,所以AB 中点22262(,)1313k kD k k -++. 因此直线OD 方程为30x ky +=()0k ¹.由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=u u u u r u u u u r,即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=.所以222(91)4013k k +-=+.解得3k =±.故直线l的方程为2)3y x =±-. ……… 14分19.(本小题共14分)解:(Ⅰ)抛物线28y x =,所以焦点坐标为(2,0),即(2,0)A , 所以2a =.又因为2c e a ==,所以c = 所以2221b a c =-=,所以椭圆C 的方程为2214x y +=. ……………………4分 (Ⅱ)设11(,)P x y ,22(,)Q x y ,因为AM AP AQ =+u u u u r u u u r u u u r,(2,0)A ,所以11(2,)AP x y =-u u u r,22(2,)AQ x y =-u u u r ,所以1212(4,+)AM AP AQ x x y y =+=+-u u u u r u u u r u u u r,所以()12122,M x x y y +-+.由2214(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(41)8440k x k x k +-+-=(判别式0∆>), 得2122282224141k x x k k -+-=-=++,121222(2)4+1ky y k x x k -+=+-=, 即2222(,)4141k M k k --++.设3(0,)N y , 则MN 中点坐标为3221(,)41412y kk k --+++,因为M ,N 关于直线l 对称,所以MN 的中点在直线l 上,所以3221(1)41241k y k k k --+=-++,解得32y k =-,即(0,2)N k -. 由于M ,N 关于直线l 对称,所以M ,N 所在直线与直线l 垂直,所以 222(2)4112041kk k k k ---+⋅=---+,解得k = ……………………14分(19)(共13分)解:(Ⅰ)由题意得:2221,.b ca abc =⎧⎪⎪=⎨⎪⎪-=⎩………………3分解得:223,1.a b ⎧=⎪⎨=⎪⎩所以 椭圆M 的方程为2213x y +=. ………………4分 (Ⅱ)不存在满足题意的菱形ABCD ,理由如下: ………………5分 假设存在满足题意的菱形ABCD .设直线BD 的方程为y x m =+,11(,)B x y ,22(,)D x y ,线段BD 的中点00(,)Q x y ,点(,2)A t . ………………6分由2233,x y y x m⎧+=⎨=+⎩得224230y my m -+-=. ………………8分由()()2221630m m ∆=--> ,解得22m -<<. ………………9分因为 122my y +=, 所以 12024y y my +==. ………………11分因为 四边形ABCD 为菱形, 所以 Q 是AC 的中点.所以 C 点的纵坐标022212C my y =-=-<-. ………………12分 因为 点C 在椭圆M 上,所以 1C y ≥-.这与1C y <-矛盾. ………………13分 所以 不存在满足题意的菱形ABCD .19.(本小题满分14分)(Ⅰ)解:由点)23,1(P 和1F 关于点)43,0(C 对称,得1(1,0)F -, ………… 1分所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F , ……………… 2分 由椭圆定义,得 122||||4a PF PF =+=.所以 2a =,b = ……………… 4分故椭圆E 的方程为13422=+y x . ……………… 5分 (II )解:结论:存在直线l ,使得四边形PABQ 的对角线互相平分. ……… 6分 理由如下:由题可知直线l ,直线PQ 的斜率存在,设直线l 的方程为)1(-=x k y ,直线PQ 的方程为3(1)2y k x -=-. ……… 7分由 221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 得2222(34)84120k x k x k +-+-=, ……………… 8分 由题意,可知0∆> ,设11(,)A x y ,22(,)B x y ,则2221438kk x x +=+,212241234k x x k -=+, ……………… 9分 由221,433(1),2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩消去y ,得2222(34)(812)41230k x k k x k k +--+--=, 由0∆>,可知12k ≠-,设),(33y x Q ,又)23,1(P ,则223431281k k k x +-=+,2234331241k k k x +--=⋅. ……………… 10分若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以212231+=+x x x ,即3211x x x -=-, ……………… 11分 故2212123()4(1)x x x x x +-=-. ……………… 12分所以 2222222284124123()4(1)343434k k k k k k k ----⋅=-+++. 解得 34k =. 所以直线l 为3430x y --=时, 四边形PABQ 的对角线互相平分. …… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)19.解:(I)由题意,椭圆C 的标准方程为221164x y +=,所以2222216,4,12从而a b c a b ===-=,因此4,a c ==故椭圆C的离心率c e a == ............... ...........................................4分 (II)由221,416y kx x y =+⎧⎨+=⎩得()22148120k x kx ++-=,由题意可知0∆>. ............... ...........................................5分 设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,1221214M y y y k+==+................ .....................................7分因为BEF ∆是以EF 为底边,B 为顶点的等腰三角形,所以BM EF ⊥, 因此BM 的斜率1BM k k=-. ............... ...........................................8分 又点B 的坐标为()0,2-,所以222122381440414M BM M y k k k k x k k ++++===---+,............... ....................................10分 即()238104k k k k+-=-≠, 亦即218k =,所以k = ............... ...........................................12分故EF的方程为440y -+=. ............... ...........................................13分又圆2212x y +=的圆心()0,0O 到直线EF的距离为32d ==>, 所以直线EF 与圆相离................ ...........................................14分单动点消元问题解:(Ⅰ)由已知离心率12c e a ==, 又△12MF F 的周长等于226a c +=,解得2a =,1c =.所以23b =.所以椭圆C 的方程为22143x y +=. ………………………..5分(Ⅱ)设点M 的坐标为00(,)x y ,则2200143x y +=.由于圆M 与l 有公共点,所以M 到l 的距离04x -小于或等于圆的半径r . 因为2222100(+1)r MF x y ==+,所以222000(4)(1)x x y -≤++,即20010150y x +-≥.又因为22003(1)4x y =-,所以20033101504x x -+-≥.整理得200340+480x x -≤,解得04123x ≤≤.又022x -<< ,所以0423x ≤<.所以003y <≤. 因为△12MF F 面积01201=2y F F y =,当03y =时,△12MF F 面积有最大值3. ………………..13分(Ⅰ)由短轴长为,得b = ………………1分由2c e a a ===,得224,2a b ==. ∴椭圆C 的标准方程为22142x y +=. ………………4分(Ⅱ)以MN 为直径的圆过定点(F . ………………5分证明如下:设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=,∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++,∴002(0,)2y M x +……………6分 直线QA 方程为:00(2)2y y x x =+-,∴002(0,)2y N x -, ………………7分 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+-………………10分 【或通过求得圆心00202(0,)4x y O x '-,204||4y r x =-得到圆的方程】 即222000220044044x y y x y y x x +-+=--, ∵220042x y -=-,∴22220x x y y y ++-=, ………………12分 令0y =,则220x -=,解得x =∴以MN为直径的圆过定点(F . …………14分解:(Ⅰ)设动点E 的坐标为(,)x y .由抛物线定义知,动点E 的轨迹为以(1,0)为焦点,1x =-为准线抛物线.所以动点E 的轨迹C 的方程为:24y x =. ……………4分(Ⅱ)设直线l 的方程为:y kx b =+.(显然0k ≠)由 24,,y x y kx b ⎧=⎨=+⎩得2440ky y b -+=.因为直线l 与抛物线相切, 所以16160kb ∆=-=,1b k =. 所以直线l 的方程为1y kx k=+. 令1x =-,得1y k k=-+, 所以1(1,)Q k k--+.设切点坐标00(,)P x y ,则200440ky y k -+=,解得212(,)P k k. 设(,0)M m ,则2121()(1)()MQ MP m m k k k k⋅=---+-+u u u u r u u u r2222122m m m k k k =-+-++-. 21(1)(2)m m k =---. 当1m =时,0MQ MP ⋅=u u u u r u u u r.所以以PQ 为直径的圆恒过x 轴上定点(1,0)M . ……………13分定点与定值问题解:(Ⅰ)∵点Q 到椭圆左右焦点的距离和为4. ∴24a =,2a =.又12c e a ==,∴1c =,2223b a c =-=. ∴椭圆W 的标准方程为:22143x y +=…………………5分 (Ⅱ)∵直线1l 、2l 经过点(0,1)且互相垂直,又A 、B 、C 、D 都不与椭圆的顶点重合 ∴设1l :1y kx =+,2l :11y x k=-+;点11(,)A x y 、22(,)B x y 、(,)E E E x y 、(,)F F F x y 由221143y kx x y=+⎧⎪⎨+=⎪⎩得22(34)880k x kx ++-= ∵点(0,1)在椭圆内,∴△0>∴122834kx x k +=-+,∴1224234Ex x kx k+==-+,23134E E y kx k =+=+∴34E OE E y k x k==- 同理33144()F OF Fy kk x K ==-=-∴916OE OFk k ⋅=-…………………14分2015房山一模理科19题 19.(本小题共14分)解: (Ⅰ)由题意得21|4|)1(22=-+-x y x , ………………2分化简并整理,得 13422=+y x . 所以动点),(y x P 的轨迹C 的方程为椭圆13422=+y x . ………………5分 (Ⅱ)当0=t 时,点B M 与重合,点A N 与重合,,,M N F 三点共线. ………7分当0≠t 时根据题意::(2),:(2)62tt QA y x QB y x =+=-由()2214326x y t y x ⎧+=⎪⎪⎨⎪=+⎪⎩消元得:2223(2)1209t x x ++-=整理得:2222(27)441080t x t x t +++-=该方程有一根为2,x =-另一根为M x ,根据韦达定理,222241085422,2727M M t t x x t t ---==++由()2214322x y t y x ⎧+=⎪⎪⎨⎪=-⎪⎩ 消元得:2223(2)120x t x +--= 整理得:2222(3)44120t x t x t +-+-=该方程有一根为2,x =另一根为N x ,根据韦达定理,2222412262,33N N t t x x t t --==++当M N x x =时,由222254226273t t t t --=++得:29,t =1M N x x ==,,,M N F 三点共线; 当M N x x ¹时,218(2)627M M t t y x t =+=+,26(2)23N N t ty x t -=-=+22221862754219127M MFM t y t t k t x t t +===----+;2222663261913N NFN t y t t k t x t t -+===----+ NF MF K k =,,,M N F 三点共线.综上,命题恒成立. ………………14分19.(本小题共14分)解: (Ⅰ)因为椭圆C :22162x y += 所以焦点(2,0)F ,离心率e =……………………4分 (Ⅱ)直线l :y kx m =+(0)k ≠过点F ,所以2m k =-,所以l :(2)y k x =-.由2236(2)x y y k x ⎧+=⎨=-⎩,得2222(31)121260.k x k x k +-+-=(依题意 0∆>). 设 11(,)P x y ,22(,)Q x y ,则21221231k x x k +=+,2122126.31k x x k -=+ .因为点P 关于x 轴的对称点为P ',则11(,)P x y '-. 所以,直线P Q '的方程可以设为211121()y y y y x x x x ++=--,令0y =,2111211211212x y x y x y x y x x y y y y -+=+=++211212(2)(2)(4)kx x kx x k x x -+-=+-12121222()(4)x x x x x x -+=+-2222221261222313112(4)31k k k k k k --++=-+ 3=. 所以直线P Q '过x 轴上定点(3,0). ……………………14分19.(本小题共14分)解: (Ⅰ)因为椭圆C :22162x y +=所以焦点(2,0)F ,离心率3e =……………………4分 (Ⅱ)直线l :y kx m =+(0)k ≠过点F ,所以2m k =-,所以l :(2)y k x =-.由2236(2)x y y k x ⎧+=⎨=-⎩,得2222(31)121260.k x k x k +-+-=(依题意 0∆>). 设 11(,)P x y ,22(,)Q x y ,则21221231k x x k +=+,2122126.31k x x k -=+ .因为点P 关于x 轴的对称点为P ',则11(,)P x y '-. 所以,直线P Q '的方程可以设为211121()y y y y x x x x ++=--,令0y =,2111211211212x y x y x y x y x x y y y y -+=+=++211212(2)(2)(4)kx x kx x k x x -+-=+-12121222()(4)x x x x x x -+=+-2222221261222313112(4)31k k k k k k --++=-+ 3=.所以直线P Q '过x 轴上定点(3,0). ……………………14分(19)(共13分)解:(Ⅰ)因为 椭圆M 过点(0,1)A -,所以 1b =.………………1分 因为 222 c e a b c a ===+, 所以 2a =.所以 椭圆M 的方程为22 1.4x y += ………………3分(Ⅱ)方法一: 依题意得0k ≠.因为 椭圆M 上存在点,B C 关于直线1y kx =-对称,所以 直线BC 与直线1y kx =-垂直,且线段BC 的中点在直线1y kx =-上. 设直线BC 的方程为11221,(,),(,)y x t B x y C x y k=-+. 由221,44y x t k x y ⎧=-+⎪⎨⎪+=⎩得 22222(4)8440k x ktx k t k +-+-=. ………………5分由2222222222644(4)(44)16(4)0k t k k t k k k t k ∆=-+-=-+>, 得22240k t k --<.(*) 因为 12284ktx x k +=+, ………………7分 所以 BC 的中点坐标为2224(,)44kt k tk k ++.又线段BC 的中点在直线1y kx =-上,所以 2224144k t ktk k k =-++.所以 22314k t k =+. ………………9分代入(*),得2k <-或2k >. 所以{|}22S k k k =<->,或. ………………11分 因为 22143k t k =+,所以 对于k S ∀∈,线段BC 中点的纵坐标恒为13,即线段BC 的中点总在直线13y =上. ………………13分方法二:因为 点(0,1)A -在直线1y kx =-上,且,B C 关于直线1y kx =-对称, 所以 AB AC =,且0k ≠.设1122(,),(,)B x y C x y (12y y ≠),BC 的中点为000(,)(0)x y x ≠.则22221122(1)(1)x y x y ++=++. ………………6分又,B C 在椭圆M 上,所以 2222112244,44x y x y =-=-.所以 2222112244(1)44(1)y y y y -++=-++. 化简,得 2212123()2()y y y y -=-.所以 120123y y y +==. ………………9分 又因为 BC 的中点在直线1y kx =-上, 所以 001y kx =-. 所以 043x k=. 由221,413x y y ⎧+=⎪⎪⎨⎪=⎪⎩可得3x =±所以403k <<,或403k <<,即k <,或k >. 所以{|}22S k k k =<->,或. ………………12分 所以 对于k S ∀∈,线段BC 中点的纵坐标恒为13,即线段BC 的中点总在直线13y =上. ………………13分19.(本小题共14分)(Ⅰ)由题意知, 2b =…………………1分由2e =a = …………………3分 椭圆方程为22148x y +=. …………………4分 (Ⅱ)若存在满足条件的点N ,坐标为(t ,0),其中t 为常数. 由题意直线PQ 的斜率不为0,直线PQ 的方程可设为:1x my =+,()m R ∈ …………………5分 设1122(,),(,)P x y Q x y ,联立221,148x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:22(12)460m y my ++-=, …………………7分221624(12)0m m ∆=++>恒成立,所以12122246,1212m y +y =y y =m m --++ ……8分 由PNM QNM ∠=∠知:+0PN QN k k = …………………9分1212,PN QN y yk k x t x t==--, 即12120y y x t x t +=--,即121211y y my t my t=-+-+-, …………………10分 展开整理得12122(1)()0my y t y y +-+=,即222(6)4(1)0,1212m m t m m ---+=++ …………………12分即(4)0m t -=,又m 不恒为0,=4t ∴.故满足条件的点N 存在,坐标为(40),……14分(Ⅰ)解:设22b a c -=,由题意,得21=a c , 所以 2a c =,b =. …………………2分则椭圆方程为 2222143x y c c+=, 又点)23,1(P 在椭圆上, 所以2213144c c+=,解得21c =, 故椭圆方程为 22143x y +=. ………………… 5分 (Ⅱ)解:由题意,直线l 的斜率存在,右焦点(1,0)F , ………………… 6分 设直线l 的方程为(1)y k x =-,与椭圆的交点A (x 1,y 1),B (x 2,y 2), …… 7分由 22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得 2222(34)84120k x k x k +-+-=. ………………… 8分由题意,可知0>∆,则有 2221438kk x x +=+,212241234k x x k -=+, …… 9分 所以直线PA 的斜率11321PAy k x -=-,直线PB 的斜率22321PB y k x -=-, …… 10分 所以PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯--最新整理. 12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++ 2121212121239[()1](2)24()1k x x x x k x x k x x x x -++-+-+=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++ 233()44k k k k =--⨯=--. ………………… 12分 即 22339()4864t k k k =--=-++, 所以当38k =-时,ABP ∆三条边所在直线的斜率的乘积t 有最大值964. …14分。

北京市西城区2015届高三二模数学(理)试题 含解析

北京市西城区2015届高三二模数学(理)试题 含解析

汽车租赁中的车辆保险费用分摊范本近年来,汽车租赁行业的发展迅速,租车已成为一种常见的出行方式。

然而,在租车过程中,车辆保险费用分摊问题一直备受争议。

为了明确车辆保险费用的分摊范本,保障租车双方的权益,本文将对汽车租赁中的车辆保险费用分摊进行探讨。

一、保险费用的定义及计算方式在汽车租赁中,保险费用指的是为了保障车辆投保人和驾驶人的车辆安全而支付的费用。

计算保险费用时,通常会考虑车辆的价值、车型、驾驶人的驾龄和行驶记录等因素。

二、车辆保险费用的责任划分1.基本强制保险根据我国法律规定,每一辆机动车都必须购买基本强制保险,即交强险。

交强险保障的是在道路交通事故中由被保险人负责的人身伤亡、财产损失责任,费用由所有机动车车主共同分摊。

2.商业保险除了基本强制保险外,车辆租赁公司还可以按照客户的需求为租车提供商业保险,例如车损险、第三者责任险等。

商业保险的费用由租车双方通过协商决定,并在租车合同中明确注明。

三、车辆保险费用分摊的原则1.保险费用由使用方承担汽车租赁中,保险费用应由租车使用方承担。

使用方在租车之前应明确了解并同意支付相应的保险费用。

2.按照使用时间分摊车辆保险费用的分摊应根据租车的使用时间进行合理划分。

通常情况下,按照天数进行分摊是一种常见的方式。

四、车辆保险费用的分摊例子假设小明在租赁一辆汽车,租期为7天,每日租金为100元,保险费用为50元/天。

则车辆保险费用的分摊可以按照以下方式计算:保险费用总额 = 每日保险费用 ×租期天数保险费用总额 = 50元/天 × 7天 = 350元小明需要支付的保险费用 = 每日租金 ×租期天数 ×保险费用占租金比例小明需要支付的保险费用 = 100元 × 7天 × 50% = 350元五、车辆保险费用的支付方式车辆保险费用的支付方式可以根据租车双方的协商而定。

一种常见的做法是,在租车时支付全部保险费用,然后在还车时根据实际使用天数进行退还或调整。

北京市二模试卷立体几何汇编

北京市二模试卷立体几何汇编

答案 (16)(本小题 14 分) 解:
(Ⅰ)∵平面 ABC 平面 BCC1B1 ,平面 ABC 平面 BCC1B1 BC 又 AB BC , ∴ AB 平面 BCC1B1 ,
(有前面的∵,∴才得分)
∵ A1B1 // AB ,
∴ A1B1 平面 BCC1B1 ,
∵ BC1 平面 BCC1B1 ,
…………….6 分
因为 BC // 平面 PAD , BC 平面 ABCD ,平面 PAD I 平面 ABCD=AD ,
所以 BC // AD . 所以四边形 ABCD 是直角梯形.
…………….7 分
过 A 作 AD 的垂线交 BC 于点 M . 因为 PA 平面 ABCD ,
所以 PA AM , PA AD .
4 6
BC n 2 2 3 3
【丰台二模】 16.(本小题共 14 分)
如图,四边形 ABCD 为正方形, MA‖ PB , MA BC , AB PB , MA 1 , AB PB 2 . (Ⅰ)求证: PB 平面 ABCD ; (Ⅱ)求直线 PC 与平面 PDM 所成角的正弦值.
答案 16.(本小题共 14 分)
如 图 , 在 五 面 体 ABCDEF 中 , 面 ABCD 是 正 方 形 , AD ^ DE , AD = 4 ,
DE =
EF =
2 ,且 Ð EDC =
π .
3
(Ⅰ)求证: AD ^ 平面 CDEF ;
(Ⅱ)求直线 BD 与平面 ADE 所成角的正弦值;
(Ⅲ)设 M 是 CF 的中点,棱 AB 上是否存在点 G ,
解 2;选择②
因为 PA 平面 ABCD , 所以 PA AD , PA CD .

2010-2015北京一模大题立体几何题总结(文科)-刘倩5.13

2010-2015北京一模大题立体几何题总结(文科)-刘倩5.13

2010——2015年北京市东西海三区高三一模文科数学解答题立体几何汇总1.(2010东城一模文17)(本小题满分14分)三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边中点,且CC1=2AB.(1)求证:平面C1CD⊥平面ABC;(2)求证:AC1∥平面CDB1;(3)求三棱锥D—CBB1的体积.2.(2010西城一模文16)(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=AD=2,(1)求证:MN∥平面PCD;(2)求证:平面PAC⊥平面PBD;(3)求三棱锥P-ABC的体积。

C3. (2010海淀一模文17)(本小题满分14分)如图:在四棱锥P ABCD -中,底面ABCD 是菱形,60,ABC PA ∠=︒⊥平面ABCD , 点,M N 分别为,BC PA 的中点,且2==AB PA . (I) 证明:BC ⊥平面AMN ; (II)求三棱锥AMC N -的体积;(III)在线段PD 上是否存在一点E ,使得//NM 平面ACE ;若存在,求出PE 的长;若不存在,说明理由.4.(2011东城一模文16)(本小题共13分)已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点. (Ⅰ)求证:PC ∥平面BDE ; (Ⅱ)求证:平面PAC ⊥平面BDE .MC D5. (2011西城一模文16)(本小题满分13分)如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=,DE AF //,22===AF DA DE .(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求证://AC 平面BEF ; (Ⅲ)求四面体BDEF 的体积.6. (2011海淀一模文17)(本小题共13分)如图:梯形A B C D 和正△PAB 所在平面互相垂直,其中//,AB DC12AD CD AB ==,且O 为AB 中点. ( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .A CDFEBACDOP7.(2012东城一模文17)(本小题共14分)如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使平面1A EF ⊥平面EFB ,连结1A B ,1A P .(如图2)(Ⅰ)若Q 为1A B 中点,求证:PQ ∥平面1A EF ; (Ⅱ)求证:1A E ⊥EP .图1 图28.(2012西城一模文17)(本小题满分14分)如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF .(Ⅰ)求证:NC ∥平面MFD ; (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体NFEC体积的最大值.A BCDEF9.(2012海淀一模文17)(本小题满分14分)已知菱形ABCD 中,AB =4, 60BAD ∠=(如图1所示),将菱形ABCD 沿对角线BD 翻折,使点C 翻折到点1C 的位置(如图2所示),点E ,F ,M 分别是AB ,DC 1,BC 1的中点. (Ⅰ)证明:BD //平面EMF ; (Ⅱ)证明:1AC BD ⊥;(Ⅲ)当EF AB ⊥时,求线段AC 1 的长.10.(2013东城一模文16)(本小题共14分)如图,已知AD ⊥平面ABC ,CE ⊥平面ABC ,F 为BC 的中点,若12AB AC AD CE ===.(Ⅰ)求证://AF 平面BDE ;(Ⅱ)求证:平面BDE ⊥平面BCE .ABCD图1M FEABC 1D 图2A BCDE F11.(2013西城一模文16)(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC =22AB BC ==,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ; (Ⅱ)求四面体FBCD 的体积;(Ⅲ)线段AC 上是否存在点M ,使EA //平面FDM ? 证明你的结论.12.(2012海淀一模文17)(本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =. (Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ;(Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.作业:(2014年西城一模文) 17.(本小题满分14分)如图,在四棱锥ABCD S -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(Ⅰ)求证://AB 平面SCD ; (Ⅱ)求证:SN ⊥平面ABCD ;(Ⅲ)在棱SC 上是否存在一点P ,使得平面⊥PBD 平面ABCD ?若存在,求出SPPC的值;若不存在,说明理由.(2014东城一模文)17、(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,M 和N 分别是AD 和BC 的中点.(Ⅰ)求证:PM MN ⊥;(Ⅱ)求证:平面PMN ⊥平面PBC ; (Ⅲ)在PA 上是否存在点Q ,使得平面QMN∥平面PCD ,若存在求出Q 点位置,并证明,若不存在,说明理由.(2015西城一模文)17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 为正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥CD ; (Ⅱ)若点M 在线段AC 上,且13AM MC=,求证:GM //平面ABF ;(Ⅲ)已知空间中有一点O 到,,,,A B C D G 五点的距离相等,请指出点O 的位置. (只需写出结论)(2015海淀一模文)FA DBG E。

2015-2017年北京市高三理科数学模拟题分类汇编 第八章 立体几何

2015-2017年北京市高三理科数学模拟题分类汇编   第八章 立体几何

第八章立体几何8.1 空间几何体的结构及其三视图和直观图一.选择题1.(2014-2015东城一模理7)一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体体积为(A)16(B)6(C(D)122.(2015-2016朝阳一模理7)某三棱锥的三视图如图所示,则该三棱锥的体积是(A)13(B)12(C)1(D)323.(2015-2016东城一模理6)一个集合体的三视图如图所示,那么该几何体的最长棱长为(A )2(B )22(C )3(D )104.(2015-2016海淀一模理4)某三棱锥的三视图如图所示,则其体积为(A )33(B )32(C )233(D )2635.(2015-2016西城二模4)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A )2(B )5 (C )3 (D )222正(主)视图 侧(左)视图俯视图1 16.(2014-2015海淀一模理7)某三棱锥的正视图如图所示,则这个三棱锥的俯视图不可能是(A )(B )(C )(D ) 7.(2013-2014西城二模4)某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则 (A )2A ,且4A (B )2A ,且4A(C )2A ,且25A (D )2A ,且17A8.(2015-2016西城一模理6)一个几何体的三视图如图所示,那么这个几何体的表面积是(A )1623+ (B )1625+ (C )2023+(D )2025+正视图9.(2016-2017东城一模理6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)1 3(B)2 3(C)1(D)4 310.(2016-2017西城一模理6)在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体最长棱的棱长为(A)(B)(C)6(D)11. (2016-2017朝阳一模理7)某四棱锥的三视图如图所示,则该四棱锥的底面的面积是(A )12(B )32(C )14(D )3412. (2016-2017丰台一模理6)某几何体的三视图如图所示,则该几何体的体积为(A )56(B )23(C )12(D )1313. (2016-2017石景山一模理6)某三棱锥的三视图如图所示,则该三棱锥的表面积是A . 25+B .225+C . 45+D .5侧视图0.5俯视图1正视图10.5正(主)视图侧(左)视图俯视图211 114. (2016-2017顺义一模理4)某四棱锥的三视图如图所示,则该四棱锥的侧面积为A.8B. 8410+C. 21013+D.410213+15. (2016-2017通州一模理4)某几何体三视图如图所示,它的体积是A .14B .16C .18D .2016. (2016-2017海淀二模理7)现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是A.①B.①②C.②③D. ①②③1图2图3图17. (2016-2017朝阳二模理6)某三棱锥的三视图如图所示,则该三棱锥最长的棱长为AB.C .3D.18. (2016-2017丰台二模理6)一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为 (A )1 (B(C(D )22侧视图俯视图正视图二.填空题1.(2013-2014朝阳一模11)某三棱锥的三视图如图所示,则这个三棱锥的体积为________;表面积为________.2.(2013-2014海淀二模12)已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为________.3.(2014-2015朝阳二模12)某四棱锥的三视图如图所示,则该四棱锥的侧面积为________.主视图俯视图正视图侧视图俯视图4.(2013-2014朝阳一模14)如图,在四棱锥S ABCD -中,SB ⊥底面ABCD .底面ABCD 为梯形,AB AD ⊥,AB ∥CD ,1,3AB AD ==,2CD =.若点E 是线段AD 上的动点,则满足90SEC ∠=︒的点E 的个数是________.5. (2016-2017西城二模理14)在空间直角坐标系O xyz -中,四面体A BCD -在,,xOy yOz zOx 坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是________.B CDESA8.2直线、平面平行及垂直的证明、空间角与距离一.选择题1. (2016-2017海淀一模理8)某折叠餐桌的使用步骤如图所示.有如下检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等; 项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查1=2=3=4=90∠∠∠∠; 项目⑤:打开后(如图3),检查''''AB A B CD C D ===.下列检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行”的是A. ①②③B. ②③④C. ②④⑤D. ③④⑤OM NKL'O 'N 'K 'L 'M 2图1图A 'A B 'B 1D'D 3图'C C2341.. (2016-2017西城一模理14)正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 的边界及其内部运动.平面区域W 由所有满足1A P P 组成,则W 的面积是________;四面体1P A BC -的体积的最大值是________.1. (2014-2015丰台一模理17)在如图所示的几何体中,四边形ABCD 为正方形,平面,//,AB=PA=4,BE=2.(Ⅰ)求证://平面;(Ⅱ)求PD 与平面PCE 所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得平面平面?如果存在,求的值; 如果不存在,说明理由.PA ⊥ABCD PA BE CE PAD AB F DEF ⊥PCE AFABPEDCBA如图所示,在四棱柱中,底面,于,且,点是棱上一点.(Ⅰ)如果过,,的平面与底面交于直线,求证:;(Ⅱ)当是棱中点时,求证:; (Ⅲ)设二面角的平面角为,当时,求的长.1111D C B A ABCD -⊥1AA ABCD BD AC ⊥O 124AA OC OA ===M 1CC 1A 1B O ABCD l //l AB M 1CC 1AO DM ⊥1A BD M --θcos θ=CM OMD 1C 1B 1A 1DCBA如图,在五面体ABCDEF中,四边形ABCD为菱形,且 BAD=60°,对角线AC与BD相交于O;OF⊥平面ABCD,BC=CE=DE=2EF=2.(Ⅰ)求证:EF//BC;(Ⅱ)求直线DE与平面BCFE所成角的正弦值.如图1,已知四边形BCDE 为直角梯形,∠B=90O,BE ∥CD,且BE=2CD=2BC=2,A 为BE 的中点.将△EDA 沿AD 折到△PDA 位置(如图2),连结PC ,PB 构成一个四棱锥P-ABCD.(Ⅰ)求证AD ⊥PB ; (Ⅱ)若P A ⊥平面ABCD . ①求二面角B-PC-D 的大小;②在棱PC 上存在点M ,满足(01)PM PC λλ=≤≤,使得直线AM 与平面PBC 所成的角为45O ,求λ的值.图2图1如图1,平面五边形ABCDE 中,AB ∥CD ,90BAD ∠=︒,=2AB ,=1CD ,△ADE 是边长为2的正三角形.现将△ADE 沿AD 折起,得到四棱锥E ABCD -(如图2),且DE AB ⊥.(Ⅰ)求证:平面ADE ⊥平面ABCD ;(Ⅱ)求平面BCE 和平面ADE 所成锐二面角的大小;(Ⅲ)在棱AE 上是否存在点F ,使得DF ∥平面BCE ?若存在,求EFEA的值;若不存在,请说明理由.如图所示的几何体中,四边形ABCD 为等腰梯形,AB ∥CD ,22AB AD ==,60DAB ∠=︒60︒,四边形CDEF 为正方形,平面CDEF ⊥平面ABCD . (Ⅰ)若点G 是棱AB 的中点,求证:EG ∥平面BDF ; (Ⅱ)求直线AE 与平面BDF 所成角的正弦值;(Ⅲ)在线段FC 上是否存在点H ,使平面BDF ⊥平面HAD ?若存在,求FHHC的值;若不存在,说明理由.GADEFBC如图,由直三棱柱111-ABC A B C 和四棱锥11-D BB C C 构成的几何体中,∠BAC=90°,1=AB ,12==BC BB ,15==C D CD ,平面1⊥CC D 平面11ACC A .(Ⅰ)求证:1⊥AC DC ;(Ⅰ)若M 为1DC 中点,求证://AM 平面1DBB ;(Ⅰ)在线段BC 上(含端点)是否存在点P ,使直线DP 与平面1DBB 所成的角为π3?若存在,求BPBC的值,若不存在,说明理由.M如图,三棱锥P ABC -,侧棱2PA =,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD DB ⊥,且1DB =.(Ⅰ)求证://AC 平面PDB ; (Ⅱ)求二面角P AB C --的余弦值;(Ⅲ)线段PC 上是否存在点E 使得PC ⊥平面ABE ,如果存在,求CECP的值;如果不存在,请说明理由.A CDBP如图,在正四棱锥-P ABCD 中,=PA AB ,E ,F 分别为PB ,PD 的中点. (Ⅰ)求证:AC ⊥平面PBD ;(Ⅱ)求异面直线PC 与AE 所成角的余弦值; (Ⅲ)若平面AEF 与棱PC 交于点M ,求PMPC的值.如图,在几何体ABCDEF 中,底面ABCD 为矩形,//EF CD ,AD FC ⊥.点M 在棱FC 上,平面ADM 与棱FB 交于点N .(Ⅰ)求证://AD MN ;(Ⅱ)求证:平面ADMN ⊥平面CDEF ;(Ⅲ)若CD EA ⊥,EF ED =,2CD EF =,平面ADE平面BCF l =,求二面角A lB --的大小.如图,在三棱锥P ABC中,平面PAB平面ABC,AP BP ,AC BC,60PAB,45ABC,D是AB中点,E,F分别为PD,PC的中点.(Ⅰ)求证:AE⊥平面PCD;(Ⅱ)求二面角B PA C--的余弦值;(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求PMPB的值;若不存在,说明理由.如图,在几何体中,平面ADE平面ABCD,四边形为菱形,且,2EA ED AB EF,∥,M为BC中点.(Ⅰ)求证:FM∥平面BDE;(Ⅱ)求直线CF与平面BDE所成角的正弦值;(Ⅲ)在棱CF上是否存在点G,使BG DE?若存在,求CGCF的值;若不存在,说明理由.ABCDEF ABCD60DAB∠=EF ABCE如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,E 为AD 的中点,PA AD ⊥,BECD ,BE AD ⊥, 2,1PA AE BE CD ====.(Ⅰ)求证:平面PAD ⊥平面PCD ; (Ⅱ)求二面角--C PB E 的余弦值;(Ⅲ)在线段PE 上是否存在点M ,使得 DM平面PBC ?若存在,求出点M 的位置;若不存在,说明理由.如图1,在Rt △ABC 中,90C ∠=︒,4,2AC BC ==,D E ,分别为边,AC AB 的中点,点,F G 分别为线段,CD BE 的中点.将△ADE 沿DE 折起到△1A DE 的位置,使160A DC ∠=︒.点Q 为线段1A B 上的一点,如图2.(Ⅰ)求证:1A F BE ⊥;(Ⅱ)线段1A B 上是否存在点Q ,使得FQ平面1A DE ?若存在,求出1A Q 的长,若不存在,请说明理由;(Ⅲ)当1134AQ A B =时,求直线GQ 与平面1A DE 所成角的大小.图1图2BA 1F C ED QGABCDEFG15.(2014-2015朝阳一模理17)(本小题满分14分)如图,正方形ADEF 与梯形ABCD 所在平面互相垂直, 已知//,AB CD AD CD ⊥,12AB AD CD ==.(Ⅰ)求证:BF //平面CDE ;(Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值;(Ⅲ) 线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF ? 若存在,求出EMEC的值;若不存在,说明理由.ABFED C16.(2014-2015东城一模理17)(本小题共14分)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,2AB PA BC ===.,D E 分别为,AB AC 的中点,过DE 的平面与,PB PC 相交于点,M N (M 与,P B 不重合,N 与,P C 不重合).(Ⅰ)求证:MN ∥BC ;(Ⅱ)求直线AC 与平面PBC 所成角的大小;(Ⅲ)若直线EM 与直线AP所成角的余弦值14时,求MC 的长.AC如图1,在直角梯形ABCD 中,ADBC ,AD DC ⊥,22BC AD DC ==,四边形ABEF 是正方形. 将正方形ABEF 沿AB 折起到四边形11ABE F 的位置,使平面11ABE F ⊥平面ABCD ,M 为1AF 的中点,如图2.(Ⅰ)求证:1BE DC ⊥;(Ⅱ)求BM 与平面1CE M 所成角的正弦值; (Ⅲ)判断直线DM 与1CE 的位置关系,并说明理由.图1图2A B C DE 1F 1MFEDCBA如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,//EF AD ,平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE9AG 的长;(Ⅲ)判断线段AC 上是否存在一点M ,使MG //平面ABF ?若存在,求出AM MC的值;若不存在,说明理由.FCADBG E19.(2015-2016朝阳一模理17)(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点. (Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值; (Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.AMPCBA 1C 1B 1已知三棱柱111ABC A B C -中,1A A ⊥底面ABC ,90BAC ∠=,11A A =,AB =2AC =,E ,F 分别为棱1C C ,BC 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年北京高三模拟试题汇编--立体几何(8)(15年海淀一模文)某三棱锥的正视图如图所示,则在下列图①②③④中,所有可能成为这个三棱锥的俯视图的是( )①②③④ (A )①②③(B )①②④(C )②③④(D )①②③④7.(15年西城一模文)一个几何体的三视图如图所示,则该几何体的体积的是() (A )7 (B )152(C )233(D )476正视图侧(左)视图正(主)视图俯视图(8)(15年朝阳一模文)已知边长为3的正方形ABCD 与正方形CDEF 所在的平面互相垂直,M 为线段CD 上的动点(不含端点),过M 作//MH DE 交CE 于H ,作//MG AD 交BD 于G ,连结GH .设CM x =(03)x <<,则下面四个图象中大致描绘了三棱锥C GHM -的体积y 与变量x 变化关系的是(12)一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是,四棱锥侧面中最大侧面的面积是.7.(15年石景山一模文)如图,网格纸上小正方形的边长为1,粗实线 画出的是某多面体的三视图,则该多面体的各条棱中, 最长的棱的长度为()A. BC .3D.ABC D第(12)题图1 正视图 侧视图俯视图8.(15年石景山一模文)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1, 点M 在棱AB 上,且AM 13=,点P 是平面 ABCD 上的动点,且动点P 到直线A 1D 1的距离 与点P 到点M 的距离的平方差为1,则动点P 的轨迹是()A .圆B .抛物线C .双曲线D .椭圆5.某几何体的三视图如图所示,则该几何体的体积为(A) 48 (B) 32(C) 16(D)3238.(15年丰台一模文)在正方体1111ABCD A B C D -中,P 为底面ABCD 上一动点,如果P 到点1A 的距离等于P 到直线1CC 的距离,那么点P 的轨迹所在的曲线是 (A) 直线(B)圆(C) 抛物线(D) 椭圆3.(15年房山一模文)一个空间几何体的三视图如图所示,则这个几何体的体积为() A .B .C .4D .87.(15年延庆一模文)一个几何体的三视图如图所示,那么这个几何体的 体积为()A. 96 B .120 C .144 D .180 4383俯视图MDABC B 1A 1D 1 C 1P . . 主视图侧视图14. (15年延庆一模文)ABCD 是矩形,4AB =,3AD =,沿AC 将ADC ∆折起到AD C '∆,使平面AD C '⊥平面ABC ∆,F 是AD '的中点,E 是线段AC 上的一点,给出下列结论:① 存在点E ,使得//EF 平面BCD ' ② 存在点E ,使得EF ⊥平面ABD ' ③ 存在点E ,使得D E '⊥平面ABC ④ 存在点E ,使得AC ⊥平面BD E '其中正确结论的序号是.(写出所有正确结论的序号)(18)(15年海淀一模文)如图1,在梯形ABCD 中,AD BC ,AD DC ⊥,2BC AD =,四边形ABEF 是矩形. 将矩形ABEF 沿AB 折起到四边形11ABE F 的位置,使平面11ABE F ⊥平面ABCD ,M 为1AF 的中点,如图2.(Ⅰ)求证:1BE DC ⊥; (Ⅱ)求证:DM //平面1BCE ;(Ⅲ)判断直线CD 与1ME 的位置关系,并说明理由.17.(15年西城一模文)如图,在五面体ABCDEF 中,四边形ABCD 为正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥CD ; (Ⅱ)若点M 在线段AC 上,且13AM MC=,求证:GM //平面ABF ;(Ⅲ)已知空间中有一点O 到,,,,A B C D G 五点的距离相等,请指出点O 的位置. (只需写出结论)图2ABC DE 1F 1MEFCA DBG E如图甲,⊙O 的直径2AB =,圆上两点,C D 在直径AB 的两侧,且CBA ∠3DAB π=∠=.沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图乙).F 为BC 的中点,E 为AO 的中点.(Ⅰ)求证 :CB DE ⊥; (Ⅱ)求三棱锥C BOD -的体积;(Ⅲ)在劣弧 BD上是否存在一点G ,使得FG ∥平面ACD ?若存在,试确定点G 的位置; 若不存在,请说明理由.(17)(15年朝阳一模文)(本小题满分14分)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点.(Ⅰ)求证:BD ⊥平面11A ACC ; (Ⅱ)求证:直线1AB ∥平面D BC 1; (Ⅲ)设M 为线段1BC 上任意一点,在DD BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由. 图乙ABCDA 1B 1C 1如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB 90= ,AB //CD ,AD =AF =CD =2,AB =4.(Ⅰ)求证:AC ⊥平面BCE ; (Ⅱ)求三棱锥A -CDE 的体积;(Ⅲ)线段EF 上是否存在一点M ,使得BM ⊥CE ? 若存在,确定M 点的位置;若不存在,请说明理由.18.(15年丰台一模文)(本小题共14分)如图,在三棱柱111C B A ABC -中,侧棱1AA ⊥底面ABC ,M 为棱AC 中点.AB BC =,2AC =,1AA =.(Ⅰ)求证:1B C //平面1A BM ; (Ⅱ)求证:1AC ⊥平面1A BM ;(Ⅲ)在棱1BB 的上是否存在点N ,使得平面1AC N ⊥平面C C AA 11?如果存在,求此时1BNBB 的值;如果不存在,说明理由. A C DEFBADE18.(15年房山一模文)(本小题共14分)如图,四棱锥中,侧面⊥底面,底面∥,2AB BC AD ==,90DAB ︒∠=,△是正三角形,(Ⅰ)求证:∥平面; (Ⅱ)求证:⊥平面EBC .17.(15年顺义一模文)(本小题满分14分)如图(1),在Rt ABC ∆中,90,3,6,,C BC AC D E ∠=== 分别是,AC AB 上的点,且//,2DE BC DE =.将ADE ∆沿DE 折起到A DE '∆的位置,使A C CD '⊥,如图(2). (I)求证://DE 平面A BC '; (II)求证:A C BE '⊥;(III)线段A D '上是否存在点F ,使平面CFE A DE '⊥平面.若存在,求出DF 的长;若不存在,请说明理由. E ABCD -EAB ABCD ABCD AD BC EAB F DF EAB DF (2)(1)CD17. (15年延庆一模文)(本小题满分14分)如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)若,求证:; (Ⅲ)求四面体体积的最大值.15年北京高三二模文试题汇编5. (15年西城二模文)一个几何体的三视图中,正(主)视图和 侧(左)视图如图所示,则俯视图不可能为( )(A ) (B ) (C ) (D ) 8. (15年西城二模文)在长方体1111ABCD A B C D -中,11AB BC AA ===,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则1B P PQ +的最小值为( )ABCD 3AB =4=BC E F BC AD EF AB ABEF EF MNEF ⊥MNEF ECDF NC MFD 3EC =FC ND ⊥NFEC (B ) (A (B (C ) (C )32 (D )2图1图2(6)(15年东城二模文)若一个底面是正三角形的三棱柱的正(主)视图如图所示,则其侧面积等于 (A )3 (B )4 (C )5(D )6(8)(15年东城二模文)已知正方体1111ABCD A B C D -的棱长为1,E ,F 分别是边1AA ,1CC 的中点,点M是1BB 上的动点,过点E ,M ,F 的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =,则y 关于x 的函数()y f x =的解析式为(A )23()222f x x x =-+,[0,1]x ∈ (B )31,[0,),22()11,[,1].22x x f x x x ⎧-∈⎪⎪=⎨⎪+∈⎪⎩(C )22312,[0,],22()312(1),(,1].22x x f x x x ⎧-+∈⎪⎪=⎨⎪--+∈⎪⎩(D )23()222f x x x =-++,[0,1]x ∈ 11.(15年朝阳二模文)一个四棱锥的三视图如图所示,则这个四棱锥的体积为;表面积为.正(主)视图DC B AP俯视图正视图侧视图侧(左)视图俯视图正视图4. 如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图面积为(A)2 (B) 3(C)23(D)235. 若某几何体的三视图如图所示,则此几何体的直观图是()8.已知四面体A BCD满足下列条件:(1)有一个面是边长为1的等边三角形;(2)有两个面是等腰直角三角形.那么符合上述条件的所有四面体的体积的不同值有()A.1个B.2个C.3个D.4个俯视图正视图A B D(17)(15年海淀二模文)(本小题满分13分)如图所示,在四棱锥P ABCD -中,PD ⊥平面A B C D ,又//AD BC ,AD DC ⊥,且33PD BC AD ===.(Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ;(Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,并求PEEB的值.17.(15年西城二模文)(本小题满分14分)如图,在四棱锥E ABCD -中,AE D E ⊥,CD ⊥平面ADE ,AB ⊥平面ADE ,6CD DA ==,2AB =,3DE =.(Ⅰ)求棱锥C A D E -的体积; (Ⅱ)求证:平面ACE ⊥平面CDE ;(Ⅲ)在线段DE 上是否存在一点F ,使//AF 平面BCE ? 若存在,求出EF ED的值;若不存在,说明理由.DCBAP(17)(15年东城二模文)(本小题共13分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,E 为AD 上一点,四边形BCDE 为矩形,60PAD ∠=,PB =22PA ED AE ===.(Ⅰ)若()PF PC λλ=∈R,且PA ∥平面BEF ,求λ的值;(Ⅱ)求证:CB ⊥平面PEB .18.(15年朝阳二模文)(本小题满分14分)如图,在矩形ABCD 中,2AB AD =,M 为CD 的中点.将ADM ∆沿AM 折起,使得平面ADM ⊥平面ABCM .点O 是线段AM 的中点. (Ⅰ)求证:平面DOB ⊥平面ABCM ; (Ⅱ)求证:AD BM ⊥;(Ⅲ)过D 点是否存在一条直线l ,同时满足以下两个条件:①l Ì平面BCD ;②//l AM .请说明理由.ABCMDOABCMD18.(15年丰台二模文)(本小题共14分)如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥,AD BC AB 21==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于N (M 与D 不重合).(Ⅰ)求证:BC MN //;(Ⅱ)求证:CD PC ⊥; (Ⅲ)如果BM AC ⊥,求此时PMPD的值.18.(15年昌平二模文)(本小题满分14分)在如图所示的几何体中,ACDE BC A ⊥平面平面,//CD AE ,F 是BE 的中点,90ACB ∠=,22AE CD ==,1,AC BC BE ===(I )求证://DF ABC 平面; (II )求证:DF ABE ⊥平面;(III )求三棱锥E D BC -的体积.CNMPDBAFEDC BA。

相关文档
最新文档