2016-2017年四川省成都市温江区初三上学期期末数学试卷及参考答案

合集下载

2016-2017学年第一学期期末考试九年级数学答案

2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。

2016-2017学年第一学期期末检测九年级数学试题及参考答案与评分标准(新人教版21-27章)

2016-2017学年第一学期期末检测九年级数学试题及参考答案与评分标准(新人教版21-27章)

2016—2017学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题;1-6每小题2分,7-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目二、填空题(本大题共4个小题;每小题3分,共12分.请把答案写在题中的横线上)的直径为26,BC=24,则线段OA的长为__________.18.已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长是偶数的概率是________.足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y轴,…,记点A n的横坐标为a n(n为正整数).若a1=-1,则a2015=________.三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本题满分10分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q值,两次结果记为(p,q).(1)请你帮他们用树状图或列表表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.22.(本题满分10分)如图,点O、B的坐标分别为(0,0),(3,0),将△OAB绕点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为________;(3)求在旋转过程中,点B所经过的路线 BB 的长度.23.(本题满分10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.(本题满分11分)25.(本题满分11分)某超市销售一种进价为每件20元的计算器,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)该超市每月销售这种计算器获得利润为W(元),求W与x之间的函数关系式;(2)如果超市想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种计算器的销售单价不得高于32元,那么销售单价定多少元时,每月可获得最大利润?并求出最大利润.26.(本题满分14分)把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“不倒翁圆”.如果一条直线与“不倒翁圆”只有一个交点,那么这条直线叫做“不倒翁圆”的切线.如图,A,B,C,D分别是“不倒翁圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“不倒翁圆”抛物线部分的解析式________,自变量的取值范围是________;(2)请你求出过点C的“不倒翁圆”切线与x轴的交点坐标;(3)求经过点D的“不倒翁圆”切线的解析式.九(上)数学参考答案说明:1、在阅卷中,如果考生还有其它正确解法,请参考评分标准酌情给分;2、填空题缺少必有的单位或答案不完整不得分;3、解答右端所注分数,表示正确做到这一步应得的累积分数.一、(1-6每小题2分,7-16每小题3分)。

2016-2017九年级数学期末试卷

2016-2017九年级数学期末试卷

2016-2017学年度第一学期九年级数学月考试卷(四)一、精心选一选(本大题共10小题,每小题3分,共30分。

每小题给出四个答案,其中只有一个是正确的)1.已知三角形两边的长分别是2和3,第三边的长是方程x2﹣8x+12=0的根,则这个三角形的周长为()A.7 B.11 C.7或11 D.8或92. 如右图,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是()A.1:1 B.1:2 C.1:3 D.1:43. 设x1,x2是方程x2﹣x﹣1=0=0的两根,则x1+x2=()A.﹣3 B.﹣1 C.1D.34. 小张外出旅游时带了两件上衣(一件蓝色,一件黄色)和3条长裤(一件蓝色,一件黄色,一件绿色),他任意拿出一件上衣和一条长裤,正好是同色上衣和长裤的概率是()A.B.C.D.5.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.菱形6、如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.7.若点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例y=函数的图象上,则()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y28.在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于()A.B.C.D.9.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8)B.(1,8)C.(﹣1,2)D.(1,﹣4)10. 抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.二、细心填一填(本大题共5小题,每小题3分,共15分)。

11、已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是______.12. 化简=.13.要使一个菱形ABCD成为正方形,则需增加的条件是.(填一个正确的条件即可)14. 如图,点P是反比例函数y=﹣图象上的一点,PD垂直于x轴于点D,则△POD的面积为_______.15、如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为_________.三、用心做一做(本大题共3小题,每小题7分,共21分)16.(1)解方程:3x2﹣4x﹣4=0;(2)计算:.17.△ABC为等边三角形,双向延长BC到D、E,使得∠DAE=120°,求证:BC2=BD·CE.18. 已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)19.张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出上个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平?20.已知关于x的方程x2+ax+a-2=0。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

四川省成都市温江区2016-2017学年九年级上学期期末数学试卷及参考答案

四川省成都市温江区2016-2017学年九年级上学期期末数学试卷及参考答案

四川省成都市温江区2016-2017学年九年级上学期期末数学试卷一、选择题1. 方程x =3x 的解为( )A . 0B . ﹣3 C . 0,3 D . 32. 下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是( ) A . B . C . D .3. 做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A . 0.22B . 0.42C . 0.50D . 0.584.如图,以点O 为位似中心,将△ABC 缩小后得△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为( )A . 1:3 B . 3:1 C . 9:1 D . 1:95. 一个公共房门前的台阶高出地面2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是18° B . 斜坡AB 的坡度是tan18°C . AC=2tan18°米D . AB= 米6. 设抛物线C :y=x 向右平移2个单位长度,再向下平移3个单位长度得到抛物线C , 则抛物线C 对应的函数解析式是( )A . y=(x ﹣2)﹣3B . y=(x+2)﹣3C . y=(x ﹣2)+3D . y=(x+2)+37. 如图,l ∥l ∥l , 直线a ,b 与l , l ,l 分别相交于A ,B ,C 和点D ,E ,F,若 = ,DE=6,则EF 的长是().A . B . C . 10 D . 68. 如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是( )212222222123123A . CE=DEB . AE=OEC . =D . △OCE ≌△ODE9. 二次函数y=2x ﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A . 抛物线开口向下B . 抛物线经过点(2,3)C . 抛物线的对称轴是直线x=1D . 抛物线与x 轴有两个交点10. 如图,点A 和点B 都在反比例函数y= 的图象上,且线段AB 过原点,过点A 作x 轴的垂线段,垂足为C ,P 是线段O B上的动点,连接CP .设△ACP 的面积为S ,则下列说法正确的是( )A . S >3B . S >6C . 3≤S≤6D . 3<S≤6二、填空题11. 小新的身高是1m ,他的影子长为2m ,同一时刻水塔的影长是32m ,则水塔的高度是________ m .12. 如图,已知∠A=∠D,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是________.(只需写一个条件,不添加辅助线和字母)13. 小颖在二次函数y=2x +4x+5的图象上,依横坐标找到三点(﹣1,y ),(2,y ),(﹣3,y ),则你认为y , y , y 的大小关系应为________.14. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为________ m (结果保留根号).15. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD=28°,则∠ABD=________°.三、解答题16. 综合题。

16-17第一学期期末测试9年级数学答案

16-17第一学期期末测试9年级数学答案

2016~2017学年度第一学期期末学业水平调研测试九年级数学答案及评分标准一、选择题1、方程032=-x 的根是( )A 、3=xB 、31=x ,32-=x C 、3=x D 、3=x ,3-=x2、下面图形中,既是轴对称图形,又是中心对称图形的是( )A 、等腰三角形B 、等边三角形C 、平行四边形D 、正方形 3、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A 、012=+xB 、0122=+-x xC 、0122=-+x xD 、022=++x x 4、抛物线12+=x y 的对称轴是( )A 、x 轴B 、y 轴C 、直线1=xD 、直线1-=x5、如图, AB 是⊙O 的弦,AB OC ⊥,若⊙O 的半径为5,3=OC ,则弦AB 的长为( ) A 、8 B 、6 C 、5 D 、46、如图,⊙O 是ABC ∆的外接圆,︒=∠60BAC ,则BOC ∠的度数是( ) A 、︒30 B 、︒50 C 、︒60 D 、︒1207、袋子中装有4个除颜色外完全相同的小球,其中黄球3个,红球1个,则“从中任意模出2个球,它们的颜色相同”这一事件是( )A 、必然事件B 、不可能事件C 、随机事件D 、确定事件8、一枚质地均匀的骰子六个面上分别刻有1到6的点数,投掷一次,出现点数为3的概率是( )A 、21 B 、31 C 、41 D 、619、三角形的面积一定,则它的底边a 上的高h 与底边a 之间的函数关系的图象大致是( )第5题图第6题图10、根据如图所示的二次函数c bx ax y ++=2(0≠a )图象,下列判断正确的是( ) A 、0<a B 、函数y 有最大值C 、0<cD 、函数y 随着x 的增大而增大一、选择题: D D C B A D C D D C二、填空题:11、11-=x ,22=x ; 12(-3,2); 13、6; 14、2)1(2+-=x y 15、︒40; 16、︒120二、填空题11、方程0)2)(1(=-+x x 的根是 .12、点P (3,-2)关于原点对称的点的坐标是 .13、若正多边形的一个内角是︒120,则这个正多边形的边数为 .14、将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位,所得图象的函数关系式是 .15、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 与⊙O 相切于点C ,︒=∠25A ,则D ∠的度数是 .16、如图,圆锥的底面半径OB 的长为5cm ,母线长为15cm ,则这个圆锥侧面展开图的圆心角α的度数是 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、解一元二次方程:0742=-+x x . 解:742=+x x , 1分47442+=++x x , 2分 11)2(2=+x , 3分第15题图第16题图112±=+x , 4分 1121+-=x ,1122--=x . 6分18、已知反比例函数xmy -=5,当2=x 时,3=y . (1)求m 的值,并指出当0>x 时,y 随着x 的增大而增大还是减小? (2)求当3-=x 时的函数值. 解:(1)∵当2=x 时,3=y ,∴253m-=,1-=m , 2分 即xy 6=,∴当0>x 时,y 随着x 的增大而减小; 4分(2)当3-=x 时,2366-=-==x y . 6分19、如图,在ABC ∆中,︒=∠90 C ,︒=∠30A ,3=BC .(1)作ABC ∆外接圆O (用尺规作图,保留作图痕迹,不写作法); (2)求(1)中的⊙O 的直径长. 解:(1)图略; 3分(2)∵︒=∠90 C ,∴AB 是圆O 的直径, 4分 又∵︒=∠30A ,3=BC∴322==BC AB . 6分评分说明:(1)共3分,其中作AB 的垂直平分线、作圆各给1分,写出答案给1分;(2)答案正确,但没写出“AB 是圆O 的直径”这一步的扣1分.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、电动自行车已成为人们日常出行的首选工具,据某品牌电动自行车商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车的销售量月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1月至3月共盈利多少元?解:(1)设该品牌电动自行车的销售量月平均增长率为x , 1分 依题意得216)1(1502=+x , 2分B AC2536)1(2=+x , %202.01==x , 2.22-=x (不合题意,舍去) 4分∴该品牌电动自行车的销售量月平均增长率为20%; 5分(2)该经销商1月至3月共销售电动自行车546216)2.01(150150=+++辆, 每辆电动自行车利润为50023002800=-元, 6分 ∴则该经销商1月至3月共盈利273000500546=⨯元. 7分21、在一个不透明的口袋里有标号为1、2、3、4的四个小球,这些小球除数字外没有区别,现将小球搅拌均匀.(1)从袋中同时模出两个球,求两个球标号数字一个是奇数,另一个是偶数的概率. (2)若从袋中模一个球,记录球的号数,再放回搅拌均匀,再模出一个球,记录球的号数,用列表法求先后两次模出球的标号数字之和为偶数的概率;解:(1)从袋中同时模两个球的可能情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,其中小球标号数字一个是奇数,另一个是偶数的情况有(1,2),(1,4),(2,3),(3,4)共4种, 2分故所求的概率为32641==P ; 3分 (2)两次模球的情况列表如下,共16种: 5分两次模出球的标号数字之和为偶数共有8种,故所求的概率为212=P . 7分 22、如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,ABC ∆的三个顶点都在格点上,将ABC ∆绕点A 按逆时针方向旋转︒90,得到//C AB ∆.(1)画出//C AB ∆; (2)求/BB 的长;ACB(3)求AB 在变换到/AB 过程中所扫过的区域面积S . 解:(1)图略; 2分 (2)∵522/=+==BC AC AB AB ,︒=∠90/BAB ,3分∴/ABB ∆是等腰直角三角形, 4分 ∴2555222/2/=+=+=AB AB BB ; 5分(3)所求的图形是圆心角为︒90的扇形, ∴225412ππ==R S . 7分 五、解答题(三)(本大题共3小题,每小题9分,共27分) 23、已知二次函数x x y 2212+-=. (1)用配方法求该函数图象的顶点坐标及对称轴;(2)根据下表给出x 的值,求出对应y 的值填写在表中,然后在给定的直角坐标系中(每格1个单位)描点,画出该函数图象;(3)根据图象指出,x 取什么值时,y 随x 的增大而减小;x 取什么值时,0>y .解:(1)2)2(2122122+--=+-=x x x y ; 2分 抛物线的顶点坐标是(2,2),对称轴是2=x , 3分 (2)图象略;(3)当2>x 时,y 随x 的增大而减小;当40<<x 时,0>y .(评分说明:(1)共3分,配方法占2分,写结论两个正确才给1分;(2)共4分,列表全部正确给2分,若有部分数对错误,扣1分;画图象正确给2分,若图象不正确,不给分;(3)共2分,每个结论1分)24、如图,ABC ∆内接于半圆,AB 是直径,过A 作直线MN ,ABC MAC ∠=∠,点D 是弧AC 的中点,连接BD 交AC 于G ,过D 作AB DE ⊥于E ,交AC 于F .(1)求证:MN 是半圆的切线; (2)求证:FG FD =; (3)求证:FG AF =.证明:(1)∵AB 是直径,∴︒=∠90ACB , ∴︒=∠+∠90ABC BAC , 1分 ∵ABC MAC ∠=∠,∴︒=∠+∠90MAC BAC , 2分 ∴MN BA ⊥, ∴MN 是半圆的切线; 3分(2)∵点D 是弧AC 的中点,∴CBG DBE ∠=∠(等弧所对的圆周角相等), 4分 又∵AB DE ⊥,︒=∠90ACB ,∴DBE FDB ∠-︒=∠90,CBG BGC FGD ∠-︒=∠=∠90, ∴FGD FDG ∠=∠, 5分 ∴FG FD =; 6分 (3)连结AD ,则︒=∠90ADB , ∵AB DE ⊥,∴ABD ADF ∠=∠(同为EDB ∠的余角), 又ABD DAC ∠=∠(等弧所对的圆周角相等), 7分 ∴DAF ADF ∠=∠, 8分 ∴FD AF =,而FG FD =, 9分 ∴FG AF =.25、如图,抛物线c bx ax y ++=2经过点A (-3,0),B (1,0),C (0,-3). (1)求该抛物线的解析式;(2)在抛物线的对称轴上存在一点P ,使得PC PA +的值最小,求此时点P 的坐标; (3)点M 是抛物线上的一个动点,且点M 在第三象限,当点M 运动到何处时,四边形AMCB 的面积最大?最大面积是多少?求出此时点M 的坐标.解:(1)依题意,得⎪⎩⎪⎨⎧-==++=+-30039c c b a c b a , 2分解得1=a ,2=b ,3-=c ,∴322-+=x x y ; 3分(2)抛物线322-+=x x y 的对称轴为1-=x ,连结AC ,与对称轴1-=x 交于点P ,则PC PA +的值最小, 4分 ∵直线AC 的解析式为3--=x y , 5分 令1-=x ,则2-=y ,即点P 的坐标是(-1,-2) 6分 (3)设M (m ,n ),(0<m ,0<n ),322-+=m m n , 连结AM 、MC 、BC ,过点M 作x MN ⊥轴于点N , 则3+=m AN ,m ON -=,3=OC ,1=OB ,)32(2-+-=m m MN , 7分AMN ∆的面积为)935(21)32()3(212321+---=+--⋅+=m m m m m m S ,梯形MNOC 的面积为)62(21)()332(212322m m m m m m S -+=-⋅++--=,OBC ∆的面积为2331212=⨯⨯=S ,四边形AMCB 的面积321S S S S ++=,OBC ∆的面积为2331212=⨯⨯=S , 四边形AMCB 的面积321S S S S ++=, ∴875)23(236292322++-=+--=m m m S , 8分 当23-=m 时,S 最大值为875,此时,4153232232-=-⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=n ,即M (415,23--). 9分 (评分说明:(1)共3分,能列出三个方程中的两个方程都可以给2分,只有写出解析式给满分3分;(2)共3分,其中三个给分点为:说出点P 的位置、求直线AC 解析式、写出点P 的坐标;(3)共3分,其中三个给分点为:能表达出点M 的纵坐标为322-+=m m n 、写出四边形面积S 的解析式、写出点M 的坐标(没能写出给分点的,不管写多少,不管写得是否正确都不给分).另法:连结AM 、MC 、BC ,过点M 作x MN ⊥轴于点N ,交线段AC 于点E . 设M (m ,n ),(0<m ,0<n ), 则322-+=m m n ,E (m ,3--m )所以 ME =(3--m )-( 322-+m m )=m m 32--,ONME AN ME S S S CME AME AMC ⋅+⋅⋅=+∆∆∆2121=, ⋅=⋅⋅=+⋅⋅=2121)(21OA ME ON AN ME (m m 32--)3⋅ 所以 ,四边形AMCB 的面积=ABC AMC S S ∆∆+3421)3(232⨯⨯+--=m m 629232+--=m m因为023<- 所以当232-=-=a b m 时,四边形AMCB 的面积取得最大值为875.此时,4153232232-=-⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=n ,即M (415,23--). 9分。

(完整word版)成都市九年级上学期期末数学试卷(含答案)

(完整word版)成都市九年级上学期期末数学试卷(含答案)

九年级上册期末数学测试卷(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分) 1、3--的倒数是( )A .3B .3-C .31 D .31- 2、已知12-=-b a ,则124+-b a 的值为( )A .1-B .0C .1D .33、如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则其主视图是( )4、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B .22C .32 D .335、某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( ).A . (x -30)(100-2x)=200B .x(100-2x)=200C . (30-x)(100-2x)=200D . (x -30)(2x -100)=200 6、反比例函数ky x=在第二象限的图象如图所示,过函数图象上一点P 作PA ⊥x 轴交x 轴于点A, 已知PAO ∆的面积为3,则k 的值为( ) A .6 B .6- C .3 D .3-7、如图,在一块形状为直角梯形的草坪中,修建了一条由A .B .C .D .正面A →M →N →C 的小路(M 、N 分别是AB 、CD 中点).极少数同学 为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们 仅少走了( )A .7米B .6米C .5米D .4米8、将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是( )A .23(2)1y x =++B .23(2)1y x =-+C . 23(2)1y x =+-D .23(2)1y x =-- 9、已知二次函数c bx ax y ++=2)0(≠a 的图象如图所示, 给出以下结论:①0<abc ;②当1x =时,函数有最大值; ③当13x x =-=或时,函数y 的值都等于0; ④024<++c b a 其中正确结论的个数是( )A .1个B .2个C .3个D .4个10、下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )二、填空题(每空4分,共16分) 11、化简.12、如图,在□ABCD 中,AB =5,AD =8,DE 平分∠ADC , 则B E = .13、若关于x 一元二次方程02)2(2=++-a x a x 的两个实数根分别是3、b ,则=b .14、如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、xxxxy yy y O O O O A .B .C .D .D 在反比例函数xy 6=(x >0)的图象上,则点C 的坐标为 . 三、计算题(15题6分,16题每小题6分,共18分)15、计算:245sin 2201221801-︒++⎪⎭⎫ ⎝⎛--;16、解方程:(1)x x 232-=; (2)1213122+=--+-x x x x四、解答题(每小题8分,共16分)17、放风筝是大家喜爱的一种运动.星期天的上午小明在万达广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD=90°.请你求出小明此吋的风筝线的长度是多少米?(本题中风筝线均视为线段,结果保留根号)18、今只有一张欢乐谷门票,而小明和小华都想要去,于是他们两人分别提出一个方案:小明的方案是:转动如图所示的转盘,当转盘停止转动后,如果指针停在阴影区域,则小明获得门票;如果指针停在白色区域,则小华获得门票(转盘被等分成6个扇形,若指针停在边界处,则重新转动转盘).小华的方案是:有三张卡片,上面分别标有数字1,2,3,将它们背面朝上洗匀后,从中摸出一张,记录下卡片上的数字后放回,重新洗匀后再摸出一张.若摸出两张卡片上的数字之和为奇数,则小明获得门票;若摸出两张卡片上的数字之和为偶数,则小华获得门票.(1)在小明的方案中,计算小明获得门票的概率,并说明小明的方案是否公平?(2)用树状图或列表法列举小华设计方案中可能出现的所有结果,计算小华获得门票的概率,并说明小华的方案是否公平?五、解答题(每小题10分,共20分)19、如图,已知一次函数y=kx+b的图象交反比例函数y=错误! (x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且BCAB=13,求m的值和一次函数的解析式.20、在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F.(1)求证:△FOE≌ △DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求AB CDGH的值.①②③……B 卷(共50分)一、填空题。

人版2016年_2017度九年级数学上学期期末考试试题和答案解析

人版2016年_2017度九年级数学上学期期末考试试题和答案解析

人教版2015-2016年度九年级数学上学期期末考试试卷及答案时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题3分,共30分) 1.(2013•内江)若抛物线y=x 2﹣2x+c 与y 轴的交点为(0,﹣3),则下列说法2.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( ) A .1B .2C .1或2D .03.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D 、144.(2015•兰州)下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+5.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .256.(2013•荆门)在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( )它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20º,则∠ACB ,∠DBC 分别 为( )A .15º与30ºB .20º与35ºC .20º与40ºD .30º与35º9.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。

2016-2017年九年级上学期期末数学试卷及答案

2016-2017年九年级上学期期末数学试卷及答案

C O 图4DB A 2016-2017年九年级上学期期末数学试卷一、选择题(每小题4分,共40分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( B )A .B .C .D .2.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( B )A .6 B .16 C .18 D .243.已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( C )A .43-B .83C .83-D .434.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则函数中k 的取值范围是( C )A .k ≥-2 B .k ≤-2 C .k ≥2 D .k ≤2 5.在△ABC 中,∠A =90°,AB =3cm ,AC =4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( A )A .相交 B .相离 C .相切 D .不能确定 6.如图C 、D 是以线段AB 为直径的⊙O 上两点,若CA CD =,且40ACD ∠=, 则CAB ∠=( B ) A.10B.20C.30D.407.如图在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为 ( A ) A .10 B .2 2 C .3 D .2 58.如图AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P 是直径AB 上一动点,则PC+PD 的最小值为( B )A .22B.2C.1D.29.如图⊙O 是以原点为圆心,2为半径的圆,点P 是直线 y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( B )A .3B .4C .6-D .3-110.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( C ) A .①② B .①④ C .①③④ D .②③④ 二、填空题(每小题4分,共40分)11.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= 6 .12.若关于x 的二次函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为1k =-. 13.如图,⊙O 的直径CD 与弦AB 垂直相交于点E ,且BC =1,AD =2,则⊙O 的直径长为5 .14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是____32__________。

2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期九年级数学期末试题及答案

2016-2017学年第一学期期末测试九年级数学试卷(时间120分钟,满分120分)一、 选择题(本大题共10小题,每小题3分,共30分,请将答案填涂在答题卡上) 1、-5的倒数是( )A 、B 、C 、-5D 、52、a 2•a 3等于( )A 、3a 2B 、a 5C 、a 6D 、a 83、下列事件为必然事件的是( )A 、打开电视机,它正在播广告B 、抛掷一枚硬币,一定正面朝上C 、投掷一枚普通的正方体骰子,掷得的点数小于7D 、某彩票的中奖机会是1%,买1张一定不会中奖4、下面如图是一个圆柱体,则它的主视图是( )A B C D5.下列命题中,假命题是( ) A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x 2=y 2,则x=y6.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是A .76<<mB .76<≤mC .76≤≤mD .76≤<m7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .6ABCDFE8.如图是一块△ABC 余料,已知AB=20cm ,BC=7cm ,A C=15cm ,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A . πcm 2B . 2πcm 2C . 4πcm 2D . 8πcm 29.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边A C (或边CB )于点Q .设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .10. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有A .1个B .2个C .3个D .4个A BCDEFG二、填空题(本大题共8小题,11--14每小题3分,15--18每小题4分,共28分,请将答案填在后面的表格里)11.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_ 12. 因式分解:22a b ab b ++= .13.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .14.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 .15.如图,已知正方形ABCD 的边长是8,M 在DC 上,且DM=2,N 是AC 边上的一动点,则DN+NM 的最小值是_______.16. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .17.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为xyABO1S2S16题图18.如图,点M 是反比例函数y=在第一象限内图象上的点,作MB⊥x 轴于B .过点M 的第一条直线交y 轴于点A 1,交反比例函数图象于点C 1,且A 1C 1=A 1M ,△A 1C 1B 的面积记为S 1;过点M 的第二条直线交y 轴于点A 2,交反比例函数图象于点C 2,且A 2C 2=A 2M ,△A 2C 2B 的面积记为S 2;过点M 的第三条直线交y 轴于点A 3,交反比例函数图象于点C 3,且A 3C 3=A 3M ,△A 3C 3B 的面积记为S 3;以此类推…;则S 1+S 2+S 3+…+S 8= _________ .11 12 13 1415 16 17 18三.解答题:本大题共7小题,总分62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1) 计算:1021()(52)18(2)23---+--⋅(2) 先化简再计算:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.20. (本题满分8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为:a=___________,b=_______________;(2)请在图中补全额数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?21.(本题满分8分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.22. (本题满分8分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (本题满分9分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.24.(本题满分10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P 是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式,不需要说明理由.25.(本题满分12分)如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;⊥轴,垂足为M,是否存在P点,使得以A,P,M为(2)P是抛物线上一动点,过P作PM x△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;顶点的三角形与OAC△的面积最大,求出点D的坐标.(3)在直线AC上方的抛物线上有一点D,使得DCAO xy AB C 4 12-(第25题图) O xyAB C4 12-(备用)数学答案1—10题:ABCAD,DDCDD 11---18题:9.63×10-5b(a+1)27/8, 18. 10 4 3 255/51219题:2-221xx 1 20题:解:(1)a=40,b=0.09;(2)如图:;(3)(0.12+0.09+0.08)×24000 =0.29×24000=6960(人)答:该市24000名九年级考生数学成绩为优秀的学生约有6960名。

四川省成都市九年级(上)期末数学试卷(含解析)

四川省成都市九年级(上)期末数学试卷(含解析)

四川省成都市九年级(上)期末数学试卷一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则512PA AB -= D .23410x x -+=的两根之和为435.(3分)已知52x y =,则x y y-的值为( ) A .35B .32C .23 D .35-6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D .249.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( ) A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)3a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分) 15.(12分)计算(1)计算:03(3)(1)3tan 3027π--+--⨯︒+ (2)解方程:(3)2x x x -=16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a =17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:2 1.41,3 1.73)≈≈18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题: (1)E 类学生有 人,补全条形统计图; (2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象与反比例函数6 yx =的图象相交于点(,3)A m,(6,1)B--,与x轴交于点(,0)C n (1)求一次函数y kx b=+的关系式;(2)求BOC∆的面积;(3)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BEED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= . 22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy yx y x y-+--有意义的(,)x y 出现的概率是 . 23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=24.(4分)如图,在ABC ∆中,5AB =,12AC =,13BC =,ABD ∆、ACE ∆、BCF ∆都是等边三角形,则四边形AEFD 的面积S = .25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若25EF =,2ABE S ∆=,则线段GH 长度的最小值是 .二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为24536m 的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等. (1)求各通道的宽度;(2)现有一工程队承接了对这24536m 的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m 的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过点E作EF ED⊥,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG AE+的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.28.(12分)如图1,已知点(,0)A a,(0,)B b,且a、b满足21(3)0a a b++++=,ABCDY的边AD与y轴交于点E,且E为AD中点,双曲线kyx=经过C、D两点.(1)求k的值;(2)点P在双曲线kyx=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN HT⊥,交AB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+【考点】1E :有理数的乘方;14:相反数;15:绝对值 【分析】各项计算得到结果,即可做出判断. 【解答】解:A 、原式4=-,不相同; B 、原式4=,相同; C 、原式4=-,不相同;D 、原式4=-,不相同,故选:B .【点评】此题考查了有理数的乘方,绝对值,相反数,熟练掌握有理数的乘方,绝对值,相反数的意义是解本题的关键.2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:13900亿41.3910=⨯亿, 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-【考点】46:同底数幂的乘法;1A :有理数的减法;35:合并同类项【分析】分别根据同底数幂的乘法法则,合并同类项的法则,有理数的加减法法则逐一判断即可.【解答】解:325a a a ⨯=,故选项A 不合题意;3a 与2a 不是同类项,故不能合并,故选项B 不合题意;2a 与b 不是同类项,故不能合并,故选项C 不合题意;123--=-,正确,故选项D 符合题意.故选:D .【点评】本题主要考查了幂的运算以及有理数的加减法,熟练掌握运算法则是解答本题的关键.4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 【考点】3A :一元二次方程的解;AB :根与系数的关系;3S :黄金分割;6L :平行四边形的判定【分析】A 、根据平行四边形的判定判断即可;B 、根据一元二次方程的根解答即可;C 、根据黄金分割点的概念解答即可;D 、根据一元二次方程的根解答即可.【解答】解:A 、两组对边分别相等的四边形是平行四边形,正确;B 、当a c b +=-时,一元二次方程20ax bx c ++=必有一根为1,错误;C 、若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =,正确;D 、23410x x -+=的两根之和为为43,正确; 故选:B .【点评】此题考查黄金分割,关键是根据黄金分割、平行四边形的判定和一元二次方程的根解答.5.(3分)已知52x y =,则x y y-的值为( )A .35B .32C .23D .35- 【考点】1S :比例的性质【分析】直接利用已知表示出x ,y 的值,进而代入原式求出答案.【解答】解:设5x k =,2(0)y k k =≠,则52322x y k k y k --==, 故选:B .【点评】此题主要考查了比例式,正确表示出各未知数是解题关键.6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)【考点】5D :坐标与图形性质;SC :位似变换【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【解答】解:Q 以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,A ∴点与C 点是对应点,C Q 点的对应点A 的坐标为(2,2),位似比为:1:2,∴点C 的坐标为:(4,4)故选:C .【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .8【考点】8L :菱形的性质【分析】由菱形的性质可证得ABD ∆为等边三角形,则可求得答案.【解答】解:Q 四边形ABCD 为菱形,//AD BC ∴,AD AB =,180A ABC ∴∠+∠=︒,18012060A ∴∠=︒-︒=︒,ABD ∴∆为等边三角形,2BD AB ∴==,故选:A .【点评】本题主要考查菱形的性质,利用菱形的性质证得ABD ∆为等边三角形是解题的关键.8.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 2 【考点】2R :旋转的性质;1T :锐角三角函数的定义【分析】过C 点作CD AB ⊥,垂足为D ,根据旋转性质可知,B B ∠'=∠,把求tan B '的问题,转化为在Rt BCD ∆中求tan B .【解答】解:过C 点作CD AB ⊥,垂足为D .根据旋转性质可知,B B ∠'=∠.在Rt BCD ∆中,1tan 3CD B BD ==, 1tan tan 3B B ∴'==. 故选:B .【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( )A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠【考点】AA :根的判别式【分析】由方程根的情况,根据根的判别式,可得到关于m 的不等式,则可求得m 的取值范围.【解答】解:Q 一元二次方程220x x m ++=有实数根,∴△0…,即2240m -…,解得1m …, 故选:C .【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32【考点】6G :反比例函数图象上点的坐标特征;7T :解直角三角形;8L :菱形的性质【分析】作AH x ⊥轴于H ,如图,利用菱形的性质得到//OC AB ,//AC OB ,OB AB AC ==,所以ABH COB ∠=∠,在Rt ABH ∆中,利用正切的定义得到3BH =,则5OB =,从而得到(3,4)C ,然后根据反比例函数图象上点的坐标特征求出k 的值.【解答】解:作AH x ⊥轴于H ,如图,(8,4)A Q ,8OH ∴=,4AH =,Q 四边形ABOC 为菱形,//OC AB ∴,//AC OB ,OB AB AC ==,ABH COB ∴∠=∠,在Rt ABH ∆中,4tan 3AH ABH BH ∠==, 334BH AH ∴==, 5OB ∴=,(3,4)C ∴,Q 反比例函数(0)k y k x=≠的图象经过点C , 3412k ∴=⨯=. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数(k y k x=为常数,0)k ≠的图象是双曲线,图象上的点(,)x y 的横纵坐标的积是定值k ,即xy k =.也考查了菱形的性质.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)3a +︒=,则a 为 50 度.【考点】5T :特殊角的三角函数值【分析】直接利用特殊角的三角函数值进而得出答案.【解答】解:tan(10)3a +︒=Q ,1060α∴+︒=︒,故50α=︒.故答案为:50.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 2- ,它的另一个根为 .【考点】3A :一元二次方程的解;8A :解一元二次方程-因式分解法【分析】代入根先求出m 的值,然后根据方程求出另一个根.【解答】解:Q 有一个根为2,420m ∴-+=2m =-.220x x --=(2)(1)0x x -+=2x =或1x =-.所以另一个根为1-.故答案为:2-;1-.【点评】本题考查解一元二次方程,用到因式分解的方法.13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 1-【考点】4G :反比例函数的性质;1G :反比例函数的定义【分析】根据反比例函数的一般形式,可以得到x 的次数是1-;根据当0x >时,y 随x 的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:||210m m -=-⎧⎨<⎩, 解得:1m =-.故答案为:1-.【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 10m .【考点】SA :相似三角形的应用;5U :平行投影【分析】根据平行的性质可知ABC DEF ∆∆∽,利用相似三角形对应边成比例即可求出DE 的长.【解答】解:如图,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m , ABC DEF ∆∆Q ∽,5AB m =,3BC m =,6EF m = ∴AB DE BC EF = ∴536DE = 10()DE m ∴=故答案为10m .【点评】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.三、解答题(本大题共6小题,共54分)15.(12分)计算(1)计算:03(3)(1)3tan 3027π--+--⨯︒+(2)解方程:(3)2x x x -=【考点】5T :特殊角的三角函数值;6E :零指数幂;8A :解一元二次方程-因式分解法;6F :负整数指数幂;2C :实数的运算【分析】(1)根据零指数幂的意义、负整数指数幂的意义和特殊角的三角函数值进行计算;(2)先移项得到(3)20x x x --=,然后利用因式分解法解方程.【解答】解:(1)原式113=--+11=-+=;(2)(3)20x x x --=,(32)0x x --=,0x =或320x --=,所以10x =,25x =.【点评】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a = 【考点】6D :分式的化简求值【分析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【解答】解:原式123(2)2a a a a a +-+=+-- 21(2)(2)a a a a a a a ++=+-- 221(2)a a a a ++=- 2(1)(2)a a a +=- 当12a =时, 原式21(1)2311(2)22+==-- 【点评】本题考查了分式的化简,熟练分解因式是解题的关键.17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:1.73)≈≈【考点】TA :解直角三角形的应用-仰角俯角问题【分析】过点D 作DE BC ⊥于点E ,在直角三角形BDE 中,根据30BDE ∠=︒,求出BE 的长度,然后即可求得塔高.【解答】解:过点D 作DE BC ⊥于点E ,在Rt BDE ∆中,30BDE ∠=︒Q ,90DE =米,3tan 3090303BE DE ∴=︒==g ), 350102BC BE EC BE AD ∴=+=+=+≈(米). 答:塔高约为102米.【点评】本题考查的是解直角三角形的应用,解答本题的关键是根据仰角构造出直角三角形,利用三角函数的知识求解.18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 5 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.【考点】VC :条形统计图;6X :列表法与树状图法【分析】(1)根据总人数等于各类别人数之和可得E 类别学生数;(2)用D 类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E 类学生有50(232218)5-+++=(人), 补全图形如下:故答案为:5;(2)D 类学生人数占被调查总人数的18100%36%50⨯=, 故答案为:36;(3)记02t 剟内的两人为甲、乙,24t <…内的3人记为A 、B 、C , 从中任选两人有:甲乙、甲A 、甲B 、甲C 、乙A 、乙B 、乙C 、AB 、AC 、BC 这10种可能结果,其中2人做义工时间都在24t <…中的有AB 、AC 、BC 这3种结果, ∴这2人做义工时间都在24t <…中的概率为310. 【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.19.(10分)如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象与反比例函数6 yx=的图象相交于点(,3)A m,(6,1)B--,与x轴交于点(,0)C n(1)求一次函数y kx b=+的关系式;(2)求BOC∆的面积;(3)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标【考点】8G:反比例函数与一次函数的交点问题【分析】(1)利用待定系数法解决问题即可.(2)求出点C的坐标即可解决问题.(3)设(,0)P m,利用三角形的面积公式构建方程即可解决问题.【解答】解:(1)Q反比例函数6yx=的图象相交于点(,3)A m,2m∴=,把(2,3)A,(6,1)B--代入y kx b=+,则有2361k bk b+=⎧⎨-+=-⎩,解得122kb⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x=+.(2)连接OB.Q 一次函数的解析式为122y x =+交x 轴于C , (4,0)C ∴-,4OC ∴=,(6,1)B --Q ,14122OBC S ∆∴=⨯⨯=,(3)设(,0)P m ,由题意:13|4|3222m +=⨯g g ,6m ∴=-或2-.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用参数构建方程解决问题,属于中考常考题型.20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BEED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.【考点】SO :相似形综合题【分析】(1)根据平行四边形的性质结合AB 、BC 、BF 、CE 的长度,即可证出()BEF CDE SAS ∆≅∆,利用全等三角形的性质可得出EF DE =、BEF CDE ∠=∠,再通过角的计算即可找出90DEF ∠=︒,即EF DE ⊥;(2)在AB 上取点G ,使BG BE =,连接EG ,则BEG ∆为等边三角形,根据平行四边形的性质结合角的计算可找出C EGF ∠=∠、CDE GEF ∠=∠,进而可证出CDE GEF ∆∆∽,根据相似三角形的性质可得出EF GEDE CD=,等量替换后可得出EF BEED CD=; (3)连接AC 、CC '、AC ',设CC '交BD 于点M ,利用面积法及勾股定理可求出OM 的长度,易知OM 为中位线,根据中位线的性质可得出AC '的长度及//AC BD ',进而可得出AGC DGO ∆'∆∽,利用相似三角形的性质可得出14145525AG AC DG DO '===,结合AD 的长度即可求出DG 的长度.【解答】(1)解:EF DE =,EF DE ⊥.理由如下:Q 四边形ABCD 为平行四边形,90B ∠=︒,90C B ∴∠=∠=︒.6AB =Q ,8BC =,2BF CE ==, 6BE BC CE CD ∴=-==. 在BEF ∆和CDE ∆中,BF CEB C BE CD =⎧⎪∠=∠⎨⎪=⎩,()BEF CDE SAS ∴∆≅∆, EF DE ∴=,BEF CDE ∠=∠.90CDE CED ∠+∠=︒Q , 90BEF CED ∴∠+∠=︒, 90DEF ∴∠=︒,即EF DE ⊥.(2)证明:如图2,在AB 上取点G ,使BG BE =,连接EG ,则BEG ∆为等边三角形,60BGE BEG ∴∠=∠=︒, 180120EGF BGE ∴∠=︒-∠=︒.Q 四边形ABCD 为平行四边形,60B ∠=︒,120C EGF∴∠=︒=∠,60CED CDE∴∠+∠=︒.60DEF∠=︒Q,60BEG∠=︒,180606060 GEF CED∴∠+∠=︒-︒-︒=︒,CDE GEF∴∠=∠,CDE GEF∴∆∆∽,∴EF GEDE CD=,即EF BEED CD=.(3)解:连接AC、CC'、AC',设CC'交BD于点M,如图3所示,则BD为线段CC'的垂直平分线.90ABC∠=︒Q,∴平行四边形ABCD为矩形,2210BD BC CD∴=+=,11522OC AC BD===,245BC CDCMBD==g,2275OM OC CM∴=-=.Q点O为AC的中点,点M为CC'的中点,1425AC OM∴'==,且//AC BD',AGC DGO∴∆'∆∽,∴14145525AG ACDG DO'===,25200142539DG AD∴==+.【点评】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、平行四边形的性质、三角形的面积以及勾股定理,解题的关键是:(1)通过BEF CDE∆≅∆找出相等的边角关系;(2)利用构造相似三角形找出EF GEDE CD=;(3)利用相似三角形的性质找251425DG AD =+.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= 4 . 【考点】AB :根与系数的关系【分析】先根据一元二次方程根的定义得到224m m =+,则22m mn n ++可变形为2()4m n mn +++,再根据根与系数的关系得到2m n +=,4mn =-,然后利用整体代入的方法计算代数式的值.【解答】解:m Q 是方程2240x x --=的实数根, 2240m m ∴--=, 224m m ∴=+,222422()4m mn n m mn n m n mn ∴++=+++=+++,m Q ,n 是方程2240x x --=的两实数根,2m n ∴+=,4mn =-,2222444m mn n ∴++=⨯-+=.故答案为4.【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=.22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy y x y x y -+--有意义的(,)x y 出现的概率是 9. 【考点】62 :分式有意义的条件;6X :列表法与树状图法【分析】首先列表得出所有等可能的情况数, 再找出能使分式有意义的(,)x y 情况数, 即可求出所求的概率 . 【解答】解: 列表如下:2- (2,2)-- (1,2)-- (1,2)- 1-(2,1)-- (1,1)-- (1,1)- 1(2,1)-(1,1)-(1,1)所有等可能的情况有 9 种,Q 分式的最简公分母为()()x y x y +-,x y ∴≠-且x y ≠时, 分式有意义,∴能使分式有意义的(,)x y 有 4 种,则49P =. 故答案为:49.【点评】此题考查了列表法与树状图法, 用到的知识点为: 概率=所求情况数与总情况数之比, 注意此题是放回实验还是不放回实验是解题关键 .23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=66【考点】2G :反比例函数的图象;6G :反比例函数图象上点的坐标特征;7T :解直角三角形【分析】如图作AE x ⊥轴于E ,BF x ⊥轴于F .设5(,)A a a ,1(,)B b b-,由BOF OAE ∆∆∽,可得AE OEOF BF=,推出225a b =,想办法求出OB 、AB (用b 表示),再根据三角函数的定义即可解决问题;【解答】解:如图作AE x ⊥轴于E ,BF x ⊥轴于F .设5(,)A a a ,1(,)B b b -,90AOB OFB AEO ∠=∠=∠=︒Q ,90BOF AOE∴∠+∠=︒,90AOE OAE∠+∠=︒,BOF OAE∴∠=∠,BOF OAE∴∆∆∽,∴AE OEOF BF=,∴51aabb=--,225a b∴=,22222222212566AB OB OA b a bb a b=+=+++=+Q,2216()AB bb∴=+,221OB bb=+,222216sin616()bOB bAABbb+∴∠===+,故答案为66.【点评】本题考查反比例函数图象上点的特征、反比例函数的图象、解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.24.(4分)如图,在ABC∆中,5AB=,12AC=,13BC=,ABD∆、ACE∆、BCF∆都是等边三角形,则四边形AEFD的面积S=30.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;KS:勾股定理的逆定理【分析】根据题中的等式关系可推出两组对边分别相等,从而可判断四边形AEFD 为平行四边形.由勾股定理的逆定理判定90BAC ∠=︒,则150DAE ∠=︒,故易求30FDA ∠=︒.所以由平行四边形的面积公式即可解答.【解答】解:Q 在ABC ∆中,5AB =,12AC =,13BC =, 222BC AB AC ∴=+, 90BAC ∴∠=︒,ABD ∆Q ,ACE ∆都是等边三角形, 60DAB EAC ∴∠=∠=︒, 150DAE ∴∠=︒.ABD ∆Q 和FBC ∆都是等边三角形, 60DBF FBA ABC ABF ∴∠+∠=∠+∠=︒, DBF ABC ∴∠=∠.在ABC ∆与DBF ∆中, BD BA DBF ABC BF BC =⎧⎪∠=∠⎨⎪=⎩()ABC DBF SAS ∴∆≅∆, 12AC DF AE ∴===,同理可证ABC EFC ∆≅∆, 5AB EF AD ∴===,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). 18030FDA DAE ∴∠=︒-∠=︒,()130512302AEFD S AD DF sin ⎛⎫∴=⋅⋅︒=⨯⨯= ⎪⎝⎭Y ,即四边形AEFD 的面积是30, 故答案为:30.【点评】本题综合考查了勾股定理的逆定理,平行四边形的判定与性质,全等三角形的判定与性质以及等边三角形的性质.综合性比较强,难度较大,有利于培养学生综合运用知识进行推理和计算的能力.25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若25EF =,2ABE S ∆=,则线段GH 长度的最小值是6 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;LE :正方形的性质【分析】根据正方形的性质可得AB AD =,90BAD ∠=︒,然后利用同角的余角相等求出BAE ADF ∠=∠,再利用“角角边”证明ABE ∆和DAF ∆全等,根据全等三角形对应边相等可得BE AF =,设AE x =,BE y =,然后列出方程组求出x 、y 的值,再利用勾股定理列式求出正方形的边长AB ,根据正方形的对角线平分一组对角可得45OAG ODH ∠=∠=︒,根据同角的余角相等求出AOG DOH ∠=∠,然后利用“角边角”证明AOG ∆和DOH ∆全等,根据全等三角形对应边相等可得OG OH =,判断出OGH ∆是等腰直角三角形,再根据垂线段最短和等腰直角三角形的性质可得OH CD ⊥时GH 最短,然后求解即可.【解答】解:在正方形ABCD 中,AB AD =,90BAD ∠=︒, 90BAE DAF ∴∠+∠=︒, DF l ⊥Q ,90DAF ADF ∴∠+∠=︒,BAE ADF ∴∠=∠,在ABE ∆和DAF ∆中, 90BAE ADF AFD BEA AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE DAF AAS ∴∆≅∆,BE AF ∴=,设AE x =,BE y =, 25EF =Q ,2ABE S ∆=,∴122x y xy ⎧+=⎪⎨=⎪⎩, 消掉y并整理得,240x -+=,解得11x =-,21x =+,当11x =,11y =+,当21x =,21y =-,∴由勾股定理得,AB ==,在正方形ABCD 中,45OAG ODH ∠=∠=︒,OA OD =,90AOD ∠=︒, 90AOG DOG ∴∠+∠=︒, OG OH ⊥Q ,90DOH DOG ∴∠+∠=︒, AOG DOH ∴∠=∠,在AOG ∆和DOH ∆中, AOG DOH OA ODOAG ODH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOG DOH ASA ∴∆≅∆, OG OH ∴=,OGH ∴∆是等腰直角三角形,由垂线段最短可得,OH CD ⊥时OH 最短,GH 也最短, 此时,GH=.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,难点在于多次证明三角形全等并判断出GH 长度最小时的情况. 二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为24536m的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这24536m的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?【考点】AD:一元二次方程的应用;7B:分式方程的应用【分析】(1)设各通道的宽度为x米,四块小矩形区域可合成长为(903)x-米、宽为(603)x-米的大矩形,根据草地的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设该工程队原计划每天完成y平方米的绿化任务,根据工作时间=工作总量÷工作效率结合提前2 天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.【解答】解:(1)设各通道的宽度为x米,根据题意得:(903)(603)4536x x--=,解得:12x=,248x=(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:453653645365362(125%)y y---=+,解得:400y=,经检验,400y=是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.【点评】本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出分式方程.27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过。

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案2016-2017学年度上学期期末考试九年级数学试题 2017.01注意事项:1.答题前,请先将⾃⼰的姓名、考场、考号在卷⾸的相应位置填写清楚;2.选择题答案涂在答题卡上,⾮选择题⽤蓝⾊、⿊⾊钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)⼀、选择题(本⼤题共14⼩题,每⼩题3分,共42分)在每⼩题所给出的四个选项中,只有⼀项是符合题⽬要求的. 1.⽅程x x 22=的根是 A .2 B .0C .2或0D .⽆解 2.若反⽐例函数的图象过点(2,1),则这个函数的图象⼀定过点A .(-2,-1)B .(1,-2)C .(-2,1)D .(2,-1)3. 如图,点A 为α∠边上任意⼀点,作BC AC ⊥于点C ,AB CD ⊥于点D ,下列⽤线段⽐表⽰αsin 的值,错误..的是 A. BCCDB.AB AC C.AC AD D. ACCD4. 如图,AD ∥BE ∥CF ,直线a ,b 与这三条平⾏线分别交于点A ,B ,C 和点D ,E ,F ,若AB=2,AC =6,DE =1.5,则DF 的长为 A .7.5B .6C .4.5D .35.如图,四边形 A BCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是 A .88°B .92°C .106°D .136°6. 在Rt △ABC 中,∠C =90°,34tan =A ,若AC =6cm ,则BC 的长度为 A .8cmB .7cmC .6cmD .5cm7. 已知⼆次函数)0()3(2≠-+=a b x a y 有最⼤值1,则该函数图象的顶点坐标为 A.)1,3(--B.)(1,3-C.)1,3(D.)1,3(-8. 从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n 的值是 A .8B .6C .4D .2(第3题图)(第4题图)(第5题图)9. 已知反⽐例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分⽀分布在第⼆、四象限 C .y 随x 的增⼤⽽增⼤D .若x >1,则5-<y <010. 直⾓三⾓形纸⽚的两直⾓边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知⼀块圆⼼⾓为270°的扇形铁⽪,⽤它作⼀个圆锥形的烟囱帽(接缝忽略不计),圆锥底⾯圆的直径是60cm ,则这块扇形铁⽪的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan ∠BDE 的值是 A .34B .43C .21D .1:213.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所⽰,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD ,某同学根据图象写出下列结论:①0=-b a ;②当x <21-时,y 随x 增⼤⽽增⼤;③四边形ACBD 是菱形;④c b a +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④(第13题图)(第14题图)第II 卷⾮选择题(共78分)15.若两个相似三⾓形的⾯积⽐为1∶4,则这两个相似三⾓形的周长⽐是. 16. 若n(其中0≠n)是关于x 的⽅程022=++n mx x 的根,则m +n 的值为 . 17.如图,⼤圆半径为6,⼩圆半径为3,在如图所⽰的圆形区域中,随机撒⼀把⾖⼦,多次重复这个实验,若把“⾖⼦落在⼩圆区域A中”记作事件W ,请估计事件W 的概率 P (W )的值.19. 如图,在直⾓坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂⾜为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本⼤题共7⼩题,共63分) 20.(本题满分5分)计算:2cos30sin 45tan 601cos 60?+?--?.21.(本题满分8分)解⽅程:(1))1(212+=-x x ;(2)05422=--x x .22. (本题满分8分)如图,⼀楼房AB 后有⼀假⼭,⼭坡斜⾯CD 与⽔平⾯夹⾓为30°,坡⾯上点E 处有⼀亭⼦,测得假⼭坡脚C 与楼房⽔平距离BC =10⽶,与亭⼦距离CE =20⽶,⼩丽从楼房顶测得点E 的俯⾓为45°.求楼房AB 的⾼(结果保留根号).(第22题图)30°如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)如图,在平⾯直⾓坐标系中,⼀次函数的图象与反⽐例函数的图象交于第⼆、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO =5,sin ∠AOC =35.(1)求反⽐例函数的解析式;(2)连接OB ,求△AOB 的⾯积.(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三⾓形,若存在请直接写出点M 坐标,若不存在请说明理由.(第25题图)26.(本题满分12分)如图1,将两个完全相同的三⾓形纸⽚ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________;②设△BDC 的⾯积为1S ,△AEC 的⾯积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所⽰的位置时,⼩明猜想(1)中S 1与S 2的数量关系仍然成⽴,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的⾼,请你证明⼩明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其⾓平分线上⼀点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BD E DCF S S ??=,请直接写出相应的BF 的长.A (D )B (E )C 图1 图2图42016-2017学年度上学期期末考试九年级数学参考答案 2017-1注意:解答题只给出⼀种解法,考⽣若有其他正确解法应参照本标准给分. ⼀、选择题(每⼩题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB ⼆、填空题(每⼩题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④三、解答题(本⼤题共7⼩题,共63分)20. 解:原式=21(1)()222÷-+2分 124分 =12……5分21. (8分)解:(1)将原⽅程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分∴x 1=﹣1,x 2=3;……………………………………………………….4分(2)∵2x 2﹣4x ﹣5=0,∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30°∴EF =10 …………2分 CF =3 EF =103(⽶) ………4分过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt △AHE 中,∠HAE =45°,∴AH =HE ,⼜∵BC =10⽶,∴HE =(10+103)⽶, ………6分∴AB =AH +BH =10+103+10=20+103(⽶) ………………………7分答:楼房AB 的⾼为(20+103)⽶.………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C ,∴∠OCD =90°. ………………………2分∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分由(1)得DC =DE =21(3+x ). ……………7分在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=??++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所⽰.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin ∠AOC =35,∴AE =AO ?sin ∠AOC =3,OE ,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反⽐例函数解析式为k y x =.∵点A (﹣4,3)在反⽐例函数ky x=的图象上,∴3=4k -,解得k =﹣12.∴反⽐例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反⽐例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代⼊y =ax +b 中,得34,43,a b a b =-+??-=+? 解得1,1.a b =-??=-? ∴⼀次函数解析式为y =﹣x ﹣1.…………8分令⼀次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC ?(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代⼊y =x 2+bx +c 中,得:=++=+-03901c b c b ,解得:-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3. (3)分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m ,1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,??=?=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的⾯积和△AEC 的⾯积相等(等底等⾼的三⾓形的⾯积相等),即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的⾼相等,此时 BDE D CF S S ??=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴?=∠6021F DF ,=∠=∠=∠30211ABC DBE DB F ,∴?=∠6021DF F ,∴21F DF ?是等边三⾓形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是⾓平分线上⼀点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是⾓平分线上⼀点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形,连接EF 1,则BD EF ⊥1,垂⾜为O ,在1BOF Rt ?中,BO =21BD =2,?=∠301BO F ,∴=30cos 1BF BO,∴33423230cos 1==?=BO BF ………………11分. 在Rt BD F 2中,=30cos 2BF BD ,∴33823430cos 2==?=BD BF ,故BF 的长为334或338.…………………12分。

2016—2017上学期初三数学期末测试卷及答案

2016—2017上学期初三数学期末测试卷及答案

2016—2017上学期数学期末测试卷考试时间120分钟 满分150分一、选择题:(本题共8小题,每小题3分,共24分)说明:下面各题都给出代号为A 、B 、C 、D 的四个答案,请把唯一正确的答案代号填到题后的括号内。

1.在平面直角坐标系中,点(2,-1)在第( )象限。

A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2.下列各式运算正确的是( )A 、325x x x += B 、32x x x -= C 、326x x x ⋅= D 、32x x x ÷= 3.在Rt △ABC 中,∠C =90°,AB =13,cosB =135,则BC 的值是( ) A 、3 B 、4 C 、 5 D 、12 4.函数2+=x y 中,自变量x 的取值范围是 ( )A .x <-2B .x ≤-2C .x >-2D .x ≥-25.将一张正方形形纸片按图1-①所示的方式对折,再按图1-②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )6.要调查志成学校初三学生的学习情况,选取调查对象最合适的是(A .选取一个班级的学生B 、选取协议(1)班50名学生C 、选取志成100班50名学生D 、随机选取50名初三学生7.如图2,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( ) A 、10° B 、20° C 、40° D 、80°8.某圆锥的母线长为13cm ,高为12cm ,则此圆锥的侧面展开面积为 ( ) A 、25π B 、60π C 、65π D 、156π二、填空题(本题共9小题,每小题3分,共27分)9.大连地区今年二月份最高气温为-4℃,最低气温为-16℃,则二月份的最高气温比最低气温高________℃。

10.计算:=+-)23)(32(________。

B 图21—① 1—② A B C D11.如图3,点P 是反比例函数xky =图象上一点,已知由点P 向 两坐标轴作垂线所得矩形面积为6,则k 的值为_______。

2017年上期末数学试题(九年级)

2017年上期末数学试题(九年级)

2016—2017学年第一学期期末考试九 年 级 数 学 试 卷注意事项: 1.本卷共4页,共有25小题,满分120分,考试时限120分钟。

2.答题前,考生要将自己的姓名、考号、学校和班级写在答题卡指定的位置,并在答题卡所规定的方框内答题。

3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡。

一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.下列四个图形中,不是中心对称图形的是( ) A .①③ B .②④ C .①④ D .②③2.如图,ABC △内接于O ⊙,OD ⊥BC 于D ,若70A ∠=︒,则OCD ∠的大小为 ( ) A .35° B .30° C .25° D .20° 3.一元二次方程230x x -=的根为( ) A .x =3 B .x =-3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 4.若函数1ky x-=的图象与直线y x =没有交点,则k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-15.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( ) A .112 B .61 C .41 D .136.已知⊙O 的半径为5cm ,弦AB 长为8cm ,则这条弦的中点到弦所对劣弧的中点的距离为( ) A .1 B .2 C .3 D .47.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( ) A .21 B .41 C .61 D .818.在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点 C 顺时针旋转60°,则顶点A 所经过的路径长为( ) A .10π B .103 C .103π D .π9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴, 垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) A .47 B .22 C .27 D .5(第2题图) (第8题图)(第9题图)10.如图,二次函数c bx ax y ++=2(a ≠0)的图象经过点(1,2) 且与x 轴交点的横坐标分别为x 1,x 2,其中一1<x 1<0,1<x 2<2, 下列结论:①c b a ++24<0;②b a +2<0;③a b 82+>4ac ;④a <-1. 其中结论正确的个数有( )A .1个B .2个C .3个D .4个二、填空题:(本题有6个小题,每小题3分,共18分)11.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P BA ',则∠PBP '的度数是 . 12.十张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张, 则(P 摸到数字大于4)= . 13.某种型号的笔记本电脑,原售价7500元/台,经连续两次降价后,现售价为4800元/台, 则平均每次降价的百分率为 .14.将抛物线222y x x =-+沿y 向下平移1个单位,则所得的抛物线的顶点坐标是 . 15.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E . 则阴影部分面积为 (结果保留π).16.如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y = 2x(x >0)的图象经过A 、E 两点,则点D 的坐标为____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 用公式法解方程:230x x --=18.(本题满分6分)从男女学生共48人的班级中,选一名班长,假设任何人都有同样的当选机会,如果选得男生的概率为32,求男女学生人数. 19.(本题满分7分) 如图,AB 是⊙O 的直径,直线PQ 过⊙O 上的点C ,PQ 是⊙O 的切线. 求证:∠BCP =∠A .(第15题图)(第10题图) 12 (第16题图)(第11题图)(第19题图)20.(本题满分7分) 某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑. 东沟中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,求选中A 型号电脑的概率; (2)已知东沟中学购买甲、乙两种品牌电脑共36台(价格如图所示), 恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑, 求购买的A 型号电脑有几台.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.22.(本题满分8分)如图,正比例函数12y x =的图象与反比例函数ky x=第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1..(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.23.(本题满分9分)武当超市购进一批每千克价格为6元的新上市西瓜,在超市试销中发现:销售单价x (元/千克)与每天销售量y (千克)之间满足如图所示的一次函数关系. (1)求y 与x 之间的函数关系式;(2)写出每天的利润w 与销售单价x 之间的函数关系式,为了缩短西瓜销售期,规定每千克销售单价不超过12元,若你是超市负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?(第22题图)(第23题图)E24.(本题满分10分) 如图,在△ABC 中,AB = AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E , 点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切; (2)当∠BAC =120°,AD =3时,求BF 的长.25.(本题满分12分)如图,已知抛物线2(1)33y a x =-+(a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 作平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.(第24题图)BA CDEGOFxyMCDPQOAB (第25题图)。

九年级初三第一学期期末数学试题(WORD版含答案) (4)

九年级初三第一学期期末数学试题(WORD版含答案) (4)

AD 的值为 AB
A E
1 (A) 2
1 (B) 3
1 (C) 4
1
1 (D) 6
B
D
C
6.一枚质地均匀的正方体骰子,其六个面上分别刻有 1、2、3、4、5、6 的点数,掷这 个骰子一次,则掷得面朝上的点数为偶数的概率是 (A)
1 D)
1 3
7.将抛物线 y =-x +1 向上平移 2 个单位,得到的抛物线表达式为 (A) y=-(x+2)
祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!
一、选择题(本题共 30 分,每小题 3 分)
第 1-10 题均有四个选项,符合题意的选项只有一个
1.2016 年 9 月 15 日 22 时 04 分 09 秒 “天宫二号”在酒泉卫星发射中心成功发射,为祖国 的航天历史打开新的历程.“天宫二号”全长 10.4 米,总重量达 8600 公斤,将 8600 用科 学记数法表示应为 (A)86×102 (B)8.6×103 (C)86×103 (D)0.86×103 2.实数 a,b,c,d 在数轴上对应点的位置如图所示,这四个数中,绝对值最小的是
估计在与实验条件相同的情况下,种一粒这样的麦种发芽的概率约为 14.已知扇形的圆心角是 1200,半径是 6,则它的面积是 15.有两棵树,一棵高 15 米,另一棵高 7 米,两树 相距 6 米,一只鸟从一棵树的树梢飞到另一棵树 的树梢.问小鸟至少飞行 米.
16. 阅读下面材料:在数学课上,老师给同学们布置了一道尺规作图题: ( 改编)2. 阅读下面材料:数学课上,老师给同学们布置了一道尺规作图题: 已知:如图,正比例函数和反比例函数的 y 图象分别交于 M、N 两点. 要求:在 y 轴上求作点 P,使得∠MPN 为直角.

初三期末数学试卷温江

初三期末数学试卷温江

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. 0.1010010001...C. √9D. √162. 已知函数f(x) = 2x - 3,那么f(-1)的值为()A. -5B. -1C. 1D. 53. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)4. 若a、b是方程x^2 - 5x + 6 = 0的两根,则a+b的值为()A. 2B. 3C. 4D. 55. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 等边三角形D. 平行四边形6. 若一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积为()A. 24cm²B. 30cm²C. 32cm²D. 36cm²7. 已知sin∠A = 0.6,cos∠A = 0.8,则tan∠A的值为()A. 0.75B. 0.6C. 0.8D. 1.28. 在梯形ABCD中,AD平行于BC,且AD=8cm,BC=12cm,梯形的高为5cm,那么梯形ABCD的面积为()A. 40cm²B. 50cm²C. 60cm²D. 70cm²9. 已知等比数列{an}的第一项为2,公比为3,那么第5项an的值为()A. 162B. 54C. 18D. 610. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 - 2ab + b^2D. (a-b)^2 = a^2 + 2ab - b^2二、填空题(每题3分,共30分)11. 若sinα = 0.5,则cosα的值为______。

12. 已知等差数列{an}的第一项为3,公差为2,那么第10项an的值为______。

温江区九年级期末数学试卷

温江区九年级期末数学试卷

1. 下列各数中,属于有理数的是()A. √2B. πC. -3/5D. 无理数2. 下列各数中,绝对值最大的是()A. -2B. -1/2C. 0D. 1/33. 已知一元二次方程ax² + bx + c = 0(a≠0)的判别式为b² - 4ac = 9,则该方程有两个()A. 两个实数根B. 两个无理数根C. 一个实数根和一个虚数根D. 两个虚数根4. 在直角坐标系中,点P(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)5. 已知等差数列{an}中,a1 = 2,公差d = 3,则第10项an =()A. 29B. 32C. 35D. 386. 若a,b是方程x² - mx + n = 0的两个根,则m² - 4n的值为()A. 0B. 1C. 2D. 47. 在平面直角坐标系中,点A(1,2),B(4,6)的斜率是()A. 1B. 2C. 3D. 48. 下列函数中,是奇函数的是()A. y = x²B. y = x³C. y = |x|D. y = x² + 19. 已知函数f(x) = x² - 4x + 3,则 f(2) 的值为()A. -1B. 0C. 1D. 310. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 等边三角形的内角都是60°C. 对顶角相等的三角形一定是等腰三角形D. 对角线互相平分的四边形一定是平行四边形11. 已知数列{an}的前三项分别是1,3,5,则该数列的通项公式为______。

12. 已知函数f(x) = x³ - 3x² + 2x,则 f(1) 的值为______。

13. 在直角坐标系中,点C(-3,4)到原点O的距离是______。

14. 等差数列{an}中,a1 = 5,公差d = 2,则第20项an =______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、解答题:每小题 7 分,共 14 分 19. (7 分)如图,在△ABC 中,AD⊥BC,BE⊥AC,垂足分别为 D、E,AD 与 BE 相交于点 F. (1)求证:△ACD∽△BFD; (2)若∠ABD=45°,AC=3 时,求 BF 的长.
第 4 页(共 35 页)
20. (7 分)某网店销售某款童装,每件售价 60 元,每星期可卖 300 件,为了促 销, 该网店决定降价销售. 市场调查反映: 每降价 1 元, 每星期可多卖 30 件. 已 知该款童装每件成本价 40 元,设该款童装每件售价 x 元,每星期的销售量为 y 件. (1)求 y 与 x 之间的函数关系式; (2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
B.y=(x+2)2﹣3 C.y=(x﹣2)2+3
A.
B.
C.10
D.6 )
8. (3 分) 如图, 已知⊙O 的直径 AB⊥CD 于点 E, 则下列结论一定错误的是 (
A.CE=DE
B.AE=OE
C.
=
D.△OCE≌△ODE
9. (3 分)二次函数 y=2x2﹣3 的图象是一条抛物线,下列关于该抛物线的说法, 正确的是( ) B.抛物线经过点(2,3) D.抛物线与 x 轴有两个交点
2016-2017 学年四川省成都市温江区初三上学期期末数学试卷
一、选择题:每小题 3 分,共 30 分 1. (3 分)方程 x2=3x 的解为( A.0 B.﹣3 ) C.0,3 D.3
2. (3 分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的 是( )
A.
B.
C.
D.
3. (3 分)做重复试验:抛掷一枚啤酒瓶盖 1000 次.经过统计得“凸面向上”的 次数为 420 次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约 为( A.0.22 ) B.0.428 分,20 小题 9 分,共 17 分) 21. (8 分)为进一步发展基础教育,自 2014 年以来,某县加大了教育经费的投 入, 2014 年该县投入教育经费 6000 万元. 2016 年投入教育经费 8640 万元. 假 设该县这两年投入教育经费的年平均增长率相同. (1)求这两年该县投入教育经费的年平均增长率; (2) 若该县教育经费的投入还将保持相同的年平均增长率, 请你预算 2017 年该 县投入教育经费多少万元. 22. (9 分)如图,在△ABC,AB=AC,以 AB 为直径的⊙O 分别交 AC、BC 于点 D、 E,点 F 在 AC 的延长线上,且∠CBF= ∠CAB. (1)求证:直线 BF 是⊙O 的切线; (2)若 AB=5,sin∠CBF= ,求 BC 和 BF 的长.
4. (3 分)如图,以点 O 为位似中心,将△ABC 缩小后得△A′B′C′,已知 OB=3OB′, 则△A′B′C′与△ABC 的面积比为( )
A.1:3
B.3:1
C.9:1
D.1:9
5. (3 分)一个公共房门前的台阶高出地面 2 米,台阶拆除后,换成供轮椅行走 的斜坡,数据如图所示,则下列关系或说法正确的是( )
A.抛物线开口向下 C.抛物线的对称轴是直线 x=1
10. (3 分) 如图, 点 A 和点 B 都在反比例函数 y= 的图象上, 且线段 AB 过原点, 过点 A 作 x 轴的垂线段, 垂足为 C, P 是线段 OB 上的动点, 连接 CP. 设△ACP 的面积为 S,则下列说法正确的是( )
第 2 页(共 35 页)
A.S>3
B.S>6
C.3≤S≤6
D.3<S≤6
二、填空题:每小题 3 分,共 15 分 11. (3 分)小新的身高是 1m,他的影子长为 2m,同一时刻水塔的影长是 32m, 则水塔的高度是 m.
12. (3 分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你 添加的条件是 . (只需写一个条件,不添加辅助线和字母)
13. (3 分) 小颖在二次函数 y=2x2+4x+5 的图象上, 依横坐标找到三点 (﹣1, y1) , (2,y2) , (﹣3,y3) ,则你认为 y1,y2,y3 的大小关系应为 .
14. (3 分)如图,在一次数学课外实践活动中,小聪在距离旗杆 10m 的 A 处测 得旗杆顶端 B 的仰角为 60°,测角仪高 AD 为 1m,则旗杆高 BC 为 (结果保留根号) . m
15. (3 分)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,若∠BCD=28°,则 ∠ABD= °.
第 3 页(共 35 页)
三、解答题:每小题 12 分,共 24 分 16. (12 分) (1)计算:2﹣1+(2π﹣1)0﹣ (2)解方程:x2+4x﹣1=0. 17. (6 分)甲、乙两个不透明的口袋,甲口袋中装有 3 个分别标有数字 1、2、3 的小球,乙口袋中装有分别标有数字 4、5 的小球,它们的形状、大小完全相 同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球 记下数字.请用列表或树状图的方法(只选其中一种)求出两个数字之和能 被 3 整除的概率. 18. (6 分)如图,直线 y= x+2 与双曲线相交于点 A(m,3) ,与 x 轴交于点 C. (1)求双曲线解析式; (2)点 P 在 x 轴上,如果△ACP 的面积为 3,求点 P 的坐标. ﹣sin45°﹣ tan30°
第 1 页(共 35 页)
A.斜坡 AB 的坡度是 18° C.AC=2tan18°米
B.斜坡 AB 的坡度是 tan18° D.AB= 米
6. (3 分)设抛物线 C1:y=x2 向右平移 2 个单位长度,再向下平移 3 个单位长度 得到抛物线 C2,则抛物线 C2 对应的函数解析式是( A.y=(x﹣2)2﹣3 D.y=(x+2)2+3 7. (3 分)如图,l1∥l2∥l3,直线 a,b 与 l1,l2,l3 分别相交于 A,B,C 和点 D, E,F,若 = ,DE=6,则 EF 的长是( ) )
相关文档
最新文档