2015七年级下册实数经典例题及习题
2015七年级下册实数经典例题及习题
2015七年级下册实数经典例题及习题DA、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______ 解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2【答案】选C[变式2] 已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<1.4∴|-1.4|=1.4-(2) ∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3) ∵<, ∴|-|=-(4) ∵x≤3, ∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3| =说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
七年级数学下册实数经典例题及解析,吃透考试稳上138
七年级数学下册实数经典例题及解析,吃透考试稳上138七年级数学下册:《实数》经典例题及解析,吃透考试稳上138!初一数学下册,实数如何学习,初学者应该注意哪些问题,你在计算的时候,如何学习计算平方根和算术平方根。
对于多数学生来说,刚开始学习的时候容易模糊不清,弄不清什么是算术平方根和什么是平方根,在计算带根号的式子的时候容易算错。
1、如何求一个数的算术平方根2、如何求一个数的平方根3、在什么时候求出来的是算术平方根4、在什么时候求出的是平方根5、在算数平方根计算的时候需要注意那些容易出错的地方6、在计算根式的时候有什么技巧和方法能够保证计算的准确率7、在解方程的时候需要注意哪些问题和事项8、你为什么计算的时候总是会莫名其妙的出错9、在练习的时候对开平方根和开算数平方根和开立方根,甚至是如何开高次方根的原理是什么?逻辑是什么?弄清楚之后老师再给大家举三个例子,看你能做对多少?例一属于正有理数的有:__________________ 属于整数的有:______________________ 属于负分数的有:____________________属于无理数的有:____________________例二解:(1)当x<2时,|x−2|=2−x,故答案为:2−x(2)见答案;(3)当x<−1时,原式=3x+5<2,当−1≤x≤1时,原式=−5x−3,−8≤−5x−3≤2,当x>1时,原式=−3x−5<−8,则|x−1|−4|x+1|的最大值为2.故答案为:2.【分析】(1)根据绝对值的意义可得结论;(2)零点值x=−2和x=4可将全体实数分成不重复且不遗漏的如下3种情况:x<−2、−2≤x<4和x≤4..分该三种情况找出|x+2|+|x−4|的值即可;(3)分x<−1、−1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.本题考查了含绝对值的代数式化简问题,注意读懂题目的解答,以及分类思想的运用.例三【解析】(1)根据题目中材料,可以先将所求式子分母有理化,再化简即可解答本题;(2)根据上面的规律可以比较√11−√10与√12−√11的大小.。
七年级下册数学实数练习题[2]
(完整版)七年级下册数学实数练习题(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)七年级下册数学实数练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)七年级下册数学实数练习题(word版可编辑修改)的全部内容。
七年级下册数学实数练习题。
七年级下册实数例题及习题
2015年七年级下册经典实数提高经典例题类型一.有关概念的识别1.下面几个数:0.23, 1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=± 1 D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A 正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D. 解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.- 1 B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1)|-1.4| (2) |π-3.142|(3)|-|(4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
七年级下册数学实数练习题
七年级下册数学实数练习题七年级下册数学实数练习题数学是一门让人们又爱又恨的学科。
有些人天生对数学有天赋,轻松地解决各种数学难题;而有些人则觉得数学是一门难以理解的学科,总是摸不清头脑。
不管你是哪一类人,数学都是我们学习生活中不可或缺的一部分。
在七年级下册的数学课本中,有许多关于实数的练习题。
实数是数学中的一个重要概念,它包括了所有的整数、分数和无理数。
理解实数的概念对于我们解决实际问题和进行数学推理都非常重要。
在这些练习题中,有一道题目让我印象深刻。
题目是这样的:如果一个数是有理数,那么它一定是整数吗?请用反证法证明你的结论。
这道题目要求我们用反证法来证明一个结论。
反证法是一种常用的证明方法,它通过假设结论不成立,然后推导出矛盾的结论来证明原命题的正确性。
我们首先假设一个数是有理数但不是整数,即存在一个数x,它是有理数但不是整数。
由于x是有理数,那么它可以表示为两个整数的比值,即x=a/b,其中a和b都是整数,且b不等于0。
根据我们的假设,x不是整数,那么a和b一定不是相等的。
我们可以假设a>b,这样我们就可以得到一个新的数y=a-b。
由于a和b都是整数,那么y 也是整数。
现在我们来观察数y。
由于y=a-b,那么y一定是一个正整数。
但是根据我们的假设,x=a/b,即x是一个有理数。
那么我们可以将x表示为x=a/b=a/(b*b/b)=a/(b^2/b),这样x就变成了两个整数的比值。
我们可以得到一个新的数z=a/(b^2/b),根据我们的假设,z也是一个有理数。
但是根据我们之前的观察,y是一个正整数,那么z=y/b,即z也是一个有理数。
现在我们来观察数z。
由于z=y/b,那么z一定是一个小于1的正整数。
但是根据我们的假设,z也是一个有理数。
根据有理数的定义,有理数可以表示为两个整数的比值,且分母不等于0。
但是在这里,z的分母是b,而b是一个大于1的正整数,所以z的分母等于0,这与有理数的定义相矛盾。
七年级数学实数经典例题及习题
经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C 表示的数是().A.-1 B.1-C.2-D.-2[变式2]已知实数、、在数轴上的位置如图所示:化简类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| 分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
举一反三:【变式1】化简:类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
七年级数学_实数习题精选(含答案)
七年级数学_实数习题精选(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学_实数习题精选(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学_实数习题精选(含答案)的全部内容。
实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、的算术平方根是__________.2、= _____________.3、2的平方根是__________4、实数a ,b,c 在数轴上的对应点如图所示 化简=________________。
5、若m 、n 互为相反数,则=_________。
6、若=0,则m =________,n =_________.7、若 ,则a______0。
8、的相反数是_________。
9、 =________,=_________。
10、绝对值小于π的整数有__________________________。
选择题:(本题共10小题,每小题3分,共30分)11、代数式,,,,中一定是正数的有( ).A 、1个B 、2个C 、3个D 、4个12、若有意义,则x 的取值范围是( )。
A 、x >B 、x≥C 、x >D 、x≥13、若x ,y 都是实数,且,则xy 的值( )。
A 、0B 、C 、2D 、不能确定14、下列说法中,错误的是( ).A 、4的算术平方根是2B 、的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。
A 、±4B 、4C 、-4D 、1616、已知,则的值是( )。
A 、B 、-C 、D 、17、计算的值是( )。
2015年七年级下册第六章实数专项复习题及答案下载
" *% # .
C+"
" *% # .
0" " +
根是 即 ( ) C+" # C
0+"
" *C" " +
槡 2!" "
槡 5!C" "
分析$因为! 槡 C" " "" *(#所以 ( 的平方根为 槡C" #故选 5"
+"下列各数没有平方根的是!#5#""
3")
4"$)"
Байду номын сангаас
2"$)
5"0$
分析$负数没有平方根"
3!%
4!C%
2!(
5!C(
分析$因为!C%"" *$/#所以 $/ 的平方根是C%"故选
所以 )"' 平方根
4"
最小为 +"
#+" ")$% 福 建 漳 州 中 考 " 题 % 分 估 算 槡$" 的 值
! #2#" "
####$四$"+在示综物合<!理应电学用流中题的#单电位流$做3"功#并的求功当率
试用含 /*<" 5#
/*"- E#5*%
/#5的式子表 %时 <的值"
解 因为 所以 #
$
/*<" 5#
<" */#
3!$/
七年级下册实数经典例题及习题之欧阳道创编
2015年七年级下册经典实数提高时间:2021.03.06 创作:欧阳道经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1 B、2C、3 D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1 D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1 B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是() A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________. 【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
七年级数学下册实数知识点汇总及经典练习题
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数2015年实数知识点汇总及经典练习题 一,知识点归纳1.实数的分类(1)按实数的定义分类:(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。
4.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
5.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
6.())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a二【典型例题】例1若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)例2 实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a =例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A.5-2 B. 2-5 C. 5-3 D.3-5例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为三【能力训练】1.已知52-=a ,则a 的相反数是 ; a 的倒数是 ;若在数轴上表示a ,它在原点的 侧(填“左”或“右”);且到原点的距离是 .2. 10在两个连续整数a 和b 之间, a ﹤10﹤b ,那么a 、b 的值分别是3. ,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ …,若符合前面式子的规律,则。
七年级下册实数经典例题及习题
=9,9的平方根是土3,••• A正确.
1的 立 方 根 是1,
是5的平方根,•••B、C、D都不正确.
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为 半径画弧,交数轴正半轴于点A,则点A表示的数是()
经典例题
类型一•有关概念的识别
1.010010001
,其中,
无理数的个数有()A、1B、2C、3D、4
解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3n,
是无理数
故选C
举一反三:
【变式1】下列说法中正确的是()
的平方根是±3B、1的立方根是±1 Nhomakorabea、±1
是5的平方根的相反数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015七年级下册实数经典例题及习题
2015年七年级下册经典实数提高
经典例题
类型一.有关概念的识别
1.下面几个数:0.23
,1.010010001…,,3π,
,,其中,无理数的个数有()
A、1
B、2
C、3
D、4
解析:本题主要考察对无理数概念的理解和应用,
其中,1.010010001…,3π,是无理数
故选C
举一反三:
【变式1】下列说法中正确的是()
A、的平方根是±3
B、
1的立方根是±1C、=±1
D、是5的平方根的相反数
【答案】本题主要考察平方根、算术平方根、立方根的概念,
∵=9,9的平方根是±3,∴A正确.
∵1的立方根是1,
=1,
是5的平方根,∴B、C、D都不正确.
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A、1
B、1.4
C、
D、
【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为
,由圆的定义知
|AO|=,∴A表示数为
,故选C.
【变式3】
【答案】∵π= 3.1415…,∴9<3π<10
因此3π-9>0,3π-10<0
∴
类型二.计算类型题
2.设
,则下列结论正确的是()A. B.
C. D.
解析:(估算)因为,所以选B
举一反三:
【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)
___________,
___________,
___________.
【答案】1);
.2)-3. 3)
,,【变式2】求下列各式中的
(1)(2)
(3)
【答案】(1)(2)x=4或x=-2(3)x=-4
类型三.数形结合
3. 点A在数轴上表示的数
为,点B在数轴上表示的数为
,则A,B两点的距离为______ 解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,
的对应点分别为A,B,点B 关于点A的对称点为C,则点C表示的数是().
A.-1 B.1-
C.2-
D.
-2
【答案】选C
[变式2] 已知实数、
、在数轴上的位置如图所示:
化简【答案】:
类型四.实数绝对值的应用
4.化简下列各式:
(1)
|-1.4|
(2) |π-3.142|
(3)
|-|
(4) |x-|x-3|| (x≤3)
(5) |x2+6x+10|
分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<
1.4
∴|-1.4| =1.4-
(2) ∵π=3.14159…<3.142
∴|π-3.142|=3.142-π
(3) ∵<
, ∴
|-|=
-
(4) ∵x≤3, ∴x-3≤0,
∴|x-|x-3||=|x-(3-x)|
=|2x-3|
=
说明:这里对|2x-3|的结果采取了分类讨论的方法,
我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|
∵(x+3)2≥0, ∴(x+3)2+1>0
∴|x2+6x+10|= x2+6x+10
举一反三:
【变式1】化简:
【答案】
=+
-=
类型五.实数非负性的应用
5.已知:
=0,求实数a, b的值。
分析:已知等式左边分母
不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非
负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。
解:由题意得
由(2)得a2=49 ∴a=±7
由(3)得a>-7,∴a=-7不合题意舍去。
∴只取a=7
把a=7代入(1)得b=3a=21
∴a=7, b=21为所求。
举一反三:
【变式1】已知
(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
解:∵(x-6)2++|y+2z|=0 且(x-6)2≥0, ≥0,
|y+2z|≥0,
几个非负数的和等于零,则必有每个加数都为0。
∴解这个方程组得
∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65
【变式2】已知那么a+b-c 的值为___________
【答案】初中阶段的三个非负数:
,
a=2,b=-5,c=-1; a+b-c=-2
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
解:设新正方形边长为xcm,
根据题意得x2=112+13×8
∴x2=225
∴x=±15
∵边长为正,∴x=-15不合题意舍去,
∴只取x=15(cm)
答:新的正方形边长应取15cm。
举一反三:
【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。
(4个长方形拼图时不重叠)
(1)计算中间的小正方形的面积,聪明的你能发现什么?
(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积
多24cm2,求中间小正方形的边长.
解析:(1)如图,中间小正方形的边长是:
,所以面积为
=
大正方形的面积=,
一个长方形的面积=。
所以,
答:中间的小正方形的面积
,
发现的规律是:
(或)
(2) 大正方形的边长:,
小正方形的边长:
,即
,
又大正方形的面积比小正方形的面积多24 cm2
所以有,
化简得:
将代入,得:
cm
答:中间小正方形的边长2.5 cm。
类型七.易错题
7.判断下列说法是否正确(1)的算术平方根是-3;
(2)的平方根是±15.
(3)当x=0或2时,
(4)是分数
解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故
(2)表示225的算术平方根,即=15.实际上,本
题是求15的平方根,
故的平方根
是.
(3)注意到,当x=0时,
=,显然此式无意义,
发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,
x=0.
(4)错在对实数的概念理解不清.
形如分数,但不是分数,它是无理数.
类型八.引申提高
8.(1)已知。