2018年高考数学二轮复习第三篇方法应用篇专题3.6等价转化法讲理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法六等价转化法

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”.数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程.

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法.通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题.历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧.

常见的转化方法有以下几种类型:

(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;

(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;

(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;

(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;

(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,结论适合原问题.

1.由等与不等引起的转化

函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.

例1【2018届河北省定州中学高三下学期开学】定义:如果函数在区间上存在

,满足,,则称函数是在区间上的一个

双中值函数,已知函数是区间上的双中值函数,则实数的取值范围是()

A. B. C. D.

【答案】A

【解析】,

∵函数是区间上的双中值函数,

∴区间上存在,

满足

∴方程在区间有两个不相等的解,

令,

则,

解得

∴实数的取值范围是.

故答案为.

例2【2018届湖北省宜昌市高三年级元月调研】已知函数,若函数有4个零点,则实数的取值范围是_____________.

【答案】

点睛:本题主要考查的知识点是根的存在性及根的个数判断,考查了函数零点个数的问题。本题中根据题

意可知,原问题等价于与有个交点,这个是解决问题的关键,属中档题

2.由特殊与一般引起的转化

特殊与一般转化法是在解决问题过程中将某些一般问题进行特殊化处理或将某些特殊问题进行一般化处理的方法.这类转化法一般的解题步骤是:

第一步:确立需转化的目标问题:一般将要解决的问题作为转化目标.

第二步:寻找“特殊元素”与“一般元素”:把一般问题转化为特殊问题时,寻找“特殊元素”把特殊问题转化为一般问题时,寻找“一般元素”.

第三步:确立新目标问题:根据新确立的“特殊元素”或者“一般元素”明确其与需要解决问题的关系,确立新的需要解决的问题.

第四步:解决新目标问题:在新的板块知识背景下用特定的知识解决新目标问题. 第五步:回归目标问题.

第六步:回顾反思:常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案;对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.

例3.设函数)0(22)(>+=

x x x

x f ,观察:

2

2)()(1+=

=x x

x f x f , 46))(()(12+=

=x x

x f f x f , 8

14))(()(23+=

=x x

x f f x f , 16

30))(()(34+=

=

x x

x f f x f , ……,

根据以上事实,当*∈N n 时,由归纳推理可得:=)1(n f . 【答案】

1

231

n

-⨯ 【解析】

通过条件归纳推理可知()(

)

()123122211,22211-⋅=+-=∴+-=++n n n n

n n n f x x x f ,故填1

231

n -⨯. 3.由正与反引起的转化

正难则反,利用补集求得其解,这就是补集思想,一种充分体现对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”“至少”情形的问题中.

例.若从3个海滨城市和两个内陆城市中随机选2个去旅游,那么概率是

7

10

的事件是( )

A.至少选一个海滨城市

B.恰好选一个海滨城市

C.至多选一个海滨城市

D.两个都选海滨城市 【答案】C 【解析】

从5个城市选取两个城市旅游,有10种选法,若选2个海滨城市的选法有3种,所以选2个海滨城市的概率为

103,则只多选一个海滨城市的概率为10

7103-1=,选C.例5.在报名的3名男教师和6名女教师中,选

取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120

【解析】由题意得,去掉选5名女教师情况即可:55

9

61266120.C C -=-= 4.由空间与平面引起的转化

立体几何中有些问题的解答,可以转化为平面几何问题来解决,即考虑转化成在一个平面上的问题,运用平面几何知识求解.特别是涉及旋转体的问题,通过研究轴截面,寻找几何体与几何体几何元素之间的关系. 例6【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】

92

π

【名师点睛】正方体与其外接球的组合体比较简单,因为正方体的中心就是外接球的球心,对于其他几何体的外接球,再找球心时,注意球心到各个顶点的距离相等,1.若是柱体,球心肯定在中截面上,再找底面外接圆的圆心,过圆心做底面的垂线与中截面的交点就是球心,2.若是锥体,可以先找底面外接圆的圆心,过圆心做底面的垂线,再做一条侧棱的中垂线,两条直线的交点就是球心,构造平面几何关系求半径,3.若是三棱锥,三条侧棱两两垂直时,也可补成长方体,长方体的外接球就是此三棱锥的外接球,这样做题比较简单.

例7【2017课标II ,理19】如图,四棱锥P-ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,

o 1

,90,2

AB BC AD BAD ABC ==

∠=∠= E 是PD 的中点。

相关文档
最新文档