北师大版数学八年级上优课精选练习+3.2《平面直角坐标系》(3)

合集下载

北师大版八年级上册数学 3.2 平面直角坐标系 同步练习(含解析)

北师大版八年级上册数学 3.2 平面直角坐标系 同步练习(含解析)

3.2 平面直角坐标系同步练习一.选择题1.下列各点中,位于平面直角坐标系第三象限的点是()A.(2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(﹣2,1)2.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)3.已知点P(a,1)在一、三象限的角平分线上,则a的值为()A.﹣1B.0C.1D.24.点P(a,a+2)一定不在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限5.点P到x轴的距离是3,到y轴的是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1B.1C.2D.﹣27.已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上8.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)9.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)10.已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则()A.a可取任意实数,b=5B.a=﹣1,b可取任意实数C.a≠﹣1,b=5D.a=﹣1,b≠5二.填空题11.点M(2,﹣1)到x轴的距离是.12.已知点P(2m+,m+3)在第二象限,且m2=5,则点P的坐标为.13.已知点P(a,a+1)在平面直角坐标系的第二象限内,则a的取值范围.14.点A(﹣3,﹣5),点B(1,﹣1)两点的中点坐标为.15.已知点M(3a﹣8,a﹣1),点M在第二、四象限的角平分线上,则点M的坐标为.三.解答题16.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.17.平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.18.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.参考答案1.解:∵第三象限的点的横坐标是负数,纵坐标也是负数,∴结合选项符合第三象限的点是(﹣2,﹣1).故选:B.2.解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.3.解:∵点P(a,1)在一、三象限的角平分线上,∴a的值为:1.故选:C.4.解:当a为正数的时候,a+2一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+2可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.5.解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.7.解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.8.解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.9.解:设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=1,∴D(﹣1,1),故选:A.10.解:∵AB∥x轴,∴b=5,a≠﹣1,故选:C11.解:点M(2,﹣1)到x轴的距离是|﹣1|=1.故答案为:1.12.解:∵m2=5,∴m=±,∵点P(2m+,m+3)在第二象限,∴2m+<0,m+3>0,故m=﹣,m+3=﹣+3=2,则点P(﹣,2).故答案为:(﹣,2).13.解:∵点P(a,a+1)在平面直角坐标系的第二象限内,∴,解得:﹣1<a<0.则a的取值范围是:﹣1<a<0.故答案为:﹣1<a<0.14.解:,,∴A(﹣3,﹣5),点B(1,﹣1)两点的中点坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).15.解:∵点M(3a﹣8,a﹣1)在第二、四象限的角平分线上,∴3a﹣8+a﹣1=0,解得a=,∴3a﹣8=,a﹣1=,∴点M(,).故答案为:(,)16.解:如图,描出点A(﹣3,4)、B(﹣3,3)、C(3,﹣3)、D(3,4),17.解:(1)要使点M在x轴上,a应满足2a+7=0,解得a=,所以,当a=时,点M在x轴上;(2)要使点M在第二象限,a应满足,解得,所以,当时,点M在第二象限;(3)要使点M到y轴距离是1,a应满足|a﹣1|=±1,解得a=2或a=0,所以,当a=2或a=0时,点M到y轴距离是1.18.解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(2,﹣1);(3)∵点P(m﹣1,2m)的“﹣3级关联点”为P′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),①P′位于x轴上,∴m﹣1+(﹣3)×2m=0,解得:m=,∴﹣3(m﹣1)+2m=4,∴P′(4,0).②P′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴P′(0,﹣16).综上所述,点P′的坐标为(4,0)或(0,﹣16).。

北师大版初中数学八年级上册《3.2 平面直角坐标系》同步练习卷(含答案解析

北师大版初中数学八年级上册《3.2 平面直角坐标系》同步练习卷(含答案解析

北师大新版八年级上学期《3.2 平面直角坐标系》同步练习卷一.解答题(共60小题)1.如图,在平面直角坐标系xOy中,已知点A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),m>0,1<a<3,点P(n﹣m,n)是四边形ABCD内的一点,且△PAD与△PBC的面积相等,求n﹣m的值.2.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标为,点C关于y轴的对称点C的坐标为.(2)求(1)中的△A′B′C′的面积.3.在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y 轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.4.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.5.小明在研究苏教版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图,该坐标系以O为原点,直线OA为x轴,直线OE为y轴,以正六边形OABCDE的边长为一个单位长.坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为点P 的坐标.坐标系中点的坐标的确定方法如下:(ⅰ)x轴上点M的坐标为(m,0),其中m为M点在x轴上表示的实数;(ⅱ)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;(ⅲ)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.则:(1)分别写出点A、B、C的坐标;(2)标出点M(2,3)的位置;(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式.6.根据题意,解答下列问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(﹣2,﹣1)之间的距离;(3)如图③,P1(x1,y1),P2(x1,y2)是平面直角坐标系内的两点.求证:.7.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.8.若点P(1﹣a,2a+7)到两坐标轴的距离相等,求a的值.9.如图,点A(1,0),点B(,0),点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为;(2)求x﹣y+xy的值.10.已知点A(5,y﹣1),B(x+3,﹣2)分别在第一象限、第三象限内,分别求x、y的取值范围.11.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.12.如图,在平面直角坐标系中,半径为1的圆从原点出发沿x轴正方向滚动一周,圆上一点由原点O到达点O′,圆心也从点A到达点A′.(1)点O′的坐标为,点A′的坐标为;(2)若点P是圆在滚动过程中圆心经过的某一位置,求以点P,点O,点O′为顶点的三角形的面积.13.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.14.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点A(﹣2,4),B(+,﹣)的勾股值[A],[B];(2)若点M在x轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.15.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)点M到y轴的距离为l时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?16.已知平面直角坐标系中,点P的坐标为(m﹣1,2m+3)(1)当m为何值时,点P到x轴的距离为1?(2)当m为何值时,点P到y轴的距离为2?(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.17.六边形5个顶点的坐标为A(﹣4,0),B(﹣2,﹣2),C(1,﹣2),D(4,1),E(1,4),F(﹣2,4).(1)在所给坐标系中画出这个六边形;(2)写出各边具有的平行或垂直关系.(不说理由.)18.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(﹣1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.19.如图所示,在平面直角坐标系中,AD∥BC∥x轴,AD=BC=7,且A(0,3),C(5,﹣1).(1)求B,D两点的坐标;(2)求四边形ABCD的面积.20.已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣4)点且与x轴平行的直线上.21.对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P的“k衍生点”例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2衍生点”P′的坐标为.(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.22.如图,平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.23.如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B (2,﹣1).(1)作出线段AB关于y轴对称的线段CD.(2)怎样表示线段CD上任意一点P的坐标?24.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为;(Ⅱ)若点P的“5属派生点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.25.某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式,如图所示,这是某校八(1)班教室简图,点A、B、C、D、E分别代表五个学习小组的位置,已知A点的坐标为(﹣1,3).(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标;(2)若(1)中建立的平面直角坐标系坐标原点为O,点F在DB的延长线上,直接写出∠FAB、∠AFO、∠FOD之间的等量关系,并说明原因.26.如图,在平面直角坐标系中,点A,B的坐标分别是(2,0),(0,2)(1)请在图中描出点A,B,注明字母.(2)若点C在第一象限内,且AC=BC,∠BCA<90°,点C的横纵坐标均为正数.①请在图中描出点C,并画出△ABC;②填空:△ABC的周长是,AC边上的高长为.27.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,AQ=3,求Q点的坐标.28.在平面直角坐标系中,有A(﹣1,a+2),B(2,1),C(2b,b﹣3)三点.(1)当AB∥x轴时,求a的值;(2)当点C到两坐标轴的距离相等时,求点C所在的象限位置.29.如图:在平面直角坐标系中有两点A(﹣5,0),B(0,4),求A,B两点的距离.30.已知点P(﹣3a﹣4,2+a),解答下列各题:(1)若点P在x轴上,则点P的坐标为P;(2)若Q(5,8),且PQ∥y轴,则点P的坐标为P;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2018+2018的值.31.如图,平面直角坐标系中,C(0,5)、D(a,5)(a>0),A、B在x轴上,∠1=∠D,请写出∠ACB和∠BED数量关系以及证明.32.已知点M(2a+6,a﹣2),分别根据下列条件求点M的坐标.(1)点M到x轴的距离为3;(2)点N的坐标为(6,﹣4),且直线MN与坐标轴平行.33.已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.34.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y=0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.35.已知点P(2x,3x﹣1)是平面直角坐标系内的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.36.在平面直角坐标系中(如图每格一个单位),描出下列各点A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和x轴有什么位置关系?点F和点D的坐标有什么特点?37.在平面直角坐标系中.(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围.38.已知:P(4x,x﹣3)在平面直角坐标系中,(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.39.已知点O(0,0),D(4,2),E(6,6),C(2,4)(1)在平面直角坐标系中,描出各点并依次连接各点得到四边形OCED.(2)按要求绘制下列图形,并说明发生了哪些变化?①横坐标不变,纵坐标都乘以﹣1;②纵坐标不变,横坐标都乘以﹣1.40.已知A(a﹣3,a2﹣4),求a的值及点A的坐标.(1)当点A在x轴上;(2)当点A在y轴上.41.先阅读下列一段文字,再解答问题已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.42.在平面直角坐标系中已知点A(1,0),B(0,2),点P在x轴上,且△PAB 的面积为5,求点P的坐标.43.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.44.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并写出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.45.如图,在平面直角坐标系中,已知A(3,﹣3)、B(﹣2,﹣4)、O(0,0).(1)请你依次连接A、B、O三点;(2)请你将所得图案的各个顶点的横坐标、纵坐标分别乘﹣1,依次连接这三个点.请你说说这两个图案的位置关系?46.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d (P,Q)=.47.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.48.计算:在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.49.如图,已知在平面直角坐标系中,△ABO的面积为8,OA=OB,BC=12,点P 的坐标是(a,6).(1)求△ABC三个顶点A,B,C的坐标;(2)若点P坐标为(1,6),连接PA,PB,则△PAB的面积;(3)是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标.50.如图,平面直角坐标系中,A(﹣3,﹣2)、B(﹣1,﹣4)=;(1)直接写出:S△OAB(2)延长AB交y轴于P点,求P点坐标;(3)Q点在y轴上,以A、B、O、Q为顶点的四边形面积为6,求Q点坐标.51.在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC的三个顶点恰好是正方形网格的格点.(1)写出图中所示△ABC各顶点的坐标.(2)求出此三角形的面积.52.如图所示,在平面直角坐标中,点A(﹣3,0),B(5,0),C(3,4),D (﹣2,3).求四边形ABCD的面积.53.在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)建立平面直角坐标系,描出A、B、C三点,求出三角形ABC的面积;(2)求出三角形ABO(若O是你所建立的坐标系的原点)的面积.54.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1﹣y2|;(1)已知点A(﹣1,0),B为y轴上的动点,①若点A与B的“识别距离为”2,写出满足条件的B点的坐标.②直接写出点A与点B的“识别距离”的最小值.(2)已知C点坐标为C(m,m+3),D(0,1),求点C与D的“识别距离”的最小值及相应的C点坐标.55.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.56.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积.57.若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.58.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?59.如图,在平面直角坐标系中,已知A(0,2),B(3,0),C(3,4)三点,(1)求三角形ABC的面积;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP 的面积.(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.60.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.北师大新版八年级上学期《3.2 平面直角坐标系》同步练习卷参考答案与试题解析一.解答题(共60小题)1.如图,在平面直角坐标系xOy中,已知点A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),m>0,1<a<3,点P(n﹣m,n)是四边形ABCD内的一点,且△PAD与△PBC的面积相等,求n﹣m的值.【分析】(方法一)过点P作EF平行于x轴,交AD于点E、BC于点F,由点A、B、C、D、P的坐标可得出AB∥x轴、AD∥y轴、E(1,n),进而可得出AD、PE的长度,根据三角形的面积公式可求出S△PAD=(a﹣1)(n﹣m﹣1)、S△PBC=PF,由点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可得出点F的坐标以及PF的长度,再根据△PAD与△PBC的面积相等可得出关于n﹣m 的一元一次方程,解之即可得出结论.(方法二)根据点A、C的坐标利用待定系数法可求出直线AC的解析式,代入点P的坐标可得出点A、P、C共线,延长AB到点E,作CE丄AE于点E,延长AD到点F,作CF丄AF于点F,根据点A、B、C、D的坐标可得出CF=CE、AD=AB,进而可得出四边形AECF是正方形,由AD=AB结合点P在正方形对角线上可得出S=S△PAB,结合△PAD与△PBC的面积相等可得出S△PAB=S△PBC,△PAD再由△PAB与△PBC等高可得出AP=CP,结合点A、C的坐标即可找出点P的横坐标,此题得解.【解答】解:(方法一)过点P作EF平行于x轴,交AD于点E、交BC于点F,如图所示.∵A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),P(n﹣m,n),∴AB∥x轴,AD∥y轴,E(1,n),∴PE=n﹣m﹣1,AD=a﹣1,PE⊥AD,∴S=AD•PE=(a﹣1)(n﹣m﹣1).△PAD设△PFC的高为h1,△PFB的高为h2,S△PBC=S△PFC+S△PFB=PF•h1+PF•h2=PF•(h1+h2).∵h1+h2=m+3﹣(m+1)=2,=PF•(h1+h2)=PF.∴S△PBC设直线BC的解析式为y=kx+b,将B(a,m+1)、C(3,m+3)代入y=kx+b,,解得:,∴直线BC的解析式为y=x+m+3﹣.当y=x+m+3﹣=n时,x=+3,∴点F(+3,n),∴PF=+3﹣(n﹣m)=.∵S=S△PBC,△PAD∴(a﹣1)(n﹣m﹣1)=.∵1<a<3,∴a﹣1≠0,∴﹣(n﹣m﹣3)=n﹣m﹣1,解得:n﹣m=2.故答案为:2.(方法二)设直线AC的解析式为y=kx+b,将点A(1,m+1)、C(3,m+3)代入y=kx+b,,解得:,∴直线AC的解析式为y=x+m.当x=n﹣m时,y=x+m=n,∴点P(n﹣m,n)在直线AC上,即点A、P、C共线.延长AB到点E,作CE丄AE于点E,延长AD到点F,作CF丄AF于点F,如图所示.∵点A(1,m+1),B(a,m+1),C(3,m+3),D(1,m+a),∴AD∥y轴,AB∥x轴,CF=CE=2,AD=AB,∴四边形AECF是正方形,=S△PAB.∴S△PAD∵△PAD与△PBC的面积相等,∴S=S△PBC,△PAB∴AP=CP,∴x P=n﹣m==2.故答案为:2.【点评】本题考查了坐标与图形的性质、三角形的面积、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(方法一)根据△PAD与△PBC的面积相等找出关于n﹣m的一元一次方程;(方法二)利用正方形的性质及三角形的面积公式找出点P为线段AC的中点.2.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.【分析】(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.【解答】解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.△A′B′C′【点评】本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.3.在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y 轴的交点为D,则=;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为直角三角形.【分析】(1)由A点的坐标为(1,2),而点A关于y轴的对称点为点B,点A 关于原点O的对称点为点C,根据关于原点对称的坐标特点得到B点坐标为(﹣1,2),C点坐标为(﹣1,﹣2),则D点坐标为(0,2),利用三角形面=OD•AD=×2×1=1,S△ABC=BC•AB=×4×2=4,即可得到积公式有S△ADO=;(2)点A的坐标为(a,b)(ab≠0),则B点坐标为(﹣a,b),C点坐标为(﹣a,﹣b),则AB∥x轴,BC∥y轴,AB=2|a|,BC=2|b|,得到△ABC的形状为直角三角形.【解答】解:(1)∵A点的坐标为(1,2),点A关于y轴的对称点为点B,点A 关于原点O的对称点为点C,∴B点坐标为(﹣1,2),C点坐标为(﹣1,﹣2),连AB,BC,AC,AB交y轴于D点,如图,D点坐标为(0,2),∴S=OD•AD=×2×1=1,S△ABC=BC•AB=×4×2=4,△ADO∴=;(2)点A的坐标为(a,b)(ab≠0),则B点坐标为(﹣a,b),C点坐标为(﹣a,﹣b),AB∥x轴,BC∥y轴,AB=2|a|,BC=2|b|,∴△ABC的形状为直角三角形.故答案为:;直角三角形.【点评】本题考查了关于原点对称的坐标特点:点P(a,b)关于原点的对称点P′的坐标为(﹣a,﹣b).也考查了关于x轴、y轴对称的坐标特点以及三角形的面积公式.4.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(0,1),A3(1,0),A12(6,0);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.【分析】(1)在平面直角坐标系中可以直接找出答案;(2)根据求出的各点坐标,得出规律;(3)点A100中的n正好是4的倍数,根据第二问的答案可以分别得出点A100和A101的坐标,所以可以得到蚂蚁从点A100到A101的移动方向.【解答】解:(1)A1(0,1),A3(1,0),A12(6,0);(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0);(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.【点评】本题主要考查的是在平面直角坐标系中确定点的坐标和点的坐标的规律性.5.小明在研究苏教版《有趣的坐标系》后,得到启发,针对正六边形OABCDE,自己设计了一个坐标系如图,该坐标系以O为原点,直线OA为x轴,直线OE为y轴,以正六边形OABCDE的边长为一个单位长.坐标系中的任意一点P用一有序实数对(a,b)来表示,我们称这个有序实数对(a,b)为点P 的坐标.坐标系中点的坐标的确定方法如下:(ⅰ)x轴上点M的坐标为(m,0),其中m为M点在x轴上表示的实数;(ⅱ)y轴上点N的坐标为(0,n),其中n为N点在y轴上表示的实数;(ⅲ)不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.则:(1)分别写出点A、B、C的坐标;(2)标出点M(2,3)的位置;(3)若点K(x,y)为射线OD上任一点,求x与y所满足的关系式.【分析】本题要充分考虑题中所给的提示,注意“不在x、y轴上的点Q的坐标为(a,b),其中a为过点Q且与y轴平行的直线与x轴的交点在x轴上表示的实数,b为过点Q且与x轴平行的直线与y轴的交点在y轴上表示的实数.”这和我们以往所认识平面直角坐标系不同,因此我们要理解好题意,由题意可得A、B、C坐标分别为A(1,0),B(2,1),C(2,2);再去标注M位置即可.【解答】解:(1)由图示可知各点的坐标为:A(1,0),B(2,1),C(2,2);(2)如图:(3)设射线OD上点K的横、纵坐标满足的关系式为y=kx;由图知:D(1,2),则:k=2,即x与y所满足的关系式为:y=2x(x≥0).【点评】本题考查了对平面直角坐标系的理解,在做题过程中要开放思维,弄清题意.6.根据题意,解答下列问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(﹣2,﹣1)之间的距离;(3)如图③,P1(x1,y1),P2(x1,y2)是平面直角坐标系内的两点.求证:.【分析】(1)根据直线y=2x+4与x轴、y轴交点的特点:与x轴相交时,y=0,求得x的值;与y轴相交时,x=0,求得y的值;(2)、(3)通过构造直角三角形的方法,解得MN与P1P2的值.【解答】(1)解:由y=0,得x=﹣2,所以点A的坐标为(﹣2,0),故OA=2.同理可得OB=4.所以在Rt△AOB中,AB=;(2)解:作MP⊥x轴,NP⊥y轴,MP交NP于点P.则MP⊥NP,P点坐标为(3,﹣1).故PM=4﹣(﹣1)=5,PN=3﹣(﹣2)=5.所以在Rt△MPN中,MN=;(注:若直接运用了(3)的结论不得分.)(3)证明:作P2P⊥x轴,P1P⊥y轴,P2P交P1P于点P.则P2P⊥P1P,点P的坐标为(x2,y1).故P2P=y2﹣y1,P1P=x2﹣x1.(不加绝对值符号此处不扣分)所以在Rt△P2P1P中,.【点评】本题主要考查一次函数图象与X轴、Y轴交点的特点与解直角三角形,同时考查了数形结合思想,综合性很强,值得学生去思考.7.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.【分析】(1)直接利用坐标系得出各点坐标即可;(2)利用关于坐标轴对称点的性质分别得出答案;(3)直接利用勾股定理得出答案.【解答】解:(1)A(﹣4,3),C(﹣2,5),B(3,0);(2)如图所示:点A′的坐标为:(﹣4,3),B′的坐标为:(﹣3,0),点C′的坐标为:(2,﹣5);(3)线段BC的长为:=5.【点评】此题主要考查了关于坐标轴对称点的性质以及勾股定理,正确得出对应点位置是解题关键.8.若点P(1﹣a,2a+7)到两坐标轴的距离相等,求a的值.【分析】根据到坐标轴的距离相等列出绝对值方程,然后求解即可.【解答】解:∵点P(1﹣a,2a+7)到两坐标轴的距离相等,∴|1﹣a|=|2a+7|,∴1﹣a=2a+7或1﹣a=﹣(2a+7),解得a=﹣2或a=﹣8.【点评】本题考查了点的坐标,是基础题,难点在于列出绝对值方程并求解.9.如图,点A(1,0),点B(,0),点P(x,y),OC=AB,OD=OB.(1)则点C的坐标为(﹣1,0);(2)求x﹣y+xy的值.【分析】(1)由A、B坐标得出OA=1、OB=、AB=﹣1,根据OC=AB、OD=OB 得出OC=﹣1,OD=,从而可得点C坐标;(2)由(1)知点P的坐标,即可知x、y的值,代入计算可得.【解答】解:(1)∵点A(1,0),点B(,0),∴OA=1、OB=,则AB=﹣1,∵OC=AB,OD=OB,∴OC=﹣1,OD=,则点C坐标为(﹣1,0),故答案为:(﹣1,0).(2)由(1)知点P坐标为(﹣1,),则x=﹣1、y=,∴原式=﹣1﹣+(﹣1)=﹣1+2﹣=1﹣.【点评】本题主要考查坐标与图形的性质,解题的关键是掌握点的坐标的定义及两点间的距离公式.10.已知点A(5,y﹣1),B(x+3,﹣2)分别在第一象限、第三象限内,分别求x、y的取值范围.【分析】根据点在象限的特点,建立不等式即可得出结论.【解答】解:∵点A(5,y﹣1),在第一象限,∴y﹣1>0,∴y>1,点B(x+3,﹣2)在第三象限内,∴x+3<0,∴x<﹣3.【点评】此题主要考查了点在各个象限的特点,建立不等式是解本题的关键.11.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标﹣横坐标=3得m的值,代入点P的坐标即可求解;(3)让纵坐标为﹣5求得m的值,代入点P的坐标即可求解.【解答】解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣5,解得m=﹣4.所以P点的坐标为(﹣4,﹣5).【点评】本题考查了点的坐标,用到的知识点为:y轴上的点的横坐标为0;平行于x轴的直线上的点的纵坐标相等.12.如图,在平面直角坐标系中,半径为1的圆从原点出发沿x轴正方向滚动一周,圆上一点由原点O到达点O′,圆心也从点A到达点A′.(1)点O′的坐标为(2π,0),点A′的坐标为(2π,1);(2)若点P是圆在滚动过程中圆心经过的某一位置,求以点P,点O,点O′为顶点的三角形的面积.【分析】(1)由半径为1的圆从原点出发沿x轴正方向滚动一周时⊙O滚动的距离OO′=AA′=2π,据此可得;(2)根据三角形的面积公式计算可得.【解答】解:(1)∵半径为1的圆从原点出发沿x轴正方向滚动一周,∴⊙O滚动的距离OO′=AA′=2π,则点O′的坐标为(2π,0),点A′的坐标为(2π,1),故答案为:(2π,0)、(2π,1);=×2π×1=π.(2)S△POO′【点评】本题主要考查坐标与图形性质,解题的关键是根据题意得出圆滚动一周时所经过的距离.13.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;。

北师大新版八年级上册《3.2 平面直角坐标系》 同步练习

北师大新版八年级上册《3.2 平面直角坐标系》 同步练习

3.2 平面直角坐标系一、选择题(共8小题,每小题3分,满分24分)1.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是()A.(﹣3,4)B.(﹣4,3)C.(3,4)D.(4,3)2.已知在直角坐标系中有点P(x、y),且x、y满足条件|x|=5,|x﹣y|=8,则这样的点P 有()A.1个B.2个C.4个D.8个3.第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,则点P的坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)4.已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为()A.(1,2)B.(﹣2,﹣1)C.(2,﹣1)D.(2,1)5.在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限6.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)7.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(﹣2,﹣2)C.(﹣2,2)D.(2,﹣2)8.在第二象限内,到x轴距离为3,到y轴距离为2的点P坐标为()A.(3,2)B.(2,3)C.(﹣3,2)D.(﹣2,3)二、填空题(共5小题,每小题3分,满分15分)9.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是.10.在x轴上,若点P与点Q(﹣2,0)的距离是5,则点P的坐标是.11.平面上有一点P(a,b),点P到x轴、y轴的距离分别为3、4,且ab<0,则点P的坐标是.12.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.13.若点M(a﹣3,a+4)在y轴上,则M点的坐标为.三、解答题(共1小题,满分0分)14.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点P到x轴、y轴的距离相等;(4)点Q的坐标为(1,5),直线PQ∥y轴.参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是()A.(﹣3,4)B.(﹣4,3)C.(3,4)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选:C.2.已知在直角坐标系中有点P(x、y),且x、y满足条件|x|=5,|x﹣y|=8,则这样的点P 有()A.1个B.2个C.4个D.8个【分析】根据题意,由|x|=5可得,x=±5,又由|x﹣y|=8,即x﹣y=±8,代入x的值,解可得y的值,进而可得解的组数,即可得答案.【解答】解:根据题意,由|x|=5可得,x=±5,又由|x﹣y|=8,即x﹣y=±8,当x=5时,可得y=13或﹣3,当x=﹣5时,可得y=﹣13或3,即这样的点P有4个,分别为(5,﹣3),(5,13),(﹣5,3),(﹣5,﹣13);故选:C.3.第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,则点P的坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答即可.【解答】解:∵第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,∴点P的横坐标为﹣3,纵坐标为2,∴点P的坐标为(﹣3,2).故选:C.4.已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为()A.(1,2)B.(﹣2,﹣1)C.(2,﹣1)D.(2,1)【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P可能的横坐标与纵坐标,即可得解.【解答】解:∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2或﹣2,纵坐标为1或﹣1,∴点P的坐标不可能为(1,2).故选:A.5.在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣5,2)在第二象限.故选:B.6.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.7.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(﹣2,﹣2)C.(﹣2,2)D.(2,﹣2)【分析】根据正方形的性质即可得这个正方形不在坐标轴上的顶点的坐标.【解答】解:因为正方形的面积为4,所以正方形的边长为2,因为正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,这个正方形不在坐标轴上的顶点的坐标是(﹣2,﹣2).故选:B.8.在第二象限内,到x轴距离为3,到y轴距离为2的点P坐标为()A.(3,2)B.(2,3)C.(﹣3,2)D.(﹣2,3)【分析】根据点到坐标轴的距离,可得x、y的值,再根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3,∵点P在第二象限,∴P(﹣2,3),故选:D.二、填空题(共5小题,每小题3分,满分15分)9.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是(0,﹣3)或(0,9).【分析】分点M在点N的上方与下方两种情况讨论求解即可.【解答】解:①当点M在点N的上方时,3+6=9,此时点M的坐标为(0,9),②点M在点N的下方时,3﹣6=﹣3,此时,点M的坐标为(0,﹣3),综上所述,点M的坐标为(0,﹣3)或(0,9).故答案为:(0,﹣3)或(0,9).10.在x轴上,若点P与点Q(﹣2,0)的距离是5,则点P的坐标是(﹣7,0)或(3,0).【分析】易得点P的纵坐标为0,横坐标为﹣2左边5个单位的数或﹣2右边5个单位的数,即可得解.【解答】解:∵点P在x轴上,∴点P的纵坐标为0,∵点P与点Q(﹣2,0)的距离是5,∴点P的横坐标为﹣2﹣5=﹣7或﹣2+5=3,∴点P的坐标是(﹣7,0)或(3,0).故答案填:(﹣7,0)或(3,0).11.平面上有一点P(a,b),点P到x轴、y轴的距离分别为3、4,且ab<0,则点P的坐标是(﹣4,3)或(4,﹣3).【分析】根据异号得负判断出x、y异号,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解即可.【解答】解:∵ab<0,∴a、b异号,∵点P到x轴、y轴的距离分别为3、4,∴x=﹣4,y=3或x=4,y=﹣3,∴点P的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).12.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为(2,0).【分析】根据x轴上点的坐标特点解答即可.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+1=0,解得,m=﹣1,∴横坐标m+3=2,则点P的坐标是(2,0).13.若点M(a﹣3,a+4)在y轴上,则M点的坐标为(0,7).【分析】根据y轴上点的横坐标为0列方程求出a的值,然后求解即可.【解答】解:∵点M(a﹣3,a+4)在y轴上,∴a﹣3=0,解得:a=3,所以,a+4=7,所以,点M的坐标为(0,7).故答案为(0,7).三、解答题(共1小题,满分0分)14.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点P到x轴、y轴的距离相等;(4)点Q的坐标为(1,5),直线PQ∥y轴.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案;(4)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点P(a﹣2,2a+8)在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4);(4)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14).。

北师大版八年级数学上册 平面直角坐标系 第3课时

北师大版八年级数学上册  平面直角坐标系 第3课时

3.2平面直角坐标系 (第3课时) 课后练习一、选择题1.在长方形OABC 中,3,2,AB BC ==小明同学建立了如图所示的平面直角坐标系,则点B 的坐标是( )A.(3,2)B.(2,3)C.(-3,2)D.(-2,3)2.在方格纸上有A,B 两点,若以B 点为坐标原点建立平面直角坐标系,则点A 的坐标为(2,5),若以A 点为坐标原点建立平面直角坐标系,则B 点的坐标为( )A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)3.如图是保家中学八(3)班课间操时小明、小红、小华三人相对位置的示意图,如果用(2,3)表示小明的位置,(0,2)表示小华的位置,那么小红的位置可表示为( )A.(-1,-1)B.(0,0)C.(1,0)D.(1,1)4.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A.(3,-4)B.(4,-3)C.(-4,3)D.(-3,4)5.在平面直角坐标系中,ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2),则顶点的坐标为( )A.(7,2)B.(5,4)C.(1,2)D.(2,1)6.若以B 点为原点,建立直角坐标系,A 点坐标为(3,4),则以A 点为原点,建立直角坐标系,B 点坐标为( )A.(-3,-4)B.(-3,4)C.(3,-4)D.(3,4)7.如果直角坐标系下两个点的横坐标相同,那么过这两点的直线( )A.平行于x 轴B.平行于y 轴C.经过原点D.以上都不对8.点M 在x 轴的上侧,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A.(5,3)B.(-5,3)或(5,3)C.(3,5)D. (-3,5)或(3,5)9.点P (-1,3)关于原点对称的点的坐标是( )A .(-1,-3)B .(1,-3)C .(1,3)D .(-3,1)10.在直角坐标系中()2,0A 、()3,4B --、()0,0O ,则△AOB 的面积为( )A.4B.6C.8D.3二、填空题11.已知点A (a-1,a+1)在x 轴上,则a 等于12.点P 在y 轴上,且3OP =,则点P 的坐标为13.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为14.已知点()2,24A m m+-在x轴上,则点A的坐标是15.如图,在平面直角坐标系中:(1)描出点A(-3,2)和点B(1,2),画直线AB,那么直线AB与x轴有怎样的位置关系____;(2)描出点M(2,3)和点N(2,-1),画直线MN,那么直线MN与y轴有怎样的位置关系____;(3)想一想:如果一些点在平行于x轴的直线上,则这些点的____坐标相同;如果一些点在平行于y轴的直线上,则这些点的____坐标相同.三、解答题16.某地为了城市发展,在现有的四个城市A、B、C、D附近新建机场E.试建立适当的直角坐标系,写出点A、B、C、D、E的坐标.17.等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标。

北师大版八年级数学上册第三章 3.2.3平面直角坐标系(三) 同步练习题( 教师版)

北师大版八年级数学上册第三章 3.2.3平面直角坐标系(三) 同步练习题( 教师版)

北师大版八年级数学上册第三章3.2.3平面直角坐标系(三) 同步练习题一、选择题1.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是(A)A.13B. 5 C.13 D.52.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,-1),表示点B的坐标为(3,2),则表示其他位置的点的坐标正确的是(B)A.C(-1,0) B.D(-3,1)C.E(-2,-5) D.F(5,2)3.若以B点为原点,建立平面直角坐标系,A点坐标为(3,4),则以A点为原点,建立平面直角坐标系,B点坐标为(A)A.(-3,-4) B.(-3,4)C.(3,-4) D.(3,4)4.张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,其他四个景点大致用坐标表示肯定错误的是(C)A.熊猫馆(1,4) B.猴山(6,0)C.百鸟园(5,-3) D.驼峰(3,-2)5.已知等腰△ABC,建立适当的平面直角坐标系后,其三个顶点的坐标分别为A(m,0),B(m+4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是(A)A.AC=BC≠AB B.AB=AC≠BCC.AB=BC≠AC D.AB=AC=BC6.如图,将正六边形ABCDEF放入平面直角坐标系后,若点A,B,E的坐标分别为(a,b),(3,1),(-a,b),则点D的坐标为(D)A.(1,3) B.(3,-1)C.(-1,-3) D.(-3,1)二、填空题7.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是(2,-1).8.如图,正方形网格ABCD是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC∥x轴,若点E的坐标为(-4,2),点F的横坐标为5,则点H的坐标为(8,-1).9.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3),B(4,1),这两个标志点到“宝藏”点的距离都是2,则“宝藏”点的坐标是(2,1)或(4,3).10.五子棋是一种两人对弈的棋类游戏,规则是:一方执黑子,一方执白子,由黑方先行,白方后行,在正方形棋盘中,双方交替下子,每次只能下一子,下在棋盘横线与竖线的交叉点上,最先在棋盘横向、竖向或斜向形成连续的相同颜色五个棋子的一方为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图,观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为(5,1);此时轮到黑方下子,记其此步所下黑子为C,为了保证不让白方在两步之内(含两步)获胜,黑子C的坐标应该为(3,7)或(7,3).三、解答题11.建立两个适当的平面直角坐标系,分别写出边长为4的正方形的顶点的坐标.解:答案不唯一,如图1,以正方形两邻边所在的直线为坐标轴,建立平面直角坐标系,则A(4,0),B(4,4),C(0,4),D(0,0);如图2,以正方形的两条对称轴为坐标轴,建立平面直角坐标系,则A(2,-2),B(2,2),C(-2,2),D(-2,-2).12.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一平面直角坐标系中,点A 的坐标为(9,0).(1)请你直接在图中画出该平面直角坐标系;。

北师大版-数学-八年级上册-3.2 平面直角坐标系 练习

北师大版-数学-八年级上册-3.2 平面直角坐标系 练习

平面直角坐标系1.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是( )A.(3,-4) B.(4,-3)C.(-4,3) D.(-3,4)2.线段AB∥x轴且AB=3,若点A的坐标为(-2,3),则点B的坐标为( ) A.(1,3) B.(-5,3)C.(1,3)或(-5,3) D.(3,-5)3.如果m是任意实数,则点P(m-4,m+1)一定不在( )A.第一象限 B.第二象限C.第三象限 D.第四象限4.如图,在阴影区域的点是( )A.(1,2) B.(-1,2)C.(-1,-2) D.(1,-2)5.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=( )A.-1 B.1 C.5 D.-56.若点P(a+2,a)在y轴上,点P′(b,b-3)在x轴上,则-a2+b2=______.7.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)8.已知A(a-3,a2-4),求a的值及点A的坐标.(1)当点A在x轴上;(2)当点A在y轴上.9.已知在平面直角坐标系中,△ABC的顶点A(4,0),B(0,4),点C在x轴上,且BC=5.(1)作出符合条件的△ABC;(2)求出点C的坐标及△ABC的面积.10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,点A2 018的坐标为______________.参考答案1. C2. C3. D4. B5. A【解析】由题意,得x=2,y=-3,故x+y=2+(-3)=-1.6. 5【解析】由题意,得a+2=0,b-3=0,解得a=-2,b=3.-a2+b2=-4+9=5.7.解:(1)A(-2,1),B(-3,-2),C(3,-2),D(1,2).(2)S 四边形ABCD =3×3+2×12×1×3+12×2×4=16. 8.解:(1)∵点A 在x 轴上,∴a2-4=0,∴a =±2,∴a -3=-1或-5,∴点A 的坐标为(-1,0)或(-5,0).(2)∵点A 在y 轴上,∴a -3=0,∴a =3,∴a2-4=5,∴点A 的坐标为(0,5).9.解:(1)以点B 为圆心,5为半径画弧,交x 轴于C1和C2,△ABC1个△ABC2即为所求,如答图所示.答图(2)∵OB =4,BC =5,∴OC =BC2-OB2=3,∴点C 的坐标为(-3,0)或(3,0).当点C 的坐标为(-3,0),S △ABC =12×4×(4+3)=14. 当点C 的坐标为(3,0),S △ABC =12×4×(4-3)=2. 10.(1,-1009)。

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.在平面直角坐标系中,点P(-2,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.在下列所给出坐标的点中,在第三象限的是()A.B.C.D.3.如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的坐标是()A.(﹣3,0) B.(﹣2,3) C.(﹣3,2) D.(﹣3,﹣2)4.若点B(m+1,3m﹣5)到x轴的距离与到y轴的距离相等,则点B的坐标是()A.(4,4)或(2,2) B.(4,4)或(2,﹣2) C.(2,﹣2) D.(4,4)5.如图,是某学校的示意图,若综合楼的位置在点,食堂的位置在点,则教学楼的位置在点()A.B.C.D.6.已知点M向左平移3个单位长度后的坐标为,则点M原来的坐标是A.B.C.D.7.如图,四边形是矩形,A,B两点的坐标分别是(8,0),(0,6),点C在第一象限,则点C的坐标为()A.B.C.D.8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,0) B.(2020,1) C.(2020,2) D.(2020,505)二、填空题:(本题共5小题,每小题3分,共15分.)9.若点在y轴上,则点M的坐标为.10.已知点和,且直线轴,则m的值是.11.平面直角坐标系中,点在第二象限,到轴的距离是2,到轴的距离是4,则点的坐标为;12.如图,在网格中建立平面直角坐标系,使点的坐标为,点的坐标为,则点的坐标为.13.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为.三、解答题:(本题共5题,共45分)14.如图所示的是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若海洋极地公园的坐标为(4,0),大唐芙蓉园的坐标为(2,-1),请建立平面直角坐标系,并用坐标表示其他景点的位置.15.在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)(1)请在图中建立直角坐标系并确定点C的位置;(2)以点B为参照点,请用方位角和实际距离表示点C的位置.16.在平面直角坐标系中,已知点,解答下列各题:(1)若点P在x轴上,求点P的坐标;(2)若,且轴,求点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.17.图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形?18.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;(2)将△ABC先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△A1B1C1;(3)连接AB1,B1C,△AB1C的面积= .参考答案:1.B 2.C 3.C 4.B 5.A 6.B 7.D 8.A9.(0,3)10.-111.(-4,2)12.(-3,1)13.(﹣2,1)14.解:如图所示:大圆塔景区(0,0),大明宫国家遗址公园(1,5),陕西西安博物馆(-1,2)15.(1)解:根据A(-3,1),B(-2,-3)画出直角坐标系描出点C(3,2),如图所示:(2)解:由勾股定理可知,BC=5∴点C在点B北偏东45°方向上,距离点B的5km处.16.(1)解:已知点,点P在x轴上,则点P的纵坐标为0 ∴,解得,a=-2∴.(2)解:,且轴,则点的横坐标相等∴,解得,a=-3∴(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等∴点P的横坐标与纵坐标的和为零∴,解得,a=-1把代入17.(1)解:根据题意建立的平面直角坐标系如图所示学校(1,3),邮局(0,-1);(2)解:他经过:商店,公园,汽车站,水果店,学校,游乐场,邮局;(3)解:得到的图形像一艘帆船18.(1)(2,7);(6,5)(2)解:△A1B1C1如图所示;(3)21。

最新八年级数学上册第三章位置与坐标3.2平面直角坐标系第3课时课时训练题新版北师大版(含答案)

最新八年级数学上册第三章位置与坐标3.2平面直角坐标系第3课时课时训练题新版北师大版(含答案)

3.2 平面直角坐标系( 3)基础导练1、已知点A的坐标是(- 2,3 ), 则它在第象限、2、已知点P的坐标是( 4, -6), 则这个点到x轴的距离是、3、当x=时, 点M(2x-4,6 )在y轴上、4、当x=时, 点A(4, x+2)与B(- 3,6 -3x)的连线平行于x 轴、5、若点A(a-1, a)在第二象限 , 则点B(a,1 -a)在第象限;点( 1, -2)对于x轴的对称点的坐标是, 对于 y 轴的对称点的坐标是,对于原点的对称点的坐标是、6、已知点P(x, y)知足x 22、y 20 ,则点P的坐标是7、△ABC的三个极点的坐标为A(-5,2)、B(1,2)、C(3,-1),则△ABC的面积为、8、若某点向右平移 2 个单位 , 再向下平移 3 个单位后 , 所得的点是坐标原点 , 则这点的坐标是、9、直角梯形ABCD在直角坐标系中的地点如图, 若AD=5, A点的坐标为(- 2,7 ), 则D点的坐标为、yA DB OC x10、已知等边△ABC,A点(0,0 )B点(3,0 ), 求出C点坐标、能力提高11、在直角坐标系中 , 点A(3,1 )和点B(3,3 ), 则线段AB的中点坐标是()A、( 2,3 )B、( 3,2 )C、( 6,2 )D、(6,4 )12、若使△ABC的三个极点在直角坐标系中的纵坐标保持不变, 横坐标增大 3 个单位 , 则△ABC的平移方向是()A、向左平移 3 个单位B、向右平移 3 个单位C、向上平移 3 个单位D、向下平移 3 个单位13、已知点A(2x-4, x+2)在y轴上 , 则x的值等于()A、2B、- 2C、2 或- 2D、非上述答案14、已知如下图 , 梯形ABCD,AD∥BC, AB=DC=4,∠B=∠ C=60o、AD =6, 成立适合的直角坐标系, 写出各极点的坐标、A DBC15、如下图 , 已知A点坐标为(- 3, -4), B点坐标在x轴正半轴上 , OB =O A,求(1)△ABC的面积;( 2)原点到AB的距离、yBxOA16、已知点A(k-3, k-7)在二、四象限的角均分线上, 且点A对于x 轴、 y 轴和原点的对称点分别为B, C和 D、(1)在同一坐标系中分别描出四点;(2)判断四边形ABCD的形状、17、如下图 , 在平面直角坐标系中点A(- 3,0 ), B(5,0 ), C(3,4 ), D (- 2,3 ), 求四边形ABCD的面积、yCDA OB x18.已知: A(2,1), B(1,3)在 x 轴上找一点 P 使得 PA+PB的值最小, 最小值是多少?参照答案1、二 2 、6 3 、2 4 、1 5 、一;( 1,2 );(- 1, -2);(-1,2) 6 、(2, -2)7 、9 8 、(- 2,3 ) 9 、(3,7 ) 10 、(3 , 3 3 )或( 3 , 3 3 )2 2 2 218. P(7 ,0 );最小值是17 、4。

北师大版初中数学八年级(上)3-2 平面直角坐标系(第3课时)(学案+练习)

北师大版初中数学八年级(上)3-2 平面直角坐标系(第3课时)(学案+练习)

2平面直角坐标系(第3课时)学习目标1.能结合所给的图形特点,建立适当的坐标系,写出点的坐标;(重点)2.能根据一些特殊点的坐标复原坐标系;(难点)3.经历建立坐标系描述图形的过程,进一步发展数形结合意识.自主学习学习任务建立平面直角坐标系,描述图形1.如图1所示,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标.图22.在上面的问题中,如图2所示,你还可以怎样建立直角坐标系?与同伴进行交流.3.对比不同的建立坐标系的方法,你更喜欢哪一种?谈谈你的看法.合作探究1.在一次“寻宝”游戏中,寻宝人已经找到了坐标为A(3,2)和B(3,-2)两个标志点(图3),并且知道藏宝地点的坐标为(4,4).如何确定直角坐标系找到“宝藏”?2.例如图4所示,对于边长为4的正△ABC,建立适当的直角坐标系,写出各个顶点的坐标.当堂达标1.如图5所示的是A,B,C,D四位同学的家所在位置,若以A同学家的位置为坐标原点建立平面直角坐标系,那么C同学家的位置的坐标为(1,5),则B,D两同学家的坐标分别为()A.(2,3),(3,2)B.(3,2),(2,3)C.(2,3),(-3,图52.如图6所示,若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点.3.如图7所示,若点E的坐标为(-2,-1),则点G的坐标为.4.在长方形ABCD中,点A的坐标为(1,3),点B的坐标为(1,-2),点C的坐标为(-4,-2),则点D的坐标是.5.如图8所示,士所在位置的坐标为(-1,-2),相所在位置的坐标为(2,-2),那么,炮所在位置的坐标为.6.如图9所示,正方形ABCD的边长为10,连接各边的中点E,F,G,H得到正方形EFGH,请你建立适当的坐标系,分别写出点A,B,C,D,E,F,G,H的坐标.图97.某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,如图10所示,试建立适当的直角坐标系,并写出各点的坐标.图10课后提升1.在直角坐标系中,用线段顺次连接点(-2,0),(0,3),(3,3),(0,4),(-2,0).(1)这是一个什么图形?(2)求出它的面积;(3)求出它的周长.图112.设点P的坐标(x,y),根据下列条件判定点P在平面直角坐标系内的位置:(1)xy=0;(2)xy>0;(3)x+y=0.反思感悟我的收获:我的易错点:参考答案当堂达标1.D2.(-2,1)3.(1,2)4.(-4,3)5.(-3,1)6.解:答案不唯一,如:以EG所在的直线为x轴,以FH所在的直线为y轴,建立如图12所示的平面直角坐标系,则A(-5,-5),B(5,-5),C(5,5),D(-5,5),E(-5,0),F(0,-5),G(5,0),H(0,5).图127.解:答案不唯一,可以以A为坐标原点,建立平面直角坐标系,图略.课后提升1.解:(1)这是一个四边形,如图13所示.(2)面积是1×2÷2+1×3÷2=2.5.(3)+图132.解:(1)因为xy=0,所以x=0或y=0,所以P在坐标轴上.(2)因为xy>0,所以x>0,y>0或x<0,y<0,所以P在第一、三象限.(3)因为x+y=0,所以x=-y,所以P在第二、四象限夹角的平分线上.。

北师大版八年级数学上平面直角坐标系(3.2)练习题.docx

北师大版八年级数学上平面直角坐标系(3.2)练习题.docx

初中数学试卷 鼎尚图文**整理制作平面直角坐标系(3.2)练习题一.选择填空题:1.在平面直角坐标系中,已知点P (2,-3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)3.如果点P (5,y -1)在第四象限,则y 的取值范围是 .4.已知点A (a -1,a +1)在x 轴上,则a = .5.若点(a , -b )在第二象限,则点),(2b a -在第 象限,点(2a-5, 3-4b )在第 象限.6.如果点P (x , y )在x 轴上,则 ;如果点P (x , y )在y 轴上,则 .7. 点P (x , y )到x 轴的距离为 ,到y 轴的距离为 .8.如图,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标 .9.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8),以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .10.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 _. 11.如果点P (a , b )在第四象限,那么点Q (-a ,b -4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.已知点P 到x 轴的距离为3,到y 轴的距离为2,则P 点的坐标一定为( ).A .(3,2)B .(2,3)C .(-3,-2)D .以上答案都不对13.已知正△ABC 的边长为2,以BC 的中点为原点,BC 所在的直线为x 轴,则点A 的坐标为( ).A .(3,0)或(-3,0)B .(0,3)或(0,-3)C .(0,3)D .(0,-3)14.已知△ABC 三顶点坐标分别是A (-7,0)、B (1,0)、C (-5,4),那么△ABC 的面积等于 .15.若点P (a -1, a +1)到x 轴的距离是3,则它到y 轴的距离为 .16.(1)如果点P (x , y )在第一、三象限两坐标轴的夹角平分线上,则 ;(2)如果点P (x , y )在第二、四象限两坐标轴的夹角平分线上,则 ;17.如果点),(n m A 在第二象限,那么点,(m B -│n │)在( )A.第一象限B.第二象限C.第三象限D.第四象限18.如果点P (x , y )在第二象限,且3,2==y x ,则点P 的坐标是 .19. 已知点P 的坐标为(2-a , 3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是( )第8题 第9题 第10题A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)20.设点A (m , n )在轴上,且位于原点的左侧,则下列结论正确的是( )A. m =0, n 为一切数B. m =0, n <0C. m 为一切数,n =0D. m <0, n =021.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)22.已知点M (3, -4),在轴上有一点B , B 点与M 点的距离为5,则点B 的坐标为( )A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)23.点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为 ;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为 ;点C 在y 轴左侧,在x 轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为 .24.已知直角坐标系内有一点M (a , b ),且ab =0,则点M 的位置一定在( )A. 原点上B. x 轴上C. y 轴上D. 坐标轴上25.已知直角坐标系内有一点M (a , b ),且0 ab ,则点M 的位置在 . 26.若点(5-a , a -2)在第一、三象限两坐标轴夹角平分线上,则a = . 27.已知a 是整数,点A (2a +1, 2+a )在第二象限,则a = .28.已知点P (1-2m , m -1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限二.解答题:1.四边形ABCD 中,A (-1,0), B (4,1), C (4,4), D (1,4),求四边形ABCD 的面积.2.已知A (a -1,-2), B (-3,b +1),根据下列要求确定a , b 的值:(1)直线AB ∥y 轴; (2)直线AB ∥x 轴(3)A ,B 两点在第二、四象限的角平分线上.3.如图,在直角坐标系中,CB ∥OA , CB =8, OC =8, ∠OAB =45°, (1)求点A , B , C 的坐标; (2)求△ABC 的面积.4.在直角坐标系中,用线段顺次连接点A (,0),B (0,3),C (3,3),D (4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.5.在直角坐标系中, A (-2,0), B (0,3).(1)求△AOB 的面积; (2)若点C 在坐标轴上,且△ABC 的面积为6,求点C 的坐标.yxOA BC6.点M (4,0), P (2,y ), 点N 在x 轴的负半轴上,且MN =6.(1)求点N 的坐标;(2)若MNP S =6,求点P 的坐标.7.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB =1:2,求A 、B 两点的坐标.8.如图,在平面直角坐标系中,已知长方形ABCD 的顶点坐标:A (-1 , -1), B (3 , 1.5), D (-2, 0.5),求点C 的坐标.y xOAB C D y x O A B9.如图,平面直角坐标系中,点A (4,0), B (3,4), C (0,2).(1)求ABCO S 四边形; (2)求ABC S ∆;(3)在x 轴上是否存在一点P ,使PAB S ∆=10,若存在,请求出点P 的坐标.10.如图,平面直角坐标系中,△ABO 的面积为8,OA =OB , BC =12,点P 的坐标是(a , 6),. (1)求△ABC 三个顶点的坐标; (2)若点P 的坐标是(1,6), 连接P A , PB ,则△P AB 的面积为 ; (3)是否存在点P ,使△P AB 的面积等于△ABC 的面积?若存在,请求出点P 的坐标.yxO A BC P y x O A B C1.已知点A (1 , 0), B (0 , 2), 点P 在x 轴上,且△P AB 的面积为5,则点P 的坐标为 .2.已知A (0,1), B (2,0), C (4,3), 点P 在坐标轴上,且△ABP 与△ABC 的面积相等,则点P 的坐标为 .3.如图,直角坐标系中,四边形ABCO 是长方形,点A (10,0), 点C (0,4), 点D 是OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,点P 的坐标为 .4.已知A (-3,4), 点P 在坐标轴上,且△POA 是等腰三角形,则点P 的坐标是 .5.已知A (1,2), BC 垂直平分OA 分别交x 轴、y 轴于点B 、C ,求点B 、C 的坐标. y x O A B C D P。

3 2 平面直角坐标系同步练习 北师大版数学八年级 上册

3 2 平面直角坐标系同步练习 北师大版数学八年级 上册

3.2 平面直角坐标系一.选择题1.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m的值是()A.﹣1B.1C.2D.32.平面直角坐标系中,若AB∥y轴,AB=3,点A的坐标为(﹣2,3),则点B的坐标为()A.(2,﹣6)B.(1,3)C.(1,3)或(﹣5,3)D.(﹣2,6)或(﹣2,0)3.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)4.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B 的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤15.如图,半径为1的圆,在x轴上从原点O开始向右滚动一周后,点O的对应点M的坐标为()A.(π,0)B.(0,π)C.(0,2π)D.(2π,0)6.若P是第二象限内的点,且它到x轴、y轴的距离分别为2和3,则点P的坐标为()A.(3,﹣2)B.(2,3)C.(﹣3,2)D.(﹣2,3)7.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x﹣y=()A.﹣1B.5C.1D.﹣58.如图,A(8,0),B(0,6),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点C的坐标为()A.(10,0)B.(0,10)C.(﹣2,0)D.(0,﹣2)9.如图,在平面直角坐标系中,点A和点B的坐标分别是:A(−2,1),B(2,3).那么线段AB的长度是( )A. √ 13B. 2√ 5C. 5D. √ 510.如图,点M是平面直角坐标系中的一点,MA⊥x轴,MB⊥y轴,MA=4,MB=3,则点M的坐标为()A .(4,3)B .(3,4)C .(﹣4,3)D .(﹣3,4)二.填空题 1.在平面直角坐标系中,已知点A (a 2,﹣3)在第四象限,若点A 在两坐标轴夹角平分线上,则a = .2.已知点(3,24)P a a ++在y 轴上,则点P 坐标为________.3|4|0b +=,则点(,)P a b -在第________象限.5.在平面直角坐标系中,已知点A (a 2,﹣3)在第四象限,若点A 在两坐标轴夹角平分线上,则a = .2.已知点(3,24)P a a ++在y 轴上,则点P 坐标为________.3|4|0b +=,则点(,)P a b -在第________象限.5.在平面直角坐标系中,已知点A (a 2,﹣3)在第四象限,若点A 在两坐标轴夹角平分线上,则a = .三.解答题1.已知点P (a +2,2a ﹣8),分别根据下列条件求出点P 的坐标.(1)点Q 的坐标为(1,﹣2),直线PQ ∥x 轴;(2)点P 到y 轴的距离为4.2.在如图所示的平面直角坐标系中,完成以下问题:(1)直接写出A ,B ,C 三点的坐标;(2)顺次连接点(0,3),(4,3),(6,4),(4,5),(0,5),(0,3),观察所得图形,你觉得它像什么?3.已知点A (2a ,3a ﹣1)是平面直角坐标系中的点.(1)若点A在第四象限的角平分线上,求a的值;(2)若点A在第三象限,且到两坐标轴的距离和为9,请确定点A的坐标.4.已知点P(8−2m,m+1).(1)若点P在y轴上,求m的值.(2)若点P在第一象限,且点P到x轴的距离是到y轴距离的2倍,求P点的坐标5.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.。

初中数学北师大版八年级上册《3.2平面直角坐标系》习题

初中数学北师大版八年级上册《3.2平面直角坐标系》习题

平面直角坐标系测试一、选择题(本大题共10小题,共30.0分)1.点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P的坐标为()A. (−3,−2)B. (3,−2)C. (2,3)D. (2,−3)2.点P(m−1,m+3)在直角坐标系的y轴上,则P点坐标为()A. (−4,0)B. (0,−4)C. (4,0)D. (0,4)3.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A. −3B. −5C. 1或−3D. 1或−54.若y=√x−2+√2−x−3,则P(x,y)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.直角坐标系中,点P(x,y)在第二象限,且P到x轴、y轴距离分别为3,7,则P点坐标为()A. (−3,7)B. (−7,3)C. (3,7)D. (7,3)6.点A(m−3,m+1)在第二、四象限的角平分线上,则A的坐标为( )A. (−1,1)B. (−2,−2)C. (−2,2)D. (2,2)7.在平面直角坐标系中,点P(m−3,4−2m)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在平面直角坐标系中,点P(−2,3−π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.已知√a−2+|b+3|=0,则P(−a,−b)的坐标为()A. (2,3)B. (2,−3)C. (−2,3)D. (−2,−3)10.如图,小手盖住的点的坐标可能为()A. (−1,1)B. (−1,−1)C. (1,1)D. (1,−1)二、填空题(本大题共10小题,共30.0分)11.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推,则正方形OB2015B2016C2016的顶点B2016的坐标是______ .12.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是______ .13.若点P(a,b)在第四象限,则点M(b−a,a−b)在第______ 象限.14.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是______.15.点P(5,−12)到x轴的距离为______ .16.已知点P(3−m,m)在第二象限,则m的取值范围是______.17.若点A(m−3,m+2)在y轴上,则点A到原点的距离为______个单位长度.18.在平面直角坐标系中,点P在第二象限内,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为______.19.已知点P的坐标为(−5,−8),那么该点P到x轴的距离为______ .20.已知P点在第三象限,且到x轴距离是2,到y轴距离是3,则P点的坐标是______.三、计算题(本大题共4小题,共24.0分)21.如图,在平面直角坐标系中,点A、B的坐标分别为(2,3)和(0,2).(1)AB的长为______;(2)点C在y轴上,△ABC是等腰三角形,写出所有满足条件的点C的坐标______.22.已知平面直角坐标系中,点P的坐标为(m−1,2m+3)(1)当m为何值时,点P到x轴的距离为1?(2)当m为何值时,点P到y轴的距离为2?(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.23.已知点P(2x,3x−1)是平面直角坐标系上的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.24.在同一直角坐标系中分别描出点A(−3,0)、B(2,0)、C(1,3),再用线段将这三点首尾顺次连接起来,求△ABC的面积与周长.四、解答题(本大题共2小题,共16.0分)25.已知:点P(2m+4,m−1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过A(2,−3)点,且与x轴平行的直线上.26.如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为______ 、______ ;(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.答案和解析【答案】1. D2. D3. A4. D5. B6. C7. A8. C9. C10. D11. (21008,0)12. (2n−1−1,2n−1),13. 二14. (±3,0)15. 1216. m>317. 518. (−5,4)19. 820. (−3,−2))21. √5;(0,4)或(0,2+√5)或(0,2−√5)或(0,9222. 解:(1)∵点P到x轴的距离为1∴|2m+3|=1∴m1=−1,m2=−2(2)∵点P到y轴的距离为2∴|m−1|=2∴m1=3,m2=−1(3)∵点P可能在第一象限坐标轴夹角的平分线上∴m−1=2m+3∴m=−4∵点P在第一象限∴m−1>0,2m+3>0∴m>1∴m=−4不合题意∴点P不可能在第一象限坐标轴夹角的平分线上.23. 解:(1)由题意得2x=3x−1,解得x=1;(2)由题意得−2x+[−(3x−1)]=16,则−5x=15,解得x=−3.24. 解:利用勾股定理得:AC=√32+42=5,BC=√12+32=√10,AB=2−(−3)=5,∴周长为AC+BC+AB=5+5+√10=10+√10;面积=3×5−12×3×4−12×1×3=152.25. 解:(1)令2m+4=0,解得m=−2,所以P点的坐标为(0,−3);(2)令m−1=0,解得m=1,所以P点的坐标为(6,0);(3)令m−1=(2m+4)+3,解得m=−8,所以P点的坐标为(−12,−9);(4)令m−1=−3,解得m=−2.所以P点的坐标为(0,−3).26. (1)如图所示:(2)(4,3);(2,−3)(3)△A′B′C′如上图所示;(4)△ABC面积=3×6−12×2×2−12×4×3−12×1×6=18−2−6−3=7.【解析】1. 解:∵P在第四象限内,∴点P的横坐标>0,纵坐标<0,又∵点P到x轴的距离为3,即纵坐标是−3;点P到y轴的距离为2,即横坐标是2,∴点P的坐标为(2,−3).故选:D.根据点P在第四象限,先判断出P横纵坐标的符号,再根据点到坐标轴的距离求出点P的坐标.解答此题的关键是熟记平面直角坐标系中点在各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2. 【解答】解:由P(m−1,m+3)在直角坐标系的y轴上,得m−1=0,解得m=1.m+3=4,P点坐标为(0,4),故D正确故选D.【分析】本题考查了点的坐标,利用y轴上点的横坐标为0得出m的值是解题关键.根据y轴上点的横坐标为0,可得m的值,根据m的值,可得点的坐标.3. 解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,解得:a=1或−3,由于AB不是同一点,所以a不为1故选:A.根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的纵横坐标相等或互为相反数.4. 解:∵y=√x−2+√2−x−3,∴x=2,则y=−3,∴P(2,−3)在第四象限.故选:D.直接利用二次根式有意义的条件得出x的值,进而得出P点坐标的位置.此题主要考查了二次根式有意义的条件,正确得出P点坐标是解题关键.5. 解:∵点P(x,y)在第二象限,且P到x轴、y轴距离分别为3,7,∴x=−7,y=3,∴点P的坐标为(−7,3).故选B.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.6. 解:由A(m−3,m+1)在第二、四象限的平分线上,得(m−3)+(m+1)=0,解得m=1,m−3=−2,m+1=2,A的坐标为(−2,2),故选:C.根据二四象限角平分线上的点横坐标与纵坐标互为相反数,可得关于m的方程,根据解方程,可得m的值,根据m的值,可得点A的坐标.本题考查了点的坐标,利用二四象限角平分线上的点横坐标与纵坐标互为相反数得出关于m的方程是解题关键.7. 解:①m−3>0,即m>3时,−2m<−6,4−2m<−2,所以,点P(m−3,4−2m)在第四象限,不可能在第一象限;②m−3<0,即m<3时,−2m>−6,4−2m>−2,点P(m−3,4−2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选:A.分点P的横坐标是正数和负数两种情况讨论求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).8. 解:由−2<0,3−π<0,得点P(−2,3−π)所在象限是第三象限,故选:C.根据第三象限内点的横坐标小于零,纵坐标小于零,可得答案.本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).9. 【分析】本题考查了点的坐标,非负数的性质,正确求出a,b的值是解题的关键.首先由√a−2+|b+3|=0,根据非负数的性质求出a=2,b=−3,进而求解即可.【解答】解:∵√a−2+|b+3|=0,∴a−2=0,b+3=0,∴a=2,b=−3,∴P(−a,−b)的坐标为(−2,3).故C正确.故答案选C.10. 解:由图可知,小手盖住的点在第四象限,A、(−1,1)在第二象限,B、(−1,−1)在第三象限,C、(1,1)在第一象限,D、(1,−1)在第四象限.所以,小手盖住的点的坐标可能是(1,−1).故选D.根据各象限内点的坐标特征对各选项分析判断即可得解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).11. 解:∵正方形OA1B1C1边长为1,∴OB1=√2,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2√2,∴B3点坐标为(−2,2),同理可知OB4=4,B4点坐标为(−4,0),B5点坐标为(−4,−4),B6点坐标为(0,−8),B7(8,−8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的√2倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的√2倍. 12. 解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n的坐标为(2n−1−1,2n−1),故答案为:(2n−1−1,2n−1),先求出A1、A2、A3的坐标,找出规律,即可得出答案.本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.13. 解:∵点P(a,b)在第四象限,∴a>0,b<0,∴b−a<0,a−b>0,∴点M(b−a,a−b)在第二象限.故填:二.应先判断出所求的点的横纵坐标的符号,进而判断所在的象限.本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).14. 解:∵在平面直角坐标系中,若x轴上的点P到y轴的距离为3,∴P的坐标为(±3,0),故答案为:(±3,0)根据P的位置,结合题意确定出P坐标即可.此题考查了点的坐标,确定出P的横坐标是解本题的关键.15. 解:∵点P的坐标为(5,−12),∴点P到x轴的距离为|−12|=12.故答案为:12.由点P的纵坐标,即可得出点P到x轴的距离.本题考查了点的坐标,解题的关键是根据点P的坐标找出点P到坐标轴的距离.本题属于基础题,难度不大,解决该题型题目时,明白点P的横、纵坐标的绝对值即为点到y、x轴的距离是关键.16. 解:∵点P(3−m,m)在第二象限,3−m<0解得:m>3;∴{m>0故答案为:m>3.根据第二象限的点的横坐标是负数,纵坐标是正数列出不等式组,求解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).17. 解:由点A(m−3,m+2)在y轴上,得m−3=0,解得m=3.由A(m−3,m+2)在y轴上,则点A到原点的距离为3+2=5个单位长度,故答案为:5.根据y轴上点的横坐标等于零,y轴上点到远点的距离是纵坐标的绝对值,可得答案.本题考查了点的坐标,利用y轴上点的横坐标等于零得出方程是解题关键.18. 【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征解答即可.【解答】解:点P在第二象限内,且P点到x轴的距离是4,到y轴的距离是5,得x=−5,y=4.则P点坐标为(−5,4),故答案为(−5,4).19. 解:点P(−5,−8)到x轴的距离为8.故答案为:8.根据点到x轴的距离等于纵坐标的绝对值解答.本题考查了点到坐标,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.20. 解:∵第三象限内的点横坐标<0,纵坐标<0,点P到x轴的距离是2,到y轴的距离为3,∴点P的纵坐标为−2,横坐标为−3,因而点P的坐标是(−3,−2),故答案为:(−3,−2).本题根据点在第三象限的特点,横纵坐标都小于0,再根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而根据点P到坐标轴的距离判断点P的具体坐标.此题用到的知识点为:第三象限点的坐标的符号都为负,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.21. 解:(1)∵A(2,3),B(0,2),∴AB=√(2−0)2+(3−2)2=√5,故答案为√5;(2)设点C(0,m),∵A(2,3),B(0,2),∴BC=|m−2|,AC=√4+(m−3)2,由(1)知,AB=√5,∵△ABC是等腰三角形,∴①当AB=AC时,∴√5=√4+(m−3)2,∴m=2(舍)或m=4,∴C(0,4),②当AB=BC时,|m−2|=√5,∴m=2±√5,∴C(0,2+√5)或(0,2−√5),③当AC=BC时,|m−2|=√4+(m−3)2,∴m=9,2∴C(0,9),2).即:C(0,4)或(0,2+√5)或(0,2−√5)或(0,92).故答案为:(0,4)或(0,2+√5)或(0,2−√5)或(0,92(1)直接利用两点间的距离公式即可得出结论;(2)分三种情况讨论,利用等腰三角形的性质建立方程求解即可.此题主要考查了两点间的距离公式,等腰三角形的性质,分类讨论,解本题的关键是用方程的思想解决问题.22. (1)根据点(x,y)到x轴的距离为|y|,可求m的值.(2)根据点(x,y)到y轴的距离为|x|,可求m的值.(3)根据角平分线上的点到角两边距离相等,可求m的值,且点P在第一象限,可求m的范围,即可判断可能性.本题考查了点到坐标,关键是利用点的坐标(x,y)的性质解决问题.23. (1)根据第一象限的角平分线上的点的横纵坐标相同得到2x=3x−1,然后解方程即可;(2)由于第三象限点的横纵坐标都是负数,则−2x+[−(3x−1)]=16,然后解方程即可.本题考查了坐标与图形性质:利用点的坐标计算相应的线段长和判断线段与坐标轴的位置关系.记住各象限点的坐标特征.24. 建立平面直角坐标系将三个点描出来,利用勾股定理求得三边的长后即可计算周长及面积.本题考查了勾股定理的知识,根据点的坐标画图形,一定要明确点所在的象限及坐标,求不规则三角形的面积,一般用“割补法”.25. (1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标为0求得m的值,代入点P的坐标即可求解;(3)让纵坐标−横坐标=3得m的值,代入点P的坐标即可求解;(4)让纵坐标为−3求得m的值,代入点P的坐标即可求解;用到的知识点为:y轴上的点的横坐标为0;x轴上的点的纵坐标为0;平行于x轴的直线上的点的纵坐标相等.26. 解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,−3);(3)如图;(4)△ABC面积=3×6−12×2×2−12×4×3−12×1×6=18−2−6−3=7.故答案为(4,3),(2,−3).(1)利用火车站和宾馆的坐标画出直角坐标系;(2)利用坐标系中各象限点的坐标特征写出市场、超市的坐标;(3)把体育场、宾馆和火车站的横坐标不变,纵坐标减去4描出各点即可得到△A′B′C′;(4)用矩形的面积分别减去三个三角形的面积求解.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.会利用面积的和差计算不规则几何图形的面积.。

八年级数学北师大版上册课时练第3章《3.2平面直角坐标系》(含答案解析)

八年级数学北师大版上册课时练第3章《3.2平面直角坐标系》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练3.2平面直角坐标系一.选择题(共8小题,满分40分)1.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)3.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.34.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC 的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)5.若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()A.(4,﹣2)B.(3,﹣1)C.(3,﹣1)或(3,﹣3)D.(4,﹣2)或(2,﹣2)6.在平面直角坐标系,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是()A.﹣6B.﹣4C.6D.﹣4或67.下列结论:①横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上;②当m≠0时,点P(m2,﹣m)在第四象限;③与点(﹣3,4)关于y轴对称的点的坐标是(﹣3,﹣4);④在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1).其中正确的是()A.①③B.②④C.①④D.②③8.在平面直角坐标系中,点P(﹣3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共6小题,满分30分)9.在直角坐标平面内,点A(﹣m,5)和点B(﹣m,﹣3)之间的距离为.10.如果式子表示点P(a,b)和点Q的距离,那么Q点坐标是.11.在平面直角坐标系中,A、B两点的坐标分别为A(1,2),B(5,4),那么A、B两点之间的距离为AB=.12.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为.13.点P(x,y)在第四象限内,且|x|=2,|y|=5,P点关于原点的对称点的坐标是.14.已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为.三.解答题(共6小题,满分50分)15.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?16.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;=S (3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD,若存在,请求出t值,若不存在,请说明理由.四边形ABOC17.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(﹣2,3)、B(4,﹣5),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为6,点B的纵坐标为﹣2,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),请判定此三角形的形状,并说明理由.(4)已知一个三角形各顶点坐标为A(﹣1,3)、B(0,1)、C(2,2),请判定此三角形的形状,并说明理由.18.如图,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴于G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO.19.直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?20.已知点A(a,﹣5),B(8,b)根据下列要求确定a,b的值(1)A,B两点关于y轴对称;(2)A,B两点关于x轴对称;(3)AB∥y轴(4)A,B两点在第二、第四象限的角平分线上.参考答案一.选择题(共8小题,满分40分)1.A.2.D.3.A.4.B.5.D.6.D.7.C.8.D.二.填空题(共6小题,满分30分)9.810.(﹣1,2)11.212.(﹣3,﹣2).13.(﹣2,5).14.2.三.解答题(共6小题,满分50分)15.解:(1)∵|2m+3|=12m+3=1或2m+3=﹣1∴m=﹣1或m=﹣2;(2)∵|m﹣1|=2m﹣1=2或m﹣1=﹣2∴m=3或m=﹣1.16.解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD =AP•AC S四边形ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD =S四边形ABOC,17.解:(1)AB==10;(2)AB=6﹣(﹣2)=8;(3)△ABC为等腰三角形.理由如下:∵AB==5,BC=3﹣(﹣3)=6,AC==5,∴AB=AC,∴△ABC为等腰三角形;(4)∴△ABC为等腰直角三角形.理由如下:∵AB==,BC==,AC==,而()2+()2=()2,∴AB2+BC2=AC2,∴△ABC为等腰直角三角形.18.解:(1)△AOG是等腰三角形;证明:∵AC∥y轴,∴∠CAO=∠AOG,∵AO平分∠BAC,∴∠CAO=∠GAO,∴∠GAO=∠AOG,∴AG=GO,∴△AOG是等腰三角形;(2)证明:连接BC交y轴于K,过A作AN⊥y轴于N,∵AC∥y轴,点B、C关于y轴对称,∴AN=CK=BK,在△ANG和△BKG中,,∴△ANG≌△BKG,(AAS)∴AG=BG,∵AG=OG,(1)中已证,∴AG=OG=BG,∴∠BOG=∠OBG,∠OAG=∠AOG,∵∠OAG+∠AOG+∠BOG+∠OBG=180°,∴∠AOG+∠BOG=90°,∴AO⊥BO.19.解:(1)点P关于原点的对称点P'的坐标为(2,1);(2),(a)动点T在原点左侧,当时,△P'TO是等腰三角形,∴点,(b)动点T在原点右侧,①当T2O=T2P'时,△P'TO是等腰三角形,得:,②当T3O=P'O时,△P'TO是等腰三角形,得:点,③当T4P'=P'O时,△P'TO是等腰三角形,得:点T4(4,0).综上所述,符合条件的t的值为.20.解:(1)∵点A(a,﹣5),B(8,b)关于y轴对称,∴a=﹣8,b=﹣5;(2))∵点A(a,﹣5),B(8,b)关于x轴对称,∴a=8,b=5;(3)∵AB∥y轴,∴a=8,b为不等于﹣5的实数;(4)∵A,B两点在第二、第四象限的角平分线上,∴a=5,b=﹣8.。

北师大版数学八年级上 省优课精选 3.2 平面直角坐标系

北师大版数学八年级上 省优课精选 3.2 平面直角坐标系

北师大版八年级数学上册第三章第2节第一课时《平面直角坐标系》教案设计兴宁市第三中学朱伟灵一、教材分析1、教材的地位和作用《平面直角坐标系》是北师大版《数学》八年级上册第三章第二节的内容,共3课时,本节课是第一课时。

“平面直角坐标系”的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生了一一对应的关系,实现了使学生的认识从一维空间到二维空间的发展,是数形结合的理论基础,是进一步学习函数的重要工具,它在整个初中数学教材体系中有着举足轻重的作用。

2、教材的知识结构教材通过创设现实情境确定位置入手,使学生感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念。

掌握确定点的坐标,以及根据坐标描出点的位置,进而感受和理解平面上的点与坐标之间一一对应的关系。

3、教材的重点与难点本节课的重点是:1、能正确的认知并进行平面直角坐标系作图。

2、在坐标系中,能根据点找坐标,以及根据坐标描出点。

本节课的难点是:学生对直角坐标系中的任意一点与有序实数对(即点的坐标)一一对应关系的理解。

二、学情分析1、学生的心理分析八年级的学生,经过一年多的初中学习生活,学生的逻辑思维逐步由经验型向理论型发展,观察能力、记忆能力、分析能力、归纳能力有了较大的发展,能够进行一些初步的问题探究。

但是,我校处于城乡结合部,多为农村学生或者外来务工子女,基础较差、注意力易分散。

所以,在教学中应运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上。

另一方面,要创造条件和机会,提出问题,让学生互相合作探究,发挥学生学习的主动性。

2、学生的知识情况分析学生在七年级学习了“数轴”的相关知识后,已经有一定的数形结合意识。

通过对第三章第一节“确定位置”的学习,对平面内确定位置的方法、要求和有序实数对的知识有了一定认识。

因此,学生完全具备了学习本节课的相关知识和技能。

三、教学目标分析新课标的精神在于:以学生发展为本,能力培养为重。

北师大版八年级上册数学3.2 平面直角坐标系 同步练习3(精选)

北师大版八年级上册数学3.2 平面直角坐标系 同步练习3(精选)

北师大版八年级上册数学3.2 平面直角坐标系同步练习3(精选)3.2 平面直角坐标系一、填空题1.若电影票上“10排8号”简记为(10,8),则13排21号可记为(),简记为(3,22)的座位是()。

2.如图所示是小颖家与周围地点的位置关系示意图。

对小颖家来说:(1)北偏东30°的方向上有( )个地方,分别是( )、( );(2)要想确定麦当劳的位置,还需要( )个数据,是( );(3)距小颖家图上距离2 cm处有( );(4)若该图的比例尺为1:100000,则超市与小颖家的实际距离为( )m。

3.计算图的电子表格中B2到F2的和,结果为( )。

4.如图所示,若A点表示为(0,0),则B点可以表示为(1,2)。

小明从家(C点)出发到超市(D点)购买生活用品,他有多条路径选择。

请写出其中路程较少的两条来。

(假设每条格线都是可行走的马路)。

5.如图所示的方格纸中,若用(0,0)表示A点的位置,试在上面标出B(2,4),C(3,0),D(5,4),E(6,0),并顺次连结A,B,C,D,E,得到的图案像什么?6.正方形网格中的每个小正方形的边长都为1,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形。

图中B、C两点的位置分别表示为(2,0),(4,0),格点三角形ABC不是锐角三角形且面积为4,则满足条件的A点的位置可以怎样表示?7.已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是()。

(写出合条件的一个点即可)8.点P(1,2)关于x轴对称的点的坐标是( ),点P(1,2)关于原点对称的点的坐标是( )。

9.已知点P(一3,4),它到x轴的距离为( ),到y轴的距离为( ),到原点的距离为( )。

10.在平面直角坐标系中,平面上的点与( )一一对应。

11.点B在第二象限内,且到x轴的距离为6,到原点的距离为10,则点B的坐标是( )。

12.已知点A(一4,a),B(一2,b)都在第三象限的平分线上,则a+b+ab=( )。

北师大版八年级上册 3.2 平面直角坐标系(3) 同步练习

北师大版八年级上册 3.2 平面直角坐标系(3) 同步练习

8(上)3.2 平面直角坐标系(3)(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.已知正方形ABCD的边长为6,AB边在x轴上,如果点A的坐标为(-2,0),那么点B的坐标是()A.(4,0)B.(-8,0)C.(4,0)或(-8,0)D.无法确定2.如果以点A为坐标原点建立直角坐标系,点B的坐标为(-3,-4),如果以点B为原点建立直角坐标系,则点A的坐标为()A.(4,3)B.(3,4)C.(-3,4)D.(-4,3)3.如图,将长方形ABCD放入某平面直角坐标系后,若顶点A,B,C的坐标分别是(-2,-2),(3,-2),(3,3),则点D的坐标是( ) A.(2,-3) B.(-2,-3) C.(-2,3) D.(3,-2)4.如图,在象棋盘上建立平面直角坐标系,使“帥”位于点(-2,-2),“马”位于(1,-2),则“兵”位于()A.(-4,1)B.(-3,2)C.(-2,3)D.(2,3)5.如图,已知等腰△ABC,建立平面直角坐标系求各顶点的坐标,最合理的方法是()A.以BC的中点O为坐标原点,以BC所在直线为x轴,AO所在直线为y轴B.以点B为坐标原点,以BC所在直线为x轴,过点B作x轴的垂线为y轴C.以点A为坐标原点,平行于BC的直线为x轴,过点A作x轴的垂线为y轴D.以点C为坐标原点,平行于BA的直线为x轴,过点C作x轴的垂线为y轴6.已知点A(0,0),B(4,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是()A.(0,3)B.(0,-3)C.(0,3)或(0,-3)D.无法确定7.在平面直角坐标系xoy中,点A的坐标为(2,2),△AOP是等腰三角形,且点P在坐标轴上,则点P的坐标不可能是()A.(1,0)B.(2,0)C.(4,0)D.(0) 8.已知正方形ABCD的边长为4,以点A为原点,AB边所在直线为x轴,过点A的垂直于AB的直线为y轴,建立平面直角坐标系,那么点D的坐标是()A.(0,4)B.(0,-4)C.(0,4)或(0,-4)D.(4,0)或(-4,0)二.填空题:(将正确答案填在题目的横线上)9.如图,正方形ABCD 顶点B ,C 都在直角坐标系的x 轴上,若点A 的坐标是(-2,5),则点D 的坐标是___________;10.如图,在象棋盘上建立平面直角坐标系,如果“炮”位于点(0,0), “象”位于(2,1),则“车”位于_____________;11.已知点O (0,0),B (1,2),点A 在坐标轴上,且S △AOB =2,则满足条件的点A 的坐标是_______________________;12.如图,若点A ,B 的坐标分别是(-2,0),(2,0),则点C ,D 的坐标分别是_________________;13.如图,建立适当的平面直角坐标系,写出各点的坐标;(网格中每个小正方形的边长均为1)建立平面直角坐标系如图,各点坐标分别是______________________________________________________________________;三.解答题:(写出必要的说明过程,解答步骤)14.已知A ,B ,C 的坐标分别是(-2,-3),(4,0),(-4,0);(1)建立平面直角坐标系,在直角坐标系中描出A ,B ,C 的坐标;(2)求△ABC 的面积;A y OD第9题图 C x B15.如图,在等腰△ABC 中,AB =AC =5,BC =6,建立适当的直角坐标系,并写出点A ,B ,C 的坐标; 16.如图,已知点A ,B 的坐标分别为(-3,1),(-3,-3),点C 的坐标为(3,2),建立平面直角坐标系,标出点C 的位置,并求△ABC 的周长; 17.已知网格中每个小正方形的边长都是1,点A ,C 的坐标分别是(-2,-2)(0,2);(1)在网格图中建立平面直角坐标系;(2)若点B 的坐标是(3,-2),在图中标出点B ,并画出△ABC ;(3)求△ABC 的面积;(4)求BC 边上的高;18.如图,四边形ABCD 各个顶点的坐标分别为A (-2,8),B (-11,6),C (-14,0),D (0,0);(1)求四边形ABCD 的面积;(2)在y 轴上找一点P ,使△PCD 的面积等于四边形ABCD 面积的一半,求点P 的坐标;8(上)3.2 平面直角坐标系(3)参考答案:1~8 CBCAA CAC9.(3,5);10.(4,3);11.(2,0)或(-2,0)或(0,4)或(0,-4);12.(3,4),(-1,4);ACB13.答案不唯一,最合理的是:以点A 为原点,以AC 所在直线为x轴,以AE 所在直线为y 轴,建立平面直角坐标系,A (0,0),B (1,-1),C (4,0),D (3,4),E (0,3),F (-1,2);14.(1)略;(2)12ABC S ∆=;15.以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,建立平面直角坐标系;由等腰三角形的性质及勾股定理可得:4OA ===∴A ,B ,C 的坐标分别是:(0,4),(-3,0),(3,0);16.由题意得,满足题意的直角坐标系和点C 的坐标如图:由点的坐标和勾股定理得:AB=4,AC =AB =∴△ABC 的周长是:17.(1),(2)如图;(3)由点的坐标得:AB=5,AB 边上的高是4,(4)由勾股定理得:BC=5设BC 边上的高为h ,由12ABC S BC h ∆=⋅ 即1102BC h ⋅= 得:4h = ∴BC 边上的高为4;18.(1)如图,将四边形ABCD 分割成两个直角三角形BCE ,ADF ,一个直角梯形ABEF ,由点的坐标可得:BE=6,CE=3,EF=9,AF=8,DF=2(2)设P 点的坐标为(0,y ),由题可得:CD=14,△PCD 中CD 边上的高是y ,由12PCD ABCD S S ∆=四边形得:11148022y ⨯⋅=⨯ ∴407y = ∴P 点的坐标为4040(0,)(0,)77-或;。

2019—2020年最新北师大版数学八年级上册3.2《平面直角坐标系》练习题(同步试题).doc

2019—2020年最新北师大版数学八年级上册3.2《平面直角坐标系》练习题(同步试题).doc

第三章位置与坐标3.2平面直角坐标系专题一与平面直角坐标系有关的规律探究题1.如图,在平面直角坐标系中,有若干个整数点(横纵坐标都为整数的点),其顺序按图中“→”方向排列,如:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),(4,1),…,观察规律可得,该排列中第100个点的坐标是().A.(10,6)B.(12,8)C.(14,6)D.(14,8)2.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是_____________.3.如图,一粒子在区域直角坐标系内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.专题二坐标与图形4.如图所示,A(-3,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()7B.2C.3D.2A.45.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是____________________________________.6.如图,在直角坐标系中,△ABC 满足,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当A 点从原点开始在x 轴正半轴上运动时,点C 随着在y 轴正半轴上运动.(1)当A 点在原点时,求原点O 到点B 的距离OB ;(2)当OA =OC 时,求原点O 到点B 的距离OB.答案:1.D 【解析】因为1+2+3+…+13=91,所以第91个点的坐标为(13,0).因为在第14行点的走向为向上,故第100个点在此行上,横坐标就为14,纵坐标为从第92个点向上数8个点,即为8.故第100个点的坐标为(14,8).故选D .2.D 【解析】根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2013次运动后,动点P 的横坐标为2013,纵坐标为1,0,2,0,每4次一轮,∴经过第2013次运动后,动点P 的纵坐标为:2013÷4=503余1,故纵坐标为四个数中第一个,即为1,x∴经过第2013次运动后,动点P 的坐标是:(2013,2),故答案为:(2013,1).3.解:设粒子从原点到达A n 、B n 、C n 时所用的时间分别为a n 、b n 、c n ,则有:a 1=3,a 2=a 1+1,a 3=a 1+12=a 1+3×4,a 4=a 3+1,a 5=a 3+20=a 3+5×4,a 6=a 5+1,…,a 2n-1=a 2n-3+(2n-1)×4,a 2n =a 2n-1+1,∴a 2n-1=a 1+4[3+5+…+(2n-1)]=4n 2-1,a 2n =a 2n-1+1=4n 2, ∴b 2n-1=a 2n-1-2(2n-1)=4n 2-4n+1,b 2n =a 2n +2×2n=4n 2+4n ,c 2n-1=b 2n-1+(2n-1)=4n 2-2n=)12(122-+-n n )(,c 2n =a 2n +2n=4n 2+2n=(2n )2+2n ,∴c n =n 2+n ,∴粒子到达(16,44)所需时间是到达点C 44时所用的时间,再加上44-16=28(s ),所以t=442+447+28=2008(s ).4.C 【解析】过P 点作PD ⊥x 轴,垂足为D ,由A (﹣3,0)、B (0,1),得OA=3,OB=1,由勾股定理,得AB=22OB OA +=2,∴S △ABC =21×2×3=3.又S △ABP =S △AOB +S梯形BODP ﹣S △ADP =21×3×1+21×(1+a )×3﹣21×(3+3)×a=2333a-+,由2S△ABP=S△ABC,得3+3-3a=3,∴a=3.故选C.5.(4,﹣1)或(﹣1,3)或(﹣1,﹣1)【解析】△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).6.解:(1)当A点在原点时,AC在y轴上,BC⊥y轴,所以=(2)当OA=OC时,△OAC是等腰直角三角形,而AC=4,所以OA=OC=.过点B作BE⊥OA于E,过点C作CD⊥OC,且CD与BE交于点D,可得︒=∠=∠=∠45221.又BC=2,所以,所以BE=BD+DE=BD+OC=,又OE=CD=2,所以=.。

八年级数学上册 3.2 平面直角坐标系同步练习(含解析)北师大版(2021学年)

八年级数学上册 3.2 平面直角坐标系同步练习(含解析)北师大版(2021学年)

八年级数学上册3.2 平面直角坐标系同步练习(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册 3.2 平面直角坐标系同步练习(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册3.2 平面直角坐标系同步练习(含解析)(新版)北师大版的全部内容。

3.2。

1平面直角坐标系1.格纸上有M,N两点,如果以N点为原点建立直角坐标系,那么M点的坐标为(4,7);如果以M点为原点建立直角坐标系,那么N点的坐标为( )(注:两直角坐标系x轴、y 轴方向一致)A.(-4,7)B.(-4,—7)C.(7,4) D.(4,—7)2。

平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.3.有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.4.有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②平面直角坐标系内的点与有序数对是一一对应的;③平面直角坐标系内的所有点都属于四个象限.其中正确的是____(填序号即可).5。

如图,我们把杜甫的诗句整齐地排列放在平面直角坐标系中:(1)“东"、“窗”和“柳”的坐标依次是:____、_______和____;(2)将第1行与第3行对调,再将第4列与第6列对调,“里”由开始的坐标____依次变换到____和____;(3)“门"开始的坐标是(1,1),使它的坐标变换为(3,2),应该哪两行对调,同时哪两列对调?6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档