完整版容斥原理习题加答案
容斥原理练习题解析版
容斥原理练习题【练习 1】47 名学生参加数学和语文考试,其中语文得分 95 分以上的 14 人, 数学得分 95 分以上的 21 人,两门都不在 95 分以上的有 22 人.问:两门都在 95 分以上的有多少人?【解析】如图,用长方形表示这47 名学生, A 圆表示语文得分95 分以上的人数,B 圆表示数学得95 分以上的人数,A 与B 重合的部分表示两门都在95 分以上的人数,长方形内两圆外的部分表示两门都不在95 分以上的人数.由图中可以看出,全体人数是至少一门在95 分以上的人数与两门都不在95 分以 上的人数之和,则至少一门在95 分以上的人数为: 47 - 22 = 25 (人).根据包含排除法,两门都在95 分以上的人数为:14 + 21 - 25 = 10 (人).【练习 2】某班有 42 人,其中 26 人爱打篮球,17 人爱打排球,19 人爱踢足球, 9 人既爱打篮球又爱踢足球,4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【解析】由于全班42 人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42 人.根据包含排除法, 42 =(26 + 17 + 19)-(9 + 4 + 既爱打篮球又爱打排球的人数)+ 0 ,得到既爱打篮球又爱打排球的人数为: 49 - 42 = 7 (人).95分以上的 数学95分以上的 B不在两门95分以上的 语文95分以上的 A 两门都【练习 3】四(二)班有48 名学生,在一节自习课上,写完语文作业的有30 人,写完数学作业的有20 人,语文数学都没写完的有6 人.(1)问语文数学都写完的有多少人?(2)只写完语文作业的有多少人?【解析】(1)由题意,有48 - 6 = 42 (人)至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:30 + 20 - 42 = 8 (人).(2)只写完语文作业的人数=写完语文作业的人数-语文数学都写完的人数,即30 - 8 = 22 (人)【练习 4】某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有蓝旗的共有18 人.其中手中有红、黄、蓝三种小旗的有6 人.而手中只有红、黄两种小旗的有9 人,手中只有黄、蓝两种小旗的有4 人,手中只有红、蓝两种小旗的有3 人,那么这个班共有多少人?【解析】如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:(34+ 26 +18)-(9+ 4 + 3)- 6 ⨯ 2 = 50 (人).A BC。
(完整版)容斥原理习题加答案
1.现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( )A、27人B、25人C、19人D、10人【答案】B【解析】直接代入公式为:50=31+40+4-A∩B得A∩B=25,所以答案为B。
2.某服装厂生产出来的一批衬衫大号和小号各占一半。
其中25%是白色的,75%是蓝色的。
如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。
3.某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。
问接受调查的学生共有多少人?()A.120B.144C.177D.192【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+z+y)+24+24+24}+24+15根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.4.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()A.22人B.28人C.30人D.36人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。
容斥原理练习答案
容斥原理1.一个俱乐部,会下象棋的有69人,会下围棋的有58人,两种棋都不会下的人有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?【答案】109人.2.一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手.又问:“谁做完数学作业?请举手!”有42人举手.最后问:“谁语文、数学作业都没有做完?”没有人举手.求这个班语文、数学作业都完成的人数.【答案】31人.3.调查一群小朋友最喜欢吃的水果中,有三种水果最喜欢(苹果、香蕉、草莓),每人都有自己喜欢吃的。
其中喜欢吃苹果的有20人,喜欢吃香蕉的有25人,喜欢吃草莓的有30人,既喜欢苹果又喜欢香蕉的有8人,既喜欢苹果又喜欢草莓的有7人,既喜欢香蕉又喜欢草莓的有6人,三种都喜欢的有4人,请问一共有多少个小朋友?【答案】58个.4.对39种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17种,含乙的有18种,含丙的含有15种,含甲、乙的有7种,含甲、丙的有6种,含乙、丙的有9种,三种维生素都不含的有7种,则三种维生素都含的有多少种?【答案】4种.5.一次考试共有两题,第一题做对有20人,其中5人第二题错了;第二题总共30人做对,有3人一道题都没做对,请问一共有多少人报名参加?【答案】38人.6.光明小学举办学生书法展览.学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?【答案】18幅.7.在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕。
2个人既带了汉堡又带了芝士蛋糕.问:(1)三种都带了的有几人?(2)只带了一种的有几个?【答案】(1)0人(2)4人.8.有100名学生,按照1-100编号,面对老师站成一排,第一次让编号是2的倍数的学生向后转,第二次让编号为5的学生向后转,那么最后面对老师的学生有多少名?【答案】50名.9.某学校五年二班参加语文、数学、英语三科考试,语文90分以上的有21人,数学有19人,英语有20人,语文数学都在90分以上的有9人,数学英语在90分以上的有7人,语文英语都在90分以上的有8人,另外有5人三科都在90分以下,这个班最多有多少人?【答案】48人.10.一小偷藏匿于某商场,三名警察甲、乙、丙分头行动搜查商场的100家商铺.已知甲检查过80家,乙检查过70家,丙检查过60家,则三人都检查过的商铺至少有多少家?【答案】10家.。
2024小升初专项训练容斥原理练习及答案解析
第3讲容斥原理第一关两量重叠问题【知识点】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数-既是A类又是B类的元素个数用符号可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).【例1】“两会”是“全国人民代表大会”和“中国人民政治协商会议”的简称,如果2017年“人大会议”和“政协会议”均历时11天,并且两个会议有9天同时进行.那么,2017年的“两会”将一共进行多少天?【答案】13【例2】三(1)班同学给“手拉手”小伙伴捐物品,捐衣物的有26人,捐文具的有32人,两样都捐的有18人.捐物品的同学一共有几人?【答案】40【例3】同学们去动物园游玩,每人至少参观一个馆.参观大象馆的有10人,参观猴子馆的有15人,两个馆都参加的有6人,一共有多少人去动物园?【答案】19【例4】某班老师建议学生读A、B两本课外读物,结果有25人没有读A,有19人没有读B,20人只读了1本书,11人读过2本书,那么该班共有多少人?【答案】43【例5】假期中,王老师给三(1)班同学推荐了《冰雪奇缘》和《疯狂原始人》两部动画片供大家选择观看.两部电影都看的有36人,两部电影都没看的只有2人;看了《冰雪奇缘》的有40人,看了《疯狂原始人》的有38人.三(1)班一共有多少人?【答案】44【例6】光辉小学六年级在一次语、数联赛中,语文及格的有24人,数学及格的有27人,其中语、数都及格的有14人,另外还有8人语、数都没及格,六年级共有学生多少人?【答案】45【例7】三(5)班同学参加了音乐、美术这两个课外兴趣小组,已知参加音乐小组的有32人,参加美术组的有30人,两个小组都参加的有10人,三(5)班共有学生多少人?【答案】52【例8】四(1)班每个同学至少参加一项兴趣小组,参加美术小组的有32人,参加书法小组的有36人,两项都参加的有15人,四(1)班有多少人?【答案】53【例9】五年级(1)班每人都至少参加一个兴趣小组,参加语文兴趣小组的有45人,参加数学兴趣小组的有37人,有20人两个小组都参加.这个班共有多少人?【答案】62【例10】一次竞赛有2题,答对第一题的有186人,答对第二题的有143人,全错的有21人,全对的51人,问参加竞赛的共有多少人?【答案】299【例11】新东方在“五一劳动节”即将发行新版积分卡.如果旧版积分卡上共出现300位老师,新版积分卡上共出现400位老师,其中有150位老师在新旧两版积分卡中都出现了,那么,在新旧两版积分卡上共出现了多少位老师?【答案】550【例12】六年级一班春游,带矿泉水的有18人,带水果的有16人,这两种至少带一种的有28人,求两种都带的有多少人?【答案】6【例13】空军突击队共有25名士兵,每个人都擅长射击和武术中的一项或者两项,如果士兵中擅长射击的有20人,擅长武术的有12人,则两项均擅长的士兵有多少人?【答案】7【例14】某天的放学路上,甲和乙交流起各自玩过的电子游戏,他们回想起了20个不同的游戏,其中甲玩过8个,乙玩过16个,那么他们都玩过的游戏有几个?【答案】4【例15】三(2)班第一小组共有8人,在一次语文和数学测验中,他们均至少有一门得了95分以上,其中语文得95分以上的有5人,数学得95分以上的有7人,语文和数学均得95分以上的有多少人?【答案】4【例16】一次考试,语文得100分的有5人,数学得100分的8人,老师发现这次考试得100分的只有10人,那么,得双100分的有多少人?【答案】3【例17】某校五年一班有40人,其中有28人参加了数学小组,30人参加了外语小组,有6人两个小组都没有参加,两个小组都参加的有多少人?【答案】24【例18】六(3)班同学有23人参加了舞蹈和击剑兴趣小组,其中参加舞蹈兴趣小组的有17人,参加击剑兴趣小组的有20人,两个兴趣小组都参加的有多少人?【答案】14【例19】五(1)班40名同学采集标本,每个同学至少要采集一种标本.采集昆虫标本的有28人,采集植物标本的有19人,两种标本都采集的有多少人?【答案】7【例20】学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?【答案】5【例21】全班50人做2道数学题,其中第一道做对的有40人,第二道做对的有30人,两道都做错的有5人,则两道都做对的有多少人?【答案】25【例22】六(1)班有45名同学,17人参加了象棋兴趣小组,22人参加了围棋兴趣小组,13人两个小组都没有参加,两个小组都参加的有多少人,多少人只参加了象棋兴趣小组?【答案】7;10【例23】一个班有48个人,班主任在班会上问:“谁完成了语文作业?请举手!”有37人举手,又问:“谁完成了数学作业?请举手!”有42人举手,最后问:“谁语文、数学作业都没有完成?”没有人举手,求这个班语文、数学作业都完成的人数。
完整版容斥原理习题加答案
1. 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有()【答案】B【解析】直接代入公式为:50=31+40+4- A H B得A H B=25,所以答案为B。
2. 某服装厂生产出来的一批衬衫大号和小号各占一半。
其中25%是白色的, 75%是蓝色的。
如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A 、15B、25C 、35D40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A H B,本题设小号和蓝色分别为两个事件A和B,小号占50%蓝色占75%直接代入公式为:100=50+75+10- A H B,得:A H B=353. 某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,【解析】本题画图按中路突破原则,先填充三集合公共部分数字 24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47— {(x+24)+(z+24)+(y+24)}+24+15=199— { (x+z+y ) +24+24+24}+24+15根据上述含义分析得到:x+z+y 只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以 x+z+y 的值为46人;得本题答案为120.4. 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜 欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有 12人,则只喜欢看电影的有多少人( )A.22 人B.28 人C.30 人D.36 人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字 12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100= 58+38+52- {18+16+ (12+ x ) }+12+0,因为该题中,没有三种都不喜 欢的人,所以三集合之外数为 0,解方程得到:x = 14。
容斥原理练习题解析版
容斥原理练习题【练习 1】47 名学生参加数学和语文考试,其中语文得分 95 分以上的 14 人, 数学得分 95 分以上的 21 人,两门都不在 95 分以上的有 22 人.问:两门都在 95 分以上的有多少人?【解析】如图,用长方形表示这47 名学生, A 圆表示语文得分95 分以上的人数,B 圆表示数学得95 分以上的人数,A 与B 重合的部分表示两门都在95 分以上的人数,长方形内两圆外的部分表示两门都不在95 分以上的人数.由图中可以看出,全体人数是至少一门在95 分以上的人数与两门都不在95 分以 上的人数之和,则至少一门在95 分以上的人数为: 47 - 22 = 25 (人).根据包含排除法,两门都在95 分以上的人数为:14 + 21 - 25 = 10 (人).【练习 2】某班有 42 人,其中 26 人爱打篮球,17 人爱打排球,19 人爱踢足球, 9 人既爱打篮球又爱踢足球,4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【解析】由于全班42 人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42 人.根据包含排除法, 42 =(26 + 17 + 19)-(9 + 4 + 既爱打篮球又爱打排球的人数)+ 0 ,得到既爱打篮球又爱打排球的人数为: 49 - 42 = 7 (人).95分以上的 数学95分以上的 B不在两门95分以上的 语文95分以上的 A 两门都【练习 3】四(二)班有48 名学生,在一节自习课上,写完语文作业的有30 人,写完数学作业的有20 人,语文数学都没写完的有6 人.(1)问语文数学都写完的有多少人?(2)只写完语文作业的有多少人?【解析】(1)由题意,有48 - 6 = 42 (人)至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:30 + 20 - 42 = 8 (人).(2)只写完语文作业的人数=写完语文作业的人数-语文数学都写完的人数,即30 - 8 = 22 (人)【练习 4】某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有蓝旗的共有18 人.其中手中有红、黄、蓝三种小旗的有6 人.而手中只有红、黄两种小旗的有9 人,手中只有黄、蓝两种小旗的有4 人,手中只有红、蓝两种小旗的有3 人,那么这个班共有多少人?【解析】如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:(34+ 26 +18)-(9+ 4 + 3)- 6 ⨯ 2 = 50 (人).A BC。
六年级上册奥数试题:第5讲 容斥原理 全国通用(含答案)
第5讲容斥原理知识网络我们经常会遇到这样一类问题,题目中涉及到包含与排除,也就是说有重叠部分。
解答此类问题的主要依据是容斥原理。
容斥原理一:设A、B是两类有重叠部分的量(如图1所示),若A对应的量为a,B对应的量为b,A与B重叠部分对应的量为ab,那么这两类量的总量可以用下面的公式进行计算:总量=a+b-ab容斥原理二:设A、B、C是三类有重叠部分的量(如图2所示),若A对应的量为a,B 对应的量为b,C以应的量为c,A与B重叠部分以应的量为ab,B与C重叠部分对应的量为bc,C与A重叠部分对应的量为ca,A、B、C三部分重叠部分对应的量为abc,则这三类量的总量可以用下面的公式进行计算:总量=a+b+c-ab-bc-ca+abc重点·难点容斥原理的表述虽然简单,但涉及容斥原理的题型很多,范围很广。
我们往往会遇到一些看似与容斥原理无关的问题,然而通过恰当的转化,便可利用容斥原理顺利求解。
如何分析题目,准确找到重叠部分,将问题转化成可用容斥原理解决的问题是本节的难点。
学法指导解决本节问题的最基本方法是示意图法,即通过示意图来表示题目中的数量关系,使分析、推理与计算结合起来,达到使题目的内容形象化,数量之间关系直观化的目的。
因此,这就要求我们在解题过程中,仔细分析,找出所需量并用示意图表示出来,进而通过观察示意图,确定几类量的重叠部分,然后运用容斥原理解决问题。
经典例题[例1]分母是1001的最简真分数,共有多少个?思路剖析分母是1001的真分数有共1000个,为了方便计算,增加一个分数在1001个分数中考虑问题。
由于1001=7×11×13,所心1~1001的分子里只要含有7、11、13的倍数的就一定能同分母约分,即不是最简真分数,应排除掉。
因此,首先应考虑1~1001中,有多少个7、11或13的倍数。
解答因为1001=7×11×13,所以在1~1001的自然数中,7的倍数共有(11×13)个,11的倍数共有(7×13)个,13的倍数共有(7×11)个;7、11年公倍数有13个,7、13的公倍数有11个,11、13的公倍数有7个;7、11、13的公倍数有1个(即1001)。
奥数 容斥原理(例题+详解)
容斥原埋在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
例1、桌上有两张圆纸片A、B.假设圆纸片A的面积为30平方厘米,圆纸片B的面积为20平方厘米.这两张圆纸片重叠部分的面积为10平方厘米.则这两张圆纸片覆盖桌面的面积由容斥原理的公式(1)可以算出为:|A∪B|=30+20-10=40(平方厘米)。
例2、求在1至100的自然数中能被3或7整除的数的个数。
分析解这类问题时首先要知道在一串连续自然数中能被给定整数整除的数的个数规律是:在n个连续自然数中有且仅有一个数能被n整除.根据这个规律我们可以很容易地求出在1至100中能被3整除的数的个数为33个,被7整除的数的个数为14个,而其中被3和7都能整除的数有4个,因而得到解:设A={在1~100的自然数中能被3整除的数},B={在1~100的自然数中能被7整除的数},则A∩B={在1~100的自然数中能被21整除的数}。
∵100÷3=33…1,∴|A|=33。
∵100÷7=14…2,∴|B|=14。
∵100÷21=4…16,∴|A∩B|=4。
由容斥原理的公式(1):|A∪B|=33+14-4=43。
答:在1~100的自然数中能被3或7整除的数有43个。
例3、求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析如果在1~100的自然数中去掉5的倍数、6的倍数,剩下的数就既不是5的倍数也不是6的倍数,即问题要求的结果。
解:设A={在1~100的自然数中5的倍数的数},B={在1~100的自然数中6的倍数的数},数.为此先求|A∪B|。
∵100÷50=20,∴|A|=20又∵100÷6=16…4,∴|B|=16∵100÷30=3…10,∴|A∩B|=3,|A∪B|=|A|+|B|-|A∩B|=20+16-3=33。
容斥原理题目
容斥原理题目
一场网球比赛中有10名选手参加。
每个选手都与其他9名选
手分别进行比赛,共进行了45场比赛。
求共有多少个场次的
比赛中至少有一名选手获胜。
解法:
设A为至少有一名选手获胜的场次数目,Ai为选手i获胜的
场次数目。
根据容斥原理,有:
A = A1 ∪ A2 ∪ ... ∪ A10
根据容斥原理公式,可得:
A = (A1 + A2 + ... + A10) - (A1 ∩ A2 + A1 ∩ A3 + ... + A9 ∩
A10) + (A1 ∩ A2 ∩ A3 + A1 ∩ A2 ∩ A4 + ... + A8 ∩ A9 ∩ A10) - ... + (-1)^9 * (A1 ∩ A2 ∩ ... ∩ A10)
根据条件可知A1 + A2 + ... + A10 = 45,即第一个括号内的内
容为45。
然后计算两两交集,由于每个选手都与其他9名选手进行比赛,所以两两交集的结果为10 * 9。
然后计算三个选手的交集,由于每个选手都与其他9名选手进行比赛,所以三个选手的交集的结果为10 * 9 * 8。
依次类推,最后计算十个选手的交集,结果为10!(即10的
阶乘)。
将以上结果带入容斥原理公式中,可得:
A = 45 - (10 * 9) + (10 * 9 * 8) - ... + (-1)^9 * (10!) ≈ 3,628,800 - 3,628,800 + 1 - 0 + 0 - 0 + 0 - 0 + 0 - 0 = 1
所以共有1个场次的比赛中至少有一名选手获胜。
小学数学典型应用题22:容斥问题(含解析)
小学数学典型应用题22:容斥问题(含解析)容斥问题【含义】容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法。
这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
【数量关系】★A∪B = A+B - A∩B★A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长_____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考.没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀.下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
容斥问题经典例题及答案
一次数学小测验只有两道题,结果全班只有10人全对,第一道题有25人做对,第二道题有18人做错。
都做错的几人?只对第一道的有25-10=15人第二道题有18人做错,这18个人包括只对第一道的和全错的所以全错的有18-15=3人某班有36名同学在一项答题测试中,答对第一题的有25人,答对第二题的有23人,两题都都答对的有15人,问有多少人两题都答不对?(25+23)-15=32(人)36-32=4(人)25+23得的是答对第一题、答对第二题的人、和两题都答对的人×2,因为多出了两题都答对的人×1,所以减掉15,就得答对题的所有人。
最后拿36-32四1班有25人参加数学竞赛,答对第一题有19人,答对第五题的有14人,两题答对有10人,两题答错的有几人?两题都对十人,那么对第一题错第五题的九人,那么对第五题错第一题的四人就用25-10-9-4=2学校数学竞赛出了A,B,C三道题,至少做对一道题有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
三道题都做对只有1人,只做对二道题和只做对一道题的各有多少人?至少做对一道题的有25人你可以理解成只有25人是回答对了问题的,现在A B C 一共是10+13+15=38 个对的问题,意思是说25个人一共回答了38个对的问题。
意思是有38-25=13个问题是做对2道和3道的。
其中一个人回答了3道是对的,那么需要做的就是13-2=11 就是纯粹的做对了2道题的人,11个人做对了2道1个人做对了3道那么只做对一道的就是38-11×2-3=13,意思是只做对一道的是13人,做对2道的是11人,做对3道的是1个人那么就符合13×1+11×2+1×3=38。
小学奥数精讲:容斥原理习题及答案
⼩学奥数精讲:容斥原理习题及答案⼩学奥数精讲:容斥原理习题及答案年级班姓名得分⼀、填空题1.⼀个班有45个⼩学⽣,统计借课外书的情况是:全班学⽣都借有语⽂或数学课外书.借语⽂课外书的有39⼈,借数学课外书的有32⼈.语⽂、数学两种课外书都借的有⼈.2.有长8厘⽶,宽6厘⽶的长⽅形与边长为5厘⽶的正⽅形,如图,放在桌⾯上(阴影是图形的重叠部分),那么这两个图形盖住桌⾯的⾯积是平⽅厘⽶.3.在1~100的⾃然数中,是5的倍数或是7的倍数的数有个.4.某区100个外语教师懂英语或俄语,其中懂英语的75⼈,既懂英语⼜懂俄语的20⼈,那么懂俄语的教师为⼈.5.六⼀班有学⽣46⼈,其中会骑⾃⾏车的17⼈,会游泳的14⼈,既会骑车⼜会游泳的4⼈,问两样都不会的有⼈.6.在1⾄10000中不能被5或7整除的数共有个.7.在1⾄10000之间既不是完全平⽅数,也不是完全⽴⽅数的整数有个.8.某班共有30名男⽣,其中20⼈参加⾜球队,12⼈参加蓝球队,10⼈参加排球队.已知没⼀个⼈同时参加3个队,且每⼈⾄少参加⼀个队,有6⼈既参加⾜球队⼜参加蓝球队,有2⼈既参加蓝球队⼜参加排球队,那么既参加⾜球队⼜参加排球队的有⼈.69.分母是1001的最简真分数有个.10.在100个学⽣中,⾳乐爱好者有56⼈,体育爱好者有75⼈,那么既爱好⾳乐,⼜爱好体育的⼈最少有⼈,最多有⼈.⼆、解答题11.某进修班有50⼈,开甲、⼄、丙三门进修课、选修甲这门课的有38⼈,选修⼄这门课有的35⼈,选修丙这门课的有31⼈,兼选甲、⼄两门课的有29⼈,兼选甲、丙两门课的有28⼈,兼选⼄、丙两门课的有26⼈,甲、⼄、丙三科均选的有24⼈.问三科均未选的⼈数?12.求⼩于1001且与1001互质的所有⾃然数的和.13.如图所⽰,A、B、C分别代表⾯积为8、9、11的三张不同形状的纸⽚,它们重叠放在⼀起盖住的⾯积是18,且A与B,B与C,C与A公共部分的⾯积分别是5、3、4,求A、B、C 三个图形公共部分(阴影部分)的⾯积.14.分母是385的最简真分数有多少个,并求这些真分数的和.———————————————答案——————————————————————1. 26从图中可以看出全班45⼈,借语⽂或数学课外读物的共39+32=71(⼈),超过全班⼈数71-45=26(⼈),这26⼈都借了语⽂、数学两种课外书。
(完整版)容斥原理例题
学科:奥数教学内容:第四讲容斥原理(二)上一讲我们已经初步研究了简单的容斥原理,今天我们继续研究较复杂的容斥问题。
例1五年级一班有45名同学,每人都积极报名参加暑假体育训练班,其中报足球班的有25人,报篮球班的有20人,报游泳班的有30人,足球、篮球都报者有10人,足球、游泳都报者有10人,足球、篮球都报者有12人。
请问:三项都报的有多少人?分析:由于问题比较复杂,我们把它简化成下图.要计算阴影部分的面积,我们记A∩B 为圆A与圆B公共部分的面积,B∩C为圆B与圆C公共部分的面积,A∩C表示圆A与圆C 的公共部分的面积,x为阴影部分的面积则图形盖住的面积为:A+B+C-A∩B-B∩C-A∩C+X。
请同学们注意:阴影部分的面积先加了3次,然后又被减了3次,最后又加了1次。
解答:设三项都报的有x人,由容斥原理有30+25+20-10-10-12+x=45解得 x=2。
答:三项都报名的有2人。
说明:在“A+B+C-A∩B-B∩C-A∩C+X”式中,A,B,C,A∩B,B∩C,A∩C,x和总量这8个数中,只要知道了7个数,就可通过列方程求出第8个数。
例2从1至1000这1000个自然数中,不能被3、5、7中任何一个自然数整除的数一共有多少个?分析:第一步先求出:能被3、5、7中任何一个自然数整除的数一共有多少个?第二步再求出:不能被3、5、7中任何一个自然数整除的数一共有多少个?能被3整除的自然数的个数+能被5整除的自然数的个数+能被7整除的自然数的个数-(既能被3整除又能被5整除的自然数的个数+既能被3整除又能被7整除的自然数的个数+既能被5整除又能被7整除的自然数的个数)+能同时被3、5、7整除的自然数的个数=能被3、5、7中任何一个自然数整除的数的个数。
解答:能被3整除的自然数有多少个?1000÷3=333……1 有333个。
能被5整除的自然数有多少个?1000÷5=200 有200个。
第六节容斥原理参考答案
一.练习故本练习所以志愿练习练习练习练习60-练习所以财政练习则有人。
二.练习阴影∩A 练习A+250-练习集合两种三.两个元素的习1.【解析本题正确答习2.【解析以有10+17-愿者的有17习3.【解析习4.【解析习5.【解析习 6.【解析-12=29+34-习7.【解析解法如下以既不是会政局共有17习8.【解析有88-15=73用集合图三个元素的习1. 影面积为A A +A∩B∩C 习2.2B+3T=40+3-48=2人。
习3.合问题。
63种考试参加画图法 的公式析】考查容斥答案为D。
析】本题属-20=7人既7-7=10人。
析】集合问题析】设两种乐析】由题意可析】可看成-x,解得x=析】集合问题下:会计处也不是71+41=212析】本题答案3人是既有形求解如下的公式A∩B∩C,C,290=6436+30=106所以选B.3+89+47-46的”不包括第六斥原理|A∪于集合问题既是奥运会志所以选择题,489+60乐器都会的可知俱乐部成集合问题=15,所以选题。
是宣传处的人,故应选案为D。
有有手机又有电下:?=76-所以根据公4+180+1606,B+3T=286-24×2+15括“准备选六节 容斥B|=|A|+|B 题。
由题干志愿者也是择C 选项。
06-x=750,的人为x,则部一共有69。
设既穿黑选C。
的人共有(2选D。
有手机的88电脑的人。
-73=3。
公式A∪B -24-70-36+26+24=785=120。
故本选择三种考试斥原理B|-|A∩B|=可知,有5是全运会志愿得到 x=34则62-4+x=9+58+12-30黑上衣又穿206+177-41人中有15故有电脑没∪C = A+B 6+X,得出8,A+B+T=2本题选A。
试参加的人=27+108-(450-30=20人愿者,所以45。
=56+11,解0=109(人穿黑裤子的有)÷2=171人只有手机没手机的人B+C - A∩B X=16,选28+20=48,注:在这里人数”。
(完整版)容斥问题
十三、复习容斥问题容斥问题其实比较好理解,我们可以试着看一个例题:“学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两种都会拉的还有8人。
这个文艺组共有多少人?"(课本60页例一).我们来分析:试着画一个如上面的两个圆圈图,其中左边圆圈内代表会拉手提琴的一共有24人,右边圆圈代表会弹电子琴的一共有17人,然后图中C的部分是两个圆圈的重叠部分,代表两种乐器都会演奏的人,注意,这部分人它既属于A会拉手提琴,也属于B会弹电子琴,那么要求文艺组多少人,就是求会演奏的人加起来,这些人正好是都包括在圈里的,那么就是24+17—8,因为24+17的话会把两种乐器都会的人全算上,所以要把重复多计算的公共重叠部分减去,减去8就可以得到圈内总数,也就是24+17—8=33人。
那么我们可以根据这个题推导出一个适合我们使用的容斥问题公式:A+B-C=圈内总数其中,A代表符合A条件的数量A,B代表符合B条件的数量B,C代表既符合A也符合B条件的C,同学们要注意我们要求的圈内总数指的就是符合A,符合B,还有两种都符合的加起来,不能有重复,如果你仔细看图会发现这个图其实分成三块。
第一块是左边,它的数量是A—C,中间是C,右边是B—C,加在一起求圈内总数,就是A-C+C+B—C,就等于A+B—C,同学们清楚了么。
那么根据这个式子,其实我们可以推出3个式子,也就是分别求A、B、C的式子:A+B—圈内总数=C圈内总数+C-A=B圈内总数+C-B=A也就是根据:被减数—减数=差这样推导出来的么.以上就是简单一些的容斥问题。
再多一点条件的,比如:一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两种语言都不会的有4人,两种语言都会的有多少人?(课本61页例二)其实这个咱们就能看出来圈内总数+两种语言都不会的=旅行社全部人数,我们可以先求圈内总数36-4=32人,也就是说会说外语的,不管是会1种还是2种,都算起来,共有32人,然后根据上面我们总结的式子,这是求C的,那么就用A+B—圈内总数=C求就可以:36—4=32(人)24+18-32=10(人)两种语言都会的有10人.练习题:1、四(1)班有38名学生,其中有18人参加音乐小组,有16人参加手工制作小组,这些学生每人至多只参加了一个小组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有(
)
【答案】B
【解析】直接代入公式为:50=31+40+4- A H B
得A H B=25,所以答案为B。
2. 某服装厂生产出来的一批衬衫大号和小号各占一半。
其中25%是白色的, 75%是蓝色的。
如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()
A 、15
B
、
25
C 、35
D40
【答案】C
【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A H B,本题设小号和蓝色分别为两个事件A和B,小号占50%蓝色占75%直接代入公式
为:100=50+75+10- A H B,得:A H B=35
3. 某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,
【解析】本题画图按中路突破原则,先填充三集合公共部分数字 24,再推
其他部分数字:
根据每个区域含义应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
=63+89+47— {(x+24)+(z+24)+(y+24)}+24+15
=199— { (x+z+y ) +24+24+24}+24+15
根据上述含义分析得到:x+z+y 只属于两集合数之和,也就是该题所讲的只
选择两种考试都参加的人数,所以 x+z+y 的值为46人;得本题答案为120.
4. 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜 欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有 12人,则只喜欢看电影的有多少人( )
A.22 人
B.28 人
C.30 人
D.36 人
【答案】A
【解析】本题画图按中路突破原则,先填充三集合公共部分数字 12,再推
其他部分数字:
根据各区域含义及应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
100= 58+38+52- {18+16+ (12+ x ) }+12+0,因为该题中,没有三种都不喜 欢的
人,所以三集合之外数为 0,解方程得到:x = 14。
52= x+12+4+Y = 14+12+4+Y 得到Y = 22人。
不参加其中任何一种考试的都15人。
问接受调查的学生共有多少人?( )
5. 某班统计考试成绩,数学得90分上的有25 人;语文得90分以上的有21 人;两科中至少有一科在90 分以上的有38 人。
问两科都在90 分以上的有多少人?
解:设A={ 数学成绩90 分以上的学生}
B={ 语文成绩90 分以上的学生}
那么,集合A U B表示两科中至少有一科在90分以上的学生,由题意知,
I A I =25, I B I =21, I A U B I =38
现要求两科均在90分以上的学生人数,即求I A QB I,由容斥原理得
I A PB I = I A I + I B I - I A U B I =25+21-38=8
点评:解决本题首先要根据题意,设出集合 A , B,并且会表示 A U B , A PB,再利用
容斥原理求解。
6. 某班同学中有39人打篮球, 37人跑步, 25人既打篮球又跑步,问全班参加篮球、跑步这两项体育活动的总人数是多少?
解:设A={ 打篮球的同学};B={ 跑步的同学}
则A P B={ 既打篮球又跑步的同学}
A U B={ 参加打篮球或跑步的同学}
应用容斥原理I A U B I = I A I + I B I - I A PB I =39+37-25=51(人)
7. 某年级的课外学科小组分为数学、语文、外语三个小组,参加数学小组的有23人, 参加语文小组的有27人, 参加外语小组的有18人;同时参加数学、语文两个小组的有4人, 同时参加数学、外语小组的有7人,同时参加语文、外语小组的有 5 人;三个小组都参加的
有 2 人。
问:这个年级参加课外学科小组共有多少人?
解1 :设A={数学小组的同学}, B={语文小组的同学} , C={外语小组的同学}, A P B={数学、语文小组的同学}, A P C={参加数学、外语小组的同学} , B P C={参加语文、外语小组
的同学}, A P B P C={ 三个小组都参加的同学}
由题意知:l A I =23, I B I =27,1 C I =18
I A PB I =4, I A AC I =7 ,I B AC I =5, I A A B AC I =2
根据容斥原理二得:
I A U B U C I = I A I + I B I + I C I - I A AB I - I A A C|- I B A C|+|A A B AC I
=23+27+18-(4+5+7)+2
=54(人)
山东公务员行测:数量关系之容斥问题解题原理及方法
解2 :利用图示法逐个填写各区域所表示的集合的元素的个数,然后求出最后结果。
设A、B、C分别表示参加数学、语文、外语小组的同学的集合,其图分割成七个互不
相交的区域,区域四(即A A B A C)表示三个小组都参加的同学的集合,由题意,应填2。
区
域W表示仅参加数学与语文小组的同学的集合,其人数为4-2=2(人)。
区域W表示仅参加数学与外语小组的同学的集合,其人数为7-2=5(人)。
区域V表示仅参加语文、外语小组的同
学的集合,其人数为5-2=3(人)。
区域I表示只参加数学小组的同学的集合,其人数为
23-2-2-5=14(人)。
同理可把区域H、川所表示的集合的人数逐个算出,分别填入相应的区域内,则参加课外小组的人数为;
14+20+8+2+5+3+2=54(人)
点评:解法2简单直观,不易出错。
由于各个区域所表示的集合的元素个数都计算出来了,因此提供了较多的信息,易于回答各种方式的提问。
8•某车间有工人100人,其中有5个人只能干电工工作,有77人能干车工工作,86人能干焊工工作,既能干车工工作又能干焊工工作的有多少人?
解:工人总数100,只能干电工工作的人数是5人,除去只能干电工工作的人,这个车
间还有95人。
利用容斥原理,先多加既能干车工工作又能干焊工工作的这一部分,其总数为163,然后找出这一公共部分,即163-95=68
9•某次语文竞赛共有五道题(满分不是100分),丁一只做对了(1)、(2)、(3)三题得了16
分;于山只做对了(2)、(3)、(4)三题,得了25分;王水只做对了(3)、(4)、(5)三题,得了28分,张灿只做对了(1)、(2)、(5)三题,得了21分,李明五个题都对了他得了多少分?
解:由题意得:前五名同学合在一起,将五个试题每个题目做对了三遍,他们的总分恰好是试题总分的三倍。
五人得分总和是16+25+30+28+21=120。
因此,五道题满分总和是
120七=40。
所以李明得40分。
10.某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有
40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既教日语又教法语,有4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名?
解:本题只有求出至少教英、日、法三门课中一种的教师人数,才能求出不教这三门课的外语教师的人数。
至少教英、日、法三门课中一种教师人数可根据容斥原理求出。
根据容
斥原理,至少教英、日、法三门课中一种的教师人数为50+45+40-15-10-8+4=106(人)不教这三门课的外语教师的人数为120-106=14(人)
L对艇门大学汁算机系100名学生竝行河果发现ftin鸟欢迓MBA和足球、香车.其中就人喜欢看NBA^S人客
款君赛卑,52人喜欢看足球客坎看NBA 乂喜欢看參车的有】因人*既客蛊看足厚
及喜欢看赛车的右人*三静赫轉欢希的宥12人丫则貝喜然看足璋的有:
九22人K2S A U30人D沂人
2.外诣学校有英语、袪日谄救呻其阶人,翦叩只能戟英囲的有&人,只能教日龄的育石人■陡ft 英*日蔚的有5人,能載法,日带的有3人•陀教英*怯蜡的有电人,三种都能教的有2人•则貝能敕怯语MWi
他斗人風5人人 D.7
fifcfrft对】端人的制査兄示就釋由的与不魯欢餐山的人散比为5,初真欢游冰的与不海狀游
激的人数比为7「阴种活功榔尊欢的疽43人"对这两种活动都不喜吹豹人敷是*
A. IS K27 C26 Q32
4.某个班的全体学生进行短跑、游泳.篮球三个项目的测试・梢4名学生在这三个项目上祁汝冇达到优弄,其余毎人至少有一个项目达到了优秀.这部分学生达到优秀的项目、人数如下表:
求这个班的学生人敷•
A.36 R 37 Q38 D. 39
5.某专业有学生50人■现开设有甲、乙■丙三门必修课.有40人迭修甲课程.36人选修乙课程.30 人选俺丙课程•兼选甲•乙沏门课程的冇28人•廉选卬•丙两门课程的有26人•兼选乙■丙购门谭程的布24人•甲•乙、内三门课程均透的有20人•何三门课程均未选的有多少人?
九1人B2人C3人D・4人。