强化训练数学客观题(5)
2013年浙江中考数学第一轮复习课件 专题突破强化训练专题五三角形
A. 1∶ 2 B. 2∶ 3 C. 1∶ 3 D. 1∶4
DE 解析:∵ AD、BE 是△ABC 的两条中线,∴DE 是△ABC 的中位线.∴DE∥AB , = AB 1 .∴△EDC∽△ABC,∴S△EDC∶S△ABC=1∶4. 2
答案:D
2 3.如图,在▱ABCD 中,E 为 AD 的三等分点,AE= AD,连结 BE,交 AC 于点 F,AC 3 =12,则 AF 为( )
25 π, S2=2π, 8
1 1 1 1 AB2 2 2 2 解析:如图,在 Rt △ABC 中,AB =AC +BC ,∴ π·AB = π·AC + π·BC ,∴ π· = 8 8 8 2 4 1 AC2 1 BC2 25 9 π· + π· ,即 S1=S 2+S3.∴S 3= S1- S2= π-2π= π. 2 4 2 4 8 8
(2) △ABE≌△ CAD → ∠ ABE=∠CAD → ∠BFD=∠BAC=60°
【解析】(1)证明:∵△ABC 是等边三角形, ∴∠BAC=∠C= 60° ,AB=AC.在△ABE 和△CAD 中, ∵AB=AC,∠BAE=∠C,AE=CD . ∴△ABE≌△CAD. (2)∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∵∠BFD=∠ABE+∠BAD, ∴∠BFD=∠CAD+∠BAD=∠BAC=60° .
12.如图所示,直线 a 经过正方形 ABCD 的顶点 A,分别过正方形的顶点 B、D 作 BF ⊥a 于点 F,DE⊥a 于点 E,若 DE=8,BF= 5,则 EF 的长为________.
解析:可证△ABF≌△DAE,可得 AF=DE=8,AE=BF=5.∴EF=8+5=13.
答案:13
13 . 如图 ,已 知 AC = BD ,要 使△ ABC ≌ △ DCB , 则只 需添 加 一个 适当 的 条件是 ________.(填一个即可 )
01.数列与排列、组合、二项式定理客观题强化训练及答案 (6)
函数与不等式客观题强化训练1.设集合M ={}1,0,1-,N ={}6,5,4,3,2,映射N M f →:,使对任意的M x ∈,都有)()(x xf x f x ++是奇数,这样的映射f 的个数是 ( )(A ) 22 (B ) 15 (C ) 50 (D ) 272.设A ={x │20≤≤x },B ={y │21≤≤y },在图(1)中,能表示从A 到B 的映射是( )图(1)3的曲线是( )(A ) 钓鱼 (B ) 跳高 (C ) 100米赛跑 (D ) 掷标枪图(2)4.奇函数)()(R x x f y ∈=有反函数)(1x f y -=,则必在)(1x f y -=的图象上的点是( )(A ) ()a a f ),(- (B ) ()a a f --),( (C ) ())(,1a fa -- (D ) ())(,1a fa --5.定义在R 上的函数)1(-=x f y 是单调递减函数,如图所示,给出四个结论:○11)0(=f ;○21)1(<f ;○30)1(1=-f ;○40)(211>-f 其中正确结论的个数是( )(A ) 1 (B ) 2 (C ) 3 (D ) 46.设偶函数b x x f a-=log )(在()0,∞-上递增,则)2()1(++b f a f 与的大小关系是( )(A ) )2()1(+=+b f a f (B ) )2()1(+>+b f a f(C ) )2()1(+<+b f a f (D ) 不能确定7.设)是增函数,则时且当满足。
901.1()(2),4()()(f a x f x x f x f x f =>-=,=b )9.0(1.1f ,)4(log21f c =的大小关系是( )(A )c b a >> (B ) c a b >>(C ) b c a >> (D ) a b c >> 8.已知定义域为R 的偶函数[)∞,+在0)(x f 上是增函数,且0)31=(f ,则不等式0)(log 8>x f 的解集是( )(A ) {x │2>x } (B ) {x │210<<x }(C ) {x │210<<x 或2>x } (D ) {x │121<<x 或2>x }9.设函数⎪⎩⎪⎨⎧>≤-=)0()0(1)()(2121x xx x f x ,已知1)(>a f ,则实数a 的取值范围是( )(A ) ()1,1- (B ) ()()+∞-∞-,11, (C ) ()()+∞-∞-,02, (D ) ()+∞,110.设b a ,是两个实数,给出下列条件:○11>+b a ;○22=+b a ;○32>+b a ;○4222>+b a ;○51>ab 。
高考数学二轮复习题型强化练1 客观题8+4+4标准练(A) (2)
题型强化练1 客观题8+4+4标准练(A )一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020天津滨海新区联考,1)设集合U={x|x ≥-1},A={1,3,5,7},B={x|x>5},则A ∩∁U B=( ) A.{1,3,5} B.{3,5}C.{1,3}D.{1,3,5,7}2.(2020山东日照二模,2)在复平面内,已知复数z 对应的点与复数1+i 对应的点关于实轴对称,则z i=( )A.1+iB.-1+iC.-1-iD.1-i 3.(2020北京西城二模,6)设a=30.2,b=log 32,c=log 0.23,则 ( )A.a>c>bB.a>b>cC.b>c>aD.b>a>c4.(2020山东日照一模,3)南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为V 1,V 2,被平行于这两个平面的任意平面截得的两个截面的面积分别为S 1,S 2,则“S 1,S 2总相等”是“V 1,V 2相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件5.(2019广东深圳适应性考试,文8)已知△ABC 是边长为1的等边三角形,D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.118C.14D.186.(2020广东东莞一模,8)函数y=cos x ·2x +12x -1的部分图象大致为( )7.(2020河北石家庄5月检测,8)若双曲线C:x 2a2−y2b2=1(a>0,b>0)的一条渐近线被圆x2+y2-4y+2=0所截得的弦长为2,则双曲线C的离心率为()A.√3B.2√33C.2D.√28.(2020山东聊城一模,8)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,为了纪念数学家高斯,人们把函数y=[x],x∈R称为高斯函数,其中[x]表示不超过x的最大整数.设{x}=x-[x],则函数f(x)=2x{x}-x-1的所有零点之和为()A.-1B.0C.1D.2二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020海南线上诊断测试,9)如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是()A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率10.(2020山东德州一模,10)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是( )A.卫星向径的取值范围是[a-c ,a+c ]B.卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C.卫星向径的最小值与最大值的比值越大,椭圆轨道越扁平D.卫星运行速度在近地点时最大,在远地点时最小11.(2020山东淄博一模,10)在正方体ABCD-A 1B 1C 1D 1中,P ,Q 分别为棱BC 和棱CC 1的中点,则下列说法正确的是( ) A.BC 1∥平面AQPB.平面APQ 截正方体所得截面为等腰梯形C.A 1D ⊥平面AQPD.异面直线QP 与A 1C 1所成的角为60°12.(2020海南海南中学月考,12)已知函数f (x )=A sin(ωx+φ)(A>0,ω>0)在x=1处取得最大值,且最小正周期为2,则下列说法正确的有( ) A.函数f (x-1)是奇函数B.函数f (x+1)是偶函数C.函数f (x+2)在[0,1]上单调递增D.函数f (x+3)是周期函数三、填空题:本题共4小题,每小题5分,共20分.13.(2020山东泰安考前模拟,14)(x -1x )(1-x )4的展开式中x 3的系数为 .14.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 升. 15.(2019四川攀枝花统考,文16)已知函数f (x )=(x -b )2-lnx x (b ∈R ).若存在x ∈[1,2],使得f (x )+xf'(x )>0,则实数b 的取值范围是 .16.已知正三棱柱ABC-A 1B 1C 1的六个顶点都在球O 的表面上,AB=3,异面直线AC 1与BC 所成角的余弦值为310,则球O 的表面积为 .题型强化练题型强化练1 客观题8+4+4标准练(A )1.A 解析 由题意∁U B={x|-1≤x ≤5},∴A ∩∁U B={1,3,5}. 2.C 解析 由题意得z=1-i,所以zi =1-ii =i+1-1=-1-i .3.B 解析 指数函数y=3x 为R 上的增函数,则a=30.2>30=1;对数函数y=log 3x 为(0,+∞)内的增函数,则log 31<log 32<log 33,即0<b<1;对数函数y=log 0.2x 为(0,+∞)内的减函数,则c=log 0.23<log 0.21=0.故a>b>c.4.A 解析 根据祖暅原理,当S 1,S 2总相等时,V 1,V 2相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“S 1,S 2总相等”是“V 1,V 2相等”的充分不必要条件.5.D 解析 由DE=2EF ,可得DE ⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =12DE ⃗⃗⃗⃗⃗ .如图所示,连接AE ,则AE ⊥BC ,所以BC ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =0,AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(AE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0+12·|DE ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos π3=0+12×12×1×12=18.故选D .6.A 解析 令f (x )=y=cos x ·2x+12x -1(x ≠0),则f (-x )=cos(-x )·2-x+12-x -1=cos x ·12x +112x -1=cos x ·2x +11-2x =-f (x ),所以函数f (x )为奇函数,可排除B,D; 当x ∈(0,π2)时,cos x>0,2x +12x -1>0,所以f (x )>0,故排除C.7.C 解析 双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的渐近线方程为y=±ba x ,由对称性,不妨取y=ba x ,即bx-ay=0.圆x 2+y 2-4y+2=0可化为x 2+(y-2)2=2,其圆心的坐标为(0,2),半径为√2. 圆心(0,2)到渐近线的距离d=√(√2)2-12=1. 由点到直线的距离公式,可得√b +a 2=2a c =2e =d=1,所以e=2.8.A 解析 由题意知,当x=0时,f (x )=-1,所以0不是函数f (x )的零点.当x ≠0时,由f (x )=2x {x }-x-1=0可得,2{x }=1x +1,令y 1=2{x }=2x-2[x ],y 2=1x +1,作出函数y 1=2{x }=2x-2[x ],y 2=1x +1的图象如图所示, 由图象可知,除点(-1,0)外,函数y 1=2{x }=2x-2[x ],y 2=1x +1图象其余交点关于(0,1)中心对称,所以横坐标互为相反数.由函数零点的定义知,函数f (x )=2x {x }-x-1的所有零点之和为-1.9.ABC 解析 1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例,所以西安所占比例为3287>13,故A 正确;由曲线图可知,1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B 正确;2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213-116=97(例),故C 正确;2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率为98-8888=544,2月6日到2月8日西安新冠肺炎累计确诊病例的增长率为88-7474=737,显然737>544,故D 错误.10.ABD解析根据椭圆定义知卫星向径的取值范围是[a-c,a+c],故A正确;当卫星在左半椭圆弧运行时,对应的面积更大,根据面积守恒规律,速度应更慢,故B 正确;a-c a+c =1-e1+e=21+e-1,比值越大,则e越小,椭圆轨道越接近于圆,故C错误.根据面积守恒规律,卫星在近地点时向径最小,故速度最大,在远地点时向径最大,故速度最小,故D正确.11.ABD解析如图,因为P,Q分别为棱BC和棱CC1的中点,所以PQ∥BC1, 又因为BC1⊄平面AQP,PQ⊂平面AQP,由线面平行的判定定理,知BC1∥平面AQP,故A正确;由AD1∥PQ,知平面APQ截正方体所得截面为四边形APQD1,又因为PQ≠AD1,所以四边形APQD1是等腰梯形,故B正确;若A1D⊥平面AQP,则A1D⊥AP,又因为AA1⊥AP,AA1∩A1D=A1,所以AP⊥平面A1AD,而AB⊥平面A1AD,这与垂直于同一平面的两条直线平行矛盾,故C不正确;异面直线QP与A1C1所成的角为∠A1C1B,而△A1C1B为等边三角形,故D正确. 12.BCD解析因为f(x)=A sin(ωx+φ)的最小正周期为2,所以2=2πω,所以ω=π.又因为f(x)=A sin(ωx+φ)在x=1处取得最大值,所以ω+φ=2kπ+π2(k∈Z).所以φ=2kπ-π2(k∈Z).所以f(x)=A sin(ωx+φ)=-A cos πx.设g(x)=f(x-1)=-A cos [π(x-1)]=A cos πx,因为g(-x)=A cos [π(-x)]=A cos πx=g(x),所以g(x)=f(x-1)是偶函数,故A不正确;设h (x )=f (x+1)=-A cos [π(x+1)]=A cos πx ,因为h (-x )=A cos [π(-x )]=A cos πx=h (x ),所以h (x )=f (x+1)是偶函数,故B 正确; 设m (x )=f (x+2)=-A cos [π(x+2)]=-A cos πx ,因为x ∈[0,1],所以πx ∈[0,π],又因为A>0,所以函数m (x )=f (x+2)在[0,1]上单调递增,故C 正确; 设n (x )=f (x+3)=-A cos [π(x+3)]=A cos πx ,函数n (x )最小正周期为2ππ=2,故D 正确.13.5 解析 (1-x )4的通项为T r+1=C 4r 14-r (-x )r =(-1)r C 4r x r ,令r=2,此时x 3的系数为(-1)2C 42=6,令r=4,此时x 3的系数为-(-1)4C 44=-1,则x 3的系数为6-1=5.14.1322 解析 设竹子自上而下各节的容积分别为a 1,a 2,…,a 9,且为等差数列,根据题意得{a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即{4a 1+6d =3,3a 1+21d =4,解得a 1=1322,故最上面一节的容积为1322升.15.-∞,74解析 ∵f (x )=(x -b )2-lnx x ,x>0,∴f'(x )=2x (x -b )-1-(x -b )2+lnxx 2,∴f (x )+xf'(x )=(x -b )2-lnx x +2x (x -b )-1-(x -b )2+lnxx=2x (x -b )-1x. 存在x ∈[1,2],使得f (x )+xf'(x )>0,即2x (x-b )-1>0,∴b<x-12x 在[1,2]上有解. 设g (x )=x-12x (1≤x ≤2),∴b<g (x )max .g (x )=x-12x 在[1,2]上为增函数, 故g (x )max =g (2)=74,∴b<74. 故实数b 的取值范围是-∞,74. 16.28π 解析 由题意BC ∥B 1C 1,所以∠AC 1B 1或其补角为异面直线AC 1与BC 所成的角.设AA 1=b ,在△AC 1B 1中,AB 1=AC 1,则cos ∠AC 1B 1=12B 1C 1AC 1=12·√32+b =310,所以AA 1=b=4.设外接球的半径为R ,底面外接圆的半径为r ,则R 2=r 2+(b 2)2.因为底面为等边三角形,所以2r=3sin π3,即r=√3,所以R 2=3+4=7,所以球O 的表面积为4π×7=28π.。
小学二年级数学上册乘法口诀强化训练(苏教版)
【导语】做题⽬是也要多多牢记⾃⼰哪⾥容易错做个错提集是很不错的选择.对于⾼难度题⽬的错,主要是平时多做⾃⼰不会的题⽬,⼒求弄懂,并多做.只要你做的⽐其他同学多的多,那么你成绩肯定不会差。
以下是整理的相关资料,希望对您有所帮助。
第Ⅰ卷客观题 ⼀、单选题(共3题;共6分) 1、求3个5连加是多少?算式是() A、5×3 B、3+5 C、5-3 2、得数最接近50的算式是()。
A、15+14 B、38+7 C、6×6 3、可以⽤4×2表⽰的算式是()。
A、4+2 B、4+4+4+4 C、2+2+2+2 第Ⅱ卷主观题 ⼆、判断题(共5题;共10分) 4、3+4和3×4的结果相同。
5、5个2写成加法算式是5+5。
6、4个3是多少?算式是3×4=12。
7、计算7×2和2×7⽤同⼀句⼝诀。
8、苹果有3个,梨⽐苹果多2个,梨有多少个?可以列式为:3×2 三、计算题(共2题;共10分) 9、竖式计算 92-23-47= 10、看图列式计算。
四、综合题(共2题;共30分) 11、综合题。
(1)买8架飞机需要多少元? (2)买⼀辆三轮车和⼀辆摩托车⼀共要多少钱? (3)有元钱,买5辆⼩汽车,够吗? (4)你还能提出什么数学问题?并解答。
(2)⼩兔有多少只? 五、填空题(共31题;共141分) 13、4个5相加,可以写作________×________也可以写作________×________ 14、把⼝诀填完整。
________⼆⼗四五________四⼗四________⼆⼗⼋ ________六⼗三三________⼗⼆________九⼆⼗七 15、5×4=20,读作________乘________等于________。
表⽰________个________相加得________。
高考数学客观题训练【6套】选择、填空题
数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。
高考数学总复习考点知识讲解与提升练习42 数列中的构造问题
高考数学总复习考点知识讲解与提升练习专题42 数列中的构造问题数列中的构造问题是历年高考的一个热点内容,主、客观题均可出现,一般通过构造新的数列求数列的通项公式.题型一形如a n+1=pa n+f(n)型命题点1a n+1=pa n+q(p≠0,1,q≠0)例1(1)数列{a n}满足a n=4a n-1+3(n≥2)且a1=0,则a2024等于()A.22023-1 B.42023-1 C.22023+1 D.42023+1答案B解析∵a n=4a n-1+3(n≥2),∴a n+1=4(a n-1+1)(n≥2),∴{a n+1}是以1为首项,4为公比的等比数列,则a n+1=4n-1.∴a n=4n-1-1,∴a2024=42023-1.(2)已知数列{a n}的首项a1=1,且1an+1=3an+2,则数列{a n}的通项公式为__________.答案a n=1 2·3n-1-1解析∵1a n+1=3an+2,等式两边同时加1整理得1an+1+1=3⎝⎛⎭⎪⎫1an+1,又∵a 1=1,∴1a 1+1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1是首项为2,公比为3的等比数列.∴1a n+1=2·3n -1,∴a n =12·3n -1-1.命题点2a n +1=pa n +qn +c (p ≠0,1,q ≠0)例2已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,求数列{a n }的通项公式. 解∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n .命题点3a n +1=pa n +q n (p ≠0,1,q ≠0,1)例3(1)已知数列{a n }中,a 1=3,a n +1=3a n +2·3n +1,n ∈N *.则数列{a n }的通项公式为() A .a n =(2n +1)·3n B .a n =(n -1)·2n C .a n =(2n -1)·3n D .a n =(n +1)·2n 答案C解析由a n +1=3a n +2·3n +1得a n +13n +1=a n 3n +2·3n +13n +1, ∴a n +13n +1-a n3n =2,即数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 3n 是首项为1,公差为2的等差数列,∴a n3n =2n -1,故a n =(2n -1)·3n .(2)在数列{a n }中,a 1=1,且满足a n +1=6a n +3n ,则a n =________. 答案6n3-3n -1解析将已知a n +1=6a n +3n 的两边同乘13n +1,得a n +13n +1=2·a n 3n +13,令b n =a n3n ,则b n +1=2b n +13,利用命题点1的方法知b n =2n 3-13,则a n =6n3-3n -1.思维升华跟踪训练1(1)在数列{a n }中,a 1=1,a n +1=2a n +2n .则数列{a n }的通项公式a n 等于() A .n ·2n -1 B .n ·2n C .(n -1)·2n D .(n +1)·2n 答案A解析由a n +1=2a n +2n 得a n +12n=a n 2n -1+1,设b n =a n 2n -1,则b n +1=b n +1,又b 1=1,∴{b n }是首项为1,公差为1的等差数列. ∴b n =n , ∴a n =n ·2n -1.(2)(2023·黄山模拟)已知数列{a n }满足a 1=1,(2+a n )·(1-a n +1)=2,设⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为S n,则a2023(S2023+2023)的值为()A.22023-2 B.22023-1 C.2 D.1 答案C解析(2+a n)(1-a n+1)=2,则a n+1=a na n +2,即1an+1=2an+1,得1an+1+1=2⎝⎛⎭⎪⎫1an+1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1an+1是以2为首项,2为公比的等比数列,1an+1=2n,1an=2n-1,a n=12n-1,S2023+2023=2+22+…+22023=22024-2,∴a2023(S2023+2023)=2.(3)已知数列{a n}满足a n+1=2a n+n,a1=2,则a n=________.答案2n+1-n-1解析令a n+1+x(n+1)+y=2(a n+xn+y),即a n+1=2a n+xn+y-x,与原等式比较得,x=y=1,所以an+1+(n+1)+1an+n+1=2,所以数列{a n+n+1}是以a1+1+1=4为首项,2为公比的等比数列,所以a n+n+1=4×2n-1,即a n=2n+1-n-1. 题型二相邻项的差为特殊数列(形如a n+1=pa n+qa n-1)例4(1)已知数列{a n}满足:a1=a2=2,a n=3a n-1+4a n-2(n≥3),则a9+a10等于() A.47 B.48 C.49 D.410答案C解析由题意得a1+a2=4,由a n=3a n-1+4a n-2(n≥3),得a n +a n -1=4(a n -1+a n -2), 即a n +a n -1a n -1+a n -2=4(n ≥3),所以数列{a n +a n +1}是首项为4,公比为4的等比数列,所以a 9+a 10=49.(2)已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ≥2,n ∈N *).则数列{a n }的通项公式为a n =________. 答案3n -(-1)n4解析方法一因为a n +1=2a n +3a n -1(n ≥2,n ∈N *), 设b n =a n +1+a n ,所以b n b n -1=a n +1+a n a n +a n -1=3(a n +a n -1)a n +a n -1=3,又因为b 1=a 2+a 1=3,所以{b n }是以首项为3,公比为3的等比数列. 所以b n =a n +1+a n =3×3n -1=3n , 从而a n +13n +1+13·a n 3n =13, 不妨令c n =a n 3n ,即c n +1+13c n =13,故c n +1-14=-13⎝ ⎛⎭⎪⎫c n -14,即c n +1-14c n -14=-13,又因为c 1-14=a 13-14=112,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c n -14是首项为112,公比为-13的等比数列,故c n -14=112×⎝ ⎛⎭⎪⎫-13n -1=a n 3n -14,从而a n =3n -(-1)n4.方法二因为方程x 2=2x +3的两根为-1,3, 可设a n =c 1·(-1)n -1+c 2·3n -1, 由a 1=1,a 2=2, 解得c 1=14,c 2=34,所以a n =3n -(-1)n4.思维升华可以化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两个根,若1是方程的根,则直接构造数列{a n -a n -1},若1不是方程的根,则需要构造两个数列,采取消元的方法求数列{a n }.跟踪训练2若x =1是函数f (x )=a n +1x 4-a n x 3-a n +2x +1(n ∈N *)的极值点,数列{a n }满足a 1=1,a 2=3,则数列{a n }的通项公式a n =________. 答案3n -1解析f ′(x )=4a n +1x 3-3a n x 2-a n +2,∴f ′(1)=4a n +1-3a n -a n +2=0,即a n +2-a n +1=3(a n +1-a n ),∴数列{a n +1-a n }是首项为2,公比为3的等比数列, ∴a n +1-a n =2×3n -1,则a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1=2×3n -2+…+2×30+1=3n -1.题型三倒数为特殊数列⎝ ⎛⎭⎪⎫形如a n +1=pa n ra n +s 型 例5(1)已知数列{a n }满足a 1=1,a n +1=a n 4a n +1(n ∈N *),则满足a n >137的n 的最大取值为()A .7B .8C .9D .10 答案C 解析因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大取值为9.(2)(多选)数列{a n }满足a n +1=a n 1+2a n(n ∈N *),a 1=1,则下列结论正确的是()A.2a 10=1a 3+1a 17B.1{2}na 是等比数列C .(2n -1)a n =1D .3a 5a 17=a 49 答案ABC解析由a n +1=a n1+2a n ,可得1a n +1=1+2a na n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,且该数列的首项为1,公差为2,所以1a n=1+2(n -1)=2n -1,则(2n -1)a n =1,其中n ∈N *,故C 对;1111112=22n n nna a a a ++-=22=4,所以数列1{2}na 是等比数列,故B 对;由等差中项的性质可得2a 10=1a 3+1a 17,故A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以3a 5a 17≠a 49,故D 错. 思维升华两边同时取倒数转化为1a n +1=s p ·1a n +r p的形式,化归为b n +1=pb n +q 型,求出1a n的表达式,再求a n .跟踪训练3已知函数f (x )=x 3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *),则数列{a n }的通项公式为____________. 答案a n =13n -2(n ∈N *) 解析由已知得,a n +1=a n 3a n +1,∴1a n +1=1a n+3,即1a n +1-1a n=3,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是首项为1a 1=1,公差为d =3的等差数列,∴1a n=1+(n -1)×3=3n -2.故a n =13n -2(n ∈N *).课时精练1.已知数列{a n }满足a 1=2,a n +1=2a n +1,则a 4的值为() A .15 B .23 C .32 D .42 答案B解析因为a n +1=2a n +1,所以a n+1+1=2(a n+1),所以{a n+1}是以3为首项,2为公比的等比数列,所以a n+1=3·2n-1,所以a n=3·2n-1-1,a4=23.2.在数列{a n}中,a1=5,且满足an+12n-5-2=an2n-7,则数列{a n}的通项公式为()A.2n-3B.2n-7C.(2n-3)(2n-7) D.2n-5 答案C解析因为a n+12n-5-2=an2n-7,所以an+12n-5-an2n-7=2,又a12-7=-1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫an2n-7是以-1为首项,公差为2的等差数列,所以an2n-7=-1+2(n-1)=2n-3,所以a n=(2n-3)(2n-7).3.已知数列{a n}满足:a1=1,且a n+1-2a n=n-1,其中n∈N*,则数列{a n}的通项公式为()A.a n=2n-n B.a n=2n+nC.a n=3n-1D.a n=3n+1答案A解析由题设,a n+1+(n+1)=2(a n+n),而a1+1=2,∴{a n+n}是首项、公比均为2的等比数列,故a n+n=2n,即a n =2n -n .4.已知数列{a n }满足a 2=14,a n -a n +1=3a n a n +1,则数列的通项公式a n 等于()A.13n -2B.13n +2C .3n -2D .3n +2 答案A解析∵a n -a n +1=3a n a n +1,a 2=14,∴a 1-a 2=3a 1a 2, 即a 1-14=34a 1,解得a 1=1. 由题意知a n ≠0, 由a n -a n +1=3a n a n +1得1a n +1-1a n=3,又1a 1=1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,3为公差的等差数列,∴1a n=1+3(n -1)=3n -2,则a n =13n -2.5.在数列{a n }中,若a 1=3,a n +1=a 2n ,则a n 等于() A .2n -1 B.3n -1 C .132n - D .123n -答案D解析由a 1=3,a n +1=a 2n 知a n >0,对a n +1=a 2n 两边取以3为底的对数得,log 3a n +1=2log 3a n ,则数列{log 3a n }是以log 3a 1=1为首项,2为公比的等比数列, 则log 3a n =1·2n -1=2n -1,即a n =123n -.6.设数列{a n }满足a 1=1,a n =-a n -1+2n (n ≥2),则数列的通项公式a n 等于() A.13·2n +13 B.13·2n+13·(-1)n C.2n +13+13 D.2n +13+13·(-1)n 答案D解析∵a n -1+a n =2n ,两边同时除以2n得,a n 2n +12·a n -12n -1=1.令c n =a n2n ,则c n =-12c n -1+1.两边同时加上-23得c n -23=-12·⎝⎛⎭⎪⎫c n -1-23.∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c n-23是以c 1-23为首项,-12为公比的等比数列,∴c n -23=⎝ ⎛⎭⎪⎫c 1-23·⎝ ⎛⎭⎪⎫-12n -1=13·⎝ ⎛⎭⎪⎫-12n ,∴c n =23+13·⎝ ⎛⎭⎪⎫-12n,∴a n =2n·c n =2n +13+13·(-1)n .7.(多选)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是()A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等差数列 B .{a n }的通项公式为a n =12n -1-3C .{a n }为递减数列 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案CD 解析因为a n +1=a n 2+3a n,所以1a n +1=2+3a na n=2a n+3,所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 且1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,即1a n+3=4×2n -1,所以1a n=2n +1-3,可得a n =12n +1-3, 故选项A ,B 错误; 因为1a n=2n +1-3单调递增,所以a n =12n +1-3单调递减, 即{a n }为递减数列,故选项C 正确;⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=(22+23+…+2n +1)-3n=22×1-2n1-2-3n =2n +2-3n -4,故选项D 正确.8.将一些数排成如图所示的倒三角形,其中第一行各数依次为1,2,3,…,2023,从第二行起,每一个数都等于它“肩上”的两个数之和,最后一行只有一个数M ,则M 等于()A .2023×22020B .2024×22021C .2023×22021D .2024×22022 答案B解析记第n 行的第一个数为a n ,则a 1=1,a 2=3=2a 1+1,a 3=8=2a 2+2,a 4=20=2a 3+4,…,a n =2a n -1+2n -2,∴a n 2n -2=a n -12n -3+1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -2是以a 12-1=2为首项,1为公差的等差数列.∴a n 2n -2=2+(n -1)×1=n +1,∴a n =(n +1)×2n -2.又每行比上一行的数字少1个, ∴最后一行为第2023行, ∴M =a 2023=2024×22021.9.已知数列{a n }满足a 1=32,a n +1=3a n a n +3,若c n =3n a n ,则c n =____________.答案(n +1)3n -1解析因为a 1=32,a n +1=3a na n +3,所以1a n +1=a n +33a n =13+1a n, 即1a n +1-1a n =13, 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是首项为1a 1=23,公差为13的等差数列,所以1a n =23+13(n -1)=n +13,则c n =3na n=(n +1)3n -1.10.已知数列{a n }满足a n +1=3a n -2a n -1(n ≥2,n ∈N *),且a 1=0,a 6=124,则a 2=________. 答案4解析由a n +1=3a n -2a n -1(n ≥2,n ∈N *)可得a n +1-a n =2(a n -a n -1), 若a n -a n -1=0,则a 6=a 5=…=a 1,与题中条件矛盾,故a n -a n -1≠0, 所以a n +1-a na n -a n -1=2,即数列{a n +1-a n }是以a 2-a 1为首项,2为公比的等比数列,所以a n +1-a n =a 2·2n -1,所以a 6-a 1=a 2-a 1+a 3-a 2+a 4-a 3+a 5-a 4+a 6-a 5=a 2·20+a 2·21+a 2·22+a 2·23+a 2·24=31a 2=124,所以a 2=4.11.在数列{a n }中,a 1=1,且满足a n +1=3a n +2n ,则a n =________. 答案52·3n -1-n -12解析∵a n +1=3a n +2n ①,∴a n =3a n -1+2(n -1)(n ≥2),两式相减得,a n +1-a n =3(a n -a n -1)+2,令b n =a n +1-a n ,则b n =3b n -1+2(n ≥2),利用求a n +1=pa n +q 的方法知,b n =5·3n -1-1,即a n +1-a n =5·3n -1-1②,再利用累加法知,a n =52·3n-1-n-12⎝⎛⎭⎪⎫或联立①②解出a n=52·3n-1-n-12.12.英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{x n}满足x n+1=x n-f(xn)f′(xn),则称数列{x n}为牛顿数列.如果函数f(x)=2x2-8,数列{x n}为牛顿数列,设a n=ln xn+2xn-2,且a1=1,x n>2.数列{a n}的前n项和为S n,则S n=________. 答案2n-1解析∵f(x)=2x2-8,∴f′(x)=4x,又∵x n+1=x n-f(xn)f′(xn)=x n-2x2n-84x n=x2n+42x n,∴x n+1+2=(x n+2)22x n,x n+1-2=(x n-2)22x n,∴xn+1+2xn+1-2=⎝⎛⎭⎪⎫x n+2xn-22,又x n>2,∴ln xn+1+2xn+1-2=ln⎝⎛⎭⎪⎫x n+2xn-22=2lnxn+2xn-2,又a n=ln xn+2xn-2,且a1=1,∴a n+1=2a n,∴数列{a n}是首项为1,公比为2的等比数列,∴{a n}的前n项和S n=1×(1-2n)1-2=2n-1.。
【三套试卷】小学六年级数学下册第三单元试题含答案(5)
试卷分析部分
1.试卷总体分布分析
总分:36分
分值分布
客观题(占比)
9(25.0%)
主观题(占比)
故答案为:9.42。
【分析】圆柱体只是把高截短了,底面周长不变,所以圆柱体的底面周长=圆柱体减少的表面积÷圆柱体截短的高,圆柱体的底面半径=圆柱体的底面周长÷π÷2,所以圆柱体减少的体积=πr2×截短的高。
5.一个圆柱的底面半径是3厘米,高是5厘米,侧面积是________平方厘米,表面积是________平方厘米,体积是________立方厘米,与它等底等高的圆锥的体积是________立方厘米。
故答案为:错误。
【分析】当其中一个圆柱的底面半径是2厘米,高是9厘米时,它的体积=22×3.14×9=113.04立方厘米,表面积=22×3.14×2+2×2×3.14×9=138.16平方厘米;当另一个圆柱的底面半径是3厘米,高是4厘米时,它的体积=32×3.14×4=113.04立方厘米,表面积=32×3.14×2+3×2×3.14×4=131.88平方厘米。综上,它们的体积相等,但是表面积不相等。
7.压路机前轮半径是0.6米,轮宽1.5米,如果每分钟转动16周,求1分钟前轮压过的路面面积?
8.李师傅要做一节长是16分米,底面直径是4分米的圆柱形通风管,至少需要铁皮多少平方分米?
9、.一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?
第三单元教材测试卷(含答案解析)(1)
2023年新高考数学大一轮复习专题八思想方法第5讲客观题的解法(含答案)
新高考数学大一轮复习专题:第5讲 客观题的解法 题型概述 数学客观题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,解答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.其中选择题要充分利用题干和选项两方面提供的信息,尽量缩短解题时间,依据题目的具体特点,灵活、巧妙、快速地选择解法,基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊化法、数形结合法、等价转化法等.方法一 直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.例1 在平面直角坐标系xOy 中,已知M (-1,2),N (1,0),动点P 满足|PM →·ON →|=|PN →|,则动点P 的轨迹方程是( )A .y 2=4xB .x 2=4yC .y 2=-4xD .x 2=-4y思路分析 动点P 的轨迹方程→P 点满足条件→直接将P 点坐标代入化简即可 答案 A解析 设P (x ,y ),由题意得M (-1,2),N (1,0),O (0,0), PM →=(-1-x,2-y ),ON →=(1,0),PN →=(1-x ,-y ),因为|PM →·ON →|=|PN →|,所以|1+x |=1-x 2+y 2, 整理得y 2=4x . 直接法是解决计算型客观题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解选择题、填空题的关键.方法二 特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.例2 (1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3M C →,DN →=2NC →,则AM →·NM →等于( )A .20B .15C .9D .6思路分析 AM →·NM →的值→某种特殊情况下AM →·NM →的值→取▱ABCD 为矩形答案 C解析 若四边形ABCD 为矩形,建系如图,由BM →=3M C →,DN →=2NC →,知M (6,3),N (4,4),所以AM →=(6,3),NM →=(2,-1),所以AM →·NM →=6×2+3×(-1)=9.(2)设椭圆C :x 24+y 23=1的长轴的两端点分别是M ,N ,P 是C 上异于M ,N 的任意一点,则直线PM 与PN 的斜率之积等于________.思路分析 直线PM ,PN 斜率之积→特殊情况下的k PM ·k PN →取P 点为椭圆短轴端点答案 -34解析 取特殊点,设P 为椭圆的短轴的一个端点(0,3),又M (-2,0),N (2,0), 所以k PM ·k PN =32×⎝ ⎛⎭⎪⎫-32=-34.特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点:第一,取特例尽可能简单,有利于计算和推理;第二,若在取定的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.方法三 排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项.例3 (1)(2020·天津)函数y =4x x 2+1的图象大致为( )思路分析 选择函数大致图象→排除错误选项→利用函数图象上的特殊点或性质验证排除 答案 A解析 令f (x )=4x x 2+1,则f (x )的定义域为R , 且f (-x )=-4x x 2+1=-f (x ), 所以函数为奇函数,排除C ,D.又当x =1时,f (1)=42=2,排除B. (2)已知椭圆C :x 24+y 2b=1(b >0),直线l :y =mx +1.若对任意的m ∈R ,直线l 与椭圆C 恒有公共点,则实数b 的取值范围是( )A .[1,4)B .[1,+∞)C .[1,4)∪(4,+∞)D .(4,+∞)思路分析 求b 的取值范围→取b 的特殊值→特殊情况验证排除答案 C解析 注意到直线l 恒过定点(0,1),所以当b =1时,直线l 与椭圆C 恒有公共点,排除D ;若b =4,则方程x 24+y 2b=1不表示椭圆,排除B ;若b >4,则显然点(0,1)恒在椭圆内部,满足题意,排除A.故选C.(3)(多选)已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=e x (x +1),则下列说法正确的是( )A .当x >0时,f (x )=e x(1-x )B .f (x )>0的解集为(-1,0)∪(1,+∞)C .函数f (x )有2个零点D .∀x 1,x 2∈R ,都有|f (x 1)-f (x 2)|<2思路分析 观察选项,从易于判断真假的选项出发.答案 BD解析 对于C ,当x <0时,令f (x )=0⇒x =-1,∴f (x )有3个零点分别为-1,0,1,故C 错误;对于A ,令x >0,则-x <0,∴f (-x )=e -x (1-x ),又f (x )为奇函数,∴-f (x )=e -x (1-x ),∴f (x )=e -x (x -1),故A 错误.∵A,C 错误,且为多选题,故选BD. 排除法使用要点:,1从选项出发,先确定容易判断对错的选项,再研究其它选项.,2当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,它与特值例法、验证法等常结合使用.方法四 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化. 例4 (1)(2019·全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB.46πC.26πD.6π思路分析 求球O 体积→求球O 半径→构造正方体(补形)答案 D解析 如图所示,构造棱长为2的正方体PBJA -CDHG ,显然满足题设的一切条件,则球O 就是该正方体的外接球,从而体积为6π.(2)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是______________.思路分析 解f x >0→利用函数单调性结合已知含f x 的不等关系→构造函数 答案 (-∞,-1)∪(0,1)解析 构造函数g (x )=f x x , 则g ′(x )=f ′x ·x -f x x 2. 根据条件,g (x )为偶函数,且x >0时,g ′(x )<0,g (x )为减函数,g (-1)=g (1)=0.∴当0<x <1时,g (x )>0,∴f (x )>0,同理当x <-1时,g (x )<0,∴f (x )>0,故使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题. 方法五 估算法因为单选题提供了唯一正确的答案,解答又不需提供过程,所以可以通过猜测、推理、估算而获得答案,这样往往可以减少运算量,但同时加强了思维的层次,估算省去了很多推导过程和复杂的计算,节省了时间,从而显得更加快捷.例5 (1)(2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝ ⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm思路分析 估计身高→人体各部分长度大致范围→题中长度关系估算答案 B解析 头顶至脖子下端的长度为26cm ,可得咽喉至肚脐的长度小于42cm ,肚脐至足底的长度小于110cm ,则该人的身高小于178cm ,又由肚脐至足底的长度大于105cm ,可得头顶至肚脐的长度大于65cm ,则该人的身高大于170cm ,所以该人的身高在170cm ~178cm 之间,选B.(2)(2018·全国Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .183C .243D .54 3思路分析 V 三棱锥D -ABC 最大值→三棱锥高的最大值→依据三棱锥和球的关系估算答案 B解析 等边三角形ABC 的面积为93,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h 应满足h ∈(4,8),所以13×93×4<V 三棱锥D -ABC <13×93×8,即123< V 三棱锥D -ABC <24 3.选B.估算法使用要点:1使用前提:针对一些复杂的、不易准确求值的与计算有关的问题.常与特值例法结合起来使用.2使用技巧:对于数值计算常采用放缩估算、整体估算、近似估算、特值估算等,对于几何体问题,常进行分割、拼凑、位置估算.。
2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)
2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。
专题02客观题解题技巧-选择题、填空题解题策略6-10-2022年中考数学第二轮总复习课件(全国通用
典例精讲
整体代入法
知识点六
【例6-2】已知x+y=-4,x-y=8,则代数式x2-y2的值是_-_3_2__.
【分析】若直接由x+y=-4,x-y=8解得x,y的值,再代入求值,过程稍显复杂 且易出错,若采用整体代入法,则过程简洁.x2-y2=(x+y)(x-y)代值即可.
填空题具有知识点覆盖广、短小精悍、形式灵活多样、方法众多、区 分度最明显等特点,最能反映出学生的知识水平和解决问题的综合能力.
常用解法:直接法、排除法、图解法、特值法、操作法、代入法、归 纳法、转化法、验证法、分析法等.
01
02
知识点
03
04
05
代入法 归纳法 转化法 验证法 分析法
典例精讲
整体代入法
A
∠CDE为36º,则图中阴影部分的面积为( )
A.10π B.9π C.8π D.6π
方法归纳
转化法:借助某些性质、公式或已知条件将问题转化.转化的目的是要
将复杂化为简单,将未知转化为已知,将抽象转化为具体,转化的关键在于观
察,通过观察题目中数、式的变化规律,条件与结论之间的关系,题目的结构
特点及图形的特征,从而发现题目中数量关系或变化特征.
针对训练
归纳法
1.将连续的正整数按以下规律排列,则n=__8_5_.
知识点七
第1列 第2列
第1行 1
3
第2行 2
5
第3行 4
8
第4行 7
12
第5行 11
17
第6行 16
23
第7行 22
…
2.22022的个位数字是_4__.
第3列 6 9 13 18 24 … …
高三数学客观题综合练习题(二)
高三数学客观题综合练习题(二)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x |-1<x <1},B ={x |0≤x ≤2},则A ∪B =( ) A.{x |0≤x <1} B.{x |-1<x ≤2} C.{x |1<x ≤2} D.{x |0<x <1}答案 B解析 由集合并集的定义可得A ∪B ={x |-1<x ≤2},故选B.2.已知z =2-i ,则z (z -+i)=( ) A.6-2i B.4-2i C.6+2i D.4+2i答案 C解析 因为z =2-i ,所以z (z -+i)=(2-i)(2+2i)=6+2i ,故选C.3.已知点(1,1)在抛物线C :y 2=2px (p >0)上,则抛物线C 的焦点到其准线的距离为( ) A.14 B.12 C.1 D.2答案 B解析 因为点(1,1)在抛物线C 上,所以1=2p ,p =12,故抛物线C 的焦点到其准线的距离为12.故选B.4.攒尖是古代中国建筑中屋顶的一种结构形式,常见的有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑.某园林建筑为六角攒尖,如图,它主要部分的轮廓可近似看作一个正六棱锥.设这个正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱长与 底面外接圆半径的比为( )A.33sin θB.33cos θ C.12sin θ D.12cos θ答案 C解析 设底面边长为a ,则其外接圆的半径为a .在侧面等腰三角形中,顶角为2θ,两腰为侧棱,底边长为a ,所以侧棱长为a2sin θ,所以侧棱长与底面外接圆半径的比为a 2sin θa =12sin θ.故选C.5.手机屏幕面积与整机面积的比值叫做手机的“屏占比”,它是手机外观设计中的一个重要参数,其值通常在0~1(不含0,1).设计师将某手机的屏幕面积和整机面积同时增加相同的数量,升级为一款新手机,则该手机的“屏占比”和升级前相比( ) A.“屏占比”不变 B.“屏占比”变小 C.“屏占比”变大 D.变化不确定 答案 C解析 根据题意,不妨设升级前该手机的手机屏幕面积为a ,整机面积为b ,b >a ,则升级前的“屏占比”为ab ,升级后的“屏占比”为a +m b +m ,其中m 为升级后增加的面积,因为a +m b +m -a b =m (b -a )b (b +m )>0,所以升级后“屏占比”变大,故选C.6.已知函数f (x )=sin 4x -2cos 4x ,若对任意的x ∈R 都有f (x )≥f (x 0),则f ⎝ ⎛⎭⎪⎫x 0+π8=( )A.0B. 5C.- 5D.1答案 A解析 法一 由题意得f (x )=sin 4x -2cos 4x =5sin(4x -φ)(其中tan φ=2), 所以函数f (x )的最小正周期T =2π4=π2.因为对任意的x ∈R ,都有f (x )≥f (x 0),所以f (x )在x =x 0处取得最小值,又x 0+14T =x 0+π8,所以点⎝ ⎛⎭⎪⎫x 0+π8,0是f (x )图象的一个对称中心,故f ⎝ ⎛⎭⎪⎫x 0+π8=0.法二 由题意可得f (x )=sin 4x -2cos 4x =5sin(4x -φ)(其中tan φ=2),因为对任意的x ∈R ,都有f (x )≥f (x 0),所以f (x )在x =x 0处取得最小值,于是4x 0-φ=2k π-π2,k ∈Z ,则x 0=k π2-π8+φ4,k ∈Z ,所以x 0+π8=k π2+φ4,k ∈Z , 故f ⎝ ⎛⎭⎪⎫x 0+π8=5sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫k π2+φ4-φ=5sin 2k π=0.7.若曲线y =-x +1在点(0,-1)处的切线与曲线y =ln x 在点P 处的切线垂直,则点P 的坐标为( ) A.(e ,1) B.(1,0) C.(2,ln 2) D.⎝ ⎛⎭⎪⎫12,-ln 2 答案 D 解析 y =-x +1的导数为y ′=-12x +1,可得曲线y =-x +1在点(0,-1)处的切线斜率为-12.设P (m ,ln m ),由y =ln x 的导数为y ′=1x ,得曲线y =ln x 在点P 处的切线斜率为k =1m ,由两切线垂直可得1m ·⎝ ⎛⎭⎪⎫-12=-1,解得m =12,所以P ⎝ ⎛⎭⎪⎫12,-ln 2.故选D.8.某地举办“迎建党100周年”乒乓球团体赛,比赛采用新斯韦思林杯赛制(5场单打3胜制,即先胜3场者获胜,比赛结束).现有两支球队进行比赛,前3场依次分别由甲、乙、丙和A 、B 、C 出场比赛.若经过3场比赛未分出胜负,则第4场由甲和B 进行比赛;若经过4场比赛仍未分出胜负,则第5场由乙和A 进行比赛.假设甲与A 或B 比赛,甲每场获胜的概率均为0.6;乙与A 或B 比赛,乙每场获胜的概率均为0.5;丙与C 比赛,丙每场获胜的概率均为0.5.各场比赛的结果互不影响.那么,恰好经过4场比赛分出胜负的概率为( ) A.0.24 B.0.25 C.0.38 D.0.5答案 C解析 记“恰好经过4场比赛分出胜负”“恰好经过4场比赛甲所在球队获胜”“恰好经过4场比赛A 所在球队获胜”分别为事件D ,E ,F ,则E ,F 互斥,且P (D )=P (E )+P (F ).若事件E 发生,则第4场比赛甲获胜,且前3场比赛甲所在球队恰有一场比赛失利,由于甲与A 或B 比赛每场获胜的概率均为0.6,乙与A 或B 比赛每场获胜的概率均为0.5,丙与C 比赛每场获胜的概率均为0.5,且各场比赛结果相互独立,所以甲所在球队恰好经过4场比赛获得胜利的概率P (E )=0.6×(0.4×0.5×0.5+0.6×C 12×0.5×0.5)=0.24.若事件F 发生,则第4场比赛B 获胜,且前3场比赛A 所在球队恰有一场比赛失利,由于甲与A 或B 比赛每场获胜的概率均为0.6,乙与A 或B 比赛每场获胜的概率均为0.5,丙与C 比赛每场获胜的概率均为0.5,且各场比赛结果相互独立,所以A 所在球队恰好经过4场比赛获得胜利的概率P (F )=0.4×(0.6×0.5×0.5+0.4×C 12×0.5×0.5)=0.14,所以P (D )=P (E )+P (F )=0.38,故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知(2x -a )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9且展开式中各项系数和为39.则下列结论正确的是( ) A.a =1 B.a 0=1C.a 2=36D.a 1+a 3+a 5+a 7+a 9=39+12答案 ABD解析 令x -1=t ,∴x =t +1,原展开式为(2t +2-a )9=a 0+a 1t +a 2t 2+…+a 9t 9, 令t =1得a 0+a 1+a 2+…+a 9=(4-a )9=39, ∴a =1,故A 正确;∴(2t +1)9=a 0+a 1t +a 2t 2+…+a 9t 9, 令t =0,得a 0=1,故B 正确;(2t +1)9的展开式中含t 2的项为C 79(2t )2·17=144t 2, ∴a 2=144,故C 错误;令t =1,得a 0+a 1+a 2+…+a 8+a 9=39,① 令t =-1,得a 0-a 1+a 2-a 3+…+a 8-a 9=-1,② ①-②2得,a 1+a 3+a 5+a 7+a 9=39+12,故D 正确.10.已知△PAB 中,AB =2,PA =PB ,C 是边AB 的中点,Q 为△PAB 所在平面内一点.若△CPQ 是边长为2的等边三角形,则AP →·BQ →的值可能是( )A.3+ 3B.1+ 3C.3- 3D.1- 3答案 BD解析 如图(1),若点Q 与点B 在CP 的同侧,则AP →·BQ →=(AC →+CP →)·(BC→+CQ →)=AC →·BC →+CP →·BC →+AC →·CQ →+CP →·CQ →=-1+0+1×2×cos π6+2×2×cos π3=3+1.如图(2),若点Q 与点B 在CP 的异侧,则AP →·BQ →=(AC →+CP →)·(BC →+CQ →)=AC →·BC →+CP →·BC →+AC →·CQ →+CP →·CQ →=-1+0+1×2×cos 5π6+2×2×cos π3= -3+1.故选BD.11.下列选项中,是关于x 的不等式ax 2+(a -1)x -2>0有实数解的充分不必要条件的是( ) A.a =0 B.a ≥-3+2 2 C.a >0 D.a ≤-3-2 2答案 AC解析 设y =ax 2+(a -1)x -2, 令ax 2+(a -1)x -2=0.当a >0时,显然y >0有实数解;当a =0时,y =-x -2,由y >0解得x <-2;当a <0时,若y >0有实数解,则需Δ=(a -1)2+8a =a 2+6a +1>0,得a <-3-22或-3+22<a <0.综上所述,当a >-3+22或a <-3-22时,不等式ax 2+(a -1)x -2>0有实数解.结合选项可知,a =0,a >0是不等式ax 2+(a -1)x -2>0有实数解的充分不必要条件.12.已知正方体ABCD-A 1B 1C 1D 1的棱长为2,点E ,F 分别是棱AB ,A 1B 1的中点,点P 在四边形ABCD 内(包括边界)运动,则下列说法正确的是( ) A.若P 是线段BC 的中点,则平面AB 1P ⊥平面DEFB.若P 在线段AC 上,则D 1P 与A 1C 1所成角的取值范围为⎣⎢⎡⎦⎥⎤π4,π2C.若PD 1∥平面A 1C 1E ,则点P 的轨迹的长度为 2D.若PF ∥平面B 1CD 1,则线段PF 长度的最小值为62 答案 AC解析 对于A ,如图1,P ,E 分别是线段BC ,AB 的中点,故△ABP ≌△DAE ,则∠PAB =∠ADE ,∠PAB +∠DEA =∠ADE +∠DEA =π2,所以AP ⊥DE .易知EF ⊥平面ABCD ,又AP ⊂平面ABCD ,所以EF ⊥AP ,又DE ∩EF =E ,从而AP ⊥平面DEF ,又AP ⊂平面AB 1P ,所以平面AB 1P ⊥平面DEF ,故A 正确.图1对于B ,正方体ABCD-A 1B 1C 1D 1中,A 1C 1∥AC ,所以D 1P 与A 1C 1所成的角为D 1P 与AC 所成的角.连接D 1A ,D 1C ,则△D 1AC 为正三角形,所以D 1P 与A 1C 1所成角的取值范围为⎣⎢⎡⎦⎥⎤π3,π2,故B 错误.对于C ,如图2,设平面A 1C 1E 与直线BC 交于点G ,连接C 1G ,EG ,则G 为BC 的中点,分别取AD ,DC 的中点M ,N ,连接D 1M ,MN ,D 1N ,易知D 1M ∥C 1G ,又D 1M ⊄平面A 1C 1E ,C 1G ⊂平面A 1C 1E ,所以D 1M ∥平面A 1C 1E .同理可得D 1N ∥平面A 1C 1E ,又D 1M ∩D 1N =D 1,所以平面D 1MN ∥平面A 1C 1E ,由此结合PD 1∥平面A 1C 1E ,可得直线PD 1⊂平面D 1MN ,所以点P 的轨迹是线段MN ,易得MN =2,故C 正确.图2对于D,如图3,取BB1的中点R,BC的中点G,DC的中点N,连接FN,因为FB1∥NC,FB1=NC,所以四边形FB1CN为平行四边形,所以FN∥B1C,又FN⊄平面B1CD1,B1C⊂平面B1CD1,所以FN∥平面B1CD1.连接BD,NG,则NG∥BD,又BD∥B1D1,所以NG∥B1D1,又NG⊄平面B1CD1,B1D1⊂平面B1CD1,所以NG∥平面B1CD1.连接FR,GR,易知GR∥B1C,又B1C∥FN,所以GR∥FN,故F,N,G,R四点共面,所以平面FNGR∥平面B1CD1.因为PF∥平面B1CD1,所以PF⊂平面FNGR,所以点P的轨迹为线段NG.由AB=2知,FN=22,NG= 2.连接FB,FG,在Rt△FBG中,FG2=FB2+BG2=(5)2+1=6,所以FG=6,所以FN2=NG2+FG2,得∠FGN为直角,故线段FP长度的最小值为6,故D错误.故选AC.图3三、填空题(本大题共4小题,每小题5分,共20分.)13.请写出满足条件“f(x)≤f(1)对任意的x∈[0,1]恒成立,且f(x)在[0,1]上不是增函数”的一个函数:________.答案f(x)=sin 5π2x(答案不唯一)解析 答案不唯一,如f (x )=⎝ ⎛⎭⎪⎫x -142,f (x )=sin 5π2x 等.14.已知椭圆C :x 24+y 2=1的右焦点为F ,点P 在椭圆C 上,O 是坐标原点,若|OP |=|OF |,则△OPF 的面积是________. 答案 12解析 设椭圆C 的左焦点为F 1,连接PF 1,若|OP |=|OF |,则点P 在以F 1F 为直径的圆上,所以PF 1⊥PF ,故S △OPF =12S △FPF 1=12b 2tan π4=12×1×1=12. 15.如图,△ABC 是边长为2的等边三角形,M 为AC 的中点.将△ABM 沿BM 折起到△PBM 的位置,当三棱锥P-BCM 体积最大时,三棱锥P-BCM 外接球的表面积为________.答案 5π解析 当三棱锥P-BCM 体积最大时,平面PBM ⊥平面BCM .如图,三棱锥P-BCM 为长方体的一角,故其外接球的半径R =MP 2+MC 2+MB 22=52.外接球的表面积为4πR 2=4×π×54=5π.16.若∀x >0,不等式ln x +2+a x ≥b (a >0)恒成立,则ba 的最大值为________. 答案 e 2解析 设f (x )=ln x +2+a x ,则f ′(x )=1x -a x 2=x -ax 2.因为a >0,所以当x ∈(0,a )时,f ′(x )=x -a x 2<0,则函数f (x )单调递减;当x ∈(a ,+∞)时,f ′(x )=x -ax 2>0,则函数f (x )单调递增.所以f (x )min =f (a )=ln a +3≥b ,则b a ≤ln a +3a .令g (a )=ln a +3a ,则g ′(a )=1-ln a -3a 2=-2+ln aa 2.由g ′(a )=0可得,a =e -2.所以当a ∈(0,e -2)时,g ′(a )=-2+ln aa2>0,则函数g (a )单调递增;当a ∈(e -2,+∞)时,g ′(a )=-2+ln a a 2<0,则函数g (a )单调递减.所以g (a )max =g (e -2)=ln e -2+3e -2=e 2,即ba 的最大值为e 2.。
2012年-2021年(10年)全国高考数学真题分类汇编 导数客观题(精解精析版)
2012-2021十年全国高考数学真题分类汇编导数客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.2.(2020年高考数学课标Ⅰ卷理科)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题3.(2020年高考数学课标Ⅲ卷理科)若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l 在曲线y x =上的切点为(00x x ,则00x >,函数y x =的导数为12y x'=,则直线l 的斜率02k x =,设直线l 的方程为)0002y x x x x =-,即000x x x -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019年高考数学课标Ⅲ卷理科)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a e b ==-B .,1a eb ==C .1,1a e b -==D .1,1a eb -==-【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
高考数学客观题专练(6套)
客观题专练(一) 建议用时:45分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,A ={x |x (x -2)<0},B ={x |1-x >0},则A ∩(∁U B )等于( ) A .{x |x ≥1} B .{x |1≤x <2} C .{x |0<x ≤1} D .{x |x ≤1}答案 B解析 由题意可得A =(0,2),B =(-∞,1),则A ∩(∁U B )=[1,2). 2.已知复数z 满足1+zi =1-z ,则z 的虚部为( ) A .i B .-1 C .1 D .-i答案 C解析 由已知得1+z =(1-z )i =i -i z ,则z =-1+i 1+i=(-1+i )(1-i )2=i ,虚部为1.3.下列说法正确的是( )①若sin α<0,则α是第三或四象限的角; ②若α<π2,则cos α<1;③已知sin θ·tan θ<0,则角θ位于第二、三象限; ④⎝ ⎛⎭⎪⎫12sin α<22,则2k π+π6<α<2k π+76π,k ∈Z . A .③ B .①②③ C .①④ D .①③④答案 A解析 sin α<0,则α是第三、四象限角或α终边在y 轴负半轴上,故①不正确;α=-2π<π2,但cos α=1,故②不正确;③正确;⎝ ⎛⎭⎪⎫12sin α<22=⎝ ⎛⎭⎪⎫1212,故sin α>12,则2k π+π6<α<2k π+56π,k ∈Z ,故④不正确.故选A.4.已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则n2的值为() A.4 B.1C.2 D.3答案D解析2a-b=(2,2n)-(-1,n)=(3,n),(2a-b)·b=(3,n)·(-1,n)=-3+n2=0,n2=3.5.已知等比数列{a n},且a3+a5=π,则a2a4+2a3a5+a4a6的值为() A.π B.π2C.4 D.2-π4答案B解析由a3+a5=π,又a2a4+2a3a5+a4a6=a23+2a3a5+a25=(a3+a5)2,故a2a4+2a3a5+a4a6=π2.6.运行下面的程序,如果输出的S=20142015,那么判断框内是()A.k≤2013? B.k≤2014? C.k≥2013? D.k≥2014?答案B解析当判断框内是k≤n?时,S=11×2+12×3+…+1n×(n+1)=1-1n+1,若S=20142015,则n=2014.7.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A.43 cm 3 B.83 cm 3 C .3 cm 3 D .4 cm 3 答案 B解析 由三视图可知该几何体是一个底面为正方形(边长为2)、高为2的四棱锥.由四棱锥的体积公式知所求几何体的体积V =83 cm 3.8.已知实数x ,y 满足约束条件⎩⎨⎧y ≤xx +y ≤1y ≥-1,则z =2x +y 的最大值为( )A .3 B.32 C .-32 D .-3答案 A解析 画出可行域,如图阴影部分所示.由z =2x +y ,知y =-2x +z ,当目标函数过点(2,-1)时直线在y 轴上的截距最大,为3,所以选A.9.已知函数f (x )=3sin x cos x +12cos2x ,若将其图象向右平移φ(φ>0)个单位后所得的图象关于原点对称,则φ的最小值为( )A.π6B.5π6C.π12D.5π12答案 C解析 由题意f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,将其图象向右平移φ(φ>0)个单位后所得图象对应的解析式为g (x )=sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π6,则2φ-π6=k π(k ∈Z ),即φ=k π2+π12(k ∈Z ),又φ>0,所以φ的最小值为π12.故选C.10.在正三棱锥S -ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π 答案 B解析 如图,取CB 的中点N ,连接MN ,AN ,则MN ∥SB .由于AM ⊥SB ,所以AM ⊥MN .由正三棱锥的性质易知SB ⊥AC ,结合AM ⊥SB 知SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC .又正三棱锥的三个侧面是全等的三角形,所以SA ⊥SC ,所以正三棱锥S-ABC为正方体的一个角,所以正三棱锥S-ABC的外接球即为正方体的外接球.由AB=22,得SA=SB=SC=2,所以正方体的体对角线为23,所以所求外接球的半径R=3,其表面积为4πR2=12π,故选B.11.已知双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),设A,B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,若直线AB斜率为377,则双曲线的离心率为()A. 3B.5C.2 D.4答案C解析设点A(x0,y0)在第一象限.∵原点O在以线段MN为直径的圆上,∴OM⊥ON,又∵M、N分别为AF、BF的中点,∴AF⊥BF,即在Rt△ABF中,OA=OF=2,∵直线AB斜率为377,∴x0=72,y0=32,代入双曲线x2a2-y2b2=1得74a2-94b2=1,又a2+b2=4,得a2=1,b2=3,∴双曲线离心率为2.12.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值范围为()A.(22-2,26-4) B.(3+2,3+6)C.(22+2,26+4) D.(4,8)答案A解析由x>1时,f(x+1)=f(x)+f(1)可得:当x∈[n,n+1],n∈N*时,f(x)=f(x-1)+1=f(x-2)+2=…=f(x-n)+n=(x-n)2+n.因为函数y=f(x)是定义在R上的奇函数,所以其图象关于原点对称,因此要使直线y=kx与函数y=f(x)恰有7个不同的公共点,只需满足当x>0时,直线y=kx与函数y=f(x)恰有3个不同的公共点即可.作出x>0时函数y=f(x)图象,由图可知,当直线y=kx与曲线段y=(x-1)2+1,x∈[1,2]相切时,直线与函数y=f(x)恰有5个不同的公共点.与曲线段y=(x-2)2+2,x∈[2,3]相切时,直线与函数y=f(x)恰有9个公共点,若恰有7个,则介于此两者之间.由直线方程y=kx与y=(x-1)2+1,x∈[1,2]消去y得x2-(2+k)x+2=0,因为相切,所以Δ=(2+k)2-8=0,又k>0,所以k =22-2.由y=kx与y=(x-2)2+2,x∈[2,3]消去y得x2-(4+k)x+6=0,因为相切,所以Δ=0,得到k=26-4.∴k的取值范围为(22-2,26-4).二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为________.答案482解析由题意可知,系统抽样的每组元素个数为32-7=25个,共20个组,故样本中最大的编号应该为500-25+7=482.14.已知定义在R上的偶函数f(x)在[0,+∞)上单调递增,且f(1)=0,则不等式f(x-2)≥0的解集是________.答案(-∞,1]∪[3,+∞)解析由题知x-2≥1或x-2≤-1,∴不等式的解集是(-∞,1]∪[3,+∞).15.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,b cos C+c cos B =3R(R为△ABC外接圆半径)且a=2,b+c=4,则△ABC的面积为________.答案3解析因为b cos C+c cos B=3R,得2sin B cos C+2sin C cos B=3,sin(B+C)=32,即sin A=32.由余弦定理得:a2=b2+c2-2bc cos A,即4=b2+c2-bc,∴4=(b+c)2-3bc,∵b+c=4,∴bc=4,∴S △ABC =12bc sin A = 3.16.设过曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在过曲线g (x )=ax +2cos x 上一点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为________.答案 [-1,2]解析 函数f (x )=-e x -x 的导数为f ′(x )=-e x -1,设曲线f (x )=-e x -x 上的切点为(x 1,f (x 1)),则l 1的斜率k 1=-e x 1-1.函数g (x )=ax +2cos x 的导数为g ′(x )=a -2sin x ,设曲线g (x )=ax +2cos x 上的切点为(x 2,g (x 2)),则l 2的斜率k 2=a -2sin x 2.由题设可知k 1·k 2=-1,从而有(-e x 1-1)(a -2sin x 2)=-1, ∴a -2sin x 2=1e x 1+1,对∀x 1,∃x 2使得等式成立,则有y 1=1e x 1+1的值域是y 2=a -2sin x 2值域的子集,由e x 1+1>1,得1e x 1+1∈(0,1); 由-1≤sin x 2≤1,得a -2sin x 2∈[a -2,a +2];故可得(0,1)⊆[a -2,a +2],⎩⎨⎧a -2≤0a +2≥1,∴-1≤a ≤2.客观题专练(二) 建议用时:45分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =1-im +i 为纯虚数,其中i 是虚数单位,则实数m 的值是( )A .1B .-1C .2D .-2答案 A 解析 z =1-i m +i =(1-i )(m -i )(m +i )(m -i )=m -1-(m +1)im 2+1是纯虚数,所以m =1. 2.若全集U =R ,集合A ={x ||2x +3|<7},B ={x |y =log 2(x 2-4)},则A ∩B =( )A .{x |x <-5或x >-2}B .{x |-5<x <-2}C .x >-5D .x <-2答案 B解析 因为,A ={x ||2x +3|<7}={x |-5<x <2},B ={x |y =log 2(x 2-4)}={x |x 2-4>0}={x |x >2或x <-2},所以A ∩B ={x |-5<x <-2},故选B.3.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 C解析 “a >0且b >0”可以推出“a +b >0且ab >0”,反之也成立. 4.抛物线y =4ax 2(a ≠0)的焦点坐标是( ) A .(0,a ) B .(a,0) C.⎝ ⎛⎭⎪⎫0,116a D.⎝ ⎛⎭⎪⎫116a ,0 答案 C解析 将y =4ax 2(a ≠0)化为标准方程得x 2=14a y (a ≠0),所以焦点坐标为⎝ ⎛⎭⎪⎫0,116a ,所以选C. 5.西藏一登山队为了解某座山山高y (km)与气温x (℃)之间的关系,随机统计了5次山高与相应的气温,并制作了对照表如下:由表中数据,得到线性回归方程y =-3x +a ,a ∈R ,据此数据估计山高为99 km 处的气温是( )A .-10 ℃B .-9 ℃C .-8 ℃D .-7 ℃答案 A解析 由题意得x =17+14+9-1-45=7,y =24+34+38+64+805=48,则x ,y 代入线性回归方程得a =69,故有y ^=-3x +69,所以当y ^=99时有x =-10,故选A.6.[2015·云南统测]在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34 B.58 C.12 D.14答案 C解析 分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12.7.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .30°B .45°C .60°D .120° 答案 A解析 由正弦定理a sin A =b sin B =csin C 及(b -c )(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,所以a 2+c 2-b 2=3ac ,又因为cos B =a 2+c 2-b 22ac ,所以cos B =32,所以B =30°.故选A.8.已知直线y =22(x -1)与抛物线C :y 2=4x 交于A ,B 两点,点M (-1,m ),若MA→·MB →=0,则m =( ) A. 2 B.22 C.12 D .0答案 B解析 由直线与抛物线的方程可得A (2,22),B ⎝ ⎛⎭⎪⎫12,-2,∵M (-1,m ),且MA→·MB →=0,∴2m 2-22m +1=0,解得m =22,故选B.9.执行如图所示的程序框图,输出z 的值为( ) A .-1008×2015 B .1008×2015 C .-1008×2017 D .1008×2017 答案 A解析 第一次运行时,S =121,a =2;第二次运行时,S =121+2,a =3;第三次运行时,S =121+2+3,a =4;第四次运行时,S =121+2+3+4,a =5;…,以此类推,第2015次运行时S =121+2+3+4+…+2015,a =2016,刚好满足a >2015,z =log 2121+2+3+4+…+2015=-⎝⎛⎭⎪⎫1+20152×2015=-1008×2015. 10.已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2<f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z )B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 B解析 由f (x )≤⎪⎪⎪⎪⎪⎪f (π6)⇒f ⎝ ⎛⎭⎪⎫π6=±1⇒sin ⎝ ⎛⎭⎪⎫φ+π3=±1,①又由f ⎝ ⎛⎭⎪⎫π2<f (π)⇒sin(π+φ)<sin(2π+φ)⇒2sin φ>0,②因为φ∈(0,2π),由①②可得φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是可求得增区间为B.11.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的两条切线,切点分别为A ,B ,双曲线左顶点为M ,若∠AMB =120°,则该双曲线的离心率为( )A. 2B.3 C .3 D .2答案 D解析 如图,根据对称性,∠AMO =∠BMO =60°, ∴△AMO 为等边三角形,∴∠F AM =∠MF A =30°,∴FM =OM =a ,∴OF =2OM ,∴c =2a ,∴e =ca =2.12.已知函数f (x )=ln x +tan α⎝ ⎛⎭⎪⎫0<α<π2的导函数为f ′(x ),若方程f ′(x )=f (x )的根x 0小于1,则α的取值范围为( )A.⎝ ⎛⎭⎪⎫π4,π2 B.⎝ ⎛⎭⎪⎫0,π3 C.⎝ ⎛⎭⎪⎫π6,π4 D.⎝ ⎛⎭⎪⎫0,π4 答案 A解析 ∵f (x )=ln x +tan α,∴f ′(x )=1x ,令f (x )=f ′(x ),得ln x +tan α=1x ,即tan α=1x -ln x .设g (x )=1x -ln x ,显然g (x )在(0,+∞)上单调递减,而当x →0+时,g (x )→+∞,∴要使满足f ′(x )=f (x )的根x 0<1,只需tan α>g (1)=1,又∵0<α<π2,∴α∈⎝ ⎛⎭⎪⎫π4,π2.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________________.答案 -12解析 因为a 与b 共线,所以a =x b ,⎩⎨⎧x =2λx =-1,故λ=-12.14.若变量x ,y 满足⎩⎨⎧|x |+|y |≤1xy ≥0,则2x +y 的取值范围为________.答案 [-2,2]解析 作出满足不等式组的平面区域,如图阴影部分所示,平移直线2x +y =0,经过点(1,0)时,2x +y 取得最大值2×1+0=2,经过点(-1,0)时,2x +y 取得最小值2×(-1)+0=-2,所以2x +y 的取值范围为 [-2,2].15.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________.答案 4π解析 如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ·EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝ ⎛⎭⎪⎫BC 22+⎝ ⎛⎭⎪⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为4π×12=4π.16.已知函数f (x )为偶函数且f (x )=f (x -4),又在区间[0,2]上f (x )=⎩⎪⎨⎪⎧-x 2-32x +5,0≤x ≤12x +2-x ,1<x ≤2,函数g (x )=⎝ ⎛⎭⎪⎫12|x |+a ,若F (x )=f (x )-g (x )恰好有2个零点,则a =________.答案 2解析 由题意可知f (x )是周期为4的偶函数,其图象的一条对称轴为直线x =2.若F (x )恰有2个零点,有g (1)=f (1),解得a =2.客观题专练(三)建议用时:45分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合A ={x |x 2>x +2},B ={x |log 2x >1},则下列关系正确的是( )A .A ∪B =R B .A ∩B =AC .A ∪(∁U B )=RD .(∁U A )∪B =R答案 C解析 A =(-∞,-1)∪(2,+∞),B =(2,+∞),∴∁U A =[-1,2],∁U B =(-∞,2],∴A ∪B =(-∞,-1)∪(2,+∞),A ∩B =(2,+∞)=B ,(∁U A )∪B =[-1,+∞],A ∪(∁U B )=R ,故选C.2.已知i 为虚数单位,a ,b ∈R ,若a -2i1+i =1-b i ,则a -b =( ) A .2 B .1 C .0 D .-1答案 B解析 由已知得a -2i =(1+i)(1-b i)=(1+b )+(1-b )i ,∴⎩⎨⎧a =1+b-2=1-b ,解得a =4,b =3,∴a -b =1,故选B.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24答案 C解析 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0,∴⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23,故选C. 4.某几何体的三视图如图所示,则该几何体的体积为( )A .6 B.163 C.203 D.223答案 C解析 由三视图可得,该几何体是由一个正方体截去两个小三棱锥而得到的几何体,∴V =2×2×2-2×13×⎝ ⎛⎭⎪⎫12×2×2×1=203.故选C.5.已知点P (a ,b )是抛物线x 2=20y 上一点,焦点为F ,|PF |=25,则|ab |=( )A .100B .200C .360D .400答案 D解析 依题意得⎩⎨⎧b +5=25a 2=20b ,由此解得|a |=20,b =20,|ab |=400,选D.6.已知sin α-cos α=15,则cos 2⎝ ⎛⎭⎪⎫5π4-α=( )A.150 B.1350 C.3750 D.4950答案 D解析 ∵sin α-cos α=15,∴两边平方得1-2sin αcos α=125,∴sin2α=2425,∴cos 2⎝ ⎛⎭⎪⎫5π4-α=1+cos ⎝ ⎛⎭⎪⎫5π2-2α2=1+sin2α2=4950,故选D. 7.已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则以下判断正确的是( )A .f (2013)>e 2013f (0)B .f (2013)<e 2013f (0)C .f (2013)=e 2013f (0)D .f (2013)与e 2013f (0)大小无法确定 答案 B解析 令函数g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x .∵f (x )>f ′(x ),∴g ′(x )<0, 即函数g (x )在R 上递减, ∴g (2013)<g (0),∴f (2013)e 2013<f (0)e 0, ∴f (2013)<e 2013f (0).8.在面积为S 的△ABC 内部任取一点P ,则△PBC 的面积大于S4的概率为( )A.14B.34C.49D.916答案 D解析设AB 、AC 上分别有点D 、E 满足AD =34AB 且AE =34AC ,则△ADE ∽△ABC ,DE ∥BC 且DE =34BC .∵点A 到DE 的距离等于点A 到BC 的距离的34,∴DE 到BC 的距离等于△ABC 高的14.当动点P 在△ADE 内时,P 到BC 的距离大于DE 到BC 的距离,∴当P 在△ADE 内部运动时,△PBC 的面积大于S4,∴所求概率为S △ADES △ABC=⎝ ⎛⎭⎪⎫342=916,故选D.9.若当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,则函数y =log a ⎪⎪⎪⎪⎪⎪1x 的图象大致为( )答案 B解析 因为当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,所以0<a <1,则当x >0时,函数y =log a 1x =-log a x ,显然此时函数单调递增,故选B.10.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B ,则B =( )A.π6B.π4 C.π3 D.3π4答案 C解析 依题意得(c -b )(c +b )=(c -a )a ,即c 2+a 2-b 2=ac,2ac cos B =ac ,cos B =12.又0<B <π,因此B =π3,选C.11.已知0<m <n <1,且1<a <b ,下列各式中一定成立的是( ) A .b m >a n B .b m <a n C .m b >n a D .m b <n a答案 D解析 ∵f (x )=x a (a >1)在(0,+∞)上为单调递增函数,且0<m <n <1,∴m a <n a,又∵g (x )=m x (0<m <1)在R 上为单调递减函数,且1<a <b ,∴m b <m a .综上,m b <n a ,故选D.12.设函数f 1(x )=x ,f 2(x )=log 2015x ,a i =i2015(i =1,2,…,2015),记I k =|f k (a 2)-f k (a 1)|+|f k (a 3)-f k (a 2)|+…+|f k (a 2015)-f k (a 2014)|,k =1,2,则( )A .I 1<I 2B .I 1=I 2C .I 1>I 2D .I 1与I 2的大小关系无法确定 答案 A解析 依题意,f 1(a i +1)-f 1(a i )=a i +1-a i =i +12015-i 2015=12015,因此I 1=|f 1(a 2)-f 1(a 1)|+|f 1(a 3)-f 1(a 2)|+…+|f 1(a 2015)-f 1(a 2014)|=20142015.f 2(a i +1)-f 2(a i )=log 2015a i +1-log 2015a i =log 2015i +12015-log 2015i2015>0,I 2=|f 2(a 2)-f 2(a 1)|+|f 2(a 3)-f 2(a 2)|+…+|f 2(a 2015)-f 2(a 2014)|=⎝ ⎛⎭⎪⎫log 201522015-log 201512015+⎝⎛log 201532015-⎭⎪⎫log 201522015+…+⎝ ⎛⎭⎪⎫log 201520152015-log 201520142015=1,因此I 1<I 2,选A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.已知向量a ,b 满足|b |=3,a 在b 方向上的投影是32,则a ·b =________. 答案 92解析 设a 与b 的夹角为θ,由于a 在b 方向上的投影是32,即|a |cos θ=32,所以a ·b =|a |·|b |cos θ=3×32=92.14.若曲线y =a ln x (a ≠0)与曲线y =12e x 2在它们的公共点P (s ,t )处具有公共切线,则st =________.答案 2e解析 对曲线y =a ln x 求导可得y ′=a x ,对曲线y =12e x 2求导可得y ′=xe ,因为它们在公共点P (s ,t )处具有公共切线,所以a s =s e ,即s 2=e a ,又t =a ln s =12e s 2,即2e a ln s =s 2,将s 2=e a 代入,得s =e ,a =1,t =12,所以st =2 e.15.若不等式组⎩⎨⎧x +y -3≥0y ≤kx +30≤x ≤3表示的区域为一个锐角三角形及其内部,则实数k 的取值范围是________.答案 k ∈(0,1)解析 当斜率k <0时,显然不合题意.当k ≥0时,可知k =0和k =1都使得三角形为直角三角形,故结合题意可知k ∈(0,1).16.已知椭圆x 2m 2+y 2n 2=1(m >n >0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有相同的焦点,点A 是两曲线在第一象限的交点,F 是它们的右焦点,且AF ⊥x 轴,若椭圆的离心率为12,则双曲线的离心率为________.答案 2解析 设它们的左焦点为F ′,则由题意知|AF ′|+|AF |=2m ,|AF ′|-|AF |=2a ,所以|AF ′|=m +a ,|AF |=m -a ,由于AF ⊥x 轴,所以|AF ′|2=|AF |2+|F ′F |2,即(m +a )2-(m -a )2=(2c )2,化简得ma =c 2,即c 2ma =1.由于椭圆和双曲线的离心率分别为e 1=c m ,e 2=c a ,所以e 1e 2=1,由于e 1=12,所以e 2=2,即双曲线的离心率为2.客观题专练(四) 建议用时:45分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为R ,集合A ={x |2x ≥1},B ={x |x 2-3x +2≤0},则A ∩(∁R B )=( )A .{x |x ≤0}B .{x |1≤x ≤2}C .{x |0≤x <1或x >2}D .{x |0≤x <1或x ≥2}答案 C解析 A ={x |x ≥0},B ={x |1≤x ≤2},∁R B ={x |x <1或x >2},∴A ∩(∁R B )={x |0≤x <1或x >2}.2.若复数z 满足z (1+i)=4-2i(i 为虚数单位),则|z |=( ) A. 2 B.3 C. 5 D.10答案 D解析 z =4-2i 1+i =(4-2i )(1-i )(1+i )(1-i )=1-3i ,|z |=10.3.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真命题 答案 C解析 A 中命题的否定是:∀x ∈R ,x 2-x >0,故A 不对;B 中当p 为假命题、q 为真命题时,p ∨q 为真,p ∧q 为假,故B 不对;C 中当m =0时,a ,b ∈R ,故C 的说法正确;D 中命题“在△ABC 中,若sin A <12,则A <π6”为假命题,所以其逆否命题为假命题.故选C.4.在某电视台举办的“宝贝秀”栏目中,共有7位评委对甲、乙两名宝贝的才艺表演进行打分,打出的分数记录成如下的茎叶图(m ,n 是数字0,1,2,…,9中的一个),在去掉一个最高分和一个最低分之后,甲、乙两名宝贝得分的平均分分别为x ,y ,则( )A .x >yB .x <yC .x 与y 的大小关系与m 的值有关D .x 与y 的大小关系与m ,n 的值都有关 答案 B解析 x =81+80+m +85+84+855=415+m5,y =84+84+86+84+875=4255,因为m 是数字0,1,2,…,9中的一个,所以415+m <425,所以x <y .5.函数f (x )=3cos ωx +3sin ωx (ω>0)在一个周期上的图象如图所示,其中A 为图象的最高点,B 、C 是图象与x 轴的交点,且△ABC 为正三角形,则ω的值为( )A.13B.14C.π4D.π3答案 C解析 f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3.其周期T =2πω,∴BC =T 2=πω.又△ABC 为正三角形,所以BC 边上的高为πωsin60°=3π2ω,由3π2ω=23可得ω=π4.6.过抛物线y 2=4x 的焦点F 的直线交抛物线于A 、B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B.2C.322 D .22答案 C解析 易知焦点F (1,0),准线l :x =-1.设A (x 1,y 1),B (x 2,y 2).则x 1+1=3,∴x 1=2,∴y 1=2 2.即A (2,22).所以直线AB 的方程为y =22(x -1). 解⎩⎨⎧y =22(x -1),y 2=4x ,可得B 点坐标为B ⎝ ⎛⎭⎪⎫12,-2.所以S △AOB =S △AOF +S △BOF =12×1×22+12×1×2=322.7.某书法社团有男生30名,女生20名,从中抽取一个5人的样本,恰好抽到了2名男生和3名女生.(1)该抽样一定不是系统抽样;(2)该抽样可能是随机抽样;(3)该抽样不可能是分层抽样;(4)男生被抽到的概率大于女生被抽到的概率.其中说法正确的为( )A .(1)(2)(3)B .(2)(3)C .(3)(4)D .(1)(4)答案 B解析 该抽样可能是系统抽样、随机抽样,但一定不是分层抽样,所以(1)错误,(2)正确,(3)正确,抽到男生的概率等于抽到女生的概率,(4)错误,故说法正确的为(2)(3).8.如图是某几何体的三视图,此几何体的最长一条棱的长是11,此棱的主视图,侧视图,俯视图的射影长分别为10,a ,b ,则a +2b 的最大值是( )A .4B .210C .215D .42答案 C解析 由题意可知a 2+b 2=12,令a =23cos θ,b =23sin θ,a +2b =23(cos θ+2sin θ)=215sin(θ+φ)≤215,故选C.9.设x ,y 满足约束条件⎩⎨⎧x +y ≤1x +1≥0x -y ≤1,则目标函数z =yx +2的取值范围为( ) A .[-3,3] B .[-3,-2] C .[-2,2] D .[2,3]答案 C解析 根据约束条件作出可行域,可知目标函数z =yx +2在点A (-1,-2)处取得最小值-2,在点B (-1,2)处取得最大值2,故选C.10.长方体ABCD A 1B 1C 1D 1中,AB =BC =1,BB 1= 2.设点A 关于直线BD 1的对称点为P ,则P 与C 1两点之间的距离为( )A .1 B.2 B.33 D.32答案 A解析 将长方体中含有ABD 1的平面取出,过点A 作AM ⊥BD 1,延长AM 到点P ,使MP =AM ,则点P 是点A 关于BD 1的对称点,如图所示,过P 作PE ⊥BC 1,垂足为E ,依题意AB =1,AD 1=3,BD 1=2,∠ABD 1=60°,∠BAM =30°,∠PBE =30°,PE =12,BE =32,所以PC 1=1,故选A.11.已知函数g (x )=⎩⎪⎨⎪⎧1x +1-3,-1<x ≤0x 2-3x +2,0<x ≤1,若方程g (x )-mx -m =0有且仅有两个不等的实根,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-94,-2∪[0,2] B.⎝ ⎛⎦⎥⎤-114,-2∪[0,2] C.⎝ ⎛⎦⎥⎤-94,-2∪[0,2) D.⎝ ⎛⎦⎥⎤-114,-2∪[0,2) 答案 C解析 令g (x )-mx -m =0得g (x )=m (x +1),原方程有两个相异的实根等价于两函数y =g (x )与y =m (x +1)的图象有两个不同的交点.当m >0时,易知临界位置为y =m (x +1)过点(0,2)和(1,0),分别求出这两个位置的斜率k 1=2和k 2=0,由图可知此时m ∈[0,2).当m <0时,设过点(-1,0)向函数g (x )=1x +1-3,x ∈(-1,0]的图象作切线的切点为(x 0,y 0),则由函数的导数为g ′(x )=-1(x +1)2得⎩⎪⎨⎪⎧-1(x 0+1)2=y 0x 0+1y 0=1x 0+1-3,解得⎩⎪⎨⎪⎧x 0=-13y 0=-32,得切线的斜率为k 1=-94,而过点(-1,0),(0,-2)的斜率为k 1=-2,由图知此时m ∈⎝ ⎛⎦⎥⎤-94,-2,∴m ∈⎝ ⎛⎦⎥⎤-94,-2∪[0,2).12.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A.12B.3-12C.32D.3-1答案 D解析 设A (m ,n ),则⎩⎪⎨⎪⎧n m +c ×(-3)=-13×m -c 2+n2=0,解得A ⎝ ⎛⎭⎪⎫c 2,32c ,代入椭圆方程中,有c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴c 4-8a 2c 2+4a 4=0,∴e 4-8e 2+4=0,∴e 2=4±23,∴e =3-1.故选D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =________. 答案 1解析 因为|a +b |2=a 2+2a ·b +b 2=10 ①,|a -b |2=a 2-2a ·b +b 2=6 ②,①-②得4a ·b =4,所以a ·b =1.14.执行下面的程序,若输入的x =2,则输出的所有x 的值的和为________.答案 126解析 分析程序框图可知,问题等价于在[2,100]上求所有2的整数次幂的和,从而易得输出的所有x 的值的和为2+4+8+16+32+64=126.15.观察下面两个推理过程及结论:(1)若锐角A ,B ,C 满足A +B +C =π,以角A ,B ,C 分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:sin 2A =sin 2B +sin 2C -2sin B sin C cos A(2)若锐角A ,B ,C 满足A +B +C =π,则⎝ ⎛⎭⎪⎫π2-A 2+⎝ ⎛⎭⎪⎫π2-B 2+⎝ ⎛⎭⎪⎫π2-C 2=π,以角π2-A 2,π2-B 2,π2-C2分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到等式cos 2A 2=cos 2B 2+cos 2C 2-2cos B 2·cos C 2sin A2.则若锐角A ,B ,C 满足A +B +C =π,以角π-2A ,π-2B ,π-2C 分别为内角构造一个正三角形,类比上面推理方法,可以得到一个等式是________.答案 sin 22A =sin 22B +sin 22C +2sin2B sin2C cos2A解析 若锐角A ,B ,C 满足(π-2A )+(π-2B )+(π-2C )=3π-2(A +B +C )=π,则以角π-2A ,π-2B ,π-2C 分别为内角构造一个三角形,依据余弦定理和正弦定理可以得到等式:sin 22A =sin 22B +sin 22C +2sin2B sin2C cos2A .16.已知数列{a n }的首项a 1=1,前n 项和为S n ,且S n =2S n -1+1(n ≥2,且n ∈N *),数列{b n }是等差数列,且b 1=a 1,b 4=a 1+a 2+a 3.设c n =1b n b n +1,数列{c n }的前n 项和为T n ,则T 10=________.答案 1021解析 解法一:数列{a n }的首项a 1=1,前n 项和为S n ,且S n =2S n -1+1(n ≥2,且n ∈N *),∴当n =2时,a 1+a 2=2a 1+1,∴a 2=2,当n ≥3时,a n =S n -S n -1=2S n -1-2S n -2=2a n -1,又a 2=2a 1,∴a n =2a n -1(n ≥2,且n ∈N *),数列{a n }为首项为1,公比为2的等比数列,∴a n =2n -1,a 3=22=4.设数列{b n }的公差为d ,又b 1=a 1=1,b 4=1+3d =7,∴d =2,b n =1+(n -1)×2=2n -1,c n =1b n b n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T 10=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12×10-1-12×10+1=12⎝⎛⎭⎪⎫1-121=1021.解法二:∵数列{a n }的首项a 1=1,前n 项和为S n ,且S n =2S n -1+1(n ≥2,且n ∈N *),∴当n =2时,a 1+a 2=2a 1+1,∴a 2=2,当n =3时,a 1+a 2+a 3=2a 1+2a 2+1,∴a 3=4.设数列{b n }的公差为d ,又b 1=a 1=1,b 4=1+3d =7,∴d =2,b n =1+(n -1)×2=2n -1,c n =1b n b n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, ∴T 10=12⎝⎛⎭⎪⎫1-13+13-15+…+12×10-1-12×10+1=12⎝ ⎛⎭⎪⎫1-121=1021.客观题专练(五)建议用时:45分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={-1,0,1,2,3},B ={-2,-1,0,1},则图中阴影部分表示的集合为( )A .{-1,0,1}B .{2,3}C .{-2,2,3}D .{-1,0,1,2,3} 答案 B解析 可知图中阴影表示的集合为(∁I B )∩A ={2,3},故选B. 2.已知复数z 1=2+i ,z 2=1-2i.若z =z 1z 2,则z =( )A.45+i B.45-i C .i D .-i答案 D解析 z =z 1z 2=2+i 1-2i =(2+i )(1+2i )5=5i5=i ,z =-i ,故选D.3.若tan θ>0,则( ) A .sin θ>0 B .cos θ>0 C .sin2θ>0 D .cos2θ>0答案 C解析 因为tan θ>0,所以sin θcos θ>0,则sin2θ=2sin θcos θ>0,故选C.4.已知双曲线x 2+my 2=1的虚轴长是实轴长的两倍,则实数m 的值是( )A .4B .-14 C.14 D .-4答案 B解析 由双曲线的方程知a =1,b =-1m ,又b =2a ,所以-1m =2,解得m =-14,故选B.5.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且AD →·AB →=AD →·AC →,则AD→·AB →的值为( ) A .0 B .-4 C .8 D .4答案 D解析 由AD →·AB →=AD →·AC →,得AD →·(AB →-AC →)=0,即AD →·CB →=0,所以AD →⊥CB →,即AD ⊥CB .又AB =4,∠ABC =30°,所以AD =AB sin30°=2,∠BAD =60°,所以AD→·AB →=AD ·AB ·cos ∠BAD =2×4×12=4.故选D. 6.一个边长为3π cm 的正方形薄木板的正中央有一个直径为2 cm 的圆孔,一质点在木板的一个面内随机地移动,则该质点恰在离四个顶点的距离都大于2 cm 的区域的概率为( )A.59B.49C.58D.12 答案 D解析 依题意,分别以正方形的四个顶点为圆心,以2 cm 为半径作圆,与正方形相交截得四个圆心角为直角的扇形,如图所示,当质点落在图中的阴影区域时,它离四个顶点的距离都大于2 cm ,其中阴影区域的面积为S 1=S 正方形-4S扇形-S 圆=(3π)2-π×22-π×12=9π-5π=4π,所以该质点恰在离四个顶点的距离都大于2 cm 的区域的概率为P =S 19π-π=4π8π=12.7.某几何体的三视图如图所示,则该几何体的外接球的体积为( )A.3π B .4π C .43π D .323π答案 C解析 由三视图可知,该几何体是从棱长为2的正方体上切下的,它的外接球直径为23,所以外接球的体积为43π(3)3=43π.8.定义运算:⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3.将函数f (x )=⎪⎪⎪⎪⎪⎪3 2sin x cos x cos2x 的图象向左平移n (n >0)个单位长度,所得图象对应的函数为偶函数,则n 的最小值为( )A.π3 B.5π12C.π2D.7π12答案 B解析 由新定义可知f (x )=3cos2x -sin2x =2cos ⎝ ⎛⎭⎪⎫2x +π6,将函数f (x )的图象向左平移n (n >0)个单位长度后得到y =2cos ⎝ ⎛⎭⎪⎫2x +2n +π6的图象,该函数为偶函数,则2n +π6=k π(k ∈Z ),即n =k π2-π12(k ∈Z ),故取k =1,所以n 的最小值为5π12,故选B.9.设等差数列{a n }的前n 项和为S n ,已知(a 10-1)3+11a 10=0,(a 2-1)3+11a 2=22,则下列结论正确的是( )A .S 11=11,a 10<a 2B .S 11=11,a 10>a 2C .S 11=22,a 10<a 2D .S 11=22,a 10>a 2答案 A解析 记f (x )=x 3+11x ,则f (-x )=-f (x ),f (x )是奇函数,且f ′(x )=3x 2+11>0,则f (x )在R 上是增函数.依题意得f (a 10-1)=-f (a 2-1)=f (1-a 2)=-11<f (0),因此a 10-1=1-a 2,a 10+a 2=2,S 11=11(a 1+a 11)2=11(a 10+a 2)2=11,a 10-1<0,1-a 2<0,即a 10<1<a 2,因此选A.10.如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .DC 1⊥D 1PB .平面D 1A 1P ⊥平面A 1APC .∠APD 1的最大值为90° D .AP +PD 1的最小值为2+2 答案 C解析 对于A 选项,∵DC 1⊥面A 1D 1CB ,∴DC 1⊥D 1P ,对于B 选项,∵D 1A 1⊥面A 1AB ,∴平面D 1A 1P ⊥平面A 1AP .对于D 选项,把△ABA 1,沿A 1B 展开与矩形A 1BCD 1在同一平面上,则A 1D 1=A 1A =1,∵∠AA 1D 1=135°,所以AP +PD 1的最小值为展开的同一平面上AD 1的长=12+12-2·1·1·cos135°=2+2,故选C.11.过抛物线y 2=2x 上一点P 作与直线x +y +5=0的夹角为45°的直线l ,设两直线的交点为Q ,则线段PQ 的长度的最小值是( )A .9B .18 C.125 D.92答案 D解析 由题意可知,y 2=2x .设与直线x +y +5=0平行且与抛物线相切的直线为x +y +c =0,将其变形为x =-c -y ,代入y 2=2x ,得y 2=2(-c -y ),即y 2+2y +2c =0,Δ=4-8c =0,解得c =12.直线x +y +5=0与直线x +y +12=0的距离d =5-122=922,因为直线x +y +5=0与PQ 的夹角为45°,所以|PQ |min =92.12.设函数f (x )=ax 3-x +1(x ∈R ),若对于任意x ∈[-1,1]都有f (x )≥0,则实数a 的取值范围为( )A .(-∞,2]B .[0,+∞)C .[0,2]D .[1,2]答案 C解析 ∵f (x )=ax 3-x +1,∴f ′(x )=3ax 2-1,当a <0时,f ′(x )=3ax 2-1<0,f (x )在[-1,1]上单调递减,f (x )min =f (1)=a <0,不符合题意.当a =0时,f (x )=-x +1,f (x )在[-1,1]上单调递减,f (x )min =f (1)=0,符合题意.当a >0时,由f ′(x )=3ax 2-1≥0, 得x ≥13a 或x ≤-13a ,当0<13a <1,即a >13时,f (x )在⎣⎢⎡⎦⎥⎤-1,-13a 上单调递增,在⎝⎛⎭⎪⎫-13a ,13a 上单调递减,在⎝⎛⎦⎥⎤13a ,1上单调递增, ∴⎩⎨⎧f (-1)=-a +1+1=2-a ≥0f⎝ ⎛⎭⎪⎫13a =a ⎝ ⎛⎭⎪⎫13a 3-13a +1≥0,∴⎩⎪⎨⎪⎧a ≤2a ≥427a >13,∴13<a ≤2;当13a ≥1,即0<a ≤13时,f (x )在[-1,1]上单调递减,f (x )min =f (1)=a >0,符合题意.综上可得:0≤a ≤2.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.已知a ∈⎝ ⎛⎭⎪⎫-3π2,0,sin α=2+cos2α5,则α=________.答案 -7π6解析 2sin 2α+5sin α-3=0,sin α=12或sin α=-3(舍去).又α∈⎝ ⎛⎭⎪⎫-3π2,0,所以α=-7π6.14.已知等比数列{a n },前n 项和为S n ,a 1+a 2=34,a 4+a 5=6,则S 6=________. 答案 634解析 记等比数列{a n }的公比为q ,则有q 3=a 4+a 5a 1+a 2=8,q =2,S 6=(a 1+a 2)+q 2(a 1+a 2)+q 4(a 1+a 2)=21(a 1+a 2)=634.15.给出下列命题:①命题:“存在x >0,使sin x ≤x ”的否定是:“对任意x >0,sin x >x ”; ②函数f (x )=sin x +2sin x (x ∈(0,π))的最小值是22;③在△ABC 中,若sin2A =sin2B ,则△ABC 是等腰或直角三角形; ④若直线m ∥直线n ,直线m ∥平面α,那么直线n ∥平面α. 其中正确的命题是________. 答案 ①③解析 易知①正确;②中函数f (x )=sin x +2sin x ,令t =sin x ,则g (t )=t +2t ,t ∈(0,1]为减函数,所以g (t )min =g (1)=3,故②错误;由sin2A =sin2B ,可知2A =2B 或2A +2B =π,即A =B 或A +B =π2,故③正确;④中,直线n 也可能在平面α内,故④错误.16.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+12x (x <0)e x -1(x ≥0),若函数y =f (x )-kx 有3个零点,则实数k 的取值范围是________.答案 (1,+∞)解析 由y =f (x )-kx =0,得f (x )=kx .因为f (0)=e 0-1=0,所以x =0是函数y =f (x )-kx 的一个零点.当x <0时,由f (x )=kx ,得-x 2+12x =kx ,即x =12-k <0,解得k >12;当x >0时,f (x )=e x -1,f ′(x )=e x ∈(1,+∞),因为x >0,所以要使函数y =f (x )-kx 在x >0时有一个零点,则k >1.又k >12,所以k >1,即实数k 的取值范围是(1,+∞).客观题专练(六) 建议用时:45分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.z =5i1-2i(i 是虚数单位),则z 的共轭复数为( ) A .2-iB .2+iC .-2-iD .-2+i答案 C 解析 因为z =5i 1-2i =5i (1+2i )(1-2i )(1+2i )=-2+i ,所以z =-2-i ,故选C. 2.已知等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( ) A .4 B .3 C .2 D .1答案 C解析 前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg (a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10,∴S 4=lg 100=2.3.如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩均为85,乙同学的六科成绩的众数为84,则x ,y 的值为( )A .2,4B .4,4C .5,6D .6,4答案 D解析 x -甲=75+82+84+(80+x )+90+936=85,解得x =6,由图可知y =4,故选D.4.如图,若f (x )=log 3x ,g (x )=log 2x ,输入x =0.25,则输出的h (x )=( ) A .0.25B .2log 32C .-12log 23 D .-2 答案 D解析 当x =0.25时,f (x )=log 314∈(-2,-1),g (x )=log 214=-2,∴f (x )>g (x ),故选D.5.已知函数f (x )=sin x +λcos x 的图象关于x =π4对称,则把函数f (x )的图象向右平移π6,横坐标扩大到原来的2倍,得到函数g (x )的图象,则函数g (x )的一个对称中心为( )A.⎝ ⎛⎭⎪⎫π3,0B.⎝ ⎛⎭⎪⎫π2,0 C.⎝ ⎛⎭⎪⎫π4,0 D.⎝ ⎛⎭⎪⎫-π6,0 答案 D解析 ∵函数f (x )的图象关于x =π4对称, ∴f (0)=f ⎝ ⎛⎭⎪⎫π2,∴λ=1.f (x )=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,g (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4-π6=2sin ⎝ ⎛⎭⎪⎫12x +π12,令12x +π12=k π得x =-π6+2k π,(k ∈Z ) ∴g (x )的一个对称中心为⎝ ⎛⎭⎪⎫-π6,0,故选D.6.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A.32 B.327C.64 D.647答案C解析依题意,题中的几何体是三棱锥P-ABC(如图所示),其中底面ABC 是直角三角形,AB⊥BC,P A⊥平面ABC,BC=27,P A2+y2=102,(27)2+P A2=x2,因此xy=x102-[x2-(27)2]=x128-x2≤x2+(128-x2)2=64,当且仅当x2=128-x2,即x=8时取等号,因此xy的最大值是64,选C.7.已知结论:在△ABC中,各边和它所对角的正弦比相等,即asin A=bsin B=csin C,若把该结论推广到空间,则有结论:在三棱锥A-BCD中,侧棱AB与平面ACD、平面BCD所成的角为α、β,则有()A.BCsinα=ADsinβ B.ADsinα=BCsinβC.S△BCDsinα=S△ACDsinβ D.S△ACDsinα=S△BCDsinβ答案C解析分别过B、A作平面ACD、平面BCD的垂线,垂足分别为E、F,则∠BAE =α,∠ABF =β,V B -ACD =13S △ACD ·BE =13S △ACD ·AB ·sin α,V A -BCD =13S △BCD ·AF =13S △ACD ·AB ·sin β,又13S △ACD ·AB ·sin α=13S △BCD ·AB ·sin β,即S △BCD sin α=S △ACD sin β.8.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( ) A .f (x )=ln |x |x B .f (x )=e xx C .f (x )=1x 2-1 D .f (x )=x -1x 答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.9.在直角坐标系xOy 中,设P 是曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A ,B 两点,则以下结论正确的是( )A .△OAB 的面积为定值2 B .△OAB 的面积有最小值3C .△OAB 的面积有最大值4D .△OAB 的面积的取值范围是[3,4] 答案 A解析 设P (x 0,y 0)为曲线C :y =1x (x >0)上任意一点,则y 0=1x 0.因为y ′=-1x 2,所以过点P 的切线斜率k =-1x 20,所以切线l 的方程为y -y 0=-1x 20(x -x 0).当x =0时,y =2x 0;当y =0时,x =2x 0,所以S △OAB =12|OA |·|OB |=12|2x 0|·⎪⎪⎪⎪⎪⎪2x 0=2,故选A.10.已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a 2+y2b 2=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,1B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎭⎪⎫22,1 D.⎝⎛⎦⎥⎤0,22答案 B解析 圆C 1,C 2都在椭圆内,又圆心为左右焦点,由椭圆定义只需令2c ≤a ,即e ≤12,又e ∈(0,1),∴0<e ≤12.11.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =3a ,C =π6,S △ABC =3sin 2A ,则S △ABC =( )A.34B.32 C.3 D .2答案 A解析 解法一:由b =3a ,C =π6,得S △ABC =12ab sin C =12a ·3a ·12=34a 2,又S △ABC =3sin 2A ,则a 24=sin 2A ,故a 2=sin A ,即a sin A =2,由a sin A =c sin C ,得csin C =2,所以c =2sin C =1,由余弦定理a 2+b 2-c 2=2ab cos C ,得a 2+3a 2-1=2·a ·3a ·32,整理得4a 2-1=3a 2,a 2=1,所以a =1,故S △ABC =34.解法二:由余弦定理a 2+b 2-c 2=2ab cos C ,得a 2+(3a )2-c 2=2a ·3a ·cos π6,即a 2=c 2,故a =c ,从而有A =C =π6,所以S △ABC =3sin 2A =3×sin 2π6=34,。
高考数学客观题限时训练习题及参考答案(十一套)
高考数学客观题限时训练习题(十一套)高考数学客观题限时训练一班级 姓名 学号 记分1、已知集合{}{}|12,|35A x a x a B x x =-≤≤+=<<,则能使A B ⊇成立的实数a 的取值范围是( )A .{}|34a a <≤B .{}|34a a <<C .{}|34a a ≤≤D .∅ 2、等比数列{}n a 中,0n a >且21431,9a a a a =-=-,则45a a +等于( ) A .16 B .27 C .36 D .27- 3、不等式2103x x -≤的解集为( )A .{|2x x ≤≤ B .{}|25x x -≤≤ C .{}|25x x ≤≤ D .{}5x x ≤ 4、曲线24y x =关于直线2x =对称的曲线方程是( )A .2164y x =-B .284y x =-C .248y x =-D .2416y x =-5、已知()321233y x bx b x =++++是R 上的单调增函数,则b 的范围( )A .1b <-或2b >B .1b ≤-或2b ≥C .12b -<<D .12b -≤≤6、直线l 是双曲线()222210,0x y a b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆被直线l 分成弧长为21∶的两段圆弧,则该双曲线的离心率是( )A B C D7、空间四点A B C D 、、、,若直线,,AB CD AC BD AD BC ⊥⊥⊥同时成立,则A B C D 、、、四点的位置关系是( )A .一定共面B .一定不共面C .不一定共面D .这样的四点不存在8、()f x 是定义在R 上的奇函数,它的最小正周期为T ,则2T f ⎛⎫- ⎪⎝⎭的值为( )A .0B .2TC .TD .2T-9、已知实数x y 、满足22326x y +=,则2x y +的最大值为( ) A .4 BC. D10、函数222x y e -=的图象大致是( )选择题答案栏11、直线20x y m ++=按向量()1,2a =--平移后与圆22:240C x y x y ++-=相切,则实数m 的值为____________.12、在()()10211x x x ++-的展开式中,4x 项的系数是_______________.13、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有____________14、函数()f x =是奇函数的充要条件是____________ABCD15、260100x y x x y +-≤⎧⎪+≥⎨⎪-≤⎩,z mx y =+取得最大值的最优解有无数个,则m 等于16、在下列四个命题中,①函数2cos sin y x x =+的最小值是1-。
高考数学总复习考点知识讲解与提升练习54 空间动态问题突破
高考数学总复习考点知识讲解与提升练习专题54 空间动态问题突破空间动态问题,是高考常考题型,常以客观题出现.常见题型有空间位置关系判定、轨迹问题、最值问题、范围问题等.题型一空间位置关系的判定例1(1)(2023·昆明模拟)已知P,Q分别是正方体ABCD-A1B1C1D1的棱BB1,CC1上的动点(不与顶点重合),则下列结论错误的是()A.AB⊥PQ B.平面BPQ∥平面ADD1A1C.四面体ABPQ的体积为定值 D.AP∥平面CDD1C1答案C解析对于A,∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC,BB1⊂平面BCC1B1,∴AB⊥平面BCC1B1,∵PQ⊂平面BCC1B1,∴AB⊥PQ,故A正确;对于B,∵平面ADD1A1∥平面BCC1B1,平面BPQ与平面BCC1B1重合,∴平面BPQ∥平面ADD1A1,故B正确;对于C,∵A到平面BPQ的距离AB为定值,Q到BP的距离为定值,BP的长不是定值,∴四面体ABPQ的体积不为定值,故C错误;对于D,∵平面ABB1A1∥平面CDD1C1,AP⊂平面ABB1A1,∴AP∥平面CDD1C1,故D正确.(2)(多选)已知等边△ABC的边长为6,M,N分别为边AB,AC的中点,将△AMN沿MN折起至△A′MN,在四棱锥A′-MNCB中,下列说法正确的是()A.直线MN∥平面A′BCB.当四棱锥A′-MNCB体积最大时,平面A′MN⊥平面MNCBC.在折起过程中存在某个位置使BN⊥平面A′NCD.当四棱锥A′-MNCB体积最大时,它的各顶点都在球O的球面上,则球O的表面积为39π4答案AB解析因为MN∥BC,MN⊄平面A′BC,BC⊂平面A′BC,所以直线MN∥平面A′BC,故A 正确;因为四棱锥A′-MNCB的底面积为定值,所以当点A′到平面MNCB距离最大时,体积最大,此时平面A′MN⊥平面MNCB,满足题意,故B正确;对于C,如图,若BN⊥平面A′NC,则BN⊥AA′,又A′D⊥MN,AD⊥MN,A′D∩AD=D,可知MN⊥平面A′AD,所以A′A⊥MN,又MN∩BN=N,所以A′A⊥平面MNCB,这显然不可能,故C错误;当四棱锥A′-MNCB体积最大时,平面A′MN⊥平面MNCB,如图,由∠MBC =π3,取BC 的中点E ,则E 是等腰梯形MNCB 外接圆的圆心,F 是△A ′MN 的外心,作OE ⊥平面MNCB ,连接OF ,则OF ⊥平面A ′MN ,则O 是四棱锥A ′-MNCB 外接球的球心, 且OF =DE =332,A ′F =3,设四棱锥A ′-MNCB 外接球的半径为R ,则R 2=A ′F 2+OF 2=394.故球O 的表面积为4πR 2=39π.故D 错误. 思维升华解决空间位置关系的动点问题 (1)应用“位置关系定理”转化. (2)建立“坐标系”计算.跟踪训练1(2022·杭州质检)如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列结论一定成立的是()A .三棱锥A -A 1PD 的体积大小与点P 的位置有关B .A 1P 与平面ACD 1相交C .平面PDB 1⊥平面A 1BC 1D .AP ⊥D 1C 答案C解析对于选项A ,11A A PD P AA D V V --=.在正方体中,BC 1∥平面AA 1D ,所以点P 到平面AA 1D 的距离不变, 即三棱锥P -AA 1D 的高不变,又△AA 1D 的面积不变, 因此三棱锥P -AA 1D 的体积不变,即三棱锥A -A 1PD 的体积与点P 的位置无关,故A 不成立; 对于选项B ,由于BC 1∥AD 1,AD 1⊂平面ACD 1,BC 1⊄平面ACD 1, 所以BC 1∥平面ACD 1,同理可证BA 1∥平面ACD 1,又BA 1∩BC 1=B , 所以平面BA 1C 1∥平面ACD 1,因为A 1P ⊂平面BA 1C 1, 所以A 1P ∥平面ACD 1,故B 不成立;对于选项C ,因为A 1C 1⊥BD ,A 1C 1⊥BB 1,BD ∩BB 1=B , 所以A 1C 1⊥平面BB 1D ,则A 1C 1⊥B 1D ;同理A 1B ⊥B 1D , 又A 1C 1∩A 1B =A 1,所以B 1D ⊥平面A 1BC 1,又B 1D ⊂平面PDB 1,所以平面PDB 1⊥平面A 1BC 1,故C 成立; 对于选项D ,当B 与P 重合时,AP 与D 1C 的夹角为π4,故D 不成立. 题型二轨迹问题例2(1)(2023·韶关模拟)设正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面正方形ABCD 内的一动点,若△APC 1的面积S =12,则动点P 的轨迹是()A .圆的一部分B .双曲线的一部分C .抛物线的一部分D .椭圆的一部分答案D解析设d 是△APC 1边AC 1上的高,则1APC S △=12·|AC 1|·d =32d =12,所以d =33,即点P 到直线AC 1的距离为定值33,所以点P 在以直线AC 1为轴,以33为底面半径的圆柱侧面上,直线AC 1与平面ABCD 既不平行也不垂直,所以点P 的轨迹是平面ABCD 上的一个椭圆,其中只有一部分在正方形ABCD 内.(2)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AA 1,AB 的中点,M 点是正方形ABB 1A 1内的动点,若C 1M ∥平面CD 1EF ,则M 点的轨迹长度为________.答案 2解析如图所示,取A 1B 1的中点H ,B 1B 的中点G ,连接GH ,C 1H ,C 1G ,EG ,HF ,可得四边形EGC 1D 1是平行四边形,所以C 1G ∥D 1E ,又C 1G ⊄平面CD 1EF ,D 1E ⊂平面CD 1EF ,所以C 1G ∥平面CD 1EF .同理可得C 1H ∥CF ,C 1H ∥平面CD 1EF .因为C 1H ∩C 1G =C 1,所以平面C 1GH ∥平面CD 1EF .由M 点是正方形ABB 1A 1内的动点可知,若C 1M ∥平面CD 1EF ,则点M 在线段GH 上,所以M 点的轨迹长度GH =12+12= 2.思维升华解决与几何体有关的动点轨迹问题的方法 (1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定,或用代替法进行计算. (3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除. 跟踪训练2(1)(2022·滨州模拟)如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足∠PAB =π6,则点P 的轨迹为()A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分 答案B解析建立如图所示的空间直角坐标系,设OB =OA =1,则B (0,1,0),A (0,0,1),P (x ,y ,0), 则AB →=(0,1,-1), AP →=(x ,y ,-1), 所以cos 〈AB →,AP →〉=y +12·x 2+y 2+1=32,即x 2+(y -2)23=1,所以点P 的轨迹是椭圆.(2)已知动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的表面上运动,且PA =r (0<r <3),记点P 的轨迹长度为f (r ),则f (1)+f (2) =________. 答案3π解析如图,当r =1时,点P 在正方体表面上的轨迹分别是以A 为圆心,1为半径的三个面上的三段弧,分别为BD ,1A B ,1A D ,则f (1)=3×14×2π=3π2,当r =2时,点P 在正方体表面上的轨迹为在平面A 1B 1C 1D 1上以A 1为圆心,1为半径的11B D ,在平面B 1BCC 1上为以B 为圆心,1为半径的1B C , 在平面DCC 1D 1上为以D 为圆心,1为半径的1CD , 则f (2)=3×14×2π=3π2,所以f (1)+f (2)=3π2+3π2=3π. 题型三最值、范围问题例3(1)如图所示,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起,使平面ACD ′⊥平面ACB ,则此时空间四面体ABCD ′体积的最大值为()A.16327 B.539C .1D.34答案A解析取AC 的中点O ,连接D ′O (图略). 设∠ABC =α,α∈(0,π),所以D ′O =AD ′cos α2=2cos α2,S △ABC =12×2×2sin α=2sin α.因为D ′O ⊥平面ABC ,所以V 四面体ABCD ′=13S △ABC ×D ′O =43sin αcos α2=83sin α2cos 2α2=83sin α2·⎝ ⎛⎭⎪⎫1-sin 2α2⎝ ⎛⎭⎪⎫0<α2<π2.设t =sinα2,则0<t <1,V 四面体ABCD ′=83(t -t 3). 设f (t )=83(t -t 3),0<t <1,则f ′(t )=83(1-3t 2),0<t <1.所以当0<t <33时,f ′(t )>0,f (t )单调递增; 当33<t <1时,f ′(t )<0,f (t )单调递减. 所以当t =33时,f (t )取得最大值16327.所以四面体ABCD ′体积的最大值为16327.(2)在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,PA =AC =2,AB =3.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为________. 答案31111解析因为在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,所以AB ⊥平面PAC ,则BD 与平面PAC 所成的角为∠ADB ,tan∠ADB =AB AD =3AD ,当AD 取得最小值时,∠ADB 取得最大值.在等腰Rt△PAC 中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (3,0,0),C (0,2,0),P (0,0,2),D (0,1,1), 则AD →=(0,1,1),PC →=(0,2,-2),BC →=(-3,2,0). 设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·BC →=0,即⎩⎨⎧2y -2z =0,-3x +2y =0,令y =3,得n =(2,3,3).因为cos 〈n ,AD →〉=n ·AD →|n ||AD →|=3+322×2=31111,所以AD 与平面PBC 所成角的正弦值为31111.思维升华在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值,即可求解.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.跟踪训练3(1)在四面体ABCD 中,若AD =DB =AC =CB =1,则四面体ABCD 体积的最大值是() A.2327B.13C.239 D.33答案A解析如图,取AB 的中点E ,连接CE ,DE ,设AB =2x (0<x <1),则CE =DE =1-x 2,当平面ABC ⊥平面ABD 时,四面体ABCD 的体积最大,此时,四面体ABCD 的体积V =13×12×2x ×1-x 2×1-x 2=13x -13x 3.所以V ′=13-x 2,令V ′=0,得x =33.当x ∈⎝ ⎛⎭⎪⎫0,33时,V 单调递增,当x ∈⎝ ⎛⎭⎪⎫33,1时,V 单调递减.故当x =33时,V 有最大值,V max =13×33-13×⎝ ⎛⎭⎪⎫333=2327.(2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为B 1C 1,C 1D 1的中点,P 是底面A 1B 1C 1D 1上一点.若AP ∥平面BEF ,则AP 长度的最小值是________,最大值是________.答案32452解析如图,取A 1D 1的中点N ,A 1B 1的中点M ,连接AM ,AN ,MN ,NE ,B 1D 1,在正方体ABCD -A 1B 1C 1D 1中,E ,N 分别为B 1C 1,A 1D 1的中点, ∴EN ∥A 1B 1∥AB ,EN =A 1B 1=AB , ∴四边形ABEN 为平行四边形, ∴AN ∥BE ,又AN ⊄平面BEF ,BE ⊂平面BEF , ∴AN ∥平面BEF ,∵E ,F 分别为B 1C 1,C 1D 1的中点, 由中位线性质知EF ∥B 1D 1, 同理可知MN ∥B 1D 1, ∴MN ∥EF ,又MN ⊄平面BEF ,EF ⊂平面BEF , ∴MN ∥平面BEF ,又AN ∩MN =N ,AN ,MN ⊂平面AMN , ∴平面AMN ∥平面BEF ,∵P 是底面A 1B 1C 1D 1上一点,且AP ∥平面BEF , ∴P ∈MN ,在等腰△AMN 中,当AP 的长度最大时,P 在M 点或N 点, 即AP max =AM =AN =12+⎝ ⎛⎭⎪⎫122=52,当AP 的长度最小时,P 为MN 的中点,MN =22, ∴AP =AM 2-⎝ ⎛⎭⎪⎫MN 22=⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,即AP min =324.课时精练1.如图,在正方体ABCD -A 1B 1C 1D 1中,点M 是平面A 1B 1C 1D 1内一点,且BM ∥平面ACD 1,则tan∠DMD 1的最大值为()A.22B .1 C .2D. 2 答案D解析因为当M 在直线A 1C 1上时,都满足BM ∥平面ACD 1, 所以tan∠DMD 1=DD 1MD 1,当MD 1最小时,tan∠DMD 1取得最大值,此时tan∠DMD 1=DD 122DD 1=2.2.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱DD 1,BB 1上的动点(异于所在棱的端点).则下列结论正确的是()A .在点F 运动的过程中,直线FC 1可能与AE 平行B .直线AC 1与EF 必然异面C .设直线AE ,AF 分别与平面A 1B 1C 1D 1相交于点P ,Q ,则点C 1可能在直线PQ 上 D .设直线AE ,AF 分别与平面A 1B 1C 1D 1相交于点P ,Q ,则点C 1一定不在直线PQ 上 答案AC解析在长方体ABCD -A 1B 1C 1D 1中,AB =C 1D 1,DD 1=BB 1,B 1C 1=AD ,连接C 1E ,AC 1,EF , 当点E ,F 分别是棱DD 1,BB 1的中点时,由勾股定理得AE =AD 2+DE 2,C 1F =C 1B 21+B 1F 2,故AE =C 1F ,同理可得AF =C 1E ,故四边形AEC 1F 是平行四边形,所以在点F 运动的过程中,直线FC 1可能与AE 平行,AC 1与EF 相交,A 正确,B 错误; 以C 1为坐标原点,C 1D 1,C 1B 1,C 1C 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则当点E ,F 分别是棱DD 1,BB 1中点且几何体ABCD -A 1B 1C 1D 1为正方体时, 设棱长为2,延长AE ,A 1D 1交于点M ,延长AF ,A 1B 1交于点N ,连接MN , 则C 1(0,0,0),M (2,-2,0),N (-2,2,0), 则C 1M —→=(2,-2,0),NC 1—→=(2,-2,0), 则C 1M —→=NC 1—→, 又两向量有公共点C 1, 所以C 1,M ,N 三点共线,故点C 1可能在直线PQ 上,C 正确,D 错误.3.(2023·广州模拟)点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为() A .πB .2πC .4πD .25π 答案C解析根据题意知,该正方体的内切球半径为r =5,如图.取BB 1的中点N ,连接CN ,则CN ⊥BM ,∴CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线,∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为55=1,∴截面圆的半径为2,∴点P 的轨迹的长度为2π×2=4π.4.(多选)如图,在等腰Rt△ABC 中,BC =2,∠C =90°,D ,E 分别是线段AB ,AC 上异于端点的动点,且DE ∥BC ,现将△ADE 沿直线DE 折起至△A ′DE ,使平面A ′DE ⊥平面BCED ,当D 从B 滑动到A 的过程中,下列选项中正确的是()A .∠A ′DB 的大小不会发生变化B .二面角A ′-BD -C 的平面角的大小不会发生变化 C .三棱锥A ′-EBC 的体积先变小再变大D .A ′B 与DE 所成的角先变大后变小 答案AB解析设A ′D =a ,则DB =22-a ,A ′E =2a 2,EC =2-22a ,BC 2+CE 2=BE 2,A ′B 2=A ′E 2+BE2,cos∠A′DB=A′D2+BD2-A′B22·BD·A′D=-12是定值,∴∠A′DB的大小不会发生变化,故A正确;由三垂线法作出二面角A′-BD-C的平面角,可知其大小为定值,故B正确;设A′E=x,则CE=2-x(0<x<2),则V三棱锥A′-BCE=V三棱锥B-A′CE=13×12BC·CE·A′E=13(2-x)x=13(2x-x2)(0<x<2),由二次函数的单调性,可知V先变大后变小,故C错误;A′B与DE所成的角先变小后变大,故D错误.5.在空间直角坐标系Oxyz中,正四面体P-ABC的顶点A,B分别在x轴、y轴上移动.若该正四面体的棱长是2,则|OP|的取值范围是()A.[3-1,3+1] B.[1,3]C.[3-1,2] D.[1,3+1]答案A解析如图所示,若固定正四面体P-ABC的位置,则原点O在以AB为直径的球面上运动.设AB的中点为M,则PM=22-12=3,所以原点O到点P的最小距离等于PM减去球M的半径,最大距离是PM加上球M的半径,所以3-1≤|OP|≤3+1,即|OP|的取值范围是[3-1,3+1].6.已知正四面体D-ABC,点E,F分别为棱CD,AC的中点,点M为线段EF上的动点,设EM=x,则下列说法正确的是()A .直线DA 与直线MB 所成的角随x 的增大而增大 B .直线DA 与直线MB 所成的角随x 的增大而减小C .直线DM 与平面ABD 所成的角随x 的增大而增大 D .直线DM 与平面ABD 所成的角随x 的增大而减小 答案D解析因为E ,F 分别为DC ,AC 的中点,所以EF ∥DA ,所以直线DA 与直线MB 所成的角等于直线EF 与BM 所成的角.在等腰△BEF 中,直线EF 与BM 所成的角随着x 的增大先增大,再减小,当M 运动到EF 中点时取到最大值,故A ,B 选项说法错误;设M 点到平面ABD 的距离为d ,直线DM 与平面ABD 所成的角为α,则sin α=dMD.因为EF ∥AD ,EF ⊄平面ABD ,AD ⊂平面ABD ,所以EF ∥平面ABD ,所以随着x 的增大,d 保持不变,MD 在增大,所以sin α的值在减小,即α随着x 的增大而减小,故C 选项说法错误,D 选项说法正确.7.(多选)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面内一动点,则下列命题正确的是()A .若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B .若MN =4,则MN 的中点P 的轨迹所围成图形的面积为2πC .若点N 到直线BB 1与到直线DC 的距离相等,则点N 的轨迹为抛物线D .若D 1N 与AB 所成的角为π3,则点N 的轨迹为椭圆 答案AC解析如图所示,对于A ,根据正方体的性质可知,MD ⊥平面ABCD ,所以∠MND 为MN 与平面ABCD 所成的角,若∠MND =π4,则DN =DM =12DD 1=12×4=2,所以点N 的轨迹为以D 为圆心,2为半径的圆,故A 正确;对于B ,在Rt△MDN 中,DN =MN 2-MD 2=42-22=23,取MD 的中点E ,连接PE ,因为P 为MN 的中点,所以PE ∥DN ,且PE =12DN =3,因为DN ⊥ED ,所以PE ⊥ED ,即点P在过点E 且与DD 1垂直的平面内,又PE =3,所以点P 的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确;对于C ,连接NB ,因为BB 1⊥平面ABCD ,所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,因为点N 到点B 的距离等于点N 到定直线CD 的距离,又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0),则AB →=(0,4,0),D 1N —→=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3,所以|cos 〈AB →,D 1N —→〉|=cos π3, 所以⎪⎪⎪⎪⎪⎪4y 4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 错误. 8.如图,在四棱锥P -ABCD 中,顶点P 在底面的投影O 恰为正方形ABCD 的中心,且AB =2,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN +MN 取最小值时,动点M 恰为PD 的中点,则该四棱锥外接球的表面积为()A.9π2B.16π3C.25π4D.64π9 答案B解析如图,在PC 上取点M ′,使得PM =PM ′,连接NM ′,则MN =M ′N ,AN +MN =AN +M ′N ,则当A ,N ,M ′三点共线时,AN +M ′N 最小,为AM ′,当AM ′⊥PC 时,AM ′取得最小值,即AN +NM ′的最小值.因为此时M 恰为PD 的中点,所以M ′为PC 的中点,所以PA =AC =2,因此PO =PA 2-AO 2= 3.易知外接球的球心在四棱锥内部,设外接球的半径为r ,则r 2=(3-r )2+1,解得r =233,因此外接球的表面积S =4πr 2=16π3. 9.在三棱锥A -BCD 中,AB ,AC ,AD 两两垂直且长度均为6,定长为l (l <4)的线段MN 的一个端点M 在棱AB 上运动,另一个端点N 在△ACD 内运动(含边界),若线段MN 的中点P 的轨迹的面积为π2,则l 的值为________.答案2解析由题意可知,∠MAN =90°,在Rt△AMN 中,AP =12l ,线段MN 的中点P 的轨迹是以A 为球心,12l 为半径的球面的18,所以线段MN 的中点P 的轨迹的面积为18×4π×⎝ ⎛⎭⎪⎫12l 2=π2,则l =2.10.如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥底面ABC ,AC ⊥CB ,点D 是AB 上的动点.下列结论正确的是________.(填序号)①AC ⊥BC 1;②存在点D ,使得AC 1∥平面CDB 1;③不存在点D ,使得平面CDB 1⊥平面AA 1B 1B ;21 / 21④三棱锥A 1-CDB 1的体积是定值. 答案①②④解析如图所示,由CC 1⊥底面ABC ,知AC ⊥CC 1,又AC ⊥CB ,CC 1∩CB =C ,CC 1⊂平面BCC 1B 1,CB ⊂平面BCC 1B 1,所以AC ⊥平面BCC 1B 1,又BC 1⊂平面BCC 1B 1,故AC ⊥BC 1,故①正确;设B 1C 与BC 1交于点M ,取AB 的中点D ,连接MD ,则MD ∥AC 1,MD ⊂平面CDB 1,AC 1⊄平面CDB 1所以AC 1∥平面CDB 1,故②正确;当CD ⊥AB 时,因为AA 1∥CC 1,CC 1⊥底面ABC ,CD ⊂平面ABC ,所以CD ⊥AA 1,AA 1∩AB =A ,AA 1,AB ⊂平面AA 1B 1B ,所以CD ⊥平面AA 1B 1B ,因为CD ⊂平面CDB 1,故平面CDB 1⊥平面AA 1B 1B ,故③不正确;设点C 到平面A 1B 1D 的距离为h ,则111111111136A CDBC A BD A B D A B BA V V S h S h --==⨯⨯=⋅△四边形,因为四边形A 1B 1BA 面积为定值,h 为定值,所以三棱锥A 1-CDB 1的体积是定值,故④正确.。
2023年法律职业资格之法律职业客观题二强化训练试卷A卷附答案
2023年法律职业资格之法律职业客观题二强化训练试卷A卷附答案单选题(共40题)1、甲公司委托乙公司购买1万件羽绒服,甲公司与丙公司签订了货物买卖合同,乙公司购买羽绒服后,甲公司即将羽绒服销售给丙公司,甲公司此次销售成功可以获利50万元。
但乙公司未按照合同约定购买羽绒服,而是购买了1万件棉服,甲公司不能按期向丙公司交货,必须向丙公司支付5万元的违约金,但是乙公司购买的棉服是当季紧俏服装,甲公司将棉服销售后,获利100万元。
以下说法正确的是:A.乙公司应赔偿甲公司向丙公司支付的违约金,不必赔偿可得利益损失B.乙公司应赔偿甲公司的可得利益损失50万元和应支付的违约金5万元C.乙公司不必赔偿甲公司的损失D.乙公司赔偿甲公司的全部损失后,有权要求甲公司向自己支付购买棉服的报酬【答案】 C2、甲乙两公司于2009年10月签订了一份合同,甲公司从乙公司处购买一套设备。
甲公司于2009年12月自行派车取回了全套设备,当即安装调试,虽然发现存在质量问题,但是于2010年6月按期交付了货款。
2012年8月甲公司根据仲裁协议申请仲裁,要求退货。
下列说法正确的是:A.申请未超过诉讼时效,仲裁委员会应依法受理并裁决B.仲裁委员会应依法受理和裁决,仲裁活动中不考虑诉讼时效C.因申请超过诉讼时效,仲裁委员会可以不予受理D.仲裁委员会予以受理,经审理因申请超过诉讼时效裁决驳回申请人的仲裁请求【答案】 D3、甲经乙许可,将乙的小说改编成电影剧本。
丙获得该剧本手稿后,未征得甲和乙的同意,将该电影剧本改编成电视剧剧本并予以发表。
现问,应如何看待丙的行为?()A.侵犯了甲的著作权,未侵犯乙的著作权B.侵犯了乙的著作权,未侵犯甲的著作权C.同时侵犯了甲的著作权和乙的著作权D.不构成侵权【答案】 C4、某“二人转”明星请某摄影爱好者为其拍摄个人写真,摄影爱好者未经该明星同意将其照片卖给崇拜该明星的广告商,广告商未经该明星、摄影爱好者同意将该明星照片刊印在广告单上。
押题宝典法律职业资格之法律职业客观题一强化训练试卷B卷附答案
押题宝典法律职业资格之法律职业客观题一强化训练试卷B卷附答案单选题(共45题)1、王某育有二子,因王某行动不便,王某长子王大拿着王某的遗嘱去公证处办理王某的遗产公证:仅由其长子王大一人所继承,公证员李某为其公证。
此后,王某次子王二认为公证书与事实完全不符,向公证处提出复查申请。
根据公证救济制度,以下选项正确的是()。
A.对于王二的申请,公证处指派原承办公证员李某进行复查B.公证书与事实完全不符,则公证处可以撤销公证书C.公证员李某因过错造成王二损失,则王二可以找公证员李某进行赔偿D.公证员李某为不真实的事项出具公证书,司法行政部门可以吊销其执业证书【答案】 D2、关于因果关系,下列哪一选项是错误的?A.甲故意伤害乙并致其重伤,乙被送到医院救治。
当晚,医院发生火灾,乙被烧死。
甲的伤害行为与乙的死亡之间不存在因果关系B.甲以杀人故意对乙实施暴力,造成乙重伤休克。
甲以为乙已经死亡,为隐匿罪迹,将乙扔入湖中,导致乙溺水而亡。
甲的杀人行为与乙的死亡之间存在因果关系C.甲因琐事与乙发生争执,向乙的胸部猛推一把,导致乙心脏病发作,救治无效而死亡。
甲的行为与乙的死亡之间存在因果关系,是否承担刑事责任则应视甲主观上有无罪过而定D.甲与乙都对丙有仇,甲见乙向丙的食物中投放了5毫克毒物,且知道5毫克毒物不能致丙死亡,遂在乙不知情的情况下又添加了5毫克毒物,丙吃下食物后死亡。
甲投放的5毫克毒物本身不足以致丙死亡,故甲的投毒行为与丙的死亡之间不存在因果关系【答案】 D3、下列关于食品安全标准的说法,哪项是不正确的?()A.食品安全标准是强制执行的标准。
除食品安全标准外,不得制定其他的食品强制性标准B.食品安全国家标准由国务院卫生行政部门负责制定、公布,国务院标准化行政部门提供国家标准编号C.食品安全国家标准应当经食品安全国家标准审评委员会审查通过D.省、自治区、直辖市人民政府卫生行政部门组织制定食品安全地方标准,应当报国务院卫生行政部门批准【答案】 D4、1877年1月27日,德国颁布了《法院组织法》,其中规定的全国的最高司法审级是、()A.帝国法院B.联邦最高法院C.高等法院D.帝国枢密法院【答案】 A5、根据我国《宪法》的规定,下列有关公民基本权利的宪法保护的表述,哪一个是正确的?()A.一切公民都有选举权和被选举权B.宪法规定了对华侨、归侨权益的保护,但没有规定对侨眷权益的保护C.宪法对建立劳动者休息和休养的设施未加以规定D.公民合法财产的所有权和私有财产的继承权规定在宪法的“总纲”部分【答案】 D6、吴先生与尤女士自由恋爱后结婚,育有一子吴勇,后二人因感情不和协议离婚,考虑到吴勇年幼,双方在协议中约定,吴勇由尤女士抚养,但倘若尤女士再婚,不得生育。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强化训练数学客观题(5)
1. 函数32()31f x x x =-+的单调减区间为_________________;
2. 已知=⋂∈==∈==B A R x x y y B R x x y y A 则},,|{},,sin |{2 _ .
3. 若(a-2i )i=b-i,其中i R,b a,∈是虚数单位,则a+b=_______________;
4. 四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如下图:
则四棱锥P ABCD -的表面积为 .
5. 在等差数列{a n }中,a 1+ 3a 8 + a 15= 60,则2a 910a -值为 .
6.当0a >且1a ≠时,函数()log (1)1a f x x =-+的图像恒过点A ,若点A 在直线0mx y n -+=上,则42m
n
+的最小值为________. 7.若命题“01)1(,2
<+-+∈∃x a x R x 使得”是真命题,则实数a
的取值范围是_ .
8.已知βα,⎪⎭⎫ ⎝⎛∈ππ,43,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ则cos ⎪⎭⎫ ⎝⎛
+4πα=
9.已知函数f(x)是偶函数,并且对于定义域内任意的x, 满足f(x+2)= -
)
(1
x f ,当3<x<4时,f(x)=x, 则f(2008.5)= .
10.在公差为正数的等差数列{a n }中,a 10+a 11<0且a 10a 11<0,S n 是其前n 项和,则使S n 取最小值的n
是____________; 11.函数f(x)= sinx+2|sinx|, x []π2,0∈的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围是 .
12. 已知,),,1(),cos ,sin (b a t b t t a ⊥-=-=则)1(2
t +(1+cos2t )2-的值为 .
13. 已知(,)P x y 满足约束条件30
1010x y x y x +-≤⎧⎪
--≤⎨⎪-≥⎩
,O 为坐标原点,(3,4)A ,则c o s O
P A O P ⋅∠ 的最大值是 .
14.已知()f x 是定义在R 上的不恒为零的函数,且对任意,a b R ∈满足下列关系式:
()()(),f a b af b bf a ⋅=+(2)2,f =*(2)(),2n n n
f a n N =∈*
(2)()n n f b n N n
=∈.考察下列结论:①(0)(1)f f =; ②()f x 为偶函数;③数列{}n a 为等差数列;④数列{}n b 为等比
数列.其中正确的结论有____ ____.(请将所有正确结论的序号都填上)
俯视图
左视图
主
视图
(1)(0,2) , (2)[0,1], (3)1, (4)(2+2)a 2 (5)12, (6)22, (7)(3,+∞)⋃(-∞,-1), (8)65
56
-
, (9)3.5, (10)10, (11)(1,3), (12)0, (13) 5
11
, (14)①③④。