单片机串口通信的发送与接收(可编辑修改word版)

合集下载

单片机串口通信实验报告

单片机串口通信实验报告

单片机串口通信实验报告Abstract本实验旨在通过单片机串口通信的方式,实现两个或多个单片机之间的数据传输与交互。

通过该实验,旨在加深对串口通信的理解,以及掌握单片机串口通信的配置与应用。

1. 实验背景在现代电子产品中,单片机广泛应用于各个领域。

而串口通信作为一种常见的单片机通信方式,被广泛使用。

通过串口通信,单片机可以与其他设备或单片机进行数据传输和通信。

2. 实验目的本实验的目的如下:- 了解串口通信的基本原理和工作方式;- 掌握单片机串口通信的配置方法;- 实现两个或多个单片机之间的数据传输与交互。

3. 实验原理3.1 串口通信的基本原理串口通信通过发送和接收两个引脚实现数据的传输。

典型的串口通信包含一个发送引脚(Tx)和一个接收引脚(Rx)。

发送端将数据通过发送引脚逐位发送,接收端通过接收引脚逐位接收。

3.2 单片机串口通信的配置在单片机中进行串口通信配置,需要设置波特率、数据位、停止位和校验位等参数。

波特率用于控制数据的传输速率,数据位决定发送和接收的数据位数,停止位用于标识数据的停止位,校验位用于检测数据传输的错误。

4. 实验步骤4.1 硬件准备(描述实验所需硬件的准备,例如单片机、串口模块等)4.2 软件配置(描述实验所需软件的配置,例如开发环境、编译器等)4.3 单片机串口通信程序编写(描述如何编写单片机串口通信程序,包括发送和接收数据的代码)4.4 程序下载与调试(描述如何下载程序到单片机,并进行调试)5. 实验结果与分析(描述实验的结果,并进行相应的分析和解释)6. 实验总结通过本实验,我深入了解了串口通信的基本原理和工作方式。

通过编写单片机串口通信程序,实现了两个单片机之间的数据传输与交互。

在实验过程中,我掌握了单片机串口通信的配置方法,并解决了一些可能出现的问题。

通过实验,我加深了对单片机串口通信的理解,并提升了自己的实践能力。

参考文献:(列出参考文献,不需要链接)致谢:(感谢相关人员或机构对实验的支持与帮助)附录:(附上相关的代码、电路图等附加信息)以上为单片机串口通信实验报告,通过该实验,我掌握了串口通信的基本原理和工作方式,以及单片机串口通信的配置与应用方法。

单片机串口通信原理

单片机串口通信原理

单片机串口通信原理
单片机串口通信原理是指通过串口进行数据的发送和接收。

串口通信是一种异步通信方式,它使用两根信号线(TXD和RXD)进行数据的传输。

在发送数据时,单片机将待发送的数据通过串口发送数据线(TXD)发送出去。

发送的数据会经过一个串口发送缓冲区,然后按照一定的通信协议进行处理,并通过串口传输线将数据发送给外部设备。

在接收数据时,外部设备将待发送的数据通过串口传输线发送给单片机。

单片机接收数据线(RXD)会将接收到的数据传
输到一个串口接收缓冲区中。

然后,单片机会根据通信协议进行数据的解析和处理,最后将数据保存在内部的寄存器中供程序使用。

串口通信协议通常包括数据位、停止位、校验位等信息。

数据位指的是每个数据字节占据的位数,常见的有8位和9位两种。

停止位用于表示数据的结束,常用的有1位和2位两种。

校验位用于检测数据在传输过程中是否发生错误,常见的校验方式有奇偶校验和无校验。

总的来说,单片机串口通信原理是通过串口发送数据线和接收数据线进行数据的传输和接收,并通过一定的通信协议进行数据的解析和处理。

这种通信方式可以实现单片机与外部设备的数据交换,广泛应用于各种嵌入式系统和物联网设备中。

单片机串口收发时序

单片机串口收发时序

单片机串口收发时序引言单片机串口通信是一种常用的通信方式。

在这种通信方式中,通过发送和接收串口数据,可以实现单片机与外部设备之间的数据传输。

而正确的串口收发时序是保证通信正常进行的关键。

串口通信原理串口通信是通过发送和接收电平变化来传输数据的。

一般使用的是异步串口通信方式,其中包括发送端和接收端,发送端将数据进行序列化,并通过串口线发送给接收端,接收端将接收到的数据进行反序列化,得到原始数据。

串口收发时序串口收发时序是指在通信过程中各个时钟信号的变化情况。

下面详细介绍串口收发时序的每个步骤。

时钟信号串口通信中最重要的时钟信号是波特率,即每秒钟发送的比特数。

波特率决定了串口数据传输的速度。

一般常用的波特率有9600、115200等。

发送端时序发送端的时序可以分为以下几个步骤: 1. 准备数据:发送端首先要准备要发送的数据。

2. 数据序列化:发送端将准备好的数据进行序列化,转换成电平变化的串口信号。

3. 起始位:发送端在数据序列前加上一个起始位,用来标识数据的开始。

4. 数据位:发送端按照波特率将数据位一个一个发送出去。

5. 奇偶校验位:发送端可以选择是否加入奇偶校验位,用来检测数据是否传输出错。

6. 停止位:发送端在数据序列后加上一个或多个停止位,用来标识数据的结束。

7. 等待确认:发送端在发送完一个字节的数据后,等待接收端的确认信号,确保数据已经正确接收。

接收端时序接收端的时序可以分为以下几个步骤: 1. 等待起始位:接收端在接收数据前,等待起始位的到来,用来标识数据的开始。

2. 数据位:接收端按照波特率开始接收数据位。

3. 奇偶校验位:如果发送端加入了奇偶校验位,接收端会检测数据是否传输出错。

4. 停止位:接收端在接收完所有数据位后,等待停止位的到来,用来标识数据的结束。

5. 确认信号:接收端在接收完一个字节的数据后,发送确认信号给发送端,表示数据已经正确接收。

时序示意图下图是串口收发时序的示意图:发送端:起始位数据位奇偶校验位停止位低电平高低变化高低变化高电平------ ------- -------- ------接收端:起始位数据位奇偶校验位停止位确认信号低电平高低变化高低变化高电平高电平串口收发时序的注意事项在进行串口通信时,需要注意以下几点: 1. 波特率要设置一致:发送端和接收端的波特率要设置成相同的值,才能保证数据传输的准确性。

串口发送和接收数据的一般方法

串口发送和接收数据的一般方法

串口发送和接收数据的一般方法串口通信是一种用于在计算机或嵌入式系统之间传输数据的常用通信方式。

它使用串行连接,并遵循一定的通信协议。

在串口通信中,通常涉及到发送和接收数据的步骤。

下面是串口发送和接收数据的一般方法的详细解释。

1.打开串口:在发送和接收数据之前,需要首先打开串口连接。

打开串口可以通过相应的串口库函数实现。

常用的串口库函数有SerialPort in C/C++和pyserial in Python。

这些库函数提供了用于打开和控制串口的功能。

2.配置串口参数:打开串口后,需要配置一些串口参数,例如波特率、数据位、停止位和校验位等。

这些参数的配置通常由串口库函数提供的设置函数完成。

根据实际需求,可以选择不同的参数配置。

3.发送数据:发送数据是通过调用串口库函数提供的发送函数实现的。

发送函数通常需要传入一个数据缓冲区和要发送的数据长度作为参数。

在发送数据之前,需要将要发送的数据存储到数据缓冲区中。

发送函数会将数据从缓冲区发送到串口。

4.接收数据:接收数据是通过调用串口库函数提供的接收函数实现的。

接收函数通常需要传入一个数据缓冲区和要接收的数据长度作为参数。

在接收数据之前,需要定义一个足够大的缓冲区来存储接收到的数据。

接收函数会将数据从串口读取并存储到缓冲区中。

5.数据处理:接收到的数据可以进行进一步的处理。

例如,可以将数据解析为具体的信息,或者根据接收到的数据执行特定的操作。

数据处理的方法取决于应用需求。

6.关闭串口:在数据的发送和接收任务完成之后,应该关闭串口连接。

关闭串口可以通过调用串口库函数提供的关闭函数实现。

关闭串口将释放相关的资源。

需要注意的是,在进行串口通信时,要确保发送和接收端的串口参数配置一致。

否则,可能导致通信失败或数据解析错误。

上述是关于串口发送和接收数据的一般方法的基本介绍。

具体的实现方法和细节会因为不同的编程语言和串口库函数而有所差异。

因此,在实际应用中可以根据具体情况选择适合的编程语言和库函数,以实现串口通信。

单片机串口通信协议

单片机串口通信协议

单片机串口通信协议1. 引言单片机串口通信是一种常见的数据通信方式,它允许单片机与其他外部设备进行通信。

串口通信协议定义了数据传输的格式、波特率等参数,确保通信的稳定和可靠性。

本文将介绍单片机串口通信协议的基本原理和常用协议。

2. 串口通信基础串口通信是通过串行数据传输来实现的。

其中,UART(通用异步收发传输器)是实现串口通信的重要组件。

UART将并行数据转换为串行数据,并通过串口进行传输。

在单片机中,常用的串口通信引脚是TX(发送)和RX(接收)。

3. 串口通信协议串口通信协议定义了数据传输时各个数据包的格式和规则。

常见的串口通信协议有以下几种:3.1. RS-232RS-232是最早出现的串口通信协议之一。

它定义了数据传输的电气特性和信号级别。

RS-232使用9个引脚进行数据传输,包括发送和接收数据线、数据控制线等。

该协议具有较长的最大传输距离和可靠性,但通信速率相对较慢。

3.2. RS-485RS-485是一种多点通信的串口协议。

相比于RS-232,RS-485支持多个设备之间的通信。

它使用不同的信号级别和电气特性,可实现更远的传输距离和更高的通信速率。

RS-485通信中设备分为主设备和从设备,主设备负责控制通信流程。

3.3. SPISPI(Serial Peripheral Interface)是一种同步串口通信协议,常用于单片机与外部设备之间的通信。

SPI使用四条引脚进行通信,包括时钟线、数据线、主设备输出从设备输入线和主设备输入从设备输出线。

SPI通信速率较快,适用于高速数据传输。

3.4. I2CI2C(Inter-Integrated Circuit)是一种多主从通信的串口协议。

I2C使用两条引脚进行通信,包括时钟线和数据线。

在I2C总线上,可以连接多个设备,实现多个设备之间的通信和数据交换。

I2C通信速率较慢,但具有较简单的硬件设计和较低的功耗。

4. 协议选择和配置选择合适的串口通信协议需要考虑通信距离、通信速率、设备数量等因素。

单片机串口通讯协议

单片机串口通讯协议

单片机串口通讯协议在现代电子技术领域中,单片机的应用越来越广泛。

而串口通讯作为单片机与外部设备进行数据交换的重要方式之一,其通讯协议的理解和掌握对于单片机系统的开发至关重要。

什么是串口通讯呢?简单来说,串口通讯就是指数据一位一位地顺序传送。

这种方式就像是一个人在一条窄窄的通道上,依次把东西传递给另一个人。

在单片机中,串口通讯通常使用两根线来实现,一根用于发送数据(TXD),另一根用于接收数据(RXD)。

单片机串口通讯协议主要包含了以下几个关键的要素。

首先是波特率。

波特率就好比是数据传递的速度,它决定了每秒钟传输的比特数。

常见的波特率有 9600、115200 等等。

打个比方,如果把数据比作货物,波特率就是运输货物的车辆速度。

选择合适的波特率非常重要,如果波特率设置不正确,接收方就无法正确地解析发送方传来的数据,就像货物运输速度不匹配,导致接收方无法及时收到或者收到错误的货物。

其次是数据位。

数据位指的是每次传输数据的实际有效位数。

通常有 5 位、6 位、7 位和 8 位等选择。

这就好比是每次运输货物的数量,选择合适的数据位取决于要传输的数据类型和信息量。

然后是停止位。

停止位用于表示一次数据传输的结束。

常见的停止位有 1 位、15 位和 2 位。

停止位就像是运输货物后的一个结束标志,告诉接收方这一批货物已经传输完毕。

还有校验位。

校验位用于检测传输过程中是否出现错误。

常见的校验方式有奇校验、偶校验和无校验。

校验位就像是给货物贴上的一个标签,用于检查货物在运输过程中是否有损坏或者丢失。

在实际的单片机串口通讯中,发送方和接收方需要按照事先约定好的协议设置来进行数据的发送和接收。

比如,发送方设置波特率为9600,数据位为 8 位,停止位为 1 位,无校验位,那么接收方也必须设置相同的参数,才能正确地接收到数据。

为了更好地理解串口通讯协议,我们来看一个简单的例子。

假设我们要通过串口从单片机向电脑发送一个字节的数据 0x55。

单片机串口原理

单片机串口原理

单片机串口原理
单片机串口原理是指单片机通过串行通信来实现与外部设备的数据交换。

串口通信是一种点对点的通信方式,其中包含两根线路:一根用于发送数据(称为TX线),另一根用于接收数
据(称为RX线)。

单片机串口通信是通过一组预定的数据传输格式进行的。

在串口通信中,数据以比特(bit)的形式传输,通常使用8个比
特表示一个完整的数据字节。

传输的数据以数据包(packet)
的形式组织,其中包括起始位、数据位、校验位和停止位。

数据的发送和接收以特定的波特率(baud rate)进行。

波特率
是指每秒钟传输的比特数,常见的波特率有9600、115200等。

在单片机中,串口通信的实现通常涉及到两个主要的寄存器:发送数据寄存器(TXD)和接收数据寄存器(RXD)。

发送
数据寄存器用于存储将要发送的数据字节,而接收数据寄存器用于存储接收到的数据字节。

单片机通过配置相应的寄存器来设置串口通信的参数,比如波特率、数据位数、校验方式等。

然后,单片机通过将数据写入发送数据寄存器,将数据发送出去;同时,单片机从接收数据寄存器中读取接收到的数据。

为了确保通信的准确性,通常会在数据包中添加校验位。

校验位用于检测数据传输中是否出现错误,比如数据丢失或损坏。

常见的校验方式有奇偶校验和循环冗余校验(CRC)等。

总的来说,单片机串口通信通过配置相应的寄存器和使用特定的数据传输格式来实现与外部设备的数据交换。

通过串口通信,单片机可以方便地与其他设备进行数据的传输和通信。

单片机中的串口通信技术

单片机中的串口通信技术

单片机中的串口通信技术串口通信技术是指通过串行接口将数据传输和接收的技术。

在单片机领域,串口通信是一种常见的数据交互方式。

本文将介绍单片机中的串口通信技术,并探讨其在实际应用中的重要性。

一、串口通信的原理串口通信是指通过串行接口传输数据的方式,其中包括一个数据引脚和一个时钟引脚。

数据引脚用于传输二进制数据,在每个时钟周期内,数据引脚上的数据会被读取或写入。

时钟引脚则用于控制数据的传输速度。

单片机中的串口通信主要包含两个部分:发送和接收。

发送时,单片机将数据转换为二进制形式,并通过串口发送出去。

接收时,单片机会从串口接收到二进制数据,并将其转换为可识别的格式。

通过发送和接收两个过程,单片机可以与外部设备进行数据交互。

二、串口通信的类型在单片机中,串口通信主要包含两种类型:同步串口和异步串口。

同步串口是指发送和接收两个设备之间使用相同的时钟信号,以保持数据同步。

同步串口通信速度快,但需要额外的时钟信号输入。

异步串口则是通过发送数据前提供起始位和终止位来区分不同数据帧的方式进行通信。

异步串口通信的优势是不需要额外的时钟信号,但速度相对较慢。

在实际应用中,通常使用异步串口通信。

异步串口通信相对简单易用,适合多种应用场景。

三、单片机串口通信的实现单片机中实现串口通信通常需要以下几个方面的内容:1. 串口通信引脚配置:单片机需要连接到一个串口芯片或者其他外部设备,因此需要配置相应的引脚作为串口通信的数据引脚和时钟引脚。

2. 波特率设置:波特率是指单位时间内传输的数据位数。

在进行串口通信时,发送端和接收端的波特率需要相同。

单片机中通常通过寄存器设置波特率,以确保数据传输的稳定性。

3. 数据发送和接收:在单片机中,通过将数据写入发送缓冲器并启动发送操作来发送数据。

接收数据时,单片机会接收到串口中的数据,并将其保存在接收缓冲器中。

4. 中断机制:在进行串口通信时,单片机通常会使用中断机制来处理数据接收和发送。

中断机制可以减轻单片机的负担,提高系统效率。

串口通信原理及操作流程

串口通信原理及操作流程

串口通信原理及操作流程串口通信是一种通过串行连接来传输数据的通信方式。

相对于并行通信而言,串口通信只需要一条数据线来传输数据,因此更节省空间和成本。

串口通信常用于计算机与外设之间的数据传输,如打印机、调制解调器、传感器等。

串口通信的原理主要是通过发送和接收数据的方式来实现通信。

在串口通信中,发送方将要传输的数据按照一定的协议进行封装,然后逐位地通过数据线发送给接收方。

接收方在接收到数据后,根据协议进行解封,得到传输的数据。

串口通信的操作流程如下:1.配置串口参数:在进行串口通信之前,需要先对串口进行初始化和配置。

配置包括波特率、数据位、停止位、奇偶校验等。

波特率表示每秒钟传输的位数,不同设备之间的串口通信需要保持一致。

2.打开串口:打开串口可以通过编程语言的串口操作函数来实现。

打开串口时,应该确保该串口没有被其他程序占用。

3.发送数据:发送数据时,需要将待发送的数据封装成符合协议要求的数据包。

一般情况下,数据包开头会有起始符和目标地址、源地址等标识信息,以便接收方识别数据包。

4.接收数据:接收数据时,需要通过串口接收缓冲区来获取接收到的数据。

一般情况下,接收方会设置一个数据接收完成的标志位,用于通知上层应用程序接收到了数据。

5.解析数据:接收到的数据包需要进行解析,以获取有效的数据。

解析的方式根据协议的不同而不同,可以是根据提前约定的规则进行解析,或者是根据协议中的标志位进行解析。

6.处理数据:经过解析后得到的数据可以进行相应的处理。

处理的方式根据具体的应用场景来确定,例如将数据显示在界面上、存储到文件中等。

7.关闭串口:通信结束后,需要关闭串口以释放相关资源,并防止其他应用程序对串口的访问。

需要注意的是,串口通信的可靠性和稳定性对于一些实时性要求较高的应用来说是非常重要的。

在进行串口通信时,应该合理选择合适的串口参数,确保数据的正确传输和解析。

此外,在编程时应该进行异常处理,防止因异常情况导致的数据丢失或通信中断。

51单片机串口通信连续发送接收字节

51单片机串口通信连续发送接收字节

51单片机串口通信连续发送接收字节51单片机串口通信连续发送接收字节当使用单片机串口通信,连续发送字节时,如何处理呢?使用串口中断接收发送字节,中断内的程序尽可能简单,因为考虑到占用时间。

本文以连续发送4个字节为例,给出例程如下所示:本例程使用的单片机型号为:IAP15W4K58S//工作频率为11.0592MHz#include "reg51.h"#include "intrins.h"typedef unsigned char BYTE;typedef unsigned int WORD;#define FOSC 11059200L //系统频率//#define BAUD 115200 //#define BAUD 9600 //定义串口波特率#define Num_byte 4 //接收数据4个字节BYTE Data_temp[Num_byte]={0,0,0,0};sfr P0M1 = 0x93;sfr P0M0 = 0x94;sfr P1M1 = 0x91;sfr P1M0 = 0x92;sfr P2M1 = 0x95;sfr P2M0 = 0x96;sfr P3M1 = 0xb1;sfr P3M0 = 0xb2;sfr P4M1 = 0xb3;sfr P4M0 = 0xb4;sfr P5M1 = 0xC9;sfr P5M0 = 0xCA;sfr P6M1 = 0xCB;sfr P6M0 = 0xCC;sfr P7M0 = 0xE2;sfr AUXR = 0x8e; //辅助寄存器sfr T2H = 0xd6; //定时器2高8位sfr T2L = 0xd7; //定时器2低8位sfr P_SW1 = 0xA2; //外设功能切换寄存器1sbit LED1=P1^1;sbit LED2=P1^2;bit busy=0; //定义是否接收完4个字节BYTE num=0; //记录4个字节的数据void SendData(BYTE dat);void SendString(char *s);BYTE read_Byte();void delay();void main(){P0M0 = 0x00;P0M1 = 0x00;P1M0 = 0x00;P1M1 = 0x00;P2M0 = 0x00;P2M1 = 0x00;P3M0 = 0x00;P3M1 = 0x00;P4M0 = 0x00;P4M1 = 0x00;P5M0 = 0x00;P5M1 = 0x00;P6M0 = 0x00;P7M0 = 0x00;P7M1 = 0x00;P_SW1 &= 0x3F; //(P3.0/RxD, P3.1/TxD)SCON = 0x50; //8位可变波特率,允许接收T2L = (65536 - (FOSC/4/BAUD)); //设置波特率重装值T2H = (65536 - (FOSC/4/BAUD))>>8;AUXR = 0x15; //T2为1T模式, 并启动定时器2,选择定时器2为串口1的波特率发生器ES = 1; //使能串口1中断EA = 1;//SendString("STC15F2K60S2\r\nUart Test !\r\n");while(1){if(busy){ES=0;for(num=0;num<num_byte;num++)< p="">{SBUF= Data_temp[num]+0x05;while(!TI);TI=0;}num=0;ES=1;busy=0;}//SendData(3);//delay();//delay();;}/*----------------------------UART 中断服务程序-----------------------------*/void Uart() interrupt 4 using 1{ES=0;RI = 0; //清除RI位Data_temp[num++]= SBUF;if(num==Num_byte)busy=1;ES=1;}/*----------------------------发送串口数据----------------------------*/void SendData(BYTE dat){while (busy); //等待前面的数据发送完成SBUF = dat; //写数据到SBUF寄存器busy = 1;}/*----------------------------发送字符串----------------------------*/void SendString(char *s){while (*s) //检测字符串结束标志{SendData(*s); //发送当前字符s++;}//接收1个字节BYTE read_Byte(){ BYTE character; character = SBUF; return character;}void delay(){ BYTE i,j;for(i=220;i--;i>0)for(j=220;j--;j>0); }</num_byte;num++)<>。

单片机的双机串口通信原理

单片机的双机串口通信原理

单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。

串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。

通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。

在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。

主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。

通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。

双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。

主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。

2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。

主机发送完所有数据位后,等待从机的响应。

3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。

4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。

从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。

5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。

从机发送完所有数据位后,等待主机的进一步操作。

6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。

7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。

单片机间的串口通信连接方法

单片机间的串口通信连接方法

单片机间的串口通信连接方法单片机间的串口通信是一种常见的通信方式,它可以实现不同单片机之间的数据传输和控制。

下面是关于单片机间串口通信连接的十条方法及详细描述:1. 直连方式:通过两个单片机的串口引脚(TX和RX)直接相连,形成一个点对点连接。

其中一个单片机的TX引脚连接到另一个单片机的RX引脚,而另一个单片机的TX引脚连接到第一个单片机的RX引脚。

2. 串口转接板方式:使用串口转接板(如MAX232)将单片机的逻辑电平转换为标准的RS-232电平。

将串口转接板的TX、RX引脚与两个单片机的对应引脚相连。

3. TTL互连方式:如果两个单片机的串口电平都是TTL电平(0V和5V),可以直接将它们的TX和RX引脚相连。

4. 使用RS-485通信:将两个单片机的TX和RX引脚连接到RS-485芯片的A和B端,通过RS-485总线进行数据传输。

5. 使用RS-422通信:类似于RS-485,将两个单片机的TX和RX引脚连接到RS-422芯片的A和B端。

6. 使用I2C通信:将两个单片机的SDA和SCL引脚连接到I2C总线上,通过I2C协议进行通信。

7. 使用SPI通信:将两个单片机的MISO(Master In Slave Out)、MOSI(Master Out Slave In)、SCK(时钟)和SS(片选)引脚进行连接,通过SPI协议进行通信。

8. 使用CAN通信:将两个单片机的CAN_H(高电平)和CAN_L(低电平)引脚连接到CAN总线上,通过CAN协议进行通信。

9. 使用USB转串口方式:通过USB转串口模块将单片机的串口信号转换为USB信号,实现单片机间的USB通信。

10. 无线串口方式:使用无线模块(如蓝牙、Wi-Fi、RF模块等)将两个单片机的串口信号通过无线方式进行传输和通信。

单片机串口通信原理及实现方法

单片机串口通信原理及实现方法

单片机串口通信原理及实现方法串口通信是指电脑或其他设备通过串行通信接口与外部设备进行数据传输的方式。

在单片机应用中,串口通信是一种常用的方式,能够实现与外部设备的数据交互和控制。

本文将介绍单片机串口通信的原理和实现方法。

一、串口通信原理串口通信采用串行传输方式,即逐位(bit)地传输数据,其中包括一个起始位、一个或多个数据位、一个或多个校验位和一个停止位。

常用的串口通信协议有RS-232、RS-485等。

在单片机串口通信中,主要包括以下几个部分:1. 时钟信号:单片机通过时钟信号来同步数据的传输,确保发送和接收的数据在同一时间段内互相对应。

2. 波特率:波特率是指每秒钟传送的比特数,也称为传输速率。

单片机与外部设备通信时,需要设置相同的波特率,以保证数据传输的准确性。

3. 数据格式:包括起始位、数据位、校验位和停止位。

起始位用于标识数据的开始,通常为逻辑低电平;数据位表示传输的数据长度,常用的有8位和9位;校验位用于检查数据的准确性,常用的有奇偶校验和检验等;停止位表示数据传输的结束,常用的为一个或两个停止位。

4. 控制信号:单片机通过控制信号来控制数据的发送和接收。

常用的控制信号有数据发送使能信号、数据接收使能信号、复位信号等。

二、单片机串口通信的实现方法单片机串口通信的实现方法主要包括以下几个步骤:1. 设置引脚功能:确定单片机的引脚功能,将其配置为串口通信功能。

不同的单片机芯片有不同的引脚功能设置方法,可以参考芯片手册进行配置。

2. 设置波特率:根据通信需求,设置单片机的波特率。

波特率的设置包括计算波特率产生所需的时钟频率和设置相应的控制寄存器。

3. 配置数据格式:根据通信协议,设置数据的格式,包括起始位、数据位、校验位和停止位。

这些设置通常是通过控制寄存器来实现的。

4. 数据发送与接收:通过单片机的串口发送寄存器和接收寄存器进行数据的发送与接收。

发送数据时,将需要发送的数据写入发送寄存器;接收数据时,通过读取接收寄存器获取接收的数据。

单片机IO口模拟串口程序(发送+接收)

单片机IO口模拟串口程序(发送+接收)

单片机IO口模拟串口程序(发送+接收)前一阵一直在做单片机的程序,由于串口不够,需要用IO口来模拟出一个串口。

经过若干曲折并参考了一些现有的资料,基本上完成了。

现在将完整的测试程序,以及其中一些需要总结的部分贴出来。

程序硬件平台:11.0592M晶振,STC单片机(兼容51)/************************************** ************************** 在单片机上模拟了一个串口,使用P2.1作为发送端* 把单片机中存放的数据通过P2.1作为串口TXD发送出去*************************************** ************************/#include <reg51.h>#include <stdio.h>#include <string.h>typedef unsigned char uchar;int i;uchar code info[] ={0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x5 5,0x55,0x55,0x55,0x55,0x55,0x55,0x55 };sbit newTXD = P2^1;//模拟串口的发送端设为P2.1void UartInit(){SCON = 0x50; // SCON: serail mode 1, 8-bit UARTTMOD |= 0x21; // T0工作在方式1,十六位定时PCON |= 0x80; // SMOD=1;TH0 = 0xFE; // 定时器0初始值,延时417us,目的是令模拟串口的波特率为2400bps fosc=11.0592MHzTL0 = 0x7F; // 定时器0初始值,延时417us,目的是令模拟串口的波特率为2400bps fosc=11.0592MHz// TH0 = 0xFD; // 定时器0初始值,延时417us,目的是令模拟串口的波特率为2400bps fosc=18.432MHz// TL0 = 0x7F; // 定时器0初始值,延时417us,目的是令模拟串口的波特率为2400bps fosc=18.432MHz}void WaitTF0(void){while(!TF0);TF0=0;TH0=0xFE; // 定时器重装初值fosc=11.0592MHzTL0=0x7F; // 定时器重装初值fosc=11.0592MHz// TH0 = 0xFD; // 定时器重装初值 fosc=18.432MHz// TL0 = 0x7F; // 定时器重装初值 fosc=18.432MHz}void WByte(uchar input){//发送启始位uchar j=8;TR0=1;newTXD=(bit)0;WaitTF0();//发送8位数据位while(j--){newTXD=(bit)(input&0x01); //先传低位WaitTF0();input=input>>1;}//发送校验位(无)//发送结束位newTXD=(bit)1;WaitTF0();TR0=0;}void Sendata(){for(i=0;i<sizeof(info);i++)//外层循环,遍历数组{WByte(info[i]);}}void main(){UartInit();while(1){Sendata();}}########################################## ####################################/************************************** ************************** 模拟接收程序,这个程序的作用从模拟串口接收数据,然后将这些数据发送到实际串口* 在单片机上模拟了一个串口,使用P3.2作为发送和接收端* 以P3.2模拟串口接收端,从模拟串口接收数据发至串口*************************************** ************************/#include<reg51.h>#include<stdio.h>#include<string.h>typedef unsigned char uchar ;//这里用来切换晶振频率,支持11.0592MHz 和18.432MHz//#define F18_432#define F11_0592uchar tmpbuf2[64]={0};//用来作为模拟串口接收数据的缓存struct{uchar recv :6 ;//tmpbuf2数组下标,用来将模拟串口接收到的数据存放到tmpbuf2中uchar send :6 ;//tmpbuf2数组下标,用来将tmpbuf2中的数据发送到串口}tmpbuf2_point={0,0};sbit newRXD=P3^2 ;//模拟串口的接收端设为P3.2void UartInit(){SCON=0x50 ;// SCON: serail mode 1, 8-bit UARTTMOD|=0x21 ;// TMOD: timer 1, mode 2, 8-bit reload,自动装载预置数(自动将TH1送到TL1);T0工作在方式1,十六位定时PCON|=0x80 ;// SMOD=1;#ifdef F11_0592TH1=0xE8 ;// Baud:2400 fosc=11.0592MHz 2400bps为从串口接收数据的速率TL1=0xE8 ;// 计数器初始值,fosc=11.0592MHz 因为TH1一直往TL1送,所以这个初值的意义不大TH0=0xFF ;// 定时器0初始值,延时208us,目的是令模拟串口的波特率为9600bps fosc=11.0592MHzTL0=0xA0 ;// 定时器0初始值,延时208us,目的是令模拟串口的波特率为9600bps fosc=11.0592MHz#endif#ifdef F18_432TH1=0xD8 ;// Baud:2400fosc=18.432MHz 2400bps为从串口接收数据的速率TL1=0xD8 ;// 计数器初始值,fosc=18.432MHz 因为TH1一直往TL1送,所以这个初值的意义不大TH0=0xFF ;// 定时器0初始值,延时104us,目的是令模拟串口的波特率为9600bps fosc=18.432MHzTL0=0x60 ;// 定时器0初始值,延时104us,目的是令模拟串口的波特率为9600bps fosc=18.432MHz#endifIE|=0x81 ;// 中断允许总控制位EA=1;使能外部中断0TF0=0 ;IT0=1 ;// 设置外部中断0为边沿触发方式TR1=1 ;// 启动TIMER1,用于产生波特率}void WaitTF0(void){while(!TF0);TF0=0 ;#ifdef F11_0592TH0=0xFF ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz TL0=0xA0 ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz #endif#ifdef F18_432TH0=0xFF ;// 定时器重装初值 fosc=18.432MHzTL0=0x60 ;// 定时器重装初值 fosc=18.432MHz#endif}//接收一个字符uchar RByte(){uchar Output=0 ;uchar i=8 ;TR0=1 ;//启动Timer0#ifdef F11_0592TH0=0xFF ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz TL0=0xA0 ;// 定时器重装初值模拟串口的波特率为9600bps fosc=11.0592MHz #endif#ifdef F18_432TH0=0xFF ;// 定时器重装初值fosc=18.432MHzTL0=0x60 ;// 定时器重装初值fosc=18.432MHz#endifTF0=0 ;WaitTF0();//等过起始位//接收8位数据位while(i--){Output>>=1 ;if(newRXD)Output|=0x80 ;//先收低位WaitTF0();//位间延时}TR0=0 ;//停止Timer0return Output ;}//向COM1发送一个字符void SendChar(uchar byteToSend){SBUF=byteToSend ;while(!TI);TI=0 ;}void main(){UartInit();while(1){if(tmpbuf2_point.recv!=tmpbuf2_point.send)//差值表示模拟串口接收数据缓存中还有多少个字节的数据未被处理(发送至串口){SendChar(tmpbuf2[tmpbuf2_point.send++]);}}}//外部中断0,说明模拟串口的起始位到来了void Simulated_Serial_Start()interrupt 0{EX0=0 ;//屏蔽外部中断0tmpbuf2[tmpbuf2_point.recv++]=RByte(); //从模拟串口读取数据,存放到tmpbuf2数组中IE0=0 ;//防止外部中断响应2次,防止外部中断函数执行2次EX0=1 ;//打开外部中断0}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~以上是两个独立的测试程序,分别是模拟串口发送的测试程序和接收的测试程序上面两个程序在编写过程中参考了这篇文章《51单片机模拟串口的三种方法》(在后文中简称《51》),但在它的基础上做了一些补充,下面是若干总结的内容:1、《51》在接收数据的程序中,采用的是循环等待的方法来检测起始位(见《51》的“附:51 IO 口模拟串口通讯C源程序(定时器计数法)”部分),这种方法在较大程序中,可能会错过起始位(比如起始位到来的时候程序正好在干别的,而没有处于判断起始位到来的状态),或者一直在检测起始位,而没有办法完成其他工作。

单片机串口通信的发送与接收

单片机串口通信的发送与接收

51单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。

当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。

无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。

在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。

看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。

接收数据时,基本上都是使用“中断方式”,这是正确合理的。

即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。

发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。

这时,处理不好的话,就可能带来问题。

看了一些网友编写的程序,发现有如下几条容易出错:1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。

这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。

这种处理方法,就会遗漏收到的数据。

2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。

但是,却在中断函数中,将TI 清零!这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。

3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。

对此,做而论道发表自己常用的方法:接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。

发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。

这样一来,收、发两者基本一致,编写程序也很规范、易懂。

更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。

实例:求一个PC与单片机串口通信的程序,要求如下:1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

51单片机串口通信

51单片机串口通信

51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。

而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。

本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。

一、串口通信的原理串口通信是以字节为单位进行数据传输的。

在串口通信中,数据传输分为两个方向:发送方向和接收方向。

发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。

接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。

在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。

其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。

二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。

具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。

b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。

2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。

b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。

c. 清除TI标志位。

3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。

b. 将接收到的数据从SBUF寄存器中读取出来。

c. 清除RI标志位。

三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。

解决方法是在初始化时确保两端的波特率设置一致。

2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。

单片机串口通信程序

单片机串口通信程序

引言:单片机串口通信程序是一种用于实现单片机与外部设备进行数据传输的通信方式。

它通过串口接口将数据以串行的形式传输,实现了高效、可靠的数据交互。

本文将详细介绍单片机串口通信程序的实现原理、步骤和注意事项。

概述:单片机串口通信程序主要包括串口初始化、发送数据、接收数据和中断处理等部分。

其中,串口初始化是设置串口通信的参数,发送数据和接收数据是具体的数据传输操作,中断处理则是处理串口中断事件的相关操作。

正文:一、串口初始化1.确定串口通信的波特率:波特率是指单位时间内传输的比特数,需要根据通信双方的需求确定合适的波特率。

2.设置数据位、停止位和校验位:数据位决定了每个字节中实际有效数据的位数,通常为8位;停止位用于判断一个字节的结束,通常为1位;校验位用于检测和纠正数据传输过程中的错误。

3.打开串口:通过使能相应的寄存器位,开启串口功能。

二、发送数据1.准备要发送的数据:将要发送的数据存储在缓冲区中,可以是一个字节、多个字节或一个字符串。

2.判断发送缓冲区是否为空:检查发送缓冲区是否已被发送完毕,如果为空则可以开始发送新的数据。

3.将数据发送到串口寄存器:将准备好的数据写入串口寄存器,启动数据传输。

4.等待数据发送完毕:通过检查发送完成标志位,判断数据是否已经成功发送完毕。

三、接收数据1.等待接收缓冲区非空:通过检查接收缓冲区是否有新的数据接收到,判断是否可以开始接收数据。

2.读取接收缓冲区的数据:通过读取串口寄存器中的数据,获取已接收到的数据。

3.处理接收到的数据:对接收到的数据进行相应的处理操作,可以是存储、显示或其他操作。

四、中断处理1.使能串口中断:通过设置相应的中断使能标志位,允许串口中断事件的发生。

2.处理接收中断:当接收缓冲区有新的数据到达时,触发串口接收中断,通过中断服务程序对接收到的数据进行处理。

3.处理发送中断:当发送缓冲区为空时,触发串口发送中断,通过中断服务程序发送新的数据。

单片机串口工作原理

单片机串口工作原理

单片机串口工作原理
串口,即串行通信口,是一种在计算机和外设之间进行数据传输的通信接口。

单片机串口是指单片机上的串行通信接口,用于实现单片机与其他设备之间的数据传输。

单片机串口的工作原理如下:
1. 串口通信协议:串口通信需要遵循一定的通信协议,常见的串口通信协议有UART、RS-232、RS-485等。

其中UART是
一种常用的串行通信协议,用于定义数据的传输格式、波特率等。

2. 数据传输方式:串口通信采用的是串行传输方式,即将数据比特依次发送或接收。

发送端将数据按照一定的格式转换为电平信号,接收端将电平信号转换为数据。

3. 通信参数:串口通信需要设置一些通信参数,包括波特率、数据位数、校验位、停止位等。

这些参数决定了数据传输的速率和精度。

4. 数据帧:数据帧是串口通信的基本数据单位,包括起始位、数据位、校验位和停止位。

发送端将数据按照数据帧格式发送,接收端按照相同的数据帧格式接收数据。

5. 通信流程:串口通信的流程包括发送方和接收方。

发送方将数据按照一定的格式发送到串口,接收方从串口接收数据并解析。

6. 中断机制:单片机串口通信常常使用中断机制来实现异步传输。

发送和接收数据时,可以通过中断方式进行处理,提高系统的实时性。

总的来说,单片机串口工作原理就是通过一定的通信协议和参数,在一个端口上实现数据的串行传输。

发送方将数据转换为电平信号发送,接收方将电平信号转换为数据接收。

通过这种方式,单片机可以和其他设备进行数据交换和通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。

当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。

无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。

在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。

看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。

接收数据时,基本上都是使用“中断方式”,这是正确合理的。

即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。

发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。

这时,处理不好的话,就可能带来问题。

看了一些网友编写的程序,发现有如下几条容易出错:1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。

这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。

这种处理方法,就会遗漏收到的数据。

2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。

但是,却在中断函数中,将TI 清零!这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。

3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。

对此,做而论道发表自己常用的方法:接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。

发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。

这样一来,收、发两者基本一致,编写程序也很规范、易懂。

更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。

实例:求一个PC 与单片机串口通信的程序,要求如下:1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

2、如果接收到1,则将P10 置高电平,接收到0,P10 置低电平。

(用来控制一个LED)单片机是STC89C52RC/晶振11.0592/波特率要求是9600 或4800。

谢谢!问题补充:可能会将【$ABCD,123456,987654ccc,aasdasd,aaaa,sssd,4D】这样的字符串(字符串长度约为50-150 个字符)传送给单片机,只能能原样返回。

[cpp] view plaincopy36. else { //如果送毕.37. TI = 0; //清除标志.38. Send_ed = 1;39. }40. }41. //----------------------------------------------/BLOG_ARTICLE_3007162.HTM串口接收程序是基于串口中断的,单片机的串口每次接收到一字节数据产生一次中断,然后再读取某个寄存器就可以得到串口接收的数据了。

然而在实际应用当中,基本上不会有单字节接收的情况。

一般都是基于一定串口通信协议的多字节通信。

在422 或者485 通信中,还可能是一个主机(一般是计算机)带多个从机(相应的有单片机的板卡)。

这就要求我们的单片机能够在连续接收到的串口数据序列中识别出符合自己板卡对应的通信协议,来进行控制操作,不符合则不进行任何操作。

简而言之就是,单片机要在一串数据中找到符合一定规律的几个字节的数据。

先来说下怎样定串口协议吧。

这个协议指的不是串口底层的协议,而是前面提到的数据帧协议。

一般都是有帧头(2~3 个字节吧),数据(长度根据需要),结束位(1 位,有时候设计成校验字节,最简单的校验也就是前面所有数据求和)。

比如0xaa 0x55 +(数据部分省略)+校验和(除了aa 55 之外数据的和),如果要是多板卡的话有时候还要在帧头后面加一个板选字节(相当于3 字节帧头了)。

第一次写串口接收程序的时候,我首先想到的就是定义一个全局变量(实际上最好是定义局部静态变量),初始值设置为0,然后每进一次中断+1,然后加到串口通信协议的长度的时候再清零。

然后判断帧头、校验。

写完了之后我自己都觉得不对,一旦数据错开了一位,后面就永远都接收不到数了。

无奈看了一下前辈们的代码,跟我的思路差不多,只不过那个计数值跟接收到的数据时同时判断的,而且每次中断都要判断,一旦不对计数的那个变量就清零。

废话少说,直接上一段代码让大家看看就明白了。

(通信协议姑且按照简单的aa 55 一个字节数据一个字节校验,代码是基于51 单片机的)。

接收成功则在中断程序中把串口接收成功标志位置1。

[cpp] view plaincopy1.然后串口中断部分2.void ser()interrupt 43. {4.static unsigned char count;//串口接收计数的变量5.RI=0;//手动清某个寄存器,大家都懂的6. receive[count]=SBUF;7. if(count==0&&receive[count]==0xaa)//同时判断count 跟收到的数据8. {9. count=1;10. }11. else if(count==1&&receive[count]==0x55)12. {13. count=2;14. }15. else if(count==2)16. {17. count++;18. }19. else if(count==3&&receive[count]== receive [2])//判断校验和,数据多的话是求//和,或者其他的校验方法,也可能是固定的帧尾20. {21. count=0;22. uart_flag =1;//串口接收成功标志,为1 时在主程序中回复,然后清零23. ES=0; //关中断,回复完了再ES=1;24. }25. else26. {27. count=0;//判断不满足条件就将计数值清零28. }29. }第一次做的串口大概就按照这个方法写完了(我后来看过其他的代码,有人用switch 语句写的,逻辑跟这个也差不多,不过我还是感觉用if else 来写清晰一些),不过在测试的时候发现了bug,如果数据帧发送一半,然后突然停止,再来重新发,就会丢失一帧的数据。

比如先接受到aa 55,然后断了,再进来aa 55 01 01,就不受控制了。

后来我也想到一个bug,如果在多设备通信中,属于其他设备的的帧数据最后一位是aa(或者最后两位为aa 55 ,或者最后3 位为aa 55 板选),下一次通信的数据就接收不到了。

当时对于数据突然中断的bug,没有想到很好的解决办法,不过这种情况几率极小,所以一直用这个方法写也没有问题。

多设备通信最后一位恰好是aa 的几率也很小,出问题的可能也很小。

当时项目里面的控制数据跟校验恰好不可能出现aa,于是我把if(count==0&&receive[count]==0xaa)改成了if(receive[count]==0xaa)其他都没变,解决了,没有bug 了。

后来我又写了几次单片机程序,才想到了一些解决问题的方法——不过改天再接着写吧,太累了,明天还要上班呢。

在后来的项目中,真的遇到了数据位跟校验位都可能出现aa 的情况。

我考虑到每次数据都是连续发送的(至少我们用labwindows 做的上位机程序是这样的),成功接收到了一帧数据是要有一定时间回复的,也就是说如果接收到一半,但是很长时间没接收到数据,把计数值count 清零就ok 啦。

涉及时间的问题自然要用定时器来实现啦。

这次的通信协议如下,串口波特率19200,2 个帧头aa 55 ,一个板选,6 字节数据,一个校验字节(除帧头外其他数据的和)。

[cpp] view plaincopy32. if(g_DatRev[count]==0xaa&&count==0) //帧头33. {34. count=1;35. }36. else if(count==1&&g_DatRev[count]==0x55)37. {38. count=2;39. }40.41. else if (count==2&&g_DatRev[2] == boardAddr)42. {43. CK = g_DatRev[count];44. count=3;45.46. }47.48. else if(count>=3&&count<9)49. {50.51. CK += g_DatRev[count];52. count ++;53. }54.55. else if(count == 9&&CK==g_DatRev[9])56. {57. ES = 0;58. retFlag = 1;59. count=0;60. }61. else62. {63. count=0;64. }65. resettimer();66.67. }68.69. //判断count 不为0 的话就启动定时器70. void resettimer()71. {72. TR0=0;73. TH0=(65536-2000)/256;74. TL0=(65536-2000)%256;这种方法的确是本人自己想出来的,别人可能也这样做过,但我这个绝对不是抄袭或者模仿来的。

这样写的确可以避免前面提到过的bug,不过代价是多用了一个定时器的资源,而且中断函数里的内容更多了,占用了更多的时间。

要是能把第一种方法改进一下就好了,主要是那个校验不能为aa 的那个bug,因为毕竟传输到一半突然断了的可能性是非常小的。

后来我想第一个判断if(count==0&&receive[count]==0xaa)好像有点太严格了,考虑到第二字节的帧头,跟板选地址不可能为aa,于是把这个改写为if(count>=0&&count<=2&& receive[count]==0xaa), 这样就把bug 出现的几率降到了非常小,也只是在前一帧结尾数据恰好为aa 55 板选的时候才出现,几率是多少大家自己算一下吧,呵呵。

这样我自己觉得,昨天写的那种方法改进到这个程度,应该算可以啦,反正我是很满意了。

实际上我还想过其他的方法,比如缓存的数组采用移位寄存的方式。

拿前面的 4 个字节的协议为例。

[cpp] view plaincopy这段代码看上去可是简单明了,这样判断可是不错啊,同时判断帧头跟校验不会产生前面提到的bug。

相关文档
最新文档