四川大学660数学(微积分、线性代数)2007年专业课真题试卷

合集下载

(NEW)四川大学《690高等数学(微积分、级数)》历年考研真题汇编

(NEW)四川大学《690高等数学(微积分、级数)》历年考研真题汇编

6 (12分)一质量为m的物体,最初静止于x0处,在力F=-k/x2 的作用下沿直线运动,试求物体在任意位置x处的速度.
7 (13分)质量为m的摩托车,在恒定的牵引力F的作用下工作, 它所受的阻力与其速率的平方成正比,它能达到的最大速率是vm.试计 算从静止加速到vm/2所需的时间以及所走过的路程.
3 求下列不定积分(共50分): (1) (2)
(3)
(4) (5) (6) (7) (8) (9) (10)
4 用级数展开计算下列积分的近似值(计算前三项)(共20 分):
(1) (2)
5 (5分)甲乙两船同时从一码头出发,甲船以30km/h的速度向北 行驶,乙船以40km/h的速度向东行驶,求两船间距离增加的速度为多 少?
2012年四川大学690高等数学(微 积分、级数)考研真题
2013年四川大学690高等数学(微 积分、级数)考研真题
2014年四川大学690高等数学(微 积分、级数)考研真题
2015年四川大学690高等数学(微 积分、级数)考研真题
2016年四川大学690高等数学(川大学690高等数学(微 积分、级数)考研真题
1 请写出下列初等函数的级数展开式(共20分): (1)ax (2)sin(x/2) (3) (4)ln(1+x) (5)1/(1+x)
2 求下列平面图形的面积(共30分): (1)曲线y=x3与y轴和直线y=1所围成的图形; (2)曲线y=x2与y=2-x2所围成的图形.
目 录
2012年四川大学690高等数学(微积分、级数)考研真题 2013年四川大学690高等数学(微积分、级数)考研真题 2014年四川大学690高等数学(微积分、级数)考研真题 2015年四川大学690高等数学(微积分、级数)考研真题 2016年四川大学690高等数学(微积分、级数)考研真题 2017年四川大学690高等数学(微积分、级数)考研真题

四川大学信号与系统考研真题+答案07年

四川大学信号与系统考研真题+答案07年

¥
x(t) = [Re ct(t) · cosp t]* å d (t - n)
n = -¥
x(t) « c( jkp ) = 1 {[sin c 1 w * 1 [d (w - p ) + d (w + p )]}
2p
22
¥
·2p å d (w - 2p k )
k =-¥
¥
å x(t) = c( jkp )e jkp t
k =-¥
6,己知奇信号 FT 的正频率部份有 x( jw) = 1 ,求 x(t) jw
解:因为
ò ò x( jw) =
¥
x(t)[coswt - j sin wt]dt = - j
¥ x(t) sin wtdt = - j 1


w
3
由此可知, x(t) 是实奇信号,故有
x ( jw ) w > 0 = x * ( jw ) w < 0
s =1 = - e -tu (t )
x(t) = (3e-t - e-t )u (t)
4,求 x(n) = -n, n £ 1的 ZT
解:先识别信号,可草画其波形
…… …
2
10
n
-2 -1 0 1 -1
从图可见,信号 x(n) 可表示为 x(n) = -d (n -1) - nu(-n)
则有
-d (n -1) « -z-1 , z > 0
1,已知 x(n) = n + 2, -2 £ n £ 3, 求 x(2n -1) 的波形。
X(n) 2 01
···
-2 -1 0
X(n-1)
34
34
00 12

2007线性代数考试试题A

2007线性代数考试试题A

诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《 线性代数-2007》试卷A注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。

1.设矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有 【 】A. A=A -1B. A=-EC. A=ED. det(A)=13.设A 为3阶方阵,且行列式det(A)= ,则 【 】A. 14-B. 14C. 1-D. 1 4.设A 为n 阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它n-1个行向量的线性组合D. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】A.03221= b b a a B.02121≠ b b a a C. 332211b a b ab a == D. 02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是 【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12. n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n a a a a C. 121{(,,,)|1}n a a a a = D. }1|),,,{(121∑==n i inaa a a14. 下列矩阵中为正交矩阵的是【 】A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. 1 -10 -1⎡⎤⎢⎥⎣⎦D. 1 00 -1⎡⎤⎢⎥⎣⎦15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

2007年考研数学试题详解及评分参考

2007年考研数学试题详解及评分参考

f (x, y)dy =
G
G dy = y2 - y1 < 0 ,是正确选项;
ò ò 对选项(C),有 f (x, y)ds = ds = l > 0 ,(其中 l 为的弧长),应排除;
G
G
ò ò 对选项(D),有
G
f
¢
x
(
x,
y)dx
+
f
¢
y
(
x,
y)dy
=
0dx + 0dy = 0 ,应排除.
G
郝海龙:考研数学复习大全·配套光盘·2007 年数学试题详解及评分参考
2007 年全国硕士研究生入学统一考试
数学试题详解及评分参考
数 学(一)
一、选择题 ( 1 ~ 10 小题,每小题 4 分,共 40 分。)
(1) 当 x ® 0+ 时,与 (A) 1- e x
【答】 应选 (B) .
x 等价的无穷小量是
1- x
1- x 1- x
x+x:
x ,1- cos
x
:
1 2
(
x )2
=
1 2
x
.
故选 (B) .
(2)
曲线 y
=
1 x
+ ln(1+ ex ) 渐近线的条数为
(A) 0
(B) 1
(C) 2
(D) 3
【答】 应选 (D) .
【解】
因 lim y x®+¥
=
lim [1 x x®+¥
+ ln(1+ ex )] = +¥ , lim x®-¥
y
=
lim [1 x x®-¥

2007全国硕士研究生入学考试数学真题详解——线性代数部分

2007全国硕士研究生入学考试数学真题详解——线性代数部分

2007-2010年全国硕士研究生入学考试数学真题详解——线性代数部分一、2007年:1、(2007年数学一、二、三、四) 设向量组321,,ααα线性无关,则下列向量组线性相关的是(A) 133221,,αααααα---. (B) 133221,,αααααα+++.(C) 1332212,2,2αααααα---. (D) 1332212,2,2αααααα+++. [ ] 【答案】A【详解】用定义进行判定:令0)()()(133322211=-+-+-ααααααx x x ,得 0)()()(332221131=+-++-+-αααx x x x x x .因321,,ααα线性无关,所以 1312230,0,0.x x x x x x -=⎧⎪-+=⎨⎪-+=⎩ 又 011011101=---, 故上述齐次线性方程组有非零解, 即133221,,αααααα---线性相关. 类似可得(B), (C), (D)中的向量组都是线性无关的.2、(2007年数学一、二、三、四) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B , 则A 与B(A) 合同, 且相似. (B) 合同, 但不相似 .(C) 不合同, 但相似. (D) 既不合同, 又不相似. [ ] 【答案】B【详解】 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似.又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同. 故选(B) .3、(2007年数学一、二、三、四) 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001000010A , 则3A 的秩为 . 【答案】1【详解】 依矩阵乘法直接计算得 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000000010003A , 故r (3A )=1.4、(2007年数学一、二、三、四)设线性方程组⎪⎩⎪⎨⎧=++=++=++04,02,03221321321xa x x ax x x x x x ①与方程12321-=++a x x x ②有公共解,求a 的值及所有公共解.【分析】 两个方程有公共解就是①与②联立起来的非齐次线性方程组有解. 【详解】 将①与②联立得非齐次线性方程组:⎪⎪⎩⎪⎪⎨⎧-=++=++=++=++.12,04,02,03213221321321a x x x x a x x ax x x x x x ③ 若此非齐次线性方程组有解, 则①与②有公共解, 且③的解即为所求全部公共解. 对③的增广矩阵A 作初等行变换得:→⎪⎪⎪⎪⎪⎭⎫⎝⎛-=112104102101112a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000)1)(2(0001100111a a a a a .于是1° 当a =1时,有)()(A r A r ==2<3,方程组③有解, 即①与②有公共解, 其全部公共解即为③的通解,此时⎪⎪⎪⎪⎪⎭⎫⎝⎛→0000000000100101A , 此时方程组③为齐次线性方程组,其基础解系为: ⎪⎪⎪⎭⎫⎝⎛-101,所以①与②的全部公共解为⎪⎪⎪⎭⎫ ⎝⎛-101k ,k 为任意常数.2° 当a =2时,有)()(A r A r ==3,方程组③有唯一解, 此时⎪⎪⎪⎪⎪⎭⎫⎝⎛-→0000110010100001A ,故方程组③的解为:011⎛⎫ ⎪⎪ ⎪-⎝⎭, 即①与②有唯一公共解: 为123011x x x x ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.5、(2007年数学一、二、三、四)设3阶对称矩阵A的特征值,2,2,1321-===λλλ T)1,1,1(1-=α是A的属于1λ的一个特征向量,记E A A B +-=354其中E 为3阶单位矩阵.(I) 验证1α是矩阵B的特征向量,并求B 的全部特征值与特征向量.(II) 求矩阵B.【分析】 根据特征值的性质可立即得B 的特征值, 然后由B 也是对称矩阵可求出其另外两个线性无关的特征向量.【详解】 (I) 由11αα=A 得 1112ααα==A A , 进一步 113αα=A , 115αα=A , 故 1351)4(ααE A A B +-=113154ααα+-=A A1114ααα+-=12α-=,从而1α是矩阵B的属于特征值−2的特征向量.因E A A B +-=354, 及A的3个特征值,2,2,1321-===λλλ 得 B 的3个特征值为1,1,2321==-=μμμ.设32,αα为B 的属于132==μμ的两个线性无关的特征向量, 又A为对称矩阵,得B 也是对称矩阵, 因此1α与32,αα正交, 即0,03121==ααααT T 所以32,αα可取为下列齐次线性方程组两个线性无关的解:0)1,1,1(321=⎪⎪⎪⎭⎫ ⎝⎛-x x x ,其基础解系为: ⎪⎪⎪⎭⎫ ⎝⎛011,⎪⎪⎪⎭⎫ ⎝⎛-101 , 故可取2α=⎪⎪⎪⎭⎫ ⎝⎛011, 3α=⎪⎪⎪⎭⎫ ⎝⎛-101.即B 的全部特征值的特征向量为: ⎪⎪⎪⎭⎫⎝⎛-1111k , ⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101132k k , 其中01≠k ,是不为零的任意常数, 32,k k 是不同时为零的任意常数.(II) 令),,(321ααα=P =⎪⎪⎪⎭⎫ ⎝⎛--101011111, 则 ⎪⎪⎪⎭⎫⎝⎛-=-1121BP P ,得 1112-⎪⎪⎪⎭⎫ ⎝⎛-=P P B =⎪⎪⎪⎭⎫ ⎝⎛--101011111⎪⎪⎪⎭⎫⎝⎛-112⎪⎪⎪⎭⎫ ⎝⎛--21112111131=⎪⎪⎪⎭⎫ ⎝⎛---102012112⎪⎪⎪⎭⎫ ⎝⎛--21112111131⎪⎪⎪⎭⎫ ⎝⎛--=011101110.二、2008年:1、(2008年数学一、二、三、四)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则[ ]则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆.(C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C).【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故E A -,E A +均可逆.故应选(C).2、(2008年数学一)设A 为3阶实对称矩阵,如果二次曲面方程()1x x yz A y z ⎛⎫⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为[ ](A) 0. (B) 1. (C) 2. (D) 3. 【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y z a c +-=.故A 的正特征值个数为1.故应选(B).3、(2008年数学二、三、四)设1221A ⎛⎫=⎪⎝⎭,则在实数域上,与A 合同矩阵为[ ] (A) 2112-⎛⎫⎪-⎝⎭ . (B)2112-⎛⎫ ⎪-⎝⎭. (C) 2112⎛⎫ ⎪⎝⎭. (D) 1221-⎛⎫ ⎪-⎝⎭. 【答案】 应选(D). 【详解】2212(1)423(1)(3)021E A λλλλλλλλ---==--=--=+-=--则121,3λλ=-=,记1221D -⎛⎫=⎪-⎝⎭,则2212(1)423(1)(3)021E D λλλλλλλλ--==--=--=+-=-则121,3λλ=-=,正负惯性指数相同.故选D.4、(2008年数学一) 设A 为2阶矩阵,12,αα为线性无关的2维列向量,10A α=,2122A ααα=+.则A 的非零特征值为___________.【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+= ⎪⎝⎭.记12(,)P αα=,因12,αα线性无关,故12(,)P αα=是可逆矩阵.因此0201AP P ⎛⎫= ⎪⎝⎭,从而10201P AP -⎛⎫= ⎪⎝⎭.记0201B ⎛⎫= ⎪⎝⎭,则A 与B 相似,从而有相同的特征值. 因为2||(1)01E B λλλλλ--==--,0λ=,1λ=.故A 的非零特征值为1.5、(2008年数学二)设3阶矩阵A 的特征值为2,3,λ.若行列式|2|48A =-,则λ=___________. 【答案】应填1-.【详解】由482-=A ,依据方阵行列式的性质,则有48223-==A A ,即6-=A .又A 等于其特征值的乘积,即632321-=⨯⨯=⨯⨯=λλλλA ,得1-=λ. 6、(2008年数学三)设3阶方阵A 的特征值为1,2,2,E 为单位矩阵,则=--E A 14 .【答案】应填3.【详解】由方阵特征值的性质,E AA f -=-14)(,则14)(1-=-λλf ,故方阵EA --14的特征值分别为1,1,3,又由方阵行列式等于其特征值的乘积,则有341=--E A .7、(2008年数学四)设3阶方阵A 的特征值互不相同,若行列式0=A ,则A 的秩为 . 【答案】应填2.【详解】由题可知,方阵A 的特征值含有0,而其余两个非零,故A 的秩为2.8、(2008年数学一)设,αβ为3维列向量,矩阵TTA ααββ=+,其中,TTαβ分别是,αβ得转置.证明: (I ) 秩()2r A ≤;(II )若,αβ线性相关,则秩()2r A <.【详解】(I )【证法1】()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤. 【证法2】因为TTA ααββ=+,A 为33⨯矩阵,所以()3r A ≤. 因为,αβ为3维列向量,所以存在向量0ξ≠,使得0,0T T αξβξ==于是 0T T A ξααξββξ=+= 所以0Ax =有非零解,从而()2r A ≤.【证法3】因为TTA ααββ=+,所以A 为33⨯矩阵.又因为()00T TTT A αααββαββ⎛⎫⎪=+= ⎪ ⎪⎝⎭, 所以|||0|00TT a A αββ==故 ()2r A ≤.(II )【证法】由,αβ线性相关,不妨设k αβ=.于是()2()()(1)()12TT T r A r r k rααβββββ=+=+≤≤<. 9、(2008年数学一、二、三、四) 设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫ ⎪⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,b 100⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(I )证明行列式||(1)n A n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x . (III )当a 为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na a a a aD A a a a a ==以下用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第一行展开得n n n a a a aD aD a a a a 2212211021212212--=-2122n n aD a D --=-1222(1)n n ana a n a --=-- (1)n n a =+故 (1)nA n a =+.【注】本题(1)也可用递推法.由2122n n n D aD a D --==-得,2211221()()n n n n n n n D aD a D aD a D a D a ------=-==-=.于是(1)n n D n a =+(I )【证法2】消元法.记2222212121||212na a a a aA a a a a =22122213121212212na a a ar ar a a a a -322222130124123321212naa a r ar a aa a a a -=n n na a a n r ar nn a n n a n 121301240113111----+(1)n n a =+.(II )【详解】当0a ≠时,方程组系数行列式0n D ≠,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn a aa a a aa aD na a a a a a a a a ---===所以,11(1)n n D ax D n a-==+. (III )【详解】 当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为()()010100TTx k =+,其中k 为任意常数.10、(2008年数学二、三、四)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足321A ααα=+,(I)证明123,,ααα线性无关; (II)令123(,,)P ααα=,求1P AP -.【详解】(I)【证明】设有一组数123,,k k k ,使得 122330k k k ααα++=. 用A 左乘上式,得112233()()()0k A k A k A ααα++=. 因为 11A αα=-, 22A αα=,321A ααα=+, 所以 1123233()0k k k k ααα-+++=, 即113220k k αα-=.由于12,αα是属于不同特征值得特征向量,所以线性无关,因此130k k ==,从而有20k =.故 123,,ααα线性无关.(II )由题意,100011001AP P -⎛⎫⎪= ⎪ ⎪⎝⎭.而由(I )知,123,,ααα线性无关,从而123(,,)P ααα=可逆.故1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.三、2009年:1、(2009年数学一)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基 122331,,αααααα+++的过渡矩阵为()A 101220033⎛⎫⎪⎪ ⎪⎝⎭. ()B 120023103⎛⎫⎪⎪ ⎪⎝⎭.()C 111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.()D 111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. 【答案】A【解析】因为()()1212,,,,,,n n A ηηηααα=,则A 称为基12,,,n ααα到12,,,nηηη的过渡矩阵。

07年考研数学试题(线性代数)

07年考研数学试题(线性代数)

07年考研数学试题(线性代数)第一篇:07年考研数学试题(线性代数)07年考研数学试题(线性代数)选择题(每小题4分)⎡2-1-1⎤⎢⎥1.(07010804、07021004、07030804、07040804)设矩阵A=-12-1,⎢⎥⎢⎣-1-12⎥⎦⎡100⎤⎥,则A与B()B=⎢010⎢⎥⎢⎣000⎥⎦(A)合同,且相似;(B)合同,但不相似;(C)不合同,但相似;(D)合同,但不相似;2.(07020904、07030704、07040704)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()(A)α1-α2,α2-α3,α3-α1 ;(B)α1+α2,α2+α3,α3+α1;(C)α1-2α2,α2-2α3,α3-2α1 ;(D)α1+2α2,α2+2α3,α3+2α1.二、填空题(每小题4分)⎡0⎢03.(07011504、07021604、07030504、07041504)设矩阵A=⎢⎢0⎢⎣0秩为.三、解答题 100001000⎤0⎥⎥,则 A3 的1⎥⎥0⎦⎧x1+x2+x3=0⎪4.(07012111、07022311、07032111、07042111)设线性方程组⎨x1+2x2+ax3=0①⎪2⎩x1+4x2+ax3=0与方程 x1+2x2+x3 = a-1② 有公共解,求a的值及所有公共解.5.(07012211、07022411、07032211、07042211)设3阶对称矩阵A的特征值为λ1 = 1,λ2 =2,λ3 =-2 ;向量α1=(1,-1,1)是A的属于λ1 的一个特征向量,记 TB = A5-4A3 + E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.第二篇:考研数学一线性代数公式1、行列式1.n行列式共有n2个元素,展开后有n!项,可分解为2n行列式;2.行列式的重要公式:①、主对角行列式:主对角元素的乘积;n(n-1)②、副对角行列式:副对角元素的乘积⨯ (-1)③、上、下三角行列式(④、 ◤◥ = ◣2;):主对角元素的乘积;n(n-1)2和◢:副对角元素的乘积⨯ (-1)ACOB=AOCB;、CBAO=OBAC=(-1)mγn⑤、拉普拉斯展开式:=ABAB⑥、范德蒙行列式:大指标减小指标的连乘积; 3.证明①、A=0的方法:;③构造齐次方程组Ax=0A=-A,证明其有非零解;④证明r(A)<n⑤证明0是其特征值;2、矩阵1.是n阶可逆矩阵:⇔A≠0(是非奇异矩阵);A⇔⇔⇔⇔⇔⇔r(A)=nA(是满秩矩阵)有非零解;的行(列)向量组线性无关;=0齐次方程组Ax∀b∈Rn,Ax=b总有唯一解;A与E等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;TAA⇔⇔⇔⇔AAA是正定矩阵;的行(列)向量组是Rn的一组基;是Rn中某两组基的过渡矩阵;=AA=AE*A2.对于n阶矩阵A:AA*3.(A-1无条件恒成立;-1)=(A)TT**-1(A-1)T=(A)**T(A)*T=(A)-1T*-1(AB)=BAT(AB)=BA*(AB)=B-1A4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A、B可逆:若⎛A1 A=⎝A2O⎫⎪⎪⎪⎪As⎭-1,则:Ⅰ、A=A1A2ΛAs ;Ⅱ、A-1⎛A1 =⎝-1-1A2OAs⎫⎪O⎭-1-1-1⎫⎪⎪⎪⎪⎪⎭;⎛A②、⎝O⎛A④、⎝OO⎫⎪B⎭C⎫⎪B⎭-1⎛A=⎝OO⎫-1⎪B⎭-A-1⎛O;(主对角分块)③、 ⎝BCB-1-1A⎫⎪O⎭-1⎛O=-1⎝A-1B;(副对角分块)O⎫-1⎪B⎭-1⎛A=⎝O-1B⎫⎪⎭⎛A;(拉普拉斯)⑤、⎝CO⎫⎪B⎭⎛A=-1-1⎝-BCA;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个m⨯n矩阵A,总可经过初等变换化为标准形,其标准形是唯一确定的:F⎛Er=⎝OO⎫⎪O⎭m⨯n;等价类:所有与A等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A、B,若r(A) =r(B) ⇔ AγB;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(A , E) γ (E , X),则A可逆,且X②、对矩阵(A,B)做初等行变化,当Ar=AE-1;就变成A-1变为时,BB,即:(A,B) ~ (E,A-1B);rc③、求解线形方程组:对于n个未知数n个方程Ax=b,如果(A,b)γ(E,x),则A可逆,且x=A-1b;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;⎛λ1②、Λ=⎝λ2O⎫⎪⎪⎪⎪λn⎭,左乘矩阵A,λi乘A的各行元素;右乘,λi乘A的各列元素;③、对调两行或两列,符号E(i,5.矩阵秩的基本性质:①、0≤r(Am⨯n)≤min(m⑥、r(A+j),且E(i,j)-1⎛=E(i,j),例如:1⎝⎫⎪⎪1⎪⎭-1⎛=1 ⎝⎫⎪⎪1⎪⎭;,n);②、r(A)=r(A)T;③、若AγB,则r(A)=r(B);④、若P、Q可逆,则;(※)r(A)=r(PA)=r(AQ)=r(PAQ);(可逆矩阵不影响矩阵的秩)⑤、max(r(A),r(B))≤;(※)⑦、r(AB)≤min(r(A),r(B))r(A,B)≤r(A)+r(B)B)≤r(A)+r(B)⨯n;(※)⑧、如果A是m矩阵,B是n⨯s矩阵,且AB=0n=0,则:(※)Ⅰ、B的列向量全部是齐次方程组AXⅡ、r(A)+r(B)≤解(转置运算后的结论);;⑨、若A、B均为n阶方阵,则r(AB)≥r(A)+r(B)-n6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;⎛1②、型如 00⎝a10c⎫⎪b⎪1⎪⎭的矩阵:利用二项展开式;③、利用特征值和相似对角化:7.伴随矩阵:⎧n⎪①、伴随矩阵的秩:r(A*)=⎨1⎪⎩0r(A)=n r(A)=n-1r(A)<n-1*-1*;②、伴随矩阵的特征值:Aλ(AX=λX,A=AA ⇒ AX=AλX);③、A*=AA-1、A*=An-18.关于A矩阵秩的描述:①、r(A)=n,A中有n阶子式不为0,n+1阶子式全部为0;(两句话)②、r(A)<n,A中有n阶子式全部为0;③、r(A)≥n,A中有n阶子式不为0;9.线性方程组:Ax=b,其中A为m⨯n矩阵,则:①、m与方程的个数相同,即方程组Ax=b有m个方程;②、n与方程组得未知数个数相同,方程组Ax=b为n元方程;10.线性方程组Ax=b的求解:①、对增广矩阵B进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;4、向量组的线性相关性11.①、向量组的线性相关、无关⇔Ax=0有、无非零解;(齐次线性方程组)②、向量的线性表出⇔Ax=b是否有解;(线性方程组)③、向量组的相互线性表示⇔AX=B是否有解;(矩阵方程)12.矩阵Am⨯n与Bl⨯n行向量组等价的充分必要条件是:齐次方程组Ax=0和Bx=0同解;(P101例14)13.14.r(AA)=r(A)nT;(P101例15)⇔α=0维向量线性相关的几何意义:;③、α,β,γ线性相关⇔α,β,γ①、α线性相关②、α,β线性相关共面;⇔α,β坐标成比例或共线(平行);15.线性相关与无关的两套定理:若α1,α2,Λ,αs线性相关,则α1,α2,Λ,αs,αs+1必线性相关;若α1,α2,Λ,αs线性无关,则α1,α2,Λ,αs-1必线性无关;(向量的个数加加减减,二者为对偶)若r维向量组A的每个向量上添上n -r个分量,构成n维向量组B:若A线性无关,则B也线性无关;反之若B线性相关,则A也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;16.向量组A(个数为r)能由向量组B(个数为s)线性表示,且A线性无关,则r向量组A能由向量组B线性表示,则r(A)≤向量组A能由向量组B 线性表示⇔AX=Br(B)≤s(二版P74定理7);;(P86定理3)r(A)=r(A,B)有解;⇔(P85定理2)向量组A能由向量组B等价⇔ r(A)=①、矩阵行等价:A~crr(B)=r(A,B)(P85定理2推论)=P1P2ΛPl17.方阵A可逆⇔存在有限个初等矩阵P1,P2,Λ,Pl,使AB⇔PA=B;=0(左乘,P可逆)⇔Ax=0与Bx同解18.19.20.21.②、矩阵列等价:A~B⇔AQ=B(右乘,Q可逆);③、矩阵等价:A~B⇔PAQ=B(P、Q可逆);对于矩阵Am⨯n与Bl⨯n:①、若A与B行等价,则A与B的行秩相等;②、若A与B行等价,则Ax=0与Bx=0同解,且A与B的任何对应的列向量组具有相同的线性相关性;④、矩阵A的行秩等于列秩;若Am⨯sBs⨯n=Cm⨯n,则:①、C的列向量组能由A的列向量组线性表示,B为系数矩阵;②、C的行向量组能由B的行向量组线性表示,AT为系数矩阵;(转置)齐次方程组Bx=0的解一定是ABx=0的解,考试中可以直接作为定理使用,而无需证明;①、ABx=0 只有零解⇒ Bx=0只有零解;②、Bx=0 有非零解⇒ ABx=0一定存在非零解;设向量组Bn⨯r:b1,b2,Λ,br可由向量组An⨯s:a1,a2,Λ,as线性表示为:(P110题19结论)(B=AK)其中K为s⨯r,且A线性无关,则B组线性无关⇔r(K)=r;(B与K的列向量组具有相同线性相关性)(必要性:Θr=r(B)=r(AK)≤r(K),r(K)≤r,∴r(K)=r;充分性:反证法)(b1,b2,Λ,br)=(a1,a2,Λ,as)K=m注:当r=s时,K为方阵,可当作定理使用;22.①、对矩阵Am⨯n,存在Qn⨯m,AQ=Em ⇔r(A)②、对矩阵Am⨯n,存在Pn⨯m,PA=En、Q的列向量线性无关;(P87)、P的行向量线性无关;⇔r(A)=n23.若η*为Ax=b的一个解,ξ1,ξ2,Λ,ξn-r为Ax=0的一个基础解系,则η*,ξ1,ξ2,Λ,ξn-r线性无关5、相似矩阵和二次型1.正交矩阵⇔AA=ET或A-1=AT(定义),性质:⎧1=⎨⎩0i=ji≠j(i,j=1,2,Λn)①、A的列向量都是单位向量,且两两正交,即aiTaj②、若A为正交矩阵,则A-1=AT;也为正交阵,且A=±1;③、若A、B正交阵,则AB也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2.施密特正交化:(a1,a2,Λ,ar) b1=a1;b2=a2-[b1,a2][b1,b1]γb1ΛΛΛ[b1,ar][b1,b1]γb1-[b2,ar][b2,b2]γb2-Λ-[br-1,ar][br-1,br-1]γbr-1br=ar-;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、A与B等价⇔A经过初等变换得到B;⇔PAQ=B,P、Q可逆;⇔r(A)=r(B),A、B同型;②、A与B 合同⇔CTAC=B,其中可逆;TT⇔xAx与xBx有相同的正、负惯性指数;③、A与B相似⇔P-1AP=B; 5.相似一定合同、合同未必相似;若C为正交矩阵,则CTAC=B⇒AγB,(合同、相似的约束条件不同,相似的更严格); 6.n元二次型xTAx为正定:T⇔A的正惯性指数为n⇔A与E合同,即存在可逆矩阵C,使CAC=E⇔A的所有特征值均为正数;⇔A的各阶顺序主子式均大于0⇒aii>0,A>0;(必要条件)第三篇:2013线性代数考研复习建议2013考研线性代数复习建议2013考研备考已经开始了,网校老师结合往年考研复习情况,也2013年考研的学生们一点建议。

自学考试线性代数2007-2012历年真题及答案

自学考试线性代数2007-2012历年真题及答案

全国2012年10月自学考试线性代数试题请考生按规定用笔将所有试题的答案涂、写在答题纸上。

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,A表示方阵A 的行列式,r(A )表示矩阵A 的秩。

选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设行列式1122=1a b a b ,11221a c a c -=--,则行列式111222=a b c a b c -- A .-1 B .0C .1D .22.设矩阵123456709⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*A 中位于第2行第3列的元素是A .-14B .-6C .6D .143.设A 是n 阶矩阵,O 是n 阶零矩阵,且2-=A E O ,则必有 A .1-=A A B .=-A E C .=A ED .1=A4.已知4×3矩阵A 的列向量组线性无关,则r (A T )= A .1 B .2 C .3 D .45.设向量组T T12(2,0,0),(0,0,-1)αα==,则下列向量中可以由12,αα线性表示的是A .(-1,-1,-1)TB .(0,-1,-1)TC .(-1,-1,0)TD .(-1,0,-1)T6.齐次线性方程组134234020x x x x x x ++=⎧⎨-+=⎩的基础解系所含解向量的个数为A.1B.2C.3D.47.设12,αα是非齐次线性方程组Ax =b 的两个解向量,则下列向量中为方程组解的是A .12αα-B .12αα+C .1212αα+D .121122αα+8.若矩阵A 与对角矩阵111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭D 相似,则A 2= A.EB.AC.-ED.2E9.设3阶矩阵A 的一个特征值为-3,则-A 2必有一个特征值为 A.-9 B.-3 C.3 D.910.二次型222123123121323(,,)222f x x x x x x x x x x x x =+++++的规范形为A .2212z z -B .2212z z + C .21zD .222123z z z ++二、填空题(本大题共10小题,每小题2分,共20分)11.行列式123111321的值为______. 12.设矩阵011001000⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则A 2=______.13.若线性方程组12323323122(1)x x x x x x λλ++=⎧⎪-+=-⎨⎪+=-⎩无解,则数λ=______.14.设矩阵43012110⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,=A P ,则PAP 2=______.15.向量组T T 12,-2,2,(4,8,8)k αα==-()线性相关,则数k =______. 16.已知A 为3阶矩阵,12,ξξ为齐次线性方程组Ax =0的基础解系,则=A ______. 17.若A 为3阶矩阵,且19=A ,则-1(3)A =______. 18.设B 是3阶矩阵,O 是3阶零矩阵,r (B )=1,则分块矩阵⎛⎫⎪⎝⎭E O B B 的秩为______.19.已知矩阵211121322⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,向量11k ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是A 的属于特征值1的特征向量,则数k =______.20.二次型1212(,)6f x x x x =的正惯性指数为______. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式a ba b D a a b b aba b+=++的值.22.设矩阵100112210,022222046A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求满足方程AX =B T 的矩阵X .23.设向量组123411212142,,,30614431αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,求该向量组的秩和一个极大线性无关组.24.求解非齐次线性方程组123412341234124436x x x x x x x x x x x x +--=⎧⎪+++=⎨⎪+--=⎩.(要求用它的一个特解和导出组的基础解系表示).25.求矩阵200020002⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的全部特征值和特征向量.26.确定a ,b 的值,使二次型22212312313(,,)222f x x x ax x x bx x =+-+的矩阵A 的特征值之和为1,特征值之积为-12. 四、证明题(本题6分)27.设矩阵A 可逆,证明:A *可逆,且*11*--=()()A A .全国2012年7月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为三阶矩阵,且13A -=,则 3A -( )A.-9B.-1C.1D.92.设[]123,,A a a a =,其中 (1,2,3)i a i = 是三维列向量,若1A =,则[]11234,23,a a a a - ( )A.-24B.-12C.12D.243.设A 、B 均为方阵,则下列结论中正确的是( ) A.若AB =0,则A=0或B=0 B. 若AB =0,则A =0或B =0 C .若AB=0,则A=0或B=0 D. 若AB ≠0,则A ≠0或B ≠04. 设A 、B 为n 阶可逆阵,则下列等式成立的是( ) A. 111()AB A B ---=B. 111()A B A B ---+=+ C .11()AB AB-= D. 111()A B A B ---+=+5. 设A 为m ×n 矩阵,且m <n ,则齐次方程AX=0必 ( ) A.无解B.只有唯一解 C .有无穷解 D.不能确定6. 设12311102103A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则()r A = A.1 B.2 C.3 D.47. 若A 为正交矩阵,则下列矩阵中不是正交阵的是( ) A. 1A -B.2A C .A ²D. T A8.设三阶矩阵A有特征值0、1、2,其对应特征向量分别为123ξξξ、、,令[]312,,2P ξξξ= 则1P AP -=( ) A. 200010000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 200000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .000010004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ D. 200000002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦9.设A 、B 为同阶方阵,且()()r A r B =,则( ) A.A 与B 等阶 B. A 与B 合同 C .A B =D. A 与B 相似10.设二次型22212312123(,,)22f x x x x x x x x =+-+则f 是( ) A.负定 B.正定 C .半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 、B 为三阶方阵,A =4,B =5, 则2AB = 12.设121310A ⎡⎤=⎢⎥⎣⎦ , 120101B ⎡⎤=⎢⎥⎣⎦ ,则TA B 13.设120010002A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则1A - =14.若22112414A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦且()2r A =,则t= 15.设1231120,2,2110a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则由 123,,a a a 生成的线性空间123(,,)L a a a的维数是16. 设A 为三阶方阵,其特征值分别为1、2、3,则1A E --=17.设111,21t a β-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,且a 与β正交,则t = 18.方程1231x x x +-=的通解是19.二次型212341223344(,,,)5f x x x x x x x x x x x =+++所对应的对称矩阵是20.若00100A x =⎢⎥⎢⎥⎥⎥⎦是正交矩阵,则x =三、计算题 (本大题共6小题,每小题9分,共54分)21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 22.设010111101A ⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦= 112053-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦B = ,且X 满足X=AX+B,求X23.求线性方程组的123412345221.53223x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩12x x 的通解,24.求向量组 (2,4,2),(1,1,0),(2,3,1),(3,5,2)====1234a a a a 的一个极大线性无关组,并把其余向量用该极大线性无关组表示。

【历年经典高考】2007年理科数学试卷及答案-四川卷

【历年经典高考】2007年理科数学试卷及答案-四川卷

2007年普通高等学校招生全国统一·考试·(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3到10页.·考试·结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、·考试·科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x --=-- (A )0 (B)1 (C)21 (D)32(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60°(5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a(D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3(B )4(C )23(D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l1、l2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. (13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ’所引的切线长相等,则动点P 的轨迹方程是 .(16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数 (Ⅰ)用表示 (Ⅱ)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.2007年普通高等学校招生全国统一·考试·(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π (15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.解:(Ⅰ)由1cos ,072παα=<<,得sin α=∴sin 7tan cos 1ααα===22tan tan 21tan 1ααα===--(Ⅱ)由02παβ<<<,得02παβ<-<又∵()13cos 14αβ-=,∴()sin αβ-==由()βααβ=--得:()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-11317142=⨯= 所以3πβ=(18)本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力. 解:(Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2()2172201360190C P C ξ===,()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯= 记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-= 所以商家拒收这批产品的概率为2795(19)本题主要考察异面直线所成的角、平面与平面垂直、二面角、三棱锥体积等有关知识,考察思维能力和空间想象能力、应用向量知识解决数学问题的能力、化归转化能力和推理运算能力. 解法一:(Ⅰ)∵,,PC AB PC BC ABBC B ⊥⊥=∴PC ABC ⊥平面, 又∵PC PAC ⊂平面 ∴PAC ABC ⊥平面平面(Ⅱ)取BC 的中点N ,则1CN =,连结,AN MN ,∵//PMCN =,∴//MN PC =,从而MN ABC ⊥平面 作NH AC ⊥,交AC 的延长线于H ,连结MH ,则由三垂线定理知,AC NH ⊥,从而MHN ∠为二面角M AC B --的平面角 直线AM 与直线PC 所成的角为060 ∴060AMN ∠=在ACN ∆中,由余弦定理得AN 在AMN ∆中,cot 1MN AN AMN =⋅∠== 在CNH ∆中,sin 1NH CN NCH =⋅∠==在MNH ∆中,tan MN MN MHN NH =∠===故二面角M AC B --的平面角大小为(Ⅲ)由(Ⅱ)知,PCMN 为正方形∴011sin12032P MAC A PCM A MNC M ACN V V V V AC CN MN ----====⨯⋅⋅⋅=解法二:(Ⅰ)同解法一(Ⅱ)在平面ABC 内,过C 作CD CB ⊥,建立空间直角坐标系C xyz -(如图)由题意有1,02A ⎫-⎪⎪⎝⎭,设()()000,0,0P z z >, 则()()000310,1,,,,,0,0,2M z AM z CP z ⎛⎫=-= ⎪⎪⎝⎭由直线AM 与直线PC 所成的解为060,得0cos60AM CP AM CP ⋅=⋅⋅,即200z z =,解得01z =∴()310,0,1,,02CM CA ⎛⎫==- ⎪⎪⎝⎭,设平面MAC 的一个法向量为{}111,,n x y z =,则11110102yz y z +=⎧-=,取11x =,得{1,3,n = 平面ABC 的法向量取为()0,0,1m = 设m 与n 所成的角为θ,则3cos 7m n m nθ⋅-==⋅显然,二面角M AC B --的平面角为锐角, 故二面角M AC B --的平面角大小为 (Ⅲ)取平面P C M 的法向量取为()11,0,0n =,则点A 到平面P C M 的距离113CA n h n ⋅==∵1,1PC PM ==,∴11111326212P MAC A PCM V V PC PM h --===⨯⋅⋅=⨯⨯⨯=(20)本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力.解:(Ⅰ)解法一:易知2,1,a bc ==所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1解法二:易知2,1,ab c ===())12,F F ,设(),P x y ,则22212121212121212cos 2PF PF F F PF PF PF PF F PF PF PF PF PF +-⋅=⋅⋅∠=⋅⋅⋅((22222211232x y x y x y ⎡⎤=++++-=+-⎢⎥⎣⎦(以下同解法一)(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭ ∴12122243,1144k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:k <或k > 又00090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+∵2223101144k k k -++>++,即24k < ∴22k -<<故由①、②得22k -<<-或22k <<(21)本题综合考察数列、函数、不等式、导数应用等知识,以及推理论证、计算及解决问题的能力.解:(Ⅰ)由题可得()'2fx x =所以过曲线上点()()00,x f x 的切线方程为()()()'n n n y f x f x x x -=-,即()()42n n n y x x x x --=-令0y =,得()()2142n n n n x x x x +--=-,即2142n n n x x x ++=显然0n x ≠ ∴122n n nx x x +=+ (Ⅱ)证明:(必要性)若对一切正整数1,n n n x x +≤,则21x x ≤,即11122x x x +≤,而10x >,∴214x ≥,即有12x ≥ (充分性)若120x ≥>,由122n n nx x x +=+ 用数学归纳法易得0n x >,从而()12212n n n x x n x +=+≥=≥,即()22n x n ≥≥ 又12x ≥ ∴()22n x n ≥≥于是214222n n n n n n n x x x x x x x +--=+-=()()2202n n nx x x -+=≤,即1n n x x +≤对一切正整数n 成立(Ⅲ)由122n n nx x x +=+,知()21222n n n x x x +++=,同理,()21222n n n x x x +--=故2112222n n n n x x x x ++⎛⎫++= ⎪--⎝⎭从而1122lg2lg 22n nn n x x x x ++++=--,即12n n a a += 所以,数列{}n a 成等比数列,故111111222lg2lg32n n n n x a a x ---+===-, 即12lg2lg32n n n x x -+=-,从而21232n n n x x -+=- 所以()212123131n n n x --+=-(22)本题考察函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法.考查综合推理论证与分析解决问题的能力及创新意识.(Ⅰ)解:展开式中二项式系数最大的项是第4项,这项是335631201C n n ⎛⎫= ⎪⎝⎭(Ⅱ)证法一:因()()22112211n f x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭121nn ⎛⎫>+ ⎪⎝⎭1121ln 12nn ⎛⎫⎛⎫>++ ⎪ ⎪⎝⎭⎝⎭()'1121ln 12nf x n n ⎛⎫⎛⎫≥++= ⎪ ⎪⎝⎭⎝⎭证法二:因()()22112211nf x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭而()'11221ln 1nf x n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭故只需对11n ⎛⎫+⎪⎝⎭和1ln 1n ⎛⎫+ ⎪⎝⎭进行比较.令()()ln 1g x x x x =-≥,有()'111x g x x x-=-= 由10x x-=,得1x = 因为当01x <<时,()'0g x <,()g x 单调递减;当1x <<+∞时,()'0g x >,()g x 单调递增,所以在1x =处()g x 有极小值1 故当1x >时,()()11g x g >=,从而有ln 1x x ->,亦即ln 1ln x x x >+> 故有111ln 1n n ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭恒成立. 所以()()()'222f x f f x +≥,原不等式成立.(Ⅲ)对m N ∈,且1m >有2012111111mkmk m m m m mmC C C C C m m m m m ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()2111121111112!!!k mm m m m m k m m m k m m m ---+-⋅⎛⎫⎛⎫⎛⎫=+++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112111121111112!!!k m m k m m m m m m --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-++---++-- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111122!3!!!k m <++++++ ()()11112213211k k m m <++++++⨯⨯--11111112122311k k m m ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-++-++- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭133m=-< 又因()102,3,4,,kk mC k m m ⎛⎫>= ⎪⎝⎭,故1213mm ⎛⎫<+< ⎪⎝⎭∵1213mm ⎛⎫<+< ⎪⎝⎭,从而有11213knk n n k =⎛⎫<+< ⎪⎝⎭∑成立,即存在2a =,使得11213knk n n k =⎛⎫<+< ⎪⎝⎭∑恒成立.笔记卡。

四川大学期末考试试题(闭卷)2017-2018春微积分

四川大学期末考试试题(闭卷)2017-2018春微积分

四川大学期末考试试题(闭卷)(2017——2018 学年第 2 学期) A 卷课程号:201138040 课序号:课程名称:微积分(I)-2 任课教师:成绩:⎩ 2 2 a b 1 - α 2 - β x 2 y 22 1 - - a 2 b2x 2 y 2⎧ 3 x 2 y 4 ⎪ , ( x , y ) ≠ (0, 0) ∂f ∂f5. f ( x , y ) = ⎨ x 2 + y 2, (1)求 ∂x (0, 0) 和 ∂y (0, 0) ;⎪0, ( x , y ) = (0, 0) (2)判断 (f x , y )在点 0, 0)处是否可微; (3)设向量l = ( , -2 2) , 求∂f (0, 0).∂l三、应用题 (每小题 9 分,共 18 分)1. 求圆 x 2 + y 2 = 1 上一点, 使得该点到 A (0, 0) 、 B (3, 0) 、C (0, 4) 的距离的平方之和最小.2. 设函数 y = f ( x ) 处处二阶可导, 其函数图像上任意一点x , y )处的切线与 y 轴的交点为(0, u ( x )) , 若u - u ' = y + 2 x 2 , 并且 f (1) = f '(1) + 4 = e , 求函数 y = f ( x ) .四、证明题 (每小题 6 分,共 12 分)1. 设可微函数 f ( x , y , z ) 满足: f (t a x , t b y , t c z ) = t a + b + c f ( x , y , z ), ∀t > 0 , 其中 a , b , c 都是正整数. 求证: ax∂f ( x , y , z ) ∂x + by ∂f ( x , y , z ) ∂y + cz ∂f ( x , y , z )∂z= (a + b + c ) f ( x , y , z ).x 2 y 2 z 2c 2 c 22. 设∑ 为曲面 a 2 + b 2 + c2 = 1 (a , b , c > 0) ,I = ⎰⎰ d S , ∑α = 1 - , β = 1 - .a 2b 2(1) 求证: I = 2⎰⎰d x d y , D xy其中 D xy = {( x , y ) ∈ 2| x a2 + y 2b 21}.1 (2) 上述积分很难直接计算, 试用你的想法给出 πI的估算公式, 并给出该公式在a = 1,b = 2,c = 3 时的结果. (保留两位小数, 合理的估值均可得分)2f 1 02018 微积分(1)-2 参考解答一、计算题:(每题褵分,共褳褰分)褱、求曲线x = cos t, y = sin t, z = t cos t 上点(1, 0, 0)处的切线方程褮解褺 对曲线方程关于t 求导可得切向量为(− sin t, cos t , cos t − t sin t ) ······························ 3分代入点(1, 0, 0)对应的参数t = 0可得点(1, 0, 0)处的切向量为(0, 1, 1). 于是褬切线方程为x − 1 = y = z ······································· 2分褲、求曲面z = xy 在点(−2, −3, 6)处的切平面方程褮 解褺 曲面z = xy 的法向量是(−z x , −z y , 1) = (−y, −x, 1), ········································ 3分于是在点(−2, −3, 6)处的法向量为(3, 2, 1). 因此,所求切平面方程为3(x + 2) + 2(y + 3) + z − 6 = 0,即3x + 2y + z + 6 = 0 ································ 2分褳、设D = {(x, y ) ∈ R 2| x + y :( 1, x ;;? 0, y ;;? 0},求FFx d x d y.解褺ffx d x d y = d x f 11−x 0x d y ······································ 3分1 11 =2 −3 = 6 ·······························2分褱0 = D 011D(x − x 2)d x ff f f f1−( ) =x x2 x Ω褴、设Ω是曲面z = ✓x 2 + y 2与平面z = 1围成的区域褬求FFF(z +x 2y 3 sin z 4)d x d y d z 褮解褺 由Ω的对称性褬fffx 2y 3 sin z 4d x d y d z = 0 ····························· 1分由截面法褬 注意到 D z = {(x, y ) ∈ R 2| x 2 +y 2 :( z 2} ············· 1分1 ∴ 原式 =d z 0D zf 1z d x d y=πz 3d zπ=4 ······························3分褵、设Γ是起点为(1, 0, 1)、 终点为(0, 1, 1)的有向线段褬 求F(y 2 + z − x )d y.解褺 Γ的参数方程x = 1−t, y = t, z = 1,t : 0 → 1, ········· 2分原式 = 0 5 (t 2+ t )d t褶、求微分方程初值问题= 6 ······························3分xy Iy = x 2的解褮y (1) = 2018解褺 由 y I xy I − y = 1,可得褺 y= x + C ······································· 2分代入初始条件褬 可得C = 2017.于是方程的解为y = x 2 + 2017x ······································· 3分褲Γ Ω0 x 3F 0 0F fff ff F ffff1 − 9 x2 + y 2二、解答题:(每题褸分,共褴褰分)褱、交换二次积分I = F 1 d x F 1 ✓3 y 2e y d y 的积分次序并计算I .解:画出积分区域:褲 分y I = F 1d yF √3 y ✓3y 2e y d x=1 ye y d y 3分 = ye y 11 − F 1 e y d yx 2 + y 2 + z 2 = 1褲、设曲线Γ的方程为x + y + z = 0 解褺 由Γ的轮换对称性褬 可得褬 求(x + 1)2d s 褮 Γx 2d s =ΓΓy 2d s =Γz 2d s= 1 (x 2+ y 2 + z 2)d s 3Γ1 2π = d s = .4分33Γ再由Γ关于原点的对称性褬 可得x d s = 0.2分 Γ(x + 1)2d s =ΓΓ(x 2+ 2x + 1)d s =Γx 2d s +Γ8πd s = .2分3褳、设平面曲线L 为y I x 2褬起点为 褬终点为 褬求F x d y − y d x 褮解褺 首先褬∂ −y−(x 2+ y 2) + 2y 2y 2 − x 2P y =( ∂y x 2+ y 2 ) = (x 2 + y 2 )2 = (x 2 + y 2 )2 , ∂ x (x 2 + y 2) − 2x 2 y 2 − x 2Q x =( ∂x x 2 + y 2 ) = (x 2 + y 2 )2 = (x 2 + y 2 )2 . 既然 P y = Q x 褬 于是曲线积分与路径无关褻 褳分褳Lx 0 0 0 = e − (e − 1) = 1.3分= 2 (3, 0) (−3, 0)(9 s in 2 θ + 9 c os 2 θ)d θ = π.3分✓ ✓−−Ω f √r cos ϕ · r 2 sin ϕd r4分∂x d x∂y d y取新的路径 L I : y =√9 − x 2褬 起点为(3, 0)褬 终点为(−3, 0)褮 L I 的参数方程x = 3 c os θ, y = 3 s in θ褬 其中θ从褰变化到π褮 褲分代入曲线积分可得1f π褴、设曲面Σ是球面z = 2 x 2 y 2与锥面z = x 2 + y 2围成立体的表面褬 Σ的方向指向外侧褬 求FF x 2d y d z + y 2d z d x + z 2d x d y 褮解褺 由高斯公式褬原式 =fff(2x + 2y + 2z )d x d y d z.2分由Ω的对称性褬 可得FFFx d x d y d z =FFFy d x d y d z = 0.∴ 原式 = 2ffff 2πΩz d x d y d z fπ/4Ωf 2= 4ππ/4cos ϕ sin ϕd ϕ = π.2分✓ 3x 2y 4褵、设f (x, y ) =✓x 2 + y2, (x, y ) (0, 0) 褬 褨褱褩求∂f (0, 0)和∂f(0, 0)褻0, (x, y ) = (0, 0)∂x ∂y √2 √2 ∂f褨褲褩判断f (x, y )在点(0, 0)处是否可微褻 褨褳褩设向量l = ( 2, − )褬 求 (0, 0)褮 2 ∂l 解褺 褨褱褩因为f (x, 0) = 0褬 ∂f (0, 0) = df (x, 0)| = 0.同理褬 因为f (0, y ) = 0褬 ∂f (0, 0) = df (0, y )|= 0. 2分褴0 d θ 0= 2 Ω 0 9 Σ原式 =d ϕx =0 y =0t5 5 5 5褨褲褩 令∆y = k ∆x 褬 通过计算下列极限褬发现其与k 有关褬 从而极限不存在褮f (0 + ∆x, 0 + ∆y ) − f (0, 0) − f x (0, 0)∆x − f y (0, 0)∆ylim∆x →0∆y →0✓(∆x )2 + (∆y )2✓ 3(∆x )2(∆y )4✓ 3(∆x )2(k ∆x )4 k 4/3= lim ∆x →0(∆x )2 ∆y →0+ (∆y ) = lim ∆x →0(∆x )2 + (k ∆x )2 = 1 + k 2 .因此褬由定义可知函数 f (x, y )在点(0, 0)处不可微褮 褳分褨褳褩因为 l = ( √2 2, − √2 ) = (cos α, cos β)褬 由方向导数的定义可得2∂f (0, 0) = limf (0 + t cos α, 0 + t cos β) − f (0, 0)∂l t →0+ 1✓ 3 t 6 cos 2 α cos 4 β1 分= lim t →0+t· ✓t 2cos 2 α +t 2 cos 2= .3β 2三、应用题:(每题褹分,共褱褸分)褱、求圆x 2 + y 2 = 1上一点褬 使得该点到A (0, 0)、B (3, 0)、C (0, 4)的距离的平方之和最小褮解褺 令f (x, y, λ) = x 2 + y 2 + (x − 3)2 + y 2 + x 2 + (y − 4)2 + λ(x 2 + y 2 − 1)褮褳分由方程组f x = 4x + 2(x − 3) + 2λx = 0f y = 4y + 2(y − 4) + 2λy = 0 3分f λ = x 2 + y 2 − 1 = 0可解得驻点为(x, y ) = (± 3 , ± 4 )褻 由题意可知所求的点为( 3 , 4)褮褳分褲、设函数y = f (x )处处二阶可导,并且f (1) = f I (1) + 4 = e ,其函数图像上任意一点(x, y )处的切线与y 轴的交点为(0, u (x )),若u − u I = y + 2x 2,求函数y = f (x )褮解褺 u (x ) − y = y I (0 − x )褬 u (x ) = y − xy I 褬 u I (x ) = y I − y I − xy II = −xy II 褮褵2∂u ∂v ∂wa 2 +b 2 +c 2= 1 (a, b, c > 0)I =d S α = 1 − a2 I 1 − αa 2 − β b 2因为u − u I = y − xy I + x y II = y + 2x 2,则当x0时褬 y II − y I = 2x.4分解方程y II − y I = 2x ,可得y = C 1e x + C 2 − x 2 − 2x.3分再由 f (1) = f I (1) + 4 = e ,可得y = e x − x 2 − 2x + 3.2分四、证明题:(每题褶分,共褱褲分)褱、设可微函数f (x, y, z )满足褺 f (t a x, t b y, t c z ) = t a +b +c f (x, y, z ), ∀t > 0褬 其 中 a, b, c 都是正整数褮 求证褺∂f ∂f ax (x, y, z ) + by ∂x ∂y ∂f (x, y, z ) + cz ∂z(x, y, z ) = (a + b + c )f (x, y, z ).证明褺 令u = t a x 褬 v = t b y 褬 w = t c z 褬 k = a + b + c 褮 对f (u, v, w ) = t k f (x, y, z )关于t 求导可得褺∂f (u, v, w )·at a −1x + ∂f (u, v, w )·bt b −1y + ∂f(u, v, w )·ct c −1z = k t k −1f (u, v, w ).褴分上述表达式中令t = 1褬 即有∂f ∂f ax (x, y, z ) + by ∂x ∂y ∂f(x, y, z ) + cz ∂z(x, y, z ) = (a + b + c )f (x, y, z ).褲、设为曲面x 2 y 2 z 2褲分褬FF褬c 2 褬β = 1 − b2 褮 褨褱褩 求证褺ff「Ix 2 y 2Ux 2 y 2a 2b 2褨褲褩 上述积分很难直接计算褬 试用你的想法给出1I 的估算公式褬 并给出该公π式在a = 1, b = 2, c = 3时的结果褮 褨保留两位小数褬 合理的估值均可得分褩褶1 − a2 − b 2D xy y 2 + x 2 d x d y, D xy : Σ c 2 Σ I = 2 :( 1.)∂x = − a 2 z 1 − a 2 − b 2 ∂y = − b 2 z , )y 2x 2 y 21 − a2 − b 2 − −2 2 a 1 α β I d x d y, 2分I ππ( 22 b1 − αa2 − β b 2 I证褺 褨褱褩 I x 2y 2 褬 ∂z c 2 x 褬 ∂z c 2 y褱分d S = !1 +c 2x 2−a 2 zc 2 y 2 + − b 2 zd x d y= 「I U 1 +x 2 c a 4 y 2 c 4 + d x d y「I 1 − (1 − c 2 a 2 ) x 2 a 2− (1 − c 2 y 2 b 2 ) b 2 d x d yU x 2 y 2I 「 x 21 − a2 − b 2 y 2U x 2 y 2 1 − a 2 − b2 由曲面Σ的对称性褬 只需要计算上半椭球面积的褲倍褻 因此褬ff 「Ix 2 y 2U x 2 y2a 2 b2褨褲褩 合理估值范围褺 4min {a 2, b 2, c 2} :( 1I :( 4max {a 2, b 2, c 2}. 参考估值公式褺1 I ≈ 4(a 2 + b 2 + c 2), π 314π I ≈ 3(ab + bc + ac ), 1 p πI ≈ 4a pb p + b pc p + a p c p, p > 0. 3当a = 1, b = 2, c = 3时褬 合理范围是 4 :( 1I :( 36 褮 事实上I ≈ 15.57褻 估值结果在[10, 20]上给褲分褻 估值结果在[4, 10) ∪ (20, 36]上给褱分褮褷1 − a2 − b 2D xy x 2 d x d y, D xy : = 1 − a 2 − b 2x 2 z = cI = 2 :( ( = y 21. 1分+。

2007年高考数学卷(四川.理)含详解

2007年高考数学卷(四川.理)含详解

2007年普通高等学校招生全国统一考试(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x →-=-- (A )0 (B)1 (C)21 (D)32 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60° (5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3 (B )4 (C )23 (D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上, 则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上.(13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1, 则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和 ⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . (16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值.(Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.2007年普通高等学校招生全国统一考试(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π(15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。

2007年高考数学卷(四川.文)含详解

2007年高考数学卷(四川.文)含详解

2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12 (9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有 A.48个 B.36个 C.24个 D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .三、解答题:本大题共6小题。

2007川大高等代数及答案

2007川大高等代数及答案

四川大学2007年攻读硕士学位研究生入学考试题一、(本题满分15分)设1x ,2x ,3x 是多项式1)(3++=ax x x f 的全部复根.1(5分)求行列式213132321x x x x x x x x x 的值. 2.(5分)求)(x f 的判别式232231221)()()()(x x x x x x f D ---=的值.3.(5分)设kk k k x x x S 321++=,求行列式432321210S S S S S S S S S 的值. 1.解:323132123232121313232132132121313232100x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ----++=++++++= 32312123321)(x x x x x x x x x x x ----++=由1x ,2x ,3x 是多项式1)(3++=ax x x f 的全部复根,得0321=++x x x则0213132321=x x x x x x x x x 2.解:)(f D 的首项为2241x x2302322222132101312223132030323313310131121412221003022241321222123033114024σσσσσσσσσσσσσσσσσσσσσσσσ=→=→=→=→=→---------------x x x有23321323312221)(σσσσσσσσσD C B A f D ++++=取11=x 、12=x 、03=x ,有21=σ,12=σ,03=σ 有04)(=+=B f D ①取11=x 、12=x 、13=x ,有31=σ,32=σ,13=σ 有09272781)(=++++=D C B A f D ②取11=x 、12=x 、23=x ,有41=σ,52=σ,23=σ 有0440125128400)(=++++=D C B A f D ③ 取11=x 、12=x 、33=x ,有51=σ,72=σ,33=σ有091053433751225)(=++++=D C B A f D ④ 由①、②、③、④,得4-=A 、4-=B 、18=C 、27-=D即23321323312221271844)(σσσσσσσσσ-+--=f D由01=σ、a =2σ、13-=σ,得274)(3--=a f D3.解:法1:232231221233222211232221321432321210)()()(111111x x x x x x x x x x x x x x x x x x S S S S S S S S S ---== 故274)(3432321210--==a f D S S S S S S S S S法2:0不是)(x f 的根,则有0,,321≠x x x有30302010=++=x x x S03211=++=x x x Sa x x x x x x x x x x x x S 2)(2)(32312123212322212-=++-++=++=321232231322221321221332133323136)(3)(x x x x x x x x x x x x x x x x x x x x x S -+++++-++=++= 636)(36)]()()([33333231212331223221+=+++=++++++-=S x x x x x x x x x x x x ,得33-=S )(2)(23222321222122322214342414x x x x x x x x x x x x S ++-++=++= )]()()([42221232321222322212x x x x x x x x x a +++++-=]}2)[(]2)[(]2)[({42122123312312232232212x x x x x x x x x x x x x x x a -++-++-+-= )]2()2()2([42123233122223221212x x x x x x x x x x x x a -+-+--=4232132143424124)](2)[(4S a x x x x x x x x x a -=++-++-=,故242a S =有27423232020332432321210--=-----=a a a a aS S S S S S S S S二、(本题满分10分)设F 是数域,][)(x F x p ∈不可约. 1(5分)证明:)(x p 在复数域上没有重根.2(5分)证明:如果)(x p 与某个多项式][)(x F x f ∈有公共复根,那么必有)()(x f x p 1.证明:)(x p 在F 上不可约,则1))('),((=x p x p 由C F ⊆,则在C 上,有1))('),((=x p x p 故)(x p 在复数域上没有重根2.证明:反证法:设)(x p 不能整除)(x f 令)(x p 的首项系数为n a (0≠n a )有)())(),((x d x f x p =,则)()()(x d x q x p =、)()()(x d x g x f =由)(x p 在F 不可约,有n a x q =)(,则)(1))(),((x p a x f x p n= 有)()(x f x p 与假设矛盾,故假设不成立,则有)()(x f x p三、(本题满分15分)设F 是数域,]}[)(:))({(][x F x a x a x M ij n n ij n ∈=⨯,即:][x M n 中的n 阶方阵的元素是][x F 中的多项式.称][x M A n ∈是可逆的,如果存在][x M B n ∈使得n E BA AB ==,其中,n E 是n 阶单位阵,称B 是A 的逆矩阵.1(5分)证明:关于通常的矩阵的加法和数乘运算,][x M n 是F 上的无穷维线性空间. 2(5分)证明:][x M A n ∈可逆当且仅当行列式)det(A 是F 中的非零数. 3(5分)证明:如果][x M A n ∈可逆,那么它的逆矩阵是唯一的. 1.证明:取][x M n 中k 个矩阵)1,,1,1(1 diag E =、),,,(2x x x diag E =、……、),,,(111---=k k k k x x x diag E有1E 、2E 、……、k E 线性无关,又k 为任意正整数,故][x M n 是F 上的无穷维线性空间. 2.证明:必要性:][x M A n ∈可逆,则存在][x M B n ∈,使得n E AB =,有0≠=n E B A故)det(A 是F 中的非零数. 充分性:由n E A AA =*,又)det(A 是F 中的非零数,则有n E A AA =*)1(则存在][1x M A A n ∈*,使得n E A AA =*)1(,则A 可逆. 3.证明:假设A 有两个逆矩阵B 、C ,即E AC AB == 有C EC ABC ACB EB B =====,即证.四、(本题满分25分)叙述并证明线性方程组有解的判别定理;当线性方程组有解时,给出它的通解并证明之.证明:线性方程组有解的充分必要条件为它的系数矩阵与增广矩阵有相同的秩 令A 为n m ⨯矩阵,β为m 维列向量 必要性:β=Ax 有解,有β可由A 的列向量组n ααα,,,21 线性表出则向量组n ααα,,,21 ,βααα,,,,21n 等价 故系数矩阵A 与增广矩阵A 有相同的秩 充分性:令A 的极大无关组为r γγγ,,,21系数矩阵A 与增广矩阵A 有相同的秩,有向量组n ααα,,,21 、βααα,,,,21n 等价, 则n ααα,,,21 与β都可由r γγγ,,,21 线性表出 故β可由n ααα,,,21 线性表出,即β=Ax 有解五、(本题满分20分) 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=142412222A . 1(7分)证明A 可以写成若干初等矩阵的乘积. 2(8分)把1-A 写成A 的多项式.3(5分)在有理数域上A 是否相似于一个对角矩阵?说明理由1证明:054900630222360630222142412222≠-=--=---=----=A ,则A 可逆 故A 可以写成若干初等矩阵的乘积2解:0)6()3(1424122222=+-=+---+--=-λλλλλλA E 有054273=+-λλ,则O E A A =+-54273则A A E 27543+-=,E A A 2154121+-=- 3证明:A 的特征值为3、3、6-当3=λ时,000002213-=-A E 基础解系由2)3(=--A E r n 个线性无关的向量构成,)'1,0,2(、)'1,1,0(当6-=λ时,9904520005424522286----=-------=--A E基础解系由1)6(=---A E r n 个向量构成, )'2,2,1(- 由Q ∈-6,3,3、又3)'2,2,1(,)'1,1,0(,)'1,0,2(Q ∈- 故在有理数域上A 可以相似于一个对角矩阵六、(本题满分10分)判断矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100101112 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011001是否相似,说明理由.证明:3)1(10011112-=----=-λλλλλA E ,则A 的特征值为1,1,1 当1=λ时,0000111000111111--=---=-A E 特征值1对应2)(=--A E r n 个线性无关的特征向量 ①3)1(1101101-=-----=-λλλλλB E ,则B 的特征值为1,1,1当1=λ时,0100010--=-B E特征值1对应1)(=--A E r n 个特征向量 ②由①、②,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100101112 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011001不相似七、(本题满分30分)设F 是数域, ),(F n gl 是F 上的n 阶方阵的全体.对任意),(,F n gl B A ∈,定义:BA AB B A -=],[1(5分)证明:对任意),(,,321F n gl A A A ∈都有:O A A A A A A A A A =++]],,[[]],,[[]],,[[2131323212(10分)设}0)(),({),(=∈=A tr F n gl A F n sl ,其中0)(=A tr 表示方阵n n ij a A ⨯=)(的迹:∑==ni ii a A tr 1)(.证明:),(F n sl 是),(F n gl 的子空间,并写出它的一个基.3(7分)设n D 是),(F n gl 中的数量矩阵组成的子空间.证明n D F n sl F n gl ⊕=),(),( 4(8分)证明)},(,],[{),(F n gl B A B A F n sl i i i i ∈=∑有限和1.证明:)()(]],,[[1221331221321A A A A A A A A A A A A A ---= 123213312321A A A A A A A A A A A A +--= ① 同理:231321123132132]],,[[A A A A A A A A A A A A A A A +--= ② 312132*********]],,[[A A A A A A A A A A A A A A A +--= ③ 把①、②、③代入,得O A A A A A A A A A =++]],,[[]],,[[]],,[[2131323212.证明:取任意),(F n sl A ∈,有),(F n gl A ∈,则),(),(F n gl F n sl ⊂ 取),(F n sl B ∈,有∑∑==+=n j i ij ij n i ii ii E k E k B 1,1(j i ≠)且01=∑=ni ii k∑=nj i ij ijE k1,中有n n -2个线性无关的矩阵构成由01=∑=ni ii k ,得关于K 齐次线性方程O E k E k E k nn nn =+++ 22221111该方程的基础解系由1-n 个线性无关的向量构成 故∑=ni ii ii E k 1中有1-n 个线性无关的矩阵构成则B 由1122-=-+-n n n n 个线性无关的矩阵构成,有1),(dim 2-=n F n sl故),(F n sl 是),(F n gl 的子空间,),(F n sl 的一组基为)(,),(),(,),(),(1,2111211nn n n nn nn n nn nn E E E E E E E E E E ------3证明:取n D C ∈,有n E C λ=,n E λ中由一个矩阵构成,得1dim =n D有),(dim ),(dim dim 2F n gl n F n sl D n ==+,故n D F n sl F n gl ⊕=),(),(4证明:由 n D F n sl F n gl ⊕=),(),(得),(F n sl 由),(F n gl 中全部的非数量矩阵和零矩阵构成 ①∑∑-=有限和有限和)(],[ii ii iiA B B A B A由)()(i i i i A B tr B A tr =,得∑有限和],[iiB A 的对角线元素全为零故∑有限和],[iiB A 表示),(F n gl 中全部的非数量矩阵和零矩阵 ②由①、②,得)},(,],[{),(F n gl B A B A F n sl i i i i ∈=∑有限和八、(本题满分10分)设V 是数域F 上的n 维线性空间,A ,B 是V 上的线性变换,其中B 可逆.证明,存在无穷多个F t ∈使得B t A +可逆. 证明:由B 可逆,则B 的对应特征值0≠i b (n i ,,2,1 =) 由B t A +对应特征值为i i tb a + 只要取F t ∈且iib a t -≠,就有0≠+i i tb a ,使得B t A +可逆 故存在无穷多个F t ∈使得B t A +可逆九、(本题满分15分)证明下述1+n 实矩阵A 是正定矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++++=+++++++122322212325242322242322212322221232135432432132n n n n n n n A n n n n n n n解:1223222123252423222423222123222222211321321321322+++++++=++++n n n n n n n A n n n n nnn n n n n n n n n 222112232221232524232224232221232222222)1(+++++++=+121312111315141312141312111312112122+++++++=++n n n n n n n n n11 12131211131514131214131211131211+++++++n n n n n n n为倒数对称行列式 根据公式有:)!12()!2()!1()!!3!2(121312111315141312141312111312113+++=+++++++n n n n n n n n n n n有0)!12()!2()!1()!!3!2(23122>+++=++n n n n A n n 故有A 的所有顺序主子式大于零,则A 正定。

线性代数2007级A卷第2学期试题答案及释疑

线性代数2007级A卷第2学期试题答案及释疑

四川大学期末考试试卷(A)2007-2008学年第二学期(07级理工)一.填空题1. 关于线性方程组的克莱姆法则成立的条件是2.设都是3阶方阵,且,则3. 设矩阵与矩阵相似,,则4.二次型的秩为____________注意:此处不是二次型的矩阵,因为它不是对称矩阵;该二次型的矩阵应为,所以该二次型的秩即矩阵的秩5. 设为阶实对称阵,则必有正交矩阵,使得,其中是以的全部特征值为对角元素的对角阵.二.单项选择题1. 向量组线性无关的充要条件是().存在不全为零的数使中任何个向量都线性无关中有一个向量不能由其余向量线性表示中任何向量都不能由其余向量线性表示2. 阶方阵的各行元素之和都为,下列()不成立.是的特征值有列向量,满足以上不全对为阶方阵,,是3. 设的两个不同的解,则的通解为().4. 设均为阶方阵,满足,若,则有的秩满足().,则(5. 设为矩阵,,).非齐次线性方程组无解非齐次线性方程组一定有无穷多解非齐次线性方程组有唯一解存在阶可逆矩阵使得三.计算题1. 计算行列式解答:注意到每行元素之和相同,所以2. 设均为阶方阵,为3阶单位阵,且有,其中,求矩阵.解答:因可逆,故即又因经初等行变换有故.3. 设有向量组,求此向量组的秩和一个极大无关组,并将其余向量由该极大无关组线性表出.解答:经初等行变换有显然可见,向量组的秩为3,为其一个极大无关组,且四.解答题,试问:1. 设方程组取什么值时,方程组有唯一解、无穷多解、无解;方程组有无穷多解时,求出全部解,并用向量表示;方程组有唯一解时,求出唯一解.解答:对增广矩阵作初等行变换有当且时,方程组有唯一解;时,因当,方程组无解;当,方程组有无穷解;时,因时,方程组有无穷解;此时对增广矩阵作初等行变换有当,导出组有基础解系为方程组有特解为,通解为为任意常数.时,方程组有唯一解;此时当且方程组的唯一解为设2.写出二次型的矩阵;用正交变换将二次型化为标准型;该二次型是否正定?解答:,故的特征值为因初等行变换有,的基础解系为故将正交化可得因初等行变换有,故的基础解系为单位化可得将令则为正交矩阵;在正交变换;下得原二次型的标准型为因二次型的矩阵的特征值全为正数,故正定,从而原二次型为正定二次型.五.证明题阶单位矩阵. 证明:1. 设阶可逆矩阵满足,其中是的伴随矩阵满足.证明:因且,故;又因为可逆,所以2. 已知线性无关,设有向量组,,.证明:向量组线性无关的充要条件是:.证明:设整理即得充分性:因线性无关,于是有,但由于系数矩阵,故该齐次线性方程组仅有零解,即,故向量组线性无关.必要性:用反证法 若,则齐次线性方程组必有非零解,即存在不全为零的使得,或成立,从而向量组线性相关,与题意矛盾,故.。

四川大学2007年文学考研真题

四川大学2007年文学考研真题

四川大学2007年攻读硕士学位研究生入学考试试题考试科目:中国文学科目代码:414适用专业:文艺学、中国古典文献学、中国古代文学、中国现当代文学、比较文学与世界文学、文艺与传媒、文化批评、文学人类学、佛教语言文学、广播影视文学(答案必须写在答题纸上,写在试卷上无效)_______________________________________________________________________________一.填空(每空1分,共60分)1.“青云衣兮白霓裳,举长矢兮射天狼”出自屈原的()2.“上书诣北阙,阙下歌《鸡鸣》”出自()的《咏史》3.“白骨露于野,千里无鸡鸣”出自曹操的()4.“宁为百夫长,胜作一生书”出自()作的《从军行》5.“江畔何人初见月,江月何年初照人”出自张若虚的()6.“海上升明月,天涯共此时”出自()的()7.“校尉羽书飞瀚海,单于烈火照狼山”出自高适的()8.“黄云万里动云气,白波九道流雪山”出自()作的《庐山谣寄卢侍御虚舟》9.“玉容寂寞泪阑干,梨花一枝春带雨”出自白居易的()10.“不知何处吹芦管,一夜征人尽望乡”出自()的《夜上受降城闻笛》11.“鱼书欲寄何由达?山长水远处处同”出自晏殊的()12.“我家江水初发源,宦游直送江入海”出自()作的《游金山寺》13.“九日清尊欺白发,十年负客为黄花”出自陈世道作的()14.“小楼一夜听春雨,深巷明朝卖杏花”出自()作的《临安春雨初霁》15.“山河风景元无异,城郭人民半已非”出自文天祥的()16,“枉把六经毁火底,桥边尤有未烧书”出自()作的《经下邳》17.《登徒子好色赋》的时代和作者是()18.《狱中上梁王书》的作者是()19.《解嘲》的时代和作者是()20.《王命论》的时代和作者是()21.《与山巨源绝交书》的时代和作者是()22.《与东方左史虬修竹篇序》的时代和作者是()23.《进学解》的朝代和作者是()24.《愚溪诗序》的朝代和作者是()25.《题燕太子丹传后》的朝代和作者是()26.《战国策目录序》的朝代和作者是()27.《金石录后序》的朝代和作者是()28.《一瓢道士传》的朝代和作者是()29.《复多尔衮书》的朝代和作者是()30.《巴黎观画记》的朝代和作者是()31.吕纬甫出自小说()32.《春风沉醉的晚上》的作者是()33.现代文学史上第一部白话诗集《尝试集》,初版于()年的3月34.()在()一文中说:“他的人生观真是一种单纯的信仰,这里只有三个大字:一个是爱,一个是自由,一个是美。

2007年-2012年线性代数(经管类)总试题+答案

2007年-2012年线性代数(经管类)总试题+答案

全国2007年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .-4 B .-1 C .1D .44218||2|2|131=⨯==--A A. 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABC C .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(TTTTTTTA A A AA AA A --=-=-=-,所以A -A T为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a ,则A *=( A ) A .⎪⎪⎭⎫⎝⎛--a cb dB .⎪⎪⎭⎫⎝⎛--a b c dC .⎪⎪⎭⎫⎝⎛--a c b dD .⎪⎪⎭⎫⎝⎛--a b c d 5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C ) A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--50043200101,则A 中( D ) A .所有2阶子式都不为零 B .所有2阶子式都为零 C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T+k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T+k (0,1,-1)TD .(1,0,2)T+k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T)1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,-1)T .9.矩阵A =⎪⎪⎪⎭⎫⎝⎛111111111的非零特征值为( B ) A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E)3(000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4B .3C .2D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000011100001000000000011110001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零. 12.设矩阵A =⎪⎪⎭⎫⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A AA A TT .13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__. E A B -==⎪⎪⎪⎭⎫⎝⎛000010100,r(B )=2. 15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__. 18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__. 0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+.秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+. 20.设矩阵A =⎪⎪⎪⎭⎫⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a . 011>=∆,0121112>-=-=∆a a,0)1(33021113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123. 解:0760300940200320100767367949249323123==. 22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A . 解: ⎪⎪⎪⎭⎫⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫ ⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫ ⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---12701200220210202→ ⎪⎪⎪⎭⎫⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/510010001, =-1A⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫⎝⎛---000330044400321→⎪⎪⎪⎪⎪⎭⎫⎝⎛000110011100321→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110000103001. (1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫⎝⎛-=11100011110011A →⎪⎪⎪⎭⎫ ⎝⎛--11101010010011→⎪⎪⎪⎭⎫⎝⎛--0101010010011→⎪⎪⎪⎭⎫ ⎝⎛0101010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为TTk k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵. 解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ.对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,单位化为 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=112α,单位化为 ⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ.令⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,0002213=-=a A ,00121123=-=a a A ,所以⎪⎪⎪⎭⎫⎝⎛=-333222312111100||1A A A A A A A A 是上三角矩阵. 全国2007年7月高等教育自学考试线性代数(经管类)试题答案 课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A )A .-2B .21-C .21 D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T,则必有( A ) A .B T =B B .B =2A C .B B T -=D .B =0B AA A AA AA A BTTTT TTT T=+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫⎝⎛--1111 5.下列矩阵中,是初等矩阵的为( C ) A .⎪⎪⎭⎫⎝⎛0001B .⎪⎪⎪⎭⎫ ⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(1021011222=-+=++=++t tt ttt ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1. 9.设A 为n 阶正交矩阵,则行列式=||2A ( C ) A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T .10.二次型2.2),,(y x z y x f -=的正惯性指数p 为( B ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分) 11.设矩阵A =⎪⎪⎭⎫⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A AA AATT.12.行列式1694432111中)2,3(元素的代数余子式=32A __-2__.2421132-=-=A .13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__.521)2,1(=⎪⎪⎭⎫ ⎝⎛=B A T.14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1. ⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__. ⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫⎝⎛x 01010101的一个特征值为0,则x =__1__. 0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=2112112的值. 解:4)26(2123211212302112112=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛=252610022501101220016101210013512),(E A ⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X .23.设矩阵A =⎪⎪⎪⎭⎫⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2. 解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--90000003121a →⎪⎪⎪⎭⎫⎝⎛--00090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--00014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛00032203421→⎪⎪⎪⎭⎫⎝⎛00032200201→⎪⎪⎪⎭⎫ ⎝⎛0002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1. 解:2)1)(2(31104)1(163310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫ ⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α. 令⎪⎪⎪⎭⎫⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D )A .-3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D ) A .2⎪⎪⎭⎫ ⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A .5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++D .)()(212121121ββC αC ββ+++-)(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系.8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A ) A .121B .71C .7D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,1230020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B ) A .23-B .32-C .32D .230|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-.10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C )A .⎪⎪⎪⎭⎫ ⎝⎛104012421B .⎪⎪⎪⎭⎫ ⎝⎛100010421C .⎪⎪⎪⎭⎫ ⎝⎛102011211D .⎪⎪⎪⎭⎫ ⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023. 12.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250. →),(E A T⎪⎪⎪⎭⎫ ⎝⎛10010*********200→⎪⎪⎪⎭⎫ ⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--00113001020010021→⎪⎪⎪⎭⎫ ⎝⎛---00113025020010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫ ⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006. ==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E . 14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等. 15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31. 16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k , ⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41.2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫⎝⎛a aa 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆aaa ,0)3(00010323>-==∆a a aaa ⇒30<<a .20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2. 三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:630102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫⎝⎛=10211P ,⎪⎪⎭⎫⎝⎛=01102P ,令21AP P B =,求1-B.解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫⎝⎛=-011012P , 111121----=P AP B=⎪⎪⎭⎫ ⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------070070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫⎝⎛---=2112113111aa a A →⎪⎪⎪⎭⎫⎝⎛-----a a a a a 11010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫⎝⎛-00000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫⎝⎛------011101110的全部特征值及对应的全部特征向量. 解:10010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=-000330211330330211112121211211121112A E λ ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.全国2008年1月自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

2007四川大学数学分析考研真题

2007四川大学数学分析考研真题

1 四川大学2007年攻读硕士学位研究生入学考试题一、(每小题7分,共21分)计算下列极限 1. ])11[(lim e n n n n -++∞→ 2. )tan (sec lim 2x x x -→π 3. nn n n !lim ∞→ 二、(每小题10分,共60分)计算下列积分(1)设⎩⎨⎧+-=x x x f 11)(200≥<x x ,求dx x f f ⎰-12))(( (2) dxdy y x D⎰⎰+,其中D 是由抛物线1=+y x ,0=x 及0=y 所围成的区域. (3)dxdydz y x ⎰⎰⎰Ω+22,其中Ω是锥面222z y x =+与上半球面22223a z y x =++所围成区域. (4)dSzx yz xy S ⎰⎰++)(,其中S 是锥面22y x z +=被柱面ax y x 222=+所截部分.(5)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223,其中L 是22y x π=从原点)0,0(O 到点)1,2(πA 的一段曲线. (6)⎰⎰++S zdxdy ydzdx xdydz ,其中S 为上半球面222y x R z --=的下侧.三、(本题15分)设),(y x f 在2R 上的可微函数,且有0)''(lim >=++∞→a yf xf y x r (22y x r +=),证明:),(y x f 在2R 上必有最小值.四、(本题14分)设),(y x u u =具有二阶连续偏导数,证明存在常数使得在变换ay x s +=,byx t +=下,可将微分方程03422222=∂∂+∂∂∂+∂∂y u y x u x u ,化为02=∂∂∂ts u 五、(本题20分)设)(x f 在]1,0[可导,且0)0(=f ,)(21)('x f x f ≤证明:在]1,0[上,0)(≡x f六、(本题20分)设)(x f 在2R 上具有二阶连续导数且0)1()0(==f f .对于任意)1,0(∈x ,0)(>x f . 证明:4)()(''10>⎰dx x f x f .。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档