2012年中考数学第一轮复习专题训练之六--一元一次不等式及不等式组(含答案)
2012年中考数试题学分类解析 专题12 一元一次不等式(组)-推荐下载
C. x>2
D.
3.
】
(2012
浙江义乌
3
分)在
x=﹣4,﹣1,0,3
A.﹣4 和 0 B.﹣4 和﹣1 C.0 和 3 D.﹣1 和 0 【答案】D。 【考点】解一元一次不等式组,不等式的解集。 【分析】解出不等式组,再检验所给四个数是否在不等式的解集的解集即可:
D.
x= 2
y=
x 2(x
4
2
1)
a+b c+d
bd
2
的
x
值是【
ac
【答案】B。
【考点】解二元一次方程组。
【分析】
B。
2x+y=8①
2x
y=0
②
①+②得两边除4x以=得8代入①得
6. (2012 福建泉州 3 分)把不等式 x 1 0 在数轴上表示出来,则正确的是【 】.
其中不等式正确的是【 】
A. ①③ 【答案】A。
【考点】不等式的性质。
B. ①④
【分析】根据不等式的性质,计算后作出判断:
C. ②④
D. ②③
ac a c
∵a、b、c、d 都是正实数,且 < ,∴ +1< +1 ,即 < 。
∴ b > d ,即 d < b ,∴③正确,④不正确。 a+b c+d c+d a+b
由第一个不等式得:x>﹣3,
由第二个不等式得:x>2。 ∴不等式组的解集是 x>2.故选 C。 2. (2012 广东广州 3 分)已知 a>b,若 c 是任意实数,则下列不等式中总是成立的是【 】
中考专题复习-一元一次方程(组)含答案
中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。
c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。
初中数学一元一次不等式训练题(含答案解析)
一元一次不等式的解法1.解不等式:552(2)x x-<+.2.解下列不等式:(1)726x->;(2)415x x-<+.3.解下列不等式:(1)51541x x+>-;(2)325 23x x--.4.解不等式523(1)x x+-,并把它的解集在数轴上表示出来.5.解不等式:2613x x +>-,并在数轴上表示解集.6.解不等式4113x x --<,并在数轴上表示解集.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩.11.解不等式组541.2x x ⎨+->⎪⎩12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩16.解不等式组1139x x -+⎨⎪⎩,并将它的解集在数轴上表示出来.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩;(2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩.20.解不等式组,并求出整数解33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.22.解不等式组2341213x xxx++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.参考答案与试题解析1.解不等式:552(2)x x -<+.【解答】解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.2.解下列不等式:(1)726x ->;(2)415x x -<+.【解答】解:(1)移项,得:267x >+, 合并同类项得:33x >;(2)移项,得:451x x -<+,合并同类项得:36x <,系数化成1得:2x <.3.解下列不等式:(1)51541x x +>-;(2)32523x x --. 【解答】解:(1)51541x x +>-; 移项,得:54115x x ->--,合并同类项得:16x >-;(2)32523x x --. 去分母,得:3(3)2(25)x x --, 去括号,得:39410x x --,移项,得:34109x x --+,合并同类项,得:1x --,系数化成1得:1x .4.解不等式523(1)x x +-,并把它的解集在数轴上表示出来.【解答】解:去括号,得:5233x x +-, 移项,得:5332x x ---,合并同类项,得:25x -,系数化为1,得: 2.5x -,将不等式的解集表示在数轴上如下:5.解不等式:2613x x +>-,并在数轴上表示解集. 【解答】解:移项,得:2163x x +>-, 合并同类项,得:553x >-, 系数化为1,得:3x >-,将不等式的解集表示在数轴上如下:6.解不等式4113x x --<,并在数轴上表示解集.【解答】解:去分母得:4133x x --<, 移项合并同类项得:4x <,在数轴上表示为:.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.【解答】解:去分母,得:425x x ++, 移项,得:254x x --,合并,得:1x ,将不等式的解集表示在数轴上如下:8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.【解答】解:去分母得:3(1)2(1)6x x +<-+, 去括号得:33226x x +<-+, 移项合并得:1x <.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩. 【解答】解:34612553x x x x ++⎧⎪⎨-+<⎪⎩①②,解不等式①得:1x ,解不等式②得:4x >-,不等式组的解集为:41x -<.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩. 【解答】解:()312122x x x x +<⎧⎪⎨-+>⎪⎩①②, 解不等式①得:3x <-,解不等式②得:5x >-,则不等式组的解集为53x -<<-.11.解不等式组280,541.2x x x -⎧⎪⎨+->⎪⎩ 【解答】解:2805412x x x -⎧⎪⎨+->⎪⎩①②, 解不等式①,得4x ,解不等式②,得2x <-, ∴原不等式组的解集为2x <-.12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.【解答】解:去括号,得224x x -<-, 移项,得242x x +<+, 合并同类项,得36x <, 系数化为1,得2x <. 解集在数轴上表示如图:13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.【解答】解:213122x x x +-⎧⎨+>-⎩①②, 由①得:2x -,由②得:3x <,不等式组的解集为:23x -<, 在数轴上表示:.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集. 【解答】解:2361422x x x x -<-⎧⎨--⎩①②, 解不等式①得:3x <, 解不等式②得:12x , 不等式组的解集为:132x <,在数轴上表示为:.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩【解答】解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②, 解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.16.解不等式组121139x x x x ->⎧⎪-+⎨⎪⎩,并将它的解集在数轴上表示出来. 【解答】解:解不等式12x x ->,得:1x <-, 解不等式1139x x -+,得:2x , 将解集表示在数轴上如下:∴不等式组的解集为1x <-.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 3x - ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .【解答】解:()I 解不等式①,得3x -; ()II 解不等式②,得:3x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:()IV 原不等式组的解集为33x -.故答案为:3x -,3x ,33x -.18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解. 【解答】解:3152113x x x ->⎧⎪⎨++⎪⎩①②, 解不等式①得:2x >,解不等式②得:4x ,∴不等式组的解集是24x <, 在数轴上表示不等式组的解集为:,所以不等式组的所有整数解是3,4.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩; (2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩. 【解答】解:(1)11213x x +>-⎧⎨+<⎩①②, 解不等式①得:2x >-,解不等式②得:1x <,则不等式组的解集为21x -<<;(2)()3241213x x x x ⎧---⎪⎨+>-⎪⎩①②, 解不等式①得:1x ,解不等式②得:4x <,∴不等式组的解集为1x .20.解不等式组,并求出整数解 33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩. 【解答】解()3321318x x x x -⎧+⎪⎨⎪--<-⎩①② 解不等式①得:3x ,解不等式②得:2x >-,则不等式组的解集为23x -<, 所以不等式组的整数解为1-,0,1,2,3.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.【解答】解:解不等式2(3)5x x --,得:1x , 解不等式35146x x -<+,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:22.解不等式组2341213x x x x ++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解. 【解答】解:2341213x x x x ++⎧⎪⎨+>-⎪⎩①②解①得:1x,解②得:4x<,不等式组的解集为:14x <,则它的所有正整数解为3,2,1.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.【解答】解:4537422133x xx x+<+⎧⎪⎨+-⎪⎩①②,解①得2x<,解②得12x-,故不等式组的解集为122x-<,则其整数解为0,1.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.【解答】解:解不等式2(1)1x x-+,得:3x,解不等式2323x x++,得:0x,则不等式组的解集为03x,所以不等式组的整数解之和为01236+++=.。
中考数学总复习《一元一次不等式(组)》专项测试卷带答案
中考数学总复习《一元一次不等式(组)》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.x≤2在数轴上表示正确的是( )2.(2024·广州)若a<b,则( )A.a+3>b+3B.a-2>b-2C.-a<-bD.2a<2b3.(2024·雅安)不等式组{3x−2≥42x<x+6的解集在数轴上表示为( )4.(2024·南宁模拟)小霞原有存款52元,小明原有存款70元.从这个月开始,小霞每月存15元零花钱,小明每月存12元零花钱,设经过n个月后小霞的存款超过小明,可列不等式为( )A.52+15n>70+12nB.52+15n<70+12nC.52+12n>70+15nD.52+12n<70+15n5.(2024·广东)关于x的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是.6.(2024·青海)请你写出一个解集为x >√7的一元一次不等式 .7.(2024·龙东)关于x 的不等式组{4−2x ≥012x −a >0恰有3个整数解,则a 的取值范围是 . 8.解不等式组:{2x +1>0x+13>x −1.B 层·能力提升9.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是( )A .c (b -a )<0B .b (c -a )<0C .a (b -c )>0D .a (c +b )>010.(2024·包头)若2m -1,m ,4-m 这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .m <2B .m <1C .1<m <2D .1<m <5311.某品牌护眼灯的进价为240元,商店以320元的价格出售.五一期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.12.(2024·雅安)某市为治理污水,保护环境,需铺设一段全长为3 000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元.该公司原计划最多应安排多少名工人施工?13.(2024·桂林模拟)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块区域分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买鲜花费用不超过5万元,求最多可以购买多少株牡丹?C 层·挑战冲A +14.(2024·深圳)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为购物车叠放在一起的示意图,若一辆购物车车身长1 m,每增加一辆购物车,车身增加0.2 m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的解析式; 任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6 m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?参考答案A层·基础过关1.x≤2在数轴上表示正确的是(C)2.(2024·广州)若a<b,则(D)A.a+3>b+3B.a-2>b-2C.-a<-bD.2a<2b3.(2024·雅安)不等式组{3x−2≥42x<x+6的解集在数轴上表示为(C)4.(2024·南宁模拟)小霞原有存款52元,小明原有存款70元.从这个月开始,小霞每月存15元零花钱,小明每月存12元零花钱,设经过n个月后小霞的存款超过小明,可列不等式为(A)A.52+15n>70+12nB.52+15n<70+12nC.52+12n>70+15nD.52+12n<70+15n5.(2024·广东)关于x的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是x≥3.6.(2024·青海)请你写出一个解集为x >√7的一元一次不等式 x -√7>0(答案不唯一) .7.(2024·龙东)关于x 的不等式组{4−2x ≥012x −a >0恰有3个整数解,则a 的取值范围是-12≤a <0.8.解不等式组:{2x +1>0x+13>x −1.【解析】解不等式2x +1>0得x >-12解不等式x+13>x -1得x <2.∴不等式组的解集是-12<x <2.B 层·能力提升9.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是(C)A .c (b -a )<0B .b (c -a )<0C .a (b -c )>0D .a (c +b )>010.(2024·包头)若2m -1,m ,4-m 这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是(B) A .m <2B .m <1C .1<m <2D .1<m <5311.某品牌护眼灯的进价为240元,商店以320元的价格出售.五一期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 32 元.12.(2024·雅安)某市为治理污水,保护环境,需铺设一段全长为3 000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?【解析】(1)设原计划每天铺设管道x米,则实际施工每天铺设管道(1+25%)x=1.25x(米)根据题意得:3 0001.25x +15=3 000x解得x=40经检验x=40是分式方程的解,且符合题意∴1.25x=50,则原计划与实际每天铺设管道各为40米,50米;(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元.该公司原计划最多应安排多少名工人施工?【解析】(2)设该公司原计划应安排y名工人施工3000÷40=75(天)根据题意得:300×75y≤180 000解得y≤8∴不等式的最大整数解为8则该公司原计划最多应安排8名工人施工.13.(2024·桂林模拟)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;【解析】(1)设垂直于墙的边为x米,围成的矩形面积为S平方米,则平行于墙的边为(120-3x)米根据题意得:S=x(120-3x)=-3x2+120x=-3(x-20)2+1 200∵-3<0,∴当x=20时,S取最大值1 200∴120-3x=120-3×20=60∴垂直于墙的边为20米,平行于墙的边为60米,花园面积最大为1 200平方米;(2)在花园面积最大的条件下,A,B两块区域分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买鲜花费用不超过5万元,求最多可以购买多少株牡丹?【解析】(2)设购买牡丹m株,则购买芍药1 200×2-m=(2 400-m)株∵学校计划购买鲜花费用不超过5万元∴25m+15(2 400-m)≤50 000,解得m≤1 400,∴最多可以购买1 400株牡丹.C层·挑战冲A+14.(2024·深圳)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为购物车叠放在一起的示意图,若一辆购物车车身长1 m,每增加一辆购物车,车身增加0.2 m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的解析式; 任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6 m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?【解析】任务1:根据题意得:L =0.2(n -1)+1=0.2n +0.8∴车身总长L 与购物车辆数n 的解析式为L =0.2n +0.8; 任务2:当L =2.6时,0.2n +0.8=2.6 解得n =92×9=18(辆)答:直立电梯一次性最多可以运输18辆购物车;任务3:设用扶手电梯运输m次,直立电梯运输n次∵100÷24=416根据题意得:{m+n=524m+18n≥100解得m≥53∵m为正整数,且m≤5,∴m=2,3,4,5∴共有4种运输方案.。
2012届中考数学一元一次不等式及其应用专题复习测试题及答案
2012届中考数学一元一次不等式及其应用专题复习测试题及答案(备战中考)江苏省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)一元一次不等式及其应用◆知识讲解1.一元一次不等式的概念类似于一元一次方程,含有一个未知数,未知数的次数是1•的不等式叫做一元一次不等式. 2.不等式的解和解集不等式的解:与方程类似,我们可以把那些使不等式成立的未知数的值叫做不等式的解.不等式的解集:对于一个含有未知数的不等式,它的所有的解的集合叫做这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴来表示. 3.不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或 > ).性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或 > ).不等式的其他性质:①若a>b,则b<a;②若a> b,b>c,则a>c;③若a≥b,且b≥a,•则a=b;④若a≤0,则a=0. 4.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向. 5.一元一次不等式的应用列一元一次不等式解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系十分重要. 6.解不等式组一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集. 7.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组(其中a<b)图示解集口诀x≥b 同大取大x≤a 同小取小a≤x≤b 大小、小大中间找空集小小、大大找不到 8.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.◆例题解析例1(2011浙江温州,23,12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题. (1)求这份快餐中所含脂肪质量; (2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量; (3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.【答案】解:(1)400×5%=20.答:这份快餐中所含脂肪质量为20克. (2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176 答:所含蛋白质的质量为176克. (3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,∴y≥40,∴380-5y≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为而克,则n≥(1-85%-5%)×400 ∴n≥40,∴4n≥160,∴400×85%-4n≤180,∴所含碳水化合物质量的最大值为180克.例2若实数a<1,则实数M=a,N= ,P= 的大小关系为() A.P>N>MB.M>N>PC.N>P>MD.M>P>N 【分析】本题主要考查代数式大小的比较有两种方法:其一,由于选项是确定的,我们可以用特值法,取a>1内的任意值即可;其二,•用作差法和不等式的传递性可得M,N,P的关系.【解答】方法一:取a=2,则M=2,N= ,P= ,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a- = >0,∴M>P; P-N= - = >0,∴P>N.∴M>P>N,应选D.【点评】应用特值法来解题的条件是答案必须确定.如,当a>1时,A与2a-2•的大小关系不确定,当1<a<2时,当a>2a-2;当a=2时,a=2a-2;当a>2时,a<2a-2,因此,•此时a与2a-2的大小关系不能用特征法.例3(2011四川内江,加试6,12分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元. (1)每台电脑机箱、液晶显示器的进价各是多少元? (2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少? 【答案】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,得,解得答:每台电脑机箱的进价是60元,液晶显示器的进价是800元 (2)设购进电脑机箱z台,得,解得24≤x≤26 因x是整数,所以x=24,25,26 利润10x+160(50-x)=8000-150x,可见x越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。
2012中考数学复习一元一次不等式
九年级数学(下)学案课题:基础复习第五课时不等式学案撰稿人:夏玉焰班级九( )班学生: 月日一复习目标1一元一次不等式和一元一次不等式组的概念,不等式基本性质2 一元一次不等式和一元一次不等式组的解法复习过程:(一)中考前沿1课标解读2命题分析3复习指导(二)夯实基础1.用________表示不等关系的式子叫做不等式.2.一个含有________的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集3.一元一次不等式:只含有一个__________,并且___________的次数是一次的整式不等式叫做一元一次不等式.4一元一次不等式组是指几个_________不等式所组成的不等式组.5.不等式的三条基本性质:(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向________;(2)不等式两边都乘以(或除以)同一个_______,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个________,不等号的方向改变.6.求几个不等式解集的公共部分有如下规律:(1)同大取大,如;(2)同小取小,如;(3)大于小的且小于大的取中间,如:(4)小于小的且大于大的是空集如(三)典例探究例1.(2003年·盐城市)若0<a<1,则下列四个不等式中正确的是( )A.a<1<1/aB.a<1/a<1C.1/a<a<1D.1<1/a<a例2(2003年·海淀区)不等式组2x-6<0x+5>-3的解集是( )A.2<x<3B.-8<x<-3C.-8<x<3D.x<-8或x>3小练习: 1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D. 2. 不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <- D.12x <- 3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( ) A .3个 B .4个 C .5个 D .6个 例3解不等式212431436x x x --+-≤-并把解集在数轴上表示例4.解不等式组:(1)21113x x x +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x例5; 已知:关于x 的方程x 2+(2m+1)x+m 2+2=0有两个不相等的实根,试判断直线y=(2m-3)x-4m+7能否通过点A(-2,4),并说明理由.小练习: 1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来. B A O C 0)c a (b >-1 0 1- 1 0 1- 1 0 1- 10 1-(四)基础达标1.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A .①与②B .②与③C .③与④D .①与④2.若0a b <<,则下列式子:①12a b +<+;②1a b >;③a b ab +<;④11a b <中,正确的有( )A .1个 B .2个 C .3个 D .4个3. 下列哪个不等式组的解集在数轴上表示如图所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩ 4若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A.k <1/3B.1/3<k <1C.k >1D.k >1或k <1/3(五)能力提高1我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.2甲、乙两车间同生产一种零件,甲车间有1人每天生产6件,其余每人每天生产11件,乙车间有1人每天生产7件,其余的生产10件,已知各车间生产的零件总数相等,且不少于100件不超过200件,求甲、乙车间各多少人?3(2003年·哈尔滨市)慧秀中学在防“非典”知识竞赛中,评出一等奖4人,二等奖6人,三等奖20人,学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)若一等奖、二等奖、三等奖的奖品分别是喷壶、口罩和温度计,购买这三种奖品共计花费113元,其中购买喷壶的总钱数比购买口罩的总钱数多9元,而口罩的单价比温度计的单价多2元,求喷壶、口罩和温度计的单价各是多少元?第3题图。
中考数学《一元一次不等式》复习练习及答案中考数学考点分类汇
年级数学中考复习专题一元一次不等式一、选择题:1、若a、b是有理数,则下列说法正确的是()A、若,则B、若,则C、若,则D、若,则2、不等式5x﹣1>2x+5的解集在数轴上表示正确的是( )A. B.C. D.3、已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0B.a>1C.a<0D.a<14、要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤35、若不等式组无解,则有()A、B、 C、D、≤6、已知点P(2a+4,3a-6)在第四象限,那么a的取值范围是()A.-2<a<3B.a<-2C.a>3D.-2<a<27、不等式组有3个整数解,则a的取值范围是()A. B. C. D.8、若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0B.﹣1<k<0C.0<k<8D.k>﹣49、阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如,如果,则的取值范围是()(A)(B)(C)(D)10、使不等式x-1≥2与3x-7<8同时成立的x的整数值是( )A.3,4B.4,5C.3,4,5D.不存在11、关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥312、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学二、填空题:13、不等式的解集是.14、已知b<a<0,则ab,a²,b²的大小为。
15、不等式2+9≥3(+2)的正整数解是。
16、如图,已知直线与直线相交于点(2,-2),由图象可得不等式的解集是.17、已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是.18、关于x的不等式的解为,则不等式的解为。
19、从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数的自变量取值范围内的概率是.20、某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值范围是___________.21、若不等式组的解集是﹣3<x<2,则a+b= .22、某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打__________折.23、有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子。
2012中考数学试题及答案分类汇编:方程(组)和不等式(组)
2012中考数学试题及答案分类汇编:方程(组)和不等式(组)一、选择题1(山西省2分)分式方程1223x x =+的解为 A 、1x =- B 、1x = C 、2x = D 、 3x =【答案】B 。
【考点】解分式方程。
【分析】观察可得最简公分母是2x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2x (x +3),得x +3=4x ,解得x =1、检验:把x =1代入2x (x +3)=8≠0。
∴原方程的解为:x =1。
故选B 。
2.(山西省2分)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元、设该电器的成本价为x 元,根据题意,下面所列方程正确的是A 、(130%)80%2080x +⨯=B 、30%80%2080x ⋅⋅=C 、208030%80%x ⨯⨯=D 、30%208080%x ⋅=⨯【答案】A 。
【考点】由实际问题抽象出一元一次方程。
【分析】设该电器的成本价为x 元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程:x (1+30%)×80%=2080。
故选A 。
3.(内蒙古巴彦淖尔、赤峰3分)不等式组⎩⎨⎧x+2>0 x -2≤0的解集在数轴上表示正确的是【答案】B 。
【考点】解一元一次不等式组,在数轴上表示不等式的解集。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
解不等式组得到﹣2<x≤2。
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集、有几个就要几个。
在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
一元一次不等式(组)的应用题专项练习(含详细答案)
一元一次不等式(组)的应用题专项练习一元一次不等式(组)的应用题专项练习一.选择题(共10小题)1.(2011•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A . 6折B . 7折C . 8折D . 9折2.(2010•安顺)不等式组的解集在数轴上表示为( ) A .B .C .D .3.(2009•柳州)若a <b ,则下列各式中一定成立的是( )A . a ﹣1<b ﹣1B . >C . ﹣a <﹣bD . a c <bc4.(2009•荆门)若不等式组有解,则a 的取值范围是( ) A . a >﹣1 B . a ≥﹣1 C . a ≤1 D . a < 15.(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .B .C .D .6.(2008•恩施州)如果a <b <0,下列不等式中错误的是( )A . a b >0B . a +b <0C . <1D . a ﹣b <07.(2007•枣庄)不等式2x ﹣7<5﹣2x 正整数解有( )A . 1个B . 2个C . 3个D . 4个8.(2007•乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( )A . x <yB . x >yC . x ≤yD . x ≥y9.(2006•镇江)如果a <0,b >0,a+b <0,那么下列关系式中正确的是( )A . a >b >﹣b >﹣aB . a >﹣a >b >﹣bC . b >a >﹣b >﹣aD .﹣a >b >﹣b > a10.(2005•绵阳)如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( )A . a >0B . a <0C . a >﹣1D . a <﹣1二.解答题(共20小题)11.(2012•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?12.(2012•资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.13.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?14.(2012•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.15.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.16.(2012•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?17.(2012•铁岭)为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?18.(2012•宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:生活用水单价污水处理单价每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?19.(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.20.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A 80 40B 50 70(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?21.(2012•牡丹江)某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?22.(2012•泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23.(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?24.(2012•哈尔滨)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?25.(2012•广安)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?26.(2012•朝阳)为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?27.(2012•常德)某工厂生产A、B两种产品共50件,其生产成本与利润如下表:A种产品B种产品成本(万元/件)0.6 0.9利润(万元/件)0.2 0.4若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?28.(2012•北海)某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?29.(2012•佛山)解不等式组,注:不等式(1)要给出详细的解答过程.30.(2010•黔南州)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?一元一次不等式(组)的应用题专项练习参考答案与试题解析一.选择题(共10小题)1.(2011•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折考点:一元一次不等式的应用.分析:本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200x×0.1≥800(1+0.05),解出x的值即可得出打的折数.解答:解:设可打x折,则有1200x×0.1≥800(1+0.05)120x≥840x≥7故选B点评:本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时要注意要乘以0.1.2.(2010•安顺)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:由(1)得,x>1,由(2)得,x≥2,故原不等式的解集为:x≥2,在数轴上可表示为:故选A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.3.(2009•柳州)若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1 B.C.﹣a<﹣b D.a c<bc>考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1;是正确的;B、C、D不正确.故选A.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.5.(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.解答:解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解;B、解集是:﹣1≤x<4;C、解集是:x>4;D、解集是:﹣1<x≤4;故选B.点评:考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.6.(2008•恩施州)如果a<b<0,下列不等式中错误的是()D.a﹣b<0A.a b>0 B.a+b<0 C.<1考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a,b同是负数,因而ab>0,正确;B、a+b<0一定正确;C、a<b<0则|a|>|b|则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C不对;D、正确;故选C.点评:利用特殊值法验证一些式子错误是有效的方法.7.(2007•枣庄)不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2007•乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y考点:一元一次不等式的应用.专题:应用题.分析:题目中的不等关系是:买黄瓜每斤平均价>卖黄瓜每斤平均价.解答:解:根据题意得,他买黄瓜每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱则>解之得,x>y.所以赔钱的原因是x>y.故选B.点评:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.(2006•镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣a B.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.10.(2005•绵阳)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1考点:解一元一次不等式.分析:本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.解答:解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选D.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.二.解答题(共20小题)11.(2012•自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?考点:一元一次不等式组的应用;一元一次方程的应用.专题:应用题.分析:(1)设弟弟每天编x个中国结,根据弟弟单独工作一周(7天)不能完成,得7x<28;根据哥哥单独工作不到一周就已完成,得7(x+2)>28,列不等式组进行求解;(2)设哥哥工作m天,两人所编中国结数量相同,结合(1)中求得的结果,列方程求解.解答:解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结.依题意得:,解得:2<x<4.∵x取正整数,∴x=3;(2)设哥哥工作m天,两人所编中国结数量相同,依题意得:3(m+2)=5m,解得:m=3.答:弟弟每天编3个中国结;若弟弟先工作2天,哥哥才开始工作,那么哥哥工作3天,两人所编中国结数量相同.点评:本题考查一元一次不等式组和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.12.(2012•资阳)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)根据一套办公桌椅比一套课桌凳贵80元以及用2000元恰好可以买到10套课桌凳和4套办公桌椅,得出等式方程求出即可;(2)利用购买电脑的资金不低于16000元,但不超过24000元,得出16000≤80000﹣120×20m﹣200×m≤24000求出即可.解答:解:(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得:,…(2分)解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元…(3分);(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意得:16000≤80000﹣120×20m﹣200×m≤24000…(5分)解得:…(6分),∵m为整数,∴m=22、23、24,有三种购买方案:…(7分)方案一方案二方案三课桌凳(套)440 460 480办公桌椅(套)22 23 24…(8分)点评:此题主要考查了二元一次方程组的应用和不等式组的应用,根据已知得出不等式关系是解题关键.13.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?考点:一元一次不等式组的应用.分析:由于购买A年票首先要花100元,以后就不用再花钱了,那么可让另外三种购票方式所花的费用分别大于等于100,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算.解答:解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x≥10,解②得:x≥25,∴不等数组的解集是:x≥25.答:某游客一年进入该公园超过25次时,购买A类年票合算.点评:此题主要考查了不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.(2012•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,解得:x>,购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,则费用最省需x取最小整数9,此时17﹣x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.点评:此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.15.(2012•潍坊)为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设李明每月存款x元,储蓄盒内原有存款y元,根据题意得两个等量关系:①储蓄盒内原有存款+2个月的存款=80元;储蓄盒内原有存款+5个月的存款=125元,根据等量关系可列出方程组,解可得答案;(2)首先计算出2012年共有的存款数,再由题意可得从2013年1月份开始,每月存款为(15+t)元;从2013年1月到2015年6月共有30个月,共存款30(15+t),再加上2012年共有的存款数存款总数超过1000元,由此可得不等式230+30(15+t)>1000,解出不等式,取符合条件的最小的整数值即可.解答:解:(1)设李明每月存款x元,储蓄盒内原有存款y元,依题意得,,解得,答:储蓄盒内原有存款50元,即在李明2012年1月份存款前,储蓄盒内已有存款50元;(2)由(1)得,李明2012年共有存款12×15+50=230元,2013年1月份后每月存入(15+t)元,2013年1月到2015年6月共有30个月,依題意得,230+30(15+t)>1000,解得t>10,所以t的最小值为11.答:t的最小值为11.点评:此题主要考查了二元一次方程组以及一元一次不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,再设出未知数列出方程组与不等式.16.(2012•铜仁地区)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B 种纪念品6件需要钱数=800;(2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可;(3)计算出各种方案的利润,比较即可.解答:解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,…2分解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,…6分解得:50≤x≤53,…7分∵x 为正整数,∴共有4种进货方案…8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…10分总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分点评:此题主要考查了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的关键,注意第二问应求得整数解.。
中考数学复习 一元一次不等式与一元一次不等式组 专项复习练习 含答案
1-a 1 ⎩中考数学复习 一元一次不等式与一元一次不等式组 专项复习练习1. 下列不等式中,属于一元一次不等式的是()1A .4>1B .3x -24<4C.x <2D .4x -3<2y -71 2.若2x 2m- -8>5 是一元一次不等式,则 m 的值为()A .0B .1C .2D .313. 不等式-2x >2的解集是()1 1A .x <-4B .x <-1C .x >-4D .x >-14. 若关于 x 的一元一次方程 x -m +2=0 的解是负数,则 m 的取值范围是( )A .m≥2B .m >2C .m <2D .m≤25. 不等式 6-4x≥3x-8 的非负整数解为( )A .2 个B .3 个C .4 个D .5 个26. 不等式(1-a) x >2 变形后得到 x < 成立,则 a 的取值范围是()A .a >0B .a <0C .a >1D .a <1⎧⎪x -m <0,7. 已知 4<m <5,则关于 x 的不等式组⎨ 的整数解共有()⎪4-2x <0A .1 个B .2 个C .3 个D .4 个⎧⎪2x -1>3(x -2),8. 若关于 x 的一元一次不等式组⎨ 的解是 x <5,则 m 的取值范围⎪⎩x <m是()A .m ≥5B .m >5C .m ≤5D .m <53 5 个16 24 1 ( [9.⎧⎪2-x >1,①不等式组⎨x +5 中,不等式①和②的解集在数轴上表示正确的是( )⎪⎩ 2 ≥1②⎧⎪x -a ≤0,10. 关于 x 的不等式组⎨ 的解集中至少有 5 个整数解,则正数 a 的最小值是⎪⎩2x +3a >0()2 A .3B .2C .1D.311. 某校 20 名同学去工厂进行暑假实践活动,每名同学每天可以加工甲种零件 或乙种 零件 4 个,已知每加工一个甲种零件可获利 元,每加工一个乙种零件可获利 元,若要 使车间每天获利不低于 800 元,至少要派 )名同学加工乙种零件.A .10B .11C .12D .1312. 设[x)表示大于 x 的最小整数,如[2)=3,-1.4)=-1,则下列结论:①[0)=0;②[x)-x 的最小值是 0;③[x)-x 的最大值是 0;④存在实数 x ,使[x)-x =0.5 成立; ⑤若⎧⎪2-3x ≤5,x 满足不等式组⎨x +2则[x)的值为-1.其中正确结论的个数是()⎪⎩ 2 <1,A .1B .2C .3D .413. 不等式 2x +9≥3(x+2)的正整数解是_____________.114.不等式 (x -m)>3-m 的解集为 x >1,则 m 的值为____.15. 不等式-6x -4<3x +5 的最小整数解是____________.⎧⎪2x +1>3,16.关于 x 的不等式组⎨的解集为 1<x <3,则 a 的值为____. ⎪⎩a -x >117. 已知点 P 1 关于 x 轴的对称点 P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都 为整数的点,称为整点),则点 P 1 的坐标是____.⎩B⎧⎪x-a≥b,18.已知关于x的不等式组⎨的解集为3≤x<5,则a=____,b=____.⎪2x-a-1<2b19.如图,某面粉加工企业急需汽车,但因资金问题无力购买,经理想租一辆汽车.A 公司的条件是每百千米租费110元;公司的条件是每月付司机工资1000元,油钱600元,另外每百千米付10元.如果该公司每月有30百千米左右的业务,你建议经理租____公司的车.20.定义新运算:对于任意实数a,b都有△a b=ab-a-b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.2x+3x+121.当x为何值时,代数式2-3的值分别满足以下条件:(1)是非负数;(2)不大于1.3x-222.当x取什么值时,代数式4-2x+1的值为:(1)正数?(2)负数?(3)非负数?⎪⎩x -1<3x -1,3 ⎧⎪2x +5>1-x ,23. 解不等式组⎨3并写出它的非负整数解.481 24. 已知不等式 (x -m)>2-m.(1)若其解集为 x>3,求 m 的值;(2)若满足 x>3 的每一个数都能使已知不等式成立,求 m 的取值范围.25. 如图,一次函数 y =kx -2 和 y =-3x +b 的图象相交于点 A(2,-1).12A 即男A , 2 x (1)求 k ,b 的值;(2)利用图象求出:当 x 取何值时,y ≥y12?(3)利用图象求出:当 x 取何值时,y >0 且 y <0?1 226. 某校要采购一批演出服装,,B 两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同, 装每套120 元,女装每套100 元.经洽谈协商: 公司给出的优惠条件是全部服装按单价打七折但校方需承担2 200 元的运费;B 公司的优惠条件是男女装均按每套100 元打八折,公司承担运费.另外根据要求,参加演出的女生人数应是男生人数的 倍少 100 人.设参加演出的男生有 人.(1)分别写出学校购买A ,B 两公司服装所付的总费用y (元)和 y (元)与参加演出男生人数12x(人)之间的函数关系式;(2)该校购买哪家制衣公司的服装比较合算?请说明理由.27.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?答案:1---12BBACB CBABB DA5 22 22 3 4 4 2 3 2 3 4 4 2 3 5 5 5 213. 1,2,314. 415. x =016. 417. (-1,1)18. -3 1619. B20. 2<x <42x +3 x +1 7 7 2x +3 x +121. 解:(1)解不等式 - ≥0,得 x≥- ,所以当 x≥- 时, - 的2x +3 x +1值是非负数.(2)解不等式 - ≤1,1 1 2x +3 x +1得 x≤- ,所以当 x≤- 时,代数式 - 的值不大于 1.2 222. 解:(1)x < .(2)x > .2(3)x≤ .12 723.解:- <x < ,非负整数解为 0,1,2,3.324.解:解不等式可得 x>6-2m.(1)由题意,得 6-2m =3,解得 m = .3(2)由题意,得 6-2m≤3,解得 m≥ .125.解:(1)k = ,b =5.(2)当 x≥2 时,y ≥y .1 2(3)当 x >4 时,y >0 且 y <0.12⎧⎪y =20x ,⎧⎪x =18,⎧⎪20x (0≤x≤18),,⎩ ⎩26. 解:(1)y 1=[120x +100(2x -100)]×0.7+2 200,即 y 1=224x -4 800;y 2=0.8×100(x +2x -100),即 y 2=240x -8 000.(2)由题意,得当y >y 时,224x -4 800>240x -8 000,解得 x <200;当 y =y 时,224x1 212-4 800=240x -8 000,解得 x =200;当 y <y 时,224x -4 800<240x -8 000,解得 x >1 2200,∴当男生人数少于200 时,购买B 公司服装合算;当男生人数等于200 时,购买A ,B 公司服装都一样;当男生人数大于200 时,购买A 公司服装合算.27. 330 660.(2)设线段 OD 所表示的 y 与 x 之间的函数关系式为 y =kx, 将(17 340)代入 y =kx 中,得 340=17k ,解得 k =20,∴线段 OD 所表示的 y 与 x 之间的函数关系式为 y =20x.根据题意,得线段 DE 所表示的 y 与 x 之间的函数关系式为 y =340-5(x-22)=-5x +450.联立两线段所表示的函数关系式成方程组, 得⎨ 解⎪y =-5x +450,得 ⎨ ∴交点 D 的坐标为 (18 , 360), ∴ y 与 x 之间的函数关系式为y =⎪⎩ y =360,⎨(3)当 0≤x≤18 时,根据题意,得(8-6)×20x≥640,解得 ⎪-5x +450(18<x ≤30). x≥16;当 18 <x≤30 时,根据题意,得 (8-6)×(- 5x +450)≥640, 解得 x≤26.∴16≤x≤26.26-16+1=11(天),∴日销售利润不低于 640 元的天数共有 11 天.∵点D 的坐标为(18,360), ∴日最大销售量为 360 件, 360×2=720(元),∴试销售期间,日销售最大利润是 720 元.。
2018年中考数学第一轮复习专题训练之六--一元一次不等式及不等式组(含答案) 精品
432-210-12018年中考数学第一轮复习专题训练(六)一元一次不等式(组)一、填空题:1.已知:b a >,则53____53+-+-b a ;2.用不等式表示“a 是非正数”为 ;3.不等式423>-x 的解集是 ;4.在右图数轴上表示:1-≥x ; 5.不等式组⎩⎨⎧<->+0501x x 的解集是 ; 6.不等式3-≤x 25-<3的正整数解集是 ;7.三角形的三边长分别是 6、9、x ,则x 的取值范围是 ;8.若0<a ,则不等式0>+b ax 的解集是 ;9.三个连续自然数的和不大于 15,这样的自然数组有 组;10.关于x 的方程43=+k x 的解是正数,则k ;11.如图,过矩形的对角线 BD 上一点 K 分别作矩形两边平行线 MN 与 PQ ,那么图中矩形AMKP 的面积 S 1 与矩形 QCNK 的面积 S 2 的大小关系是 S 1 S 2;12.某商品原价 5 元,如果跌价x % 后,仍不低于 4 元,那么x 的取值范围为 ;二、选择题:13.若a a >-,则a 必为 ( )A 、正整数B 、负整数C 、正数D 、负数14.若0<-b a ,则下列各式中一定正确的是 ( )A 、b a >B 、0>abC 、0<ba D 、b a ->- 15.若不等式组⎩⎨⎧+<+>1325x x a x 的解为4>x ,则a 的取值范围是 ( ) A 、4>a B 、4<a C 、4≤a D 、4≥a 16.若 a 、b 、c 是三角形的三边,则代数式22)(c b a -- 的值是 ( )A 、正数B 、负数C 、等于零D 、不能确定17.若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有( )A 、5间B 、6间C 、7间D 、8间18.已知两个不等式的解集在数轴上如图表示,那么这个解集为 ( )A 、x ≥-1B 、x >1C 、-3<x ≤-1D 、x >-319.如图,天平右盘中的每个砝码的质量都是 1g ,则物体A 的质量 m g 的取值范围,在数轴上表示为 ( )A 、B 、C 、D 、20.不等式2x +1<8的最大整数解是 ( )A 、4B 、3C 、2D 、121.使代数式129+-x 的值不小于代数式131-+x 的值,则x 应为 ( ) A 、x >17 B 、x ≥17 C 、x <17 D 、x ≥27 22.已知032)2(2=--+-m y x x 中,y 为正数,则m 的取值范围是 ( )A 、m <2B 、m <3C 、m <4D 、m <523.一次函数323+-=x y 的图象如图所示,当-3<y <3时, x 的取值范围是 ( )A 、x >4B 、0<x <2C 、0<x <4D 、2<x <424.如图所示,天平右盘中的每个破码的质量都是1g ,则物体 A 的质量m (g)的取值范围.在数轴上:可表示为解集的 ( ).三、解下列不等式(组)。
(完整版)专题复习一元一次不等式(组)知识点归纳例题分析练习(含答案)(最新整理)
专题复习一元一次不等式(组)知识点归纳例题分析练习(含答案)【本讲教育信息】一. 教学内容:复习三不等式和不等式组二. 教学目标:1. 理解不等式,不等式的解等概念,会在数轴上表示不等式的解;2. 理解不等式的基本性质,会应用不等式的基本性质进行简单的不等式变形,会解一元一次不等式;3. 理解一元一次不等式组和它的解的概念,会解一元一次不等式组;4. 能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题。
三. 教学重点与难点:1. 能熟练地解一元一次不等式(组)。
2. 会利用不等式的相关知识解决实际问题四. 课堂教学(一)知识要点知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。
知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
知识点3、不等式的解集在数轴上的表示:(1)x>a:数轴上表示a的点画成空心圆圈,表示a的点的右边部分来表示;(2)x<a:数轴上表示a的点画成空心圆圈,表示a的点的左边部分来表示;(3)x≥a:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的右边部分来表示; (4)x≤a:数轴上表示a的点画成实心圆点,表示a的点及表示a的点的左边部分来表示。
在数轴上表示大于3的数的点应该是数3所对应点的右边。
画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。
如图所示:同样,如果某个不等式的解集为x≤-2,那么它表示x取-2左边的点画实心圆点。
如图所示:总结:在数轴上表示不等式解集的要点:小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。
知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。
2012年中考试题159套精选一元一次不等式(组)
2012年全国中考数学试题分类解析汇编(159套63专题)专题12:一元一次不等式(组)一、选择题1. (2012上海市4分)不等式组2x6x20<>-⎧⎨-⎩的解集是【】A. x>﹣3 B.x<﹣3 C.x>2 D.x<2【答案】C。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,由第一个不等式得:x>﹣3,由第二个不等式得:x>2。
∴不等式组的解集是x>2.故选C。
2. (2012广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【答案】B。
【考点】不等式的性质。
【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B。
3. (2012浙江义乌3分)在x=﹣4,﹣1,0,3中,满足不等式组x22(x1)2<⎧⎨+>-⎩的x值是【】A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0 【答案】D。
【考点】解一元一次不等式组,不等式的解集。
【分析】解出不等式组,再检验所给四个数是否在不等式的解集的解集即可:由2(x +1)>-2得x >﹣2。
∴此不等式组的解集为:﹣2<x <2。
x=﹣4,﹣1,0,3中只有﹣1,0在﹣2<x <2内。
故选D 。
4. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d <。
一元一次不等式(组)-中考数学基础知识复习和专题巩固提升训练含答案
考向06一元一次不等式(组)【知识梳理】考点一、不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.方法指导:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或ac>bc).性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或ac<bc).方法指导:(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0ab>,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0).2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.方法指导:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 方法指导:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.方法指导:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要.方法指导:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【巩固训练】一、选择题1. 不等式-x-5≤0的解集在数轴上表示正确的是()A B C D2.若实数a>1,则实数M=a,N=23a+,P=213a+的大小关系为()A.P>N>M B.M>N>P C.N>P>M D.M>P>N3.如图所示,一次函数y=kx+b的图象经过A,B两点,则不等式kx+b>0•的解集是()A.x>0B.x>2C.x>-3D.-3<x<24.如果不等式213x++1>13ax-的解集是x<53,则a的取值范围是()A.a>5 B.a=5 C.a>-5 D.a=-55.已知整数x满足是不等式组,则x的算术平方根为()A.2 B.±2 C. D.46.不等式组3(2)423xa xxx+--≤⎧>⎪⎨⎪⎩无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1二、填空题7.若不等式ax<a的解集是x>1,则a的取值范围是__ ____.8.若(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,则m= .9.已知3x+4≤6+2(x-2),则│x+1│的最小值等于__ ____.10.若不等式a (x-1)>x-2a+1的解集为x <-1,则a 的取值范围是____ __. 11.满足22x +≥213x -的x 的值中,绝对值不大于10的所有整数之和等于__ ____. 12.有10名菜农,每个可种甲种蔬菜3亩或乙种蔬菜2亩,•已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要总收入不低于15.6万元,•则最多只能安排_______人种甲种蔬菜.三、解答题13.解下列不等式(组),并把解集在数轴上表示出来. (1)x-3≥354x -.(2)解不等式组14. 若0231<-+x x ,求x 的取值范围.15.某电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?16. 如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?答案与解析一、选择题1.【答案】B;【解析】解不等式得x ≥-5,故选B.2.【答案】D;【解析】方法一:取a=2,则M=2,N=43,P=53,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a-213a+=13a->0,∴M>P;P-N=213a+-23a+=13a->0,∴P>N.∴M>P>N,应选D.3.【答案】C;【解析】不等式kx+b>0•的解集即y>0的解集,观察图象得x>-3.4.【答案】B;【解析】化简原不等式得(2-a)x>-5,因为原不等式解集是x<53,所以2-a<0,且5523a-=-,解得a>2,且a=5.5.【答案】A;【解析】解:,解①得:x>3,解②得:x<5,则不等式组的解集是:3<x<5.则x=4.x的算术平方根是:2.故选A.6.【答案】B;【解析】解不等式组得x≥1,x<a, 因为不等式组无解,所以a≤1.二、填空题7.【答案】a<0;【解析】结果不等号的方向改变了,故a<0.8.【答案】0;【解析】由(m ﹣1)x |2m﹣1|﹣8>5是关于x 的一元一次不等式,得,解得m=0,故答案为:0.9.【答案】1;【解析】解不等式得x ≤-2,当x=-2时,│x+1│有最小值,有最小值等于1. 10.【答案】a <1;【解析】解不等式得(a-1)x >1-a, 因为不等式a (x-1)>x-2a+1的解集为x <-1,所以a-1<0,即a <1.11.【答案】-19;【解析】解不等式得x ≤8,绝对值不大于10的所有整数之和为(-9)+(-10)=-19. 12.【答案】4. 三、解答题 13.【答案与解析】(1)x ≥7, 数轴上表示略;(2)由不等式组:34.............121. (2)5x x x x +>⎧⎪⎨--≤⎪⎩①②解不等式①,得2x >-. 解不等式②,得3x ≤.由图可知不等式组的解集为:23x -<≤.14.【答案与解析】解:由0231<-+x x 得⎩⎨⎧<->+023,01x x 或⎩⎨⎧>-<+023,01x x ∴⎪⎩⎪⎨⎧<->32,1x x 或⎪⎩⎪⎨⎧>-<32,1x x (无解)-23即321<<-x . 15.【答案与解析】解:(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:,解得:;答:A 种型号计算器的销售价格是42元,B 种型号计算器的销售价格是56元; (2)设购进A 型计算器a 台,则购进B 台计算器:(70﹣a )台, 则30a+40(70﹣a )≤2500, 解得:a≥30,答:最少需要购进A 型号的计算器30台. 16.【答案与解析】解:设共有x 个儿童,则共有(4x+9)个橘子,依题意,得0≤4x+9-6(x-1)<3 解这个不等式组,得6<x ≤7.5. 因为x 为整数,所以x 取7. 所以4x+9=4×7+9=37.答:共有7个儿童,分了37个橘子.。
2012年中考数学提高训练及答案:一元一次不等式(8)
《一元一次不等式》提高测试(一)填空题(每空2分,共28分)1.在下列各题的横线上填入适当的不等号:(1)若a-b>0,则a______b;(2)若a-b<0,则a______b;(3)若a>b,c______0时,ac<bc;(4)若a<b,c______0时,ab<; cc(5)当a>b,且a>0,b>0时,|a|_____|b|;(6)当a<b,且a<0,b<0时,|a|_____|b|.【答案】(1)>;(2)<;(3)<;(4)>;(5)>;(6)<.2.若a>1,则a,b应满足的条件是______. b【答案】a>b>0或a<b<0.3.若| x |<1,则x的取值范围是_________.【提示】由| x |<1知:??x?1. ?x?1?【答案】-1<x<1.4.若|2a+1|>2a+1,则a的取值范围是________.【提示】根据绝对值的意义,得2a+1<0.【答案】a<-1. 23?a. 35.当a_____时,关于x的方程5-a=3 x+2的解为负数.【提示】方程的解为x=【答案】a>3.6.若|x-3|+(2 x+y-k)2=0中y为正数,则k________.【提示】由已知,得x=3,2 x+y-k=0,所以y=k-6>0.【答案】k>6.7.若a<-2,则关于x的不等式2 x>9-ax的解集是_________.【提示】不等式变形为(a+2)x>9.【答案】x<9. a?2a?x???28.若a<0,则不等式?的解集是_______. a?x??3?11aa【提示】因为>,且a<0,所以<. 2323a【答案】x<. 21,则a=______. 41【提示】整理不等式得(3a-2)x<1,因为其解集是x>-,只有3a-2<0才能改49.已知关于x的不等式(3a-2)x+2<3的解集是x>-变不等号方向,所以 3a-2=-4.。
中考总复习一元一次不等式及不等式组(含答案)
一元一次不等式与不等式组 (2010,南平)(2010,莆田解不等式213436x x --≤,并把它的解集在数轴上表示出来.解:去分母,得2(21)34x x --≤ 去括号,得4234x x --≤ 移项,合并同类项,得2x -≤ ∴不等式的解集为2x -≤ 该解集在数轴上表示如下:(2010,龙岩)不等式组31422x x x ->-⎧⎨≤+⎩的解集在数轴上表示正确的是( )DABCD(2010,龙岩)直线y =kx +b 与两坐标轴的交点如图所示,当y <0时,x 的取值范围是BA .x >2B .x <2C .x >-1D .x <-1(2010,南安)在一条笔直的公路上有A 、B 两地,它们相距150千M ,甲、乙两部巡警车分别从A 、B 两地同时出发,沿公路匀速相向而行,分别驶往B 、A 两地.甲、乙两车的速度分别为70千M/ 时、80千M/ 时,设行驶时间为x 小时.(1)从出发到两车相遇之前,两车的距离是多少千M ?(结果用含x 的代数式表示) (2)已知两车都配有对讲机,每部对讲机在15千M 之内(含15千M )时能够互相通话,求行驶过程中两部对讲机可以保持通话的时间最长是多少小时? 解:(1)(150—150x) 千M .(2)相遇之后,两车的距离是(150 x —150)千M , 依题意可得不等式组:⎩⎨⎧≤-≤-.15150150,15150150x x 解得1.19.0≤≤x ,2.09.01.1=-.答:两部对讲机可以保持通话的时间最长是0.2小时..(2010,厦门) 不等式组2010x x -≤⎧⎨+>⎩的解集是A. 2x ≤B. 1x >-C. 12x -<<D. 12x -<≤ (2010,宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.解:2(2x -1)-3(5x +1)≤6.4x -2-15x -3≤6. 4x -15x ≤6+2+3. -11x ≤11.x ≥-1.这个不等式的解集在数轴上表示如下:(2010,甘肃)若不等式组,420x a x >⎧⎨->⎩的解集是12x -<<,则a =.-1(2010,广东)某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?(2010佛山)不等式组⎪⎩⎪⎨⎧-≥>+32132x x xx 的解集是36x -<≤(2010,梅州)东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.(2010,珠海)今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.(1)设甲种柴油发电机数量为x 台,乙种柴油发电机数量为y 台. ①用含x 、y 的式子表示丙种柴油发电机的数量; ②求出y 与x 的函数关系式;(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W 最少? 解:(1)①丙种柴油发电机的数量为10-x-y ②∵4x+3y+2(10-x-y)=32∴y=12-2x(2)丙种柴油发电机为10-x-y=(x-2)台W=130x+120(12-2x)+100(x-2) =-10x+1240依题意解不等式组 1212121≥-≥-≥x 得:3≤x ≤5.5∵x 为正整数 ∴x=3,4,5∵W 随x 的增大而减少 ∴当x=5时 ,W 最少为-10×5+1240=1190(元(2010,南宁)不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解有:C(A)1个 (B)2个 (C)3个 (D)4个(2010,南宁)2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A 、B 两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A 地,某余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.解(1)解法一:设大车用x 辆,小车用y 辆.依据题意,得20x y x y +=⎧⎨⎩,15+10=240.解得812x y =⎧⎨=⎩,.∴大车用8辆,小车用12辆.解法二:设大车用x 辆,小车用()20x -辆.依题意,得()151020240x x +-=解得8x =.2020812x ∴-=-=.∴大车用8辆,小车用12辆(2)设总运费为W 元,调往A 地的大车a 辆,小车()10a -辆;调往B 地的大车()8a -辆,小车()2a +辆.则()()()6304201075085502W a a a a =+-+-++,即:1011300W a =+ (0a a ≤≤8,为整数), ()151010a a +-115≥.a ∴≥3.又W 随a 的增大而增大, ∴当3a =时,W 最小.当3a =时,1031130011330W =⨯+ = .因此,应安排3辆大车和7辆小车前往A 地;安排5辆大车和5辆小车前往B 地.最少运费为11 330元(2010,梧州)2010年的世界杯足球赛在南非举行,为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A 、B 两种品牌的服装。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
32-210
-12012年中考数学第一轮复习专题训练(六)
一元一次不等式(组)
一、填空题:
1.已知:b a >,则53____53+-+-b a ;
2.用不等式表示“a 是非正数”为 ;
3.不等式423>-x 的解集是 ;
4.在右图数轴上表示:1-≥x ; 5.不等式组⎩
⎨⎧<->+0501x x 的解集是 ; 6.不等式3-≤x 25-<3的正整数解集是 ;
7.三角形的三边长分别是 6、9、x ,则x 的取值范围是 ;
8.若0<a ,则不等式0>+b ax 的解集是 ;
9.三个连续自然数的和不大于 15,这样的自然数组有 组;
10.关于x 的方程43=+k x 的解是正数,则k ;
11.如图,过矩形的对角线 BD 上一点 K 分别作矩形两边平行线 MN 与 PQ ,那么图中矩形AMKP
的面积 S 1 与矩形 QCNK 的面积 S 2 的大小关系是 S 1 S 2;
12.某商品原价 5 元,如果跌价x % 后,仍不低于 4 元,那么x 的取值范围为 ;
二、选择题:
13.若a a >-,则a 必为 ( )
A 、正整数
B 、负整数
C 、正数
D 、负数
14.若0<-b a ,则下列各式中一定正确的是 ( )
A 、b a >
B 、0>ab
C 、0<b
a D 、
b a ->- 15.若不等式组⎩⎨⎧+<+>1
325x x a x 的解为4>x ,则a 的取值范围是 ( ) A 、4>a B 、4<a C 、4≤a D 、4≥a 16.若 a 、b 、c 是三角形的三边,则代数式22)(c b a -- 的值是 ( )
A 、正数
B 、负数
C 、等于零
D 、不能确定
17.若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有( )
A 、5间
B 、6间
C 、7间
D 、8间
18.已知两个不等式的解集在数轴上如图表示,那么这个解集为 ( )
A 、x ≥-1
B 、x >1
C 、-3<x ≤-1
D 、x >-3
19.如图,天平右盘中的每个砝码的质量都是 1g ,则物
体A 的质量 m g 的取值范围,在数轴上表示为 ( )
A 、
B 、
C 、
D 、
20.不等式2x +1<8的最大整数解是 ( )
A 、4
B 、3
C 、2
D 、1
21.使代数式129+-x 的值不小于代数式13
1-+x 的值,则x 应为 ( ) A 、x >17 B 、x ≥17 C 、x <17 D 、x ≥27
22.已知032)2(2=--+-m y x x 中,y 为正数,则m 的取值范围是 ( )
A 、m <2
B 、m <3
C 、m <4
D 、m <5
23.一次函数32
3+-=x y 的图象如图所示,当-3<y <3时, x 的取值范围是 ( )
A 、x >4
B 、0<x <2
C 、0<x <4
D 、2<x <4
24.如图所示,天平右盘中的每个破码的质量都是1g ,则物体 A 的质量m (g)的取值范围.在数轴上:
可表示为解集的 ( )
.
三、解下列不等式(组)。
(每题 7 分,共 28 分)
25.5423-<+x x 26.
.
323125+<-+x x
27.⎩
⎨⎧+>-+≥-513112x x x x 28.13322<-≤-x
四、解答题:
29.当正数x 取不大于
27的值时,试求x 68-的取值范围;
30.问x 取哪些正整数时,不等式63>+x 与1012<-x 都成立?
31.已知关于 x 、y 的方程组⎩⎨
⎧=+=+15
35y x a y x 的解都是正数,求a 的取值范围;
32.一个维修队原定在 10 天内至少要检修线路 60km ,在前两天共完成了 12km 后,又要求提前 2 天
完成检修任务,问以后几天内,平均每天至少要检修多少 km ?
33.设关于x 的不等式组⎩⎨⎧-<->-1
2322m x m x 无解,求m 的取值范围;
34.某校三年级五班班主任带领该班学生去东山旅游,甲旅行社说:“如果班主任买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括班主任在内全部按全票价的 6 折优惠”,若全票为每张240 元。
①问学生多少人时,甲、乙两家旅行社收费一样多?
②就学生数讨论哪一旅行社更合算。
35.华美镇的脐橙全市闻名,今年又喜获丰收,某大型超市从山城脐橙农场购进一批脐橙,运输过程中质量损失10%*(超市不负责其他费用)。
①若超市把售价在进价的基础上提高10%,超市是否亏本?通过计算说明。
②若超市要获得至少35%的利润,那么脐橙的售价最低应提高百分之几?
参考答案
一、
1.< ;2.a ≤0 ;3.x >2 ;4.略 ;5.-1<x <5 ;6.2、 3、 4 ; 7.3<x <15 ;8.a b x -
< ;9.5 ;10.<4 ;11.= ;12.0<x ≤20 ; 二、
13.D ;14.D ;15.C ;16.B ;17.B ;18.A ;
19.A ;20.B ;21.B ;22.C ;23.C ;24.A ;
三、
25.x >7 ;26.35>
x ;27.x >3 ;28.323<≤-x ; 四、
29.813<≤-x ;
30.x 取4,5;
31.53<<a
32.平均每天至少要检修km 8;
33.∵21m x +>而3
12-<m x 时无解,∴8<m ; 34.①设学生x 人时,6.0240)1(120240⨯⋅+=+x x ,4=x ;
②当4>x 人时,甲<乙,选甲
当 40<<x 人时,甲>乙,选乙
六、解:①设进价x 元/千克,质量 y 千克,则:(1+10%) x·
(1-10%) y =1.1x·0.9y =0.99xy <xy ∴超市亏本
②设应提高P ,则(1+P)·
(1-10%) y >(1+35%) xy P >50% 至少应提高50%。