指数对数计算题包括答案.docx

合集下载

《指数对数运算》练习题40道及答案

《指数对数运算》练习题40道及答案

6 ,0.7 , log 6A. 0.7 C.0.7 B. 0.7 D.0.7 0.2 , 3 2 2 10.2 0.2指数对数运算练习题1. 已知 a,b = 20.3 , c = 0.30.2 ,则 a ,b ,c 三者的大小关系是()A .b>c>aB .b>a>cC .a>b>cD .c>b>a4212.已知 a = 23, b = 45, c = 253,则(A ) b < a < c(C ) b < c < a(B ) a < b < c(D ) c < a < b0.7 6 3. 三个数0.7 的大小顺序是( )0.76 < log 6 < 60.7log 6 < 60.7< 0.760.76 < 60.7 < log 6log 6 < 0.76 < 60.74.已知a = 20.2,b = 0.42, c = log 4 则()A. a > b > cB. a > c > bC. c > a > bD. b > c > a5.设 a = log 7,b = 21.1,c = 0.83.1 则()A. b < a < cB. c < a < bC. c < b < aD. a < c < b6.三个数 a = 0.32, b = log 0.3,c = 20.3之间的大小关系是()A. a < c < bB. a < b < cC. b < a < cD. b < c < a7.已知a = 21.2, b = 0.50.8, c = log 3 ,则()A. a > b > cB. c < b < aC. c > a > bD. a > c > b-18.已知a = 2 3, b = log 21, c = log 1,则()A. a > b > c3 B. a > c > b 2 3C. c > a > bD. c > b > a9.已知a = 0.20.3, b = log 3 , c = log 4 ,则( ) A. a>b>cB. a>c>bC. b>c>aD. c>b>a10.设 a = 0.60.6,b = 0.61.5,c = 1.50.6则 a ,b ,c 的大小关系是()(A ) a <b <c (B ) a <c <b (C ) b <a <c (D ) b <c <a试卷第 2页,总 8页4 3 10 3 4 11.设 a = ⎛ 3 ⎫ 0.5,b = ⎛ 4 ⎫ 0.4,c =log (log4),则( )⎪ ⎪ 3 3 ⎝ ⎭⎝ ⎭4A .c<b<aB .a<b<cC .c<a<bD .a<c<b-112. 已知 a = 2 3, b = log 21, c = log 1,则()A. a > b > c3 B. a > c > b 2 3C. c > a > bD. c > b > a13.已知a = log 3 4,b = 1 ( ) , c 5= log 1 10 ,则下列关系中正确的是( )3A. a > b > cB. b > a > cC. a > c > bD. c > a > b14.设 a = 2-0.5,b = log π,c = log 2 ,则()A. b > a > cB. b > c > aC. a > b > cD. a > c > b15. 设 y= 40. 9 , y = 80. 48 , y = 1 -1. 5,则( )1 2 3( 2) A. y 3 > y 1 > y 2 B. y 2 > y 1 > y 3 C. y 1 > y 3 > y 2D.y 1 > y 2 > y 3⎛ 1 ⎫0.216.设 a = log 1 5 , b = ⎪1, c = 23 ,则( )2 A. a < b < c⎝ 3 ⎭ B. c < b < aC. c < a < bD. b < a < c1 2 1 2 1117.设 a = ( ) 3 ,b = ( ) 3 , c = ( )3 ,则 a , b , c 的大小关系是()2 5 2A. a > b > cB. c > a > bC. a > c > bD. c > b > a⎛ π π⎫ 18.已知 a = log 0.5sin x , b = log 0.5cos x , c = log 0.5sin x cos x , x ∈ , ⎪ ,⎝ 4 2 ⎭则 a , b , c 的大小关系为( )A. b > a > cB. c > a > bC. c > b > aD. b > c > a19.设 x = 0.820.5, y =, z = sin1,则x 、y 、z 的大小关系为 ( )A. x < y < zB. y < z < xC. z < x < yD. z < y < xlg 10 lg 0.125 9e27 4 1 每天一刻钟,数学点点通20. 若log 2a < 0, ( ) 2b> 1 ,则( )A. a > 1, b > 0B. a > 1, b < 0C . 0 < a < 1, b > 0D . 0 < a < 1, b < 021. 已知log 1 a < log 1 b ,则下列不等式一定成立的是( )22⎛ 1 ⎫aA. ⎪ ⎛ 1 ⎫b< ⎪ B. 1 >1 C. ln (a - b ) > 0D. 3a -b< 1⎝ 4 ⎭ ⎝ 3 ⎭a b22. 计算- 1 1 -3(1) 0.027 3- (- ) 2 + 256 4 - 3-1 + ( 7 -1)0(2)lg 8 + lg125 - lg 2 - lg 523. 计算:1 - 1 ①- ⎛ 8 ⎫3 - (π+ e )0 + ⎛ 1 ⎫ 2; ②2 lg 5 + lg 4 + ln .⎪ ⎪⎝ ⎭ ⎝ ⎭ 2试卷第 2页,总 8页3 2⎛ 2 ⎫3 ⎪ ⎝ 3 ⎭6a • b524. 化简下列各式(其中各字母均为正数):-1⎛ 7 ⎫(1)1.5 3 × - ⎝ ⎪0+80.25× 4 2 +( 6 ⎭× )6- ; 2 -111(a 3 • b -1)2• a-2•b 3(2);4 1 a 3-8a 3b ÷ ⎛1-23 b ⎫⨯ (3) 2 2 a ⎪ 4b 3+2 3 ab +a 3 ⎝⎭25.(12 分) 化简或求值:4 1 - 1 8 1(1) (2 )0 + 2-2 ⨯(2 ) 2 - ( ) 3 ;5 4 27(2) 2(lg 2)2+ lg 2 ⋅ lg 5 +3 2 3 a(lg 2)2 - lg 2 +1每天一刻钟,数学点点通26.(12分)化简、求值:27 - 2 49-2 2(1)( ) 3 -( ) 0.5 + (0.008) 3 ⨯;8 9 25(2)计算lg 5 ⋅ lg 8000 + (lg 2 3 )21 1lg 600 - lg 36 -2 2lg 0.0127.(本小题满分10分)计算下列各式的值:2 27 2(1)()-2+(1-2)0-()3;3 8(2)2 log32 - log332 + log38 -5log5 3试卷第 2页,总 8页2 2 -1 23 7 1- 1 28.计算:(1) 2 2+ (-4)0 + 1 -(2) log 2.5 6.25 + lg 0.001+ ln+ 2log 2 329.(本题满分 12 分)计算以下式子的值:1 1-1 (1- ( )0 + 0.252 ⨯ ( )-4 ; 2(2) log 27 + lg25 + lg 4 + 7log 7 2+ log 1.30.计算(1) log 3lg 25 + lg 4 + 7log 7 2+ (-9.8)0(2) - (π - 1)0- (3 3) 3 + ( 81 -2 ) 364 (1- 5)0 e 3(-4)3 27 6 1 4 ;27 8 (1- 2)22 每天一刻钟,数学点点通⎛ 1 ⎫-10 31.计算: ⎪ ⎝⎭ - 2 c os 300 + + (2 -π) .32.(本题满分 12 分) 计算(1)5log 5 9 + 1 log 32 - log (log 8) 2 23 2-21(2)(0.027) 3 -⎪ + 2 ⎪ -(-1)-1 ⎛ 1 ⎫ ⎛ ⎝ 7 ⎭ ⎝ 7 ⎫2 09 ⎭133.(1)化简: (a 2b ) 2⋅(ab 2 )-2 ÷(a -2b )-3; (2)计算:lg 8 + lg125 - lg 2 - lg 5.34.计算:(1) π- 4 - 8⨯ 2-2- (2013 -π)0(2) + - 6 cos 45o2 lg 10 ⋅lg 0.1试卷第 2页,总 8页3 7 6 12 2 ⎛ 2 ⎫ 3 ⎪ ⎝ 3 ⎭3 1 35.(1)计算3log 3 2- 2(log 4)(log 27) - 1log 8 + 2 log .3 8 6 161(2) 若 x 2 + x - 12 = ,求 x + x -1x 2 + x -2 - 3的值.21 36.求值: (2 2)3 - ⎛ 6 1 ⎫ 2+ ln e - 4 ⎪ ⎝ ⎭37.(1)求值: 2 3 ⨯ 3 1.5 ⨯ ; (2)已知 x +1= 3 求 x 2 + 1的值 x x 238. 计算:2 - 1 0 ⎛ (1) 8 ⎫3 + ⎛ 3 ⎫ 3 ⨯⎛- 3 ⎫ - - 4⎪ ⎪ ⎪ ⎝ 27 ⎭ ⎝ 2 ⎭ ⎝ 5 ⎭ 9(2) lg 2 5 - lg 2 2 + 2 lg 2 + 3log 3 239. 下列四个命题:① ∃x ∈(0, +∞),( 1 )x > (1)x; ② ∃x ∈ (0, +∞), log 2 32 x < log3 x ;③ ∀x ∈ (0, +∞ 1 ), ( ) 2 x > log 2 x ;④ ∀x ∈ 1 1 (0, ), ( ) 3 2 x< log x .3其中正确命题的序号是 .- 2 40. log(2 -3 )- ⎛ - 27 ⎫ 3 =2+ 38 ⎪ ⎝⎭ 3 3 3 6 3 10.7参考答案1.A【来源】2013-2014 学年福建省三明一中高二下学期期中考试文科数学试卷(带解析) 【解析】试题分析: 由指数函数的单调性可知 y = 0.3x 是单调递减的所以 0.30.5 < 0.30.2即 a<c<1; y = 2x 是单调增的,所以 y = 20.3 > 20= 1,即可知 A 正确考点:指数函数比较大小. 2.A【来源】2016 年全国普通高等学校招生统一考试理科数学(新课标 3 卷精编版) 【解析】422122试题分析:因为a = 23 = 43 > 45 = b , c = 253 = 53 > 43 = a ,所以b < a < c ,故选 A . 【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 3.D 【来源】2013-2014 学年广西桂林十八中高二下学期开学考理科数学试卷(带解析) 【解析】试 题 分 析 : 60.7 > 60= 1 ,0 < 0.76 < 0.70= 1 , log 0.7 6 < log 0.7 1 = 0, 所 以log 6 < 0 < 0.76<1 < 60.7 . 考点:用指数,对数函数特殊值比较大小. 4.A .【来源】2014 届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析) 【解析】试题分析:因为 a > 1,0 < b < 1, c < 0 ,所以 a > b > c ,故选 A . 考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小. 5.B【来源】2014 年全国普通高等学校招生统一考试文科数学(安徽卷带解析) 【解析】试题分析:由题意,因为 a = log 3 7 ,则1 < a < 2 ; b = 21.1,则b > 2 ; c = 0.83.1,则c < 0.80 = 1,所以c < a < b考点:1.指数、对数的运算性质. 6.C【来源】2014-2015 学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析) 【解析】2 2 2 1试题分析:∵ 0 < a = 0.32< 1 , b = log 0.3 < log 1 = 0 , c = 20.3> 20= 1 ,∴ b < a < c 考点:根式与分数指数幂的互化及其化简运算. 7.D【来源】2014 届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析) 【解析】试题分析:∵ a = 21.2> 2 , 0 < 0.50.8< 1 ,1 < log 3 < 2 ,∴ a > c > b . 考点:利用函数图象及性质比较大小. 8.C【来源】2014 年全国普通高等学校招生统一考试文科数学(辽宁卷带解析) 【解析】-1试题分析: 因为 a = 2 3∈(0,1) , b = log 2< log 2 1 = 0 , c = log 1 1 > log 1 = 1 , 故3 c > a > b .考点:指数函数和对数函数的图象和性质. 9.A2 3 2 2【来源】2014 届浙江省嘉兴市高三上学期 9 月月考文科数学试卷(带解析) 【解析】试题分析:由指数函数和对数函数的图像和性质知 a > 0 , b < 0 , c < 0 ,又对数函数f ( x ) = log 0.2 x 在(0, +∞) 上是单调递减的,所以log 0.2 3 > log 0.2 4 ,所以a > b > c .考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015 年全国普通高等学校招生统一考试文科数学(山东卷带解析) 【解析】由 y = 0.6x在区间(0, +∞) 是单调减函数可知,0 < 0.61.5< 0.60.6 < 1,又1.50.6 > 1,故选C .考点:1.指数函数的性质;2.函数值比较大小. 11.C【来源】2014 届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析) 【解析】由题意得 0<a<1,b>1,而 log 34>1,c =log 34(log 34),得 c<0,故 c<a<b. 12.C【来源】2014 年全国普通高等学校招生统一考试理科数学(辽宁卷带解析) 【解析】试题分析:0 < a = 2 -13< 20= 1,b = log 1 < 0, c = log 1 = log 3 > 1, 所以c > a > b , 2 3 1 32 2故选 C.考点:1.指数对数化简;2.不等式大小比较. 13.A.134 3 >> 5 【来源】2015 届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析) 【解析】试题分析:∵ a = log 4 > log 3 = 1 ,b =1 0= 1 ,c = log 10 < log= 1 ,∴ a > b > c . 3 3( ) 1 1 33考点:指对数的性质.14.A【来源】2015 届河南省八校高三上学期第一次联考文科数学试卷(带解析) 【解析】试 题 分 析 : ∵1a = 2-0.5,b = log π,c = log 2 , 1>2-0.5= 1 > 1,2 2log 3π>1,log 4 2= 2.∴ b >a >c .故选:A .考点:不等式比较大小. 15.C【来源】2012-2013 学年广东省执信中学高一下学期期中数学试题(带解析) 【解析】试题分析: 根据题意, 结合指数函数的性质, 当底数大于 1 , 函数递增, 那么可知 y = 40. 9 = 21.8 , y = 80. 48 = 21.44 , y = 1 -1. 5 = 21.5 ,结合指数幂的运算性质可知,有123( 2) y 1 > y 3 > y 2 , 选 C.考点:指数函数的值域点评:解决的关键是以 0 和 1 为界来比较大小,属于基础题。

(完整版)指数与对数运算(含答案),推荐文档

(完整版)指数与对数运算(含答案),推荐文档

指数与对数运算1.的大小关系是( )0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===A . B . C . D .c a b >>a b c >>b c a >>c b a>>【答案】A【解析】因为,,,所以,故选A .0.70log 0.81a <=< 1.1log 0.90b =<0.91.11c =>c a b >>2.三个数20.60.6,ln 0.6,2a b c ===之间的大小关系是( )A .b c a <<B .c b a <<C .c a b <<D .ac b <<【答案】C【解析】,故选C .20.600.61,ln 0.60,21c a b <<<>∴>>3.设0.012log 3,lna b c ===,则( )A .c a b << B .a b c << C .a c b << D .b a c<<【答案】A【解析】先和0比较,0.0122log log 10,30,ln10a b c =>==>=<= 得到c 最小;再与1比较0.01022log log 21,33a b =<==>,得到b 最大.故选A .4.若4log 3a =,则22a a -+= . 【答案】334【解析】,3log 213log 24==a 3log 2=33431322=+=+-a a 5.已知,那么等于( )0)](log [log log 237=x 21-xA .B .C .D .31633342【答案】D 【解析】根据,可得,即,解得,所以0)](log [log log 237=x ()32log log 1x=2log 3x =328x ==,故选择D 11228x --==6.若且则 , .1,1,a b >>lg()lg lg ,a b a b +=+11a b +=lg(1)lg(1)a b -+-=【答案】1,0【解析】得lg()lg lg ,a b a b +=+,111a b ab a b+=∴+=lg(1)lg(1)a b -+-=lg(1)(1)lg(1)lg10a b ab a b --=--+==7. 已知是方程01422=+-x x 的两个根,则2(lg ba 的值是 .lg ,lg ab 【答案】2【解析】由是方程01422=+-x x 的两个根可得:,,lg ,lg a b lg lg 2a b +=1lg lg 2a b ⋅=所以2)(lg ba ()()22lg lg lg lg 4lg lg 2ab a b a b =-=+-⋅=8.解方程:122log (44)log (23)x x x ++=+-【答案】.2x =【解析】解方程则:则:122log (44)log [2(23)]x x x ++=-1442(23)x x x ++=-43240x x -⋅-=则:或(舍)∴.经检验满足方程.24x =21x =-2x =2x =9.解方程(1) (2)231981-=x x 444log (3)log (21)log (3)-=+++x x x 【答案】(1)或;(2)2=x 1=x 0x =【解析】(1) 解得,或2322299,32,320--=∴-=--+=x x x x x x 2=x 1=x (2)440.25log (3)log (21)log (3)x x x -=+++44log (3)log (21)(3)3(21)(3)x x x x x x -=++∴-=++得或,经检验为所求.4=-x 0x =0x =10.计算下列各式的值(1) (2)210321(0.1)2()4--++3log lg 25lg 4+【答案】(1)5(2)72【解析】(1)210321(0.1)2()4--++5221=++=(2)3log lg 25lg 4++27223=+=11.化简求值:(1);313373329a a a a ⋅÷--(2);22)2(lg 20lg 5lg 8lg 325lg +++(3).13063470.001(168--++【答案】(1)1;(2)3;(3)89.【解析】(1)因为有意义,所以,所以原式3-a0>a =。

指数对数计算题50道

指数对数计算题50道

指数对数计算题50道指数和对数是数学中重要的概念和运算符号,它们在各个领域都有着广泛的应用。

下面列举了50道与指数和对数计算有关的题目,并提供相应的参考内容。

1. 计算2^3的值。

参考答案:2^3 = 8。

2. 计算10^(-2)的值。

参考答案:10^(-2) = 1/10^2 = 1/100 = 0.01。

3. 计算2^(1/2)的值。

参考答案:2^(1/2) = √2 ≈ 1.414。

4. 计算log(100)的值。

参考答案:log(100) = 2,因为10^2 = 100。

5. 计算log(1/1000)的值。

参考答案:log(1/1000) = log(10^(-3)) = -3,因为10^(-3) =1/1000。

6. 计算log2(8)的值。

参考答案:log2(8) = 3,因为2^3 = 8。

7. 计算log4(16)的值。

参考答案:log4(16) = 2,因为4^2 = 16。

8. 计算ln(e)的值。

参考答案:ln(e) = 1,因为e^1 = e。

9. 计算ln(1)的值。

参考答案:ln(1) = 0,因为e^0 = 1。

10. 计算log5(25)的值。

参考答案:log5(25) = 2,因为5^2 = 25。

11. 计算log(x^2)的值,其中x = 10。

参考答案:log((10^2)) = log(100) = 2。

12. 计算log(2x)的值,其中x = 5。

参考答案:log(2(5)) = log(10) = 1。

13. 计算log3(9) + log3(27)的值。

参考答案:log3(9) + log3(27) = 2 + 3 = 5,因为3^2 = 9,3^3 = 27。

14. 计算log2(4) * log2(16)的值。

参考答案:log2(4) * log2(16) = 2 * 4 = 8,因为2^2 = 4,2^4 = 16。

15. 计算10^(log10(100))的值。

指数对数计算题含答案

指数对数计算题含答案

1.(本小题满分12分)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-32.(满分12分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)2log3)8.9(74lg25lg27log7-++++(2)252)008.0()949()827(325.032⨯+---【答案】(1)213;(2)913.(12分)化简或求值:(1)110232418(2)2(2)()5427--+⨯-;(2)2lg5++【答案】(1)21;(2)14.计算(1)7log203log lg25lg47(9.8)+++-(2)32310)641()833()1(416-+--π-【答案】(1)132(2) 165.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-3.6.求值:1)21lg5(lg8lg1000)(lg lg lg 0.066++++;2211113322a b b--【答案】1)1;2)1 。

7.(12分)(1)计算2532)31(001.0lg 9log 4log 25log --+••(2) 63735a a a ÷⋅【答案】(1)-4;(2)21a 。

8.(本小题满分12分) 计算5log 3333322log 2log log 859-+-的值。

【答案】-19.(本小题满分13分)计算下列各式的值:(1)1421()0.252+⨯;(2)8log )12()31(2lg 5lg 202+-+--+- .【答案】(1)原式=414132--+⨯=-;(2)原式=-410.(本小题满分12分)计算:(1)×421-⎪⎭⎫⎝⎛-4÷()21016115-⎪⎭⎫ ⎝⎛--;(2)()22lg 50lg 2lg 25lg +•+.【答案】 (1)原式=-4;(2) 原式=211.求51lg12.5lg lg 82-+的值. 【答案】51lg12.5lg lg 82-+ 1=12.计算下列各式的值:(1)31213125.01041027.010])833(81[])87(3[)0081.0(⨯-+⨯⨯------; (2) 12lg )2(lg 5lg 2lg )2(lg 222+-+•+;【答案】(1)原式===0(2)原式===113.求7log 23log lg 25lg 47+++的值 【答案】解:原式=2)425lg(33log 433+⨯+ =210lg 3log 2413++-=4152241=++-14.计算下列各式(Ⅰ)120lg 5lg 2lg )1(2-+ (Ⅱ)025.04213463)2011(82)4916(4)22()32(--⨯-⨯-+⨯-【答案】.1001272274122474)2(32)2(.01)2lg 1)(2lg 1(2lg )1(43413443322=---+⨯=-⨯-⨯-+⨯==-+-+=原式原式解:15.(本小题满分8分)不用计算器计算:7log 203log lg25lg47(9.8)+++-。

(完整版)对数运算练习题(含答案).docx

(完整版)对数运算练习题(含答案).docx

对数运算练习题1.将下列指数式改为对数式:(1)12316 _________________( 2)814x __________________ 42.将下列对数式改为指数式:(1)log483( 2)log1x 5 ______________ ___________________423. 3log33log37149___________ 24log3 4 log3124.log a x2log a n log a p ,则x___________ log a m25. lg 0.0622lg 61_____________ lg 66. 下列指数式与对数式互化不正确的一组是()A 10011与 log 2711 1与 lg10B27 3333 11与51C log392与 923D log 5 557. 已知log x16 2 ,则 x 的值为()A 4B4C4D 1 48. 下列各等式中,正确运用对数运算性质的是()A lg x2 y z lg x 2lg z B lg x2 y z2lg y2lg z lg y lg xC lg x2 y z2lg x lg y2lg zD lg x2 y z2lg x lg y 1lg z9. 以下运算中结果正确的是2()A log102log 10 5 1B log 4 6log 4 21 log 4 32131log 2 8C log52lg x lg y2lg z D3 log 2 8 3 35310. 已知a log 3 2 ,那么 log 3 82log 3 6 ,用 a 表示是()A a2B5a2C 3a12D3a a21 a11.计算:11lg9lg 240(1)lg 4 lg5lg20 lg522( 2)2lg 27lg3613512. 已知log a2x,log a 3y ,求 a2 x y的值13. 设在海拔x米处的大气压强是yPa ,已知 y ce kx,其中 c, k 为常数,若沿海某地元旦那天,在海平面的大气压强为 1.01105 Pa ,100米高空的大气压强是0.90 105 Pa ,求8000米高空的大气压强(结果保留 4 为有效数字)答案: 1. (1)log11623(2)log81x44 352. ( 1)448( 2)1x23.34.m15.n2 p6.C7.B8.D9.A10.A11.(1)2(2)112.1213.4.015 104 Pa。

(完整版)指数对数计算题含答案,推荐文档

(完整版)指数对数计算题含答案,推荐文档

2)2 6 a • b 527 - + - - 2 33 3 3 21.(本小题满分 12 分)2 27 2log 3( )- 2 + (1- 2)0 - ( )3 ;(2) 2 log 2 log 32 log 8 553 8【答案】(1)1;(2)-33 3 32.(满分 12 分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)log 3+ lg 25 + lg 4 + 7log 7 2 + (-9.8)0(2)( 27 )- 3 8 - ( 49 9 2)0.5 + (0.008) 3 ⨯ 2513 1 【答案】(1) ;(2)293.(12 分) 化简或求值:4 1 - 1 8 1(1) (2 )0 + 2-2 ⨯(2 ) 2 - ( )3 ;5 4 27(2) 2(lg + lg 2 ⋅ lg 5 + 1【答案】(1) ;(2)124.计算(1) log + lg 25 + lg 4 + 7log 7 2+ (-9.8)03 1 1 - 2 (2) - (π - 1)0 -(3 13 ) 3 + ( )3864 【答案】(1)(2) 1625.(本小题满分 10 分) 计算下列各式的值:2 27 2(1) ( )- 2 + (1- 2)0 - ( )3 ;3 8(2) 2 l og 2 - log 32 + log 8 - 5log 5 3【答案】(1)1;(2)-3.6.求值:1) lg 5(lg 8 + lg1000) + (lg 2 3 )2 + lg 1+ lg 0.06 ;62 - 1 1 1 (a3 b - 1) 2)2 a 2 b 327 (lg 2)2 - lg 2 +16 1 43 a 53 a 7 (lg 2)2 - lg 2 + 1 2 32 3( )【答案】1)1;2)1 。

1 -27.(12 分)(1)计算log 2 25• log 3 4 •log 5 9 + lg 0.001 - ( )3(2)⋅ ÷ a 61【答案】(1)-4;(2) a 2。

指数对数运算练习题40道(附答案)

指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

指数对数运算-教师用卷(含答案)

指数对数运算-教师用卷(含答案)
4

1
24
×
3
24+1=2

4
×
7 4

2
+
1=-6;
(2)原式=������������������2.52.52
+
������������10−2
+
3
������������������2
+
������������������24=2

2
+
3 2
+
2=72.
【解析】本题考查根式和指数式的运算、对数式的运算,是基础题.
本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意对数、指数性
质、运算法则的合理运用.
第 3 页,共 4 页
9. 不使用计算器,计算下列各题:
(1)(5 1 )0.5 + (−1)−1 ÷ 0.75−2 + (2 10)−23;
16
27
(2)lo������3√27 + ������������25 + ������������4 + 7lo������72 + (−9.8)0.
2
2
2
=12

(3)−2
2
+
(3)−2
2
=1.
2
第 2 页,共 4 页
(2)∵10x=3,10y=4,
∴102x-y=11002������������=(1100������������)2=49. 【解析】本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意有理 数指数幂的性质、运算法则的合理运用. (1)利用有理数指数幂的性质、运算法则求解. (2)利用有理数指数幂的性质、运算法则求解.

指数函数对数函数计算题集(含答案)

指数函数对数函数计算题集(含答案)

指数函数对数函数计算题11、计算:lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、解方程:lg 2(x +10)-lg(x +10)3=4.3456789、求函数121log 8.0--=x x y 的定义域.10、已知log 1227=a,求log 616.11、已知f(x)=1322+-x xa ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13141516171819、解指数方程:22)223()223(=-++-x x ±220、解指数方程:01433214111=+⨯------x x21、解指数方程:042342222=-⨯--+-+x x x x22、解对数方程:log2(x-1)=log2(2x+1)23、解对数方程:log2(x2-5x-2)=224、解对数方程:log16x+log4x+log2x=725、解对数方程:log2[1+log3(1+4log3x)]=126、解指数方程:6x-3×2x-2×3x+6=027、解对数方程:lg(2x-1)2-lg(x-3)2=228、解对数方程:lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、解对数方程:lg(x2+1)-2lg(x+3)+lg2=030、解对数方程:lg2x+3lgx-4=0指数函数对数函数计算题1 〈答案〉 1、12、解:原方程为lg 2(x +10)-3lg(x +10)-4=0,∴[lg(x +10)-4][lg(x +10)+1]=0.由由34∵3536、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3.7、18、5(1)1;(2)4 Array91011若a>1,则x<2或x>3;若0<a<1,则2<x<312、(1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略. 13、2个14、设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23.15、16x=217x=018x=19x=±120、x=3721、3x=222、x∈φ23、28、y=229、x=-1或x=730、x=10或x=10-412345、解指数方程:4x+4-x-2x-2-x=06、解指数方程:9x+6x-3x+2-9×2x=07、解指数方程:2x+2-2-x+3=08、解指数方程:2x+1-3×2-x +5=09、解指数方程:5x-1+5x-2+5x-3=15510、解指数方程:26x+3×43x+6=(8x )x11、解指数方程:4x -3·2x+3-432=0.12、解对数方程:lg(6·5x +25·20x )=x+lg2513、解对数方程:log (x-1)(2x 2-5x -3)=214、解对数方程:(0.4)1lg 2-x =(6.25)2-lgx15、解对数方程:x x 323log log52⋅=40016、解对数方程:log 2(9-2x )=3-x17、解对数方程:101gx+1=471+gx x18、解对数方程:log 2(2x -1)·log 2(2x+1-2)=219、解关于x 的方程.3)lg()](lg[22=--a x a x a20、计算:(1)log 622+log 63·log 62+log 63; (2)lg25+32lg8+lg5·lg20+lg 22.21222324252627、计算:(1)3lg 100; (2)8log 427log 31125525+.28、计算:.18log 7log 37log 214log 3333-+-29、若函数f(x)的定义域是[0,1],分别求函数f(1-2x)和f(x +a)(a >0)的定义域.30、若函数f(x +1)的定义域是[-2,3),求函数f(x1+2)的定义域.12345、x=06、x=27、x=-28、x=-19x=410x=111213x=414、x=10或x=103 15、x=916、x=0或x=317、x=10-4或x=101819a <020(1)121(1)322、13+++ab a ab23、lg2=b +11 lg3=)1(23b a + lg5=bb +124、log 3645=ab a -+225log 62627(1)328029{x|0≤x ≤21},{x|-a ≤x ≤1-a}.30、{x|x <-31或x >21}指数函数对数函数计算题31、求函数f(x)=lg(1+x)+lg(1-x)(-21<x <0)的反函数.2、已知实数x,y 满足(log 4y)2=x 21log , 求 yx u =的最大值及其相应的x,y 的值.34围.5678、解方程:2lg +x x =1000.9、解方程:6(4x -9x )-5×6x =0.10、解方程:1lg )7(lg 4110++=x x x.11、解方程:log x+2(4x +5)-01)54(log 22=-++x x .12、已知12x =3,12y =2,求y x x +--1218的值.1314的值.15小.1617已知函数f(x)=1+log x 3,g(x)=2log x 2(x >0,且x ≠1),比较f(x)与g(x)的大小.18、已知函数f(x)=1log -x a (a >0且a ≠1),(1)求f(x)的定义域;(2)当a >1时,求证f(x)在[a,+∞)上是增函数.19、根据条件,求实数a 的取值范围:(1)log 1+a (1-a)<1;(2)|lg(1-a)|>|lg(1+a)|.20、解方程:9x +4x =25·6x .21、解方程:92x-1=4x222324(1)(3)25(1)2627、解关于x 的方程:lg(ax-1)-lg(x-3)=128、解方程:log 0.5x 2-25.03log x x=4log 35.x o .29、解方程:5)(1log 5=-x x .30、解方程:3·16x +36x =2·81x .指数函数对数函数计算题3 〈答案〉 1f -123由⎩⎨⎧4a >5、(1)a <x <a1且x ≠1;(2)f(x)在(1,+∞)上是减函数.6、2147、lg(2+--)1=x,x-1>0,∴x>1)]1lg[(33)(1(x-1)2=3-1,∴x=1+28y2+9x=1011x=112、4313、3+2214、利用运算法则,得(xy -2)2+(2x -y)2=0∴log s (xy)=3115(1)1617当018(1)(2)=1log 1log 212-+-x x a a <0.19、(1)-1<a <0或0<a <1;(2)0<a <120、方程即为2·32x -5·3x ·2x +2·22x =0,即022352322=+⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛xx . 令y=x⎪⎭⎫ ⎝⎛23,方程又化为2y 2-5y +2=0, 解得y 1=2,y 2=21,于是便可得x 1=2log 23,x 2=-223log .212223 令24(1)((3),-b)25、(1)在(-∞,0),(2,+∞)上是减函数;(2)当x ∈(-∞,0)时<f(x)的反函数是f -1(x)=1-x⎪⎭⎫ ⎝⎛+211(x ∈R).26、a=10或a=101027、 当31<a <10时方程的解为x=-1029 a。

指数对数运算练习题40道(附答案)

指数对数运算练习题40道(附答案)

每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。

指数函数对数函数专练习题(含答案)

指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.对图象的影响在第一象限内,从顺时针方向看图象,逐渐在第四象限内,从顺时针方向看图象,逐渐指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b ba >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

指数对数计算题含答案

指数对数计算题含答案

1.(本小题满分12分)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-32.(满分12分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)2log3)8.9(74lg25lg27log7-++++(2)252)008.0()949()827(325.032⨯+---【答案】(1)213;(2)913.(12分)化简或求值:(1)110232418(2)2(2)()5427--+⨯-;(2)2lg5++【答案】(1)21;(2)14.计算(1)7log203log lg25lg47(9.8)+++-(2)32310)641()833()1(416-+--π-【答案】(1)132(2) 165.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-3.6.求值:1)21lg5(lg8lg1000)(lg lg lg0.066++++;2211113322a b--【答案】1)1;2)1 。

7.(12分)(1)计算2532)31(001.0lg 9log 4log 25log --+••(2)63735a a a ÷⋅【答案】(1)-4;(2)21a 。

8.(本小题满分12分) 计算5log 3333322log 2log log 859-+-的值。

【答案】-19.(本小题满分13分) 计算下列各式的值:(1)10421()0.252+⨯;(2)8log )12()31(2lg 5lg 202+-+--+- .【答案】(1)原式=414132--+⨯=-;(2)原式=-410.(本小题满分12分)计算: (1)×421-⎪⎭⎫⎝⎛-4÷()21016115-⎪⎭⎫⎝⎛--;(2)()22lg 50lg 2lg 25lg +•+. 【答案】 (1)原式=-4;(2) 原式=211.求51lg12.5lg lg 82-+的值. 【答案】51lg12.5lg lg 82-+ 1=12.计算下列各式的值: (1)31213125.01041027.010])833(81[])87(3[)0081.0(⨯-+⨯⨯------;(2) 12lg )2(lg 5lg 2lg )2(lg 222+-+•+; 【答案】(1)原式===0(2)原式===113.求7log 23log lg 25lg 473+++的值 【答案】解:原式=2)425lg(33log 433+⨯+ =210lg 3log 2413++-=4152241=++-14.计算下列各式(Ⅰ)120lg 5lg 2lg )1(2-+(Ⅱ)025.04213463)2011(82)4916(4)22()32(--⨯-⨯-+⨯-【答案】.1001272274122474)2(32)2(.01)2lg 1)(2lg 1(2lg )1(43413443322=---+⨯=-⨯-⨯-+⨯==-+-+=原式原式解:15.(本小题满分8分)不用计算器计算:7log 20log lg25lg47(9.8)+++-。

指数函数对数函数计算题集及答案

指数函数对数函数计算题集及答案

指数函数对数函数计算题11、计算:lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、解方程:lg 2(x +10)-lg(x +10)3=4.3、解方程:23log 1log 66-=x .4、解方程:9-x -2×31-x =27.5、解方程:x )81(=128.6、解方程:5x+1=123-x .7、计算:10log 5log )5(lg )2(lg 2233++·.10log 188、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92).9、求函数121log 8.0--=x x y 的定义域.10、已知log 1227=a,求log 616.11、已知f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数.14、求log 927的值.15、设3a =4b =36,求a 2+b1的值.16、解对数方程:log 2(x -1)+log 2x=117、解指数方程:4x +4-x -2x+2-2-x+2+6=018、解指数方程:24x+1-17×4x +8=019、解指数方程:22)223()223(=-++-x x ±220、解指数方程:01433214111=+⨯------x x21、解指数方程:042342222=-⨯--+-+x x x x22、解对数方程:log(x-1)=log2(2x+1)223、解对数方程:log(x2-5x-2)=2224、解对数方程:logx+log4x+log2x=71625、解对数方程:log[1+log3(1+4log3x)]=1226、解指数方程:6x-3×2x-2×3x+6=027、解对数方程:lg(2x-1)2-lg(x-3)2=228、解对数方程:lg(y-1)-lgy=lg(2y-2)-lg(y+2)29、解对数方程:lg(x2+1)-2lg(x+3)+lg2=030、解对数方程:lg2x+3lgx-4=0指数函数对数函数计算题1 〈答案〉1、12、解:原方程为lg 2(x +10)-3lg(x +10)-4=0,∴[lg(x +10)-4][lg(x +10)+1]=0.由lg(x +10)=4,得x +10=10000,∴x=9990.由lg(x +10)=-1,得x +10=0.1,∴x=-9.9.检验知: x=9990和-9.9都是原方程的解.3、 解:原方程为36log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去.4、解:原方程为2)3(x --6×3-x -27=0,∴(3-x +3)(3-x -9)=0.∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解.5、解:原方程为x 32-=27,∴-3x=7,故x=-37为原方程的解.6、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3.7、18、(1)1;(2)459、函数的定义域应满足:⎪⎩⎪⎨⎧>≥-≠-,0,01log ,0128.0x x x 即⎪⎪⎩⎪⎪⎨⎧>≥≠,0,1log ,218.0x x x解得0<x ≤54且x ≠21,即函数的定义域为{x|0<x ≤54且x ≠21}.10、由已知,得a=log 1227=12log 27log 33=2log 2133+,∴log 32=aa 23- 于是log 616=6log 16log 33=2log 12log 433+=aa +-3)3(4.11、若a >1,则x <2或x >3;若0<a <1,则2<x <312、(1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略.13、2个14、设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23.15、对已知条件取以6为底的对数,得a 2=log 63, b1=log 62, 于是a 2+b1=log 63+log 62=log 66=1.16、x=217、x=018、x=-21或x=2319、x=±120、x=3721、x=2322、x ∈φ23、x=-1或x=624、x=1625、 x=326、x=127、 x=829或x=123128、y=229、x=-1或x=730、x=10或x=10-4指数函数对数函数计算题21、解对数方程:65lg 21lg 32=+++x x2、解对数方程:2log 4x+2log x 4=53、解对数方程:3log x 3+3log 27x=44、解对数方程:log 7(log 3x)=-15、解指数方程:4x +4-x -2x -2-x =06、解指数方程:9x +6x -3x+2-9×2x =07、解指数方程:2x+2-2-x +3=08、解指数方程:2x+1-3×2-x +5=09、解指数方程:5x-1+5x-2+5x-3=15510、解指数方程:26x+3×43x+6=(8x )x11、解指数方程:4x -3·2x+3-432=0.12、解对数方程:lg(6·5x +25·20x )=x+lg2513、解对数方程:log (x-1)(2x 2-5x -3)=214、解对数方程:(0.4)1lg 2-x =(6.25)2-lgx15、解对数方程:x x 323log log52⋅=40016、解对数方程:log 2(9-2x )=3-x17、解对数方程:101gx+1=471+gx x18、解对数方程:log 2(2x -1)·log 2(2x+1-2)=219、解关于x 的方程.3)lg()](lg[22=--a x a x a20、计算:(1)log 622+log 63·log 62+log 63; (2)lg25+32lg8+lg5·lg20+lg 22.21、计算:(1)29)12(lg log 3-+5225)25.0(lg log -;(2)[(1-log 63)2+log 62·log 618]·log 46.22、已知:log 23=a,3b =7.求:log 4256.23、已知:log 89=a,log 25=b,求:lg2,lg3,lg5.24、已知:log 189=a,18b =5,求:log 3645.25、已知:12a =27,求:log 616.26、计算:(1)3log 422+; (2)b a a log 31.27、计算:(1)3lg 100; (2)8log 427log 31125525+.28、计算:.18log 7log 37log 214log 3333-+-29、若函数f(x)的定义域是[0,1],分别求函数f(1-2x)和f(x +a)(a >0)的定义域.30、若函数f(x +1)的定义域是[-2,3),求函数f(x1+2)的定义域.指数函数对数函数计算题2〈答案〉1、x=10或x=105122、x=2或x=163、x=3或x=274、 x=735、x=06、x=27、x=-28、x=-19、x=410、x=-1或x=511、x=2+2log 2312、x=log 253或x=log 25213、x=414、x=10或x=10315、x=916、x=0或x=317、x=10-4或x=1018、x=log 245或x=log 2319、a <0且a ≠-1时,x=0;a >0且a ≠21,x=3a;a=0或a=-1或a=21时,无解20、(1)1 (2)321、(1)3 (2)122、13+++ab a ab23、lg2=b +11 lg3=)1(23b a + lg5=bb +124、log 3645=ab a -+225、log 616=aa +-341226、(1)48 (2)3b27、(1)3 (2)230428、29、{x|0≤x ≤21},{x|-a ≤x ≤1-a}.30、{x|x <-31或x >21}指数函数对数函数计算题31、求函数f(x)=lg(1+x)+lg(1-x)(-21<x <0)的反函数.2、已知实数x,y 满足(log 4y)2=x 21log , 求 yx u =的最大值及其相应的x,y 的值.3、若抛物线y=x 2log 2a +2xlog a 2+8位于x 轴的上方,求实数a 的取值范围.4、已知函数f(x)=(log a b)x 2+2(log b a)x +8的图象在x 轴的上方,求a,b 的取值范围.5、已知f(x)=log a |log a x|(0<a <1).解不等式f(x)>0.判断f(x)在(1,+∞)上的单调性,并证明之.6、计算:2log 9log 412log 221log 5533525.0log 3)3(--++-.7、解方程)13lg()13lg()1lg(2++-=-x .8、解方程:2lg +x x =1000.9、解方程:6(4x -9x )-5×6x =0.10、解方程:1lg )7(lg 4110++=x x x.11、解方程:log x+2(4x +5)-01)54(log 22=-++x x .12、已知12x =3,12y =2,求y x x +--1218的值.13、已知2lg 2y x -=lgx +lgy,求yx 的值.14、已知log a (x 2+1)+log a (y 2+4)=log a 8+log a x +log a y(a >0,a ≠1),求log 8(xy)的值.15、已知正实数x,y,z 满足3x =4y =6z ,(1)求证:yx z 2111=-;(2)比较3x,4y,6z 的大小.16、求7lg20·7.0lg 21⎪⎭⎫ ⎝⎛的值.17、已知函数f(x)=1+log x 3,g(x)=2log x 2(x >0,且x ≠1),比较f(x)与g(x)的大小.18、已知函数f(x)=1log -x a (a >0且a ≠1),(1)求f(x)的定义域;(2)当a >1时,求证f(x)在[a,+∞)上是增函数.19、根据条件,求实数a 的取值范围:(1)log 1+a (1-a)<1;(2)|lg(1-a)|>|lg(1+a)|.20、解方程:9x +4x =25·6x .21、解方程:92x-1=4x22、解方程:x⎪⎭⎫ ⎝⎛271=91-x .23、解方程:9x -2·3x+1-27=0.24、已知函数f(x)=bx b x a-+log (a >0,b >0且a ≠1). (1)求f(x) 的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性;(4)求f(x)的反函数f -1(x).25、已知函数f(x)=)2(log 221x x -.(1)求它的单调区间;(2)求f(x)为增函数时的反函数.26、已知函数f(x)=21-x a满足f(lga)=10,求实数a 的值.27、解关于x 的方程:lg(ax-1)-lg(x-3)=128、解方程:log 0.5x 2-25.03log x x=4log 35.x o .29、解方程:5)(1log 5=-x x .30、解方程:3·16x +36x =2·81x .指数函数对数函数计算题3 〈答案〉1、f -1(x)=-x 101-(lg 43<x <0)2、 考虑y x4log =21-log 42y -log 4y,当x=21,y=41时,u max =2.3、由⎩⎨⎧<⋅-=∆>,08log 4)2log 2(,0log 222a a a 可得2<a <+∞4、a >1,b >a 或0<a <1,0<b <a .5、(1)a <x <a 1且x ≠1;(2)f(x)在(1,+∞)上是减函数.6、4217、)]13)(13lg[()1lg(2+-=-x ,x -1>0,∴x >1(x -1)2=3-1,∴x=1+28、解:原方程为(lgx +2)lgx=3,∴lg 2x +2lgx -3=0,设y=lgx,则有y 2+2y -3=0,∴y 1=1,y 2=-3.由lgx=1,得x=10,由lgx=-3,得x=10001. 经检验,x=10和x=10001都是原方程的解.9、x=-110、x=10或x=0.000111、x=112、3413、3+2214、利用运算法则,得(xy -2)2+(2x -y)2=0∴log s (xy)=3115、(1)略;(2)3x <4y <6z16、令所求式为t,两边取对数,得原式=1417、当0<x <1或x >34时,f(x)>g(x);当1<x <34时,f(x)<g(x);当x=34时,f(x)=g(x).18、(1)当0<a <1时,0<x ≤a;当a >1时,x ≥a.(2)设a ≤x 1≤x 2,则f(x 1)-f(x 2)=1log 1log 21---x x a a =1log 1log log 2121-+-x x x x a a a<0.19、(1)-1<a <0或0<a <1;(2)0<a <120、方程即为2·32x -5·3x ·2x +2·22x =0,即022352322=+⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛x x . 令y=x ⎪⎭⎫ ⎝⎛23,方程又化为2y 2-5y +2=0, 解得y 1=2,y 2=21,于是便可得x 1=2log 23,x 2=-223log .21、 由题意可得x229⎪⎭⎫ ⎝⎛=9,∴2x=9log 29,故x=219log 29.22、方程即为3-3x =32-2x ,∴-3x=2-2x,故x=-2.23、令y=3x >0,则原方程可化为y 2-6y -27=0,由此得y=9(另一解y=-3舍去).从而由3x =9解得x=2.24、(1)(-∞,-b)∪(b,+∞);(2)奇函数;(3)当0<a <1时,f(x)在(-∞,-b)和(b,+∞)上是增函数;当a >1时,f(x)在(-∞,-b)和(b,+∞)上是减函数;(4)略。

指数对数计算题含答案

指数对数计算题含答案

1.(本小题满分12分)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-32.(满分12分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)2log3)8.9(74lg25lg27log7-++++(2)252)008.0()949()827(325.032⨯+---【答案】(1)213;(2)913.(12分)化简或求值:(1)110232418(2)2(2)()5427--+⨯-;(2)2lg5++【答案】(1)21;(2)14.计算(1)7log203log lg25lg47(9.8)+++-(2)32310)641()833()1(416-+--π-【答案】(1)132(2) 165.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+--;(2)5log33332log2log32log85-+-【答案】(1)1;(2)-3.6.求值:1)21lg5(lg8lg1000)(lg lg lg0.066++++;2211113322a b b--【答案】1)1;2)1 。

7.(12分)(1)计算2532)31(001.0lg9log4log25log--+∙∙(2)63735aaa÷⋅【答案】(1)-4;(2)21a 。

8.(本小题满分12分) 计算5log 3333322log 2log log 859-+-的值。

【答案】-19.(本小题满分13分)计算下列各式的值:(10421()0.252-+⨯; (2)8log )12()31(2lg 5lg 202+-+--+- . 【答案】(1)原式=414132--+⨯=-;(2)原式=-410.(本小题满分12分)计算: (1)0.25×421-⎪⎭⎫⎝⎛-4÷()21016115-⎪⎭⎫ ⎝⎛--; (2)()22lg 50lg 2lg 25lg +∙+.【答案】 (1)原式=-4;(2) 原式=211.求51lg12.5lglg 82-+的值. 【答案】51lg12.5lg lg 82-+ 1= 12.计算下列各式的值:(1)31213125.01041027.010])833(81[])87(3[)0081.0(⨯-+⨯⨯------; (2) 12lg )2(lg 5lg 2lg )2(lg 222+-+∙+;【答案】(1)原式==0 (2=113.求7log 23log lg 25lg 47++的值 【答案】解:原式=2)425lg(33log 433+⨯+=210lg 3log 2413++-=4152241=++- 14.计算下列各式(Ⅰ)120lg 5lg 2lg )1(2-+ (Ⅱ)025.04213463)2011(82)4916(4)22()32(--⨯-⨯-+⨯-【答案】15.(本小题满分8分)不用计算器计算:7log 203log lg25lg47(9.8)+++-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(本小题满分 12 分)
( 2)- 2
+ (1- 2) 0
- (
27
)
32
;( 2) 2log 3 2 log 3 32 log 3 8 5
log 5
3
3
8
【答案】( 1) 1;( 2) -3
2.(满分 12 分)不用计算器计算: (注:只要有正确的转换,都要给步骤分,不能只看 结果)
( 1)
log 3 27 lg 25 lg 4 7
log 7
2
( 9.8)0
27 2 49 2
3
0.5
(0.008) 3
( 2) ()
( )
8
9
【答案】( 1)
13
; ( 2)
1
2
25
2
9
3.( 12 分) 化简或求值 :
( 1) (2 4
)
2 2
(2 1
)
5
4
1 ( 8
1
2
) 3 ; 27
( 2) 2(lg
2) 2 lg 2 lg5 (lg 2) 2 lg 2 1
【答案】( 1) 1
;( 2)1
2
4.计算
( 1)
log 3
27 lg25
lg4 7log
7
2
( 9.8)0
( 2) 6
1
1
2
(
1) 0
(3
3) 3
(
1
) 3
4
8
64
【答案】 (1)
13
(2) 16
2
5.(本小题满分 10 分) 计算下列各式的值:
( 1) ( 2)
- 2
+ (1-
2) 0
- (
27
)
32

3
8
( 2) 2log 3 2
log 3 32 log 3 8
5
log 5 3
【答案】( 1) 1;( 2) -3.
6.求值: 1) lg5(lg8 lg1000) (lg 2
3 )
2
lg 1 lg 0.06;
6 2
1
1
1
2) (a
3
b 1 ) 2 a 2 b 3
6
a ?
b 5
【答案】 1) 1; 2)1 。

7.( 12 分)( 1)计算 log 2 25 ? log 3 4 ? log 5 9
lg 0.001 (1
) 2
3
( 2)
3
a 5 3 a 7
a 6
【答案】( 1) -4 ;(2)
1。

a 2
8.(本小题满分 12 分 )
计算 2log 3 2
log 3 32 log 3 8
5
log 5
3
的值。

9
【答案】 -1
9. ( 本小题满分 13 分 )
计算下列各式的值:
( 1) 3 ( 4)3
(1
) 0
1
2) 4 ;
0.252 ( ( 2) .
2
4 1
1 4
3 ; (2) 【答案】 (1) 原式 =
2
原式 =-4
2
10.(本小题满分 12 分)计算:
4
1 ( 1)×
1
0 1 2
-4 ÷ 5 1
; 2
16
( 2) lg 25 lg 2 ? lg 50
lg 2 2 .
【答案】 (1) 原式 =-4 ; (2) 原式 =2 11.求 lg12.5 lg 5 1
的值.
lg 2
8
【答案】 lg12.5
lg
5
lg
1
1
8
2
12.计算下列各式的值:
1
7 )0 ] 1
[ 81
0.25
( 1) (0.0081)
4
[ 3 (
8
1 1 1
(3 3
) 3 ]
2
10 0.027 3 ;
8
(2) 2(lg
2 )2
lg 2 ? lg 5 (lg 2 ) 2 lg 2 1 ;





1




1
( 7) 0 ] 1
1
1
1
(0.0081) 4
[3 [81 0.25
(3 3
) 3 ]
2
10 0.027 3
=
8
8
1 4
3 1
[3 4
0.25
( 3
)
1 3 1
3 1
(0.3) 4
3
]
2
10 0.3 3
2
=0

2 ) 原 式 =
2(lg 2) 2
lg 2 ?lg5
(lg 2) 2 lg 2
1
=
2( 1
lg 2)2
1
lg 2 ?( 1-lg 2) (1
lg 2) 2 lg 2 1 2
2 2
=1
13.求的值
【答案】解:原式= ==
14.计算下列各式
(Ⅰ) (1) lg 2 2 lg 5 lg 20 1
(Ⅱ) (3 23 )
6
4
4 (
16
)
( 2 2 ) 3
49
【答案】
1
0.25
0 2
4
2 8 ( 2011)
解: 原式
lg 2
2
(1 lg 2 )( 1
lg 2) 1 0.
(1)
2 2
3 3
3
4
7
1
3
( 2 )原式
( 2 4 ) 3
4 2 4
2 4
1
4
27
2 7 2 1 100 .
4
15.(本小题满分 8 分)
不用计算器计算:
log 3 27 lg25
lg4
7
log 7
2
( 9.8)0 。

【答案】原式
3 2 3
13
2
2。

相关文档
最新文档