高三数学等差和等比数列的运用2
2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解
2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例1.(2022·河南·一模(理))已知等比数列{}n a 的前n 项和为n S ,()121n n a S n *+=+∈N .(1)求数列{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项,,m k p d d d (其中,,m k p 是公差不为0的等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【解析】(1)当2n ≥时,由121n n a S +=+得:121n n a S −=+,11222n n n n n a a S S a +−∴−=−=,则13n n a a +=,{}n a 为等比数列,∴等比数列{}n a 的公比为3;当1n =时,2112121a S a =+=+,11321a a ∴=+,解得:11a =,()13n n a n −*∴=∈N(2)假设存在满足题意的3项,由(1)得:13nn a +=,又()11n n n a a n d +=++,1113323111n n n n n n a a d n n n −−+−−⋅∴===+++; ,,m k p d d d 成等比数列,2km p d d d ∴=⋅,即()()()2211224323234311111k m p m p m p m p k −−−+−⋅⋅⋅⋅=⋅=+++++, ,,m k p 成等差数列,2k m p ∴=+,()()()2224343111m p m p m p k +−+−⋅⋅∴=+++,()()()2111121k m p mp m p mp k ∴+=++=+++=++,整理可得:2k mp =,又222m p k +⎛⎫= ⎪⎝⎭,222224m p m mp p mp +++⎛⎫∴== ⎪⎝⎭, 即()20m p −=,解得:m p =,则m p k ==,与已知中,,m k p 是公差不为0的等差数列相矛盾,∴假设错误,即不存在满足题意的3项.例2.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,()12,2(1)N n n a n a n S n *=⋅=+⋅∈. (1)求数列{}n a 的通项公式;(2)判断数列231⎧⎫−⎨⎬+⎩⎭n n a n 中是否存在成等差数列的三项,并证明你的结论. 【解析】(1)N n *∈,2(1)n n n a n S ⋅=+⋅,则当2n ≥时,()12(1)−⋅−=+⋅n n n n S S n S ,即121−=⋅−n n S Sn n ,而121S =,因此,数列{}n S n 是公比为2的等比数列,则11221n n n S S n −=⋅=,即2n n S n =⋅,所以1(1)(1)22−+⋅==+⋅n nn n S a n n. (2)记231=−+nn n b a n ,由(1)知,123(1)2321−=−⋅+=−+n n n n n b n n ,不妨假设存在,,()<<m n p b b b m n p 三项成等差数列,则()2323232−=−+−n n m m p p ,因为(),,N m n p m n p *<<∈,所以1+≤n p ,令()()32N nnf n n *=−∈,则3()212⎡⎤⎛⎫=−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n nf n ,于是有()f n 对N n *∈是递增的,则()(1)≥+f p f n ,即113232++−≥−p p n n ,因此()1123232323232++−=−+−≥−+−n n m m p p m m n n ,即332n m m −≥−,其左边为负数,右边为正数,矛盾,所以数列231⎧⎫−⎨⎬+⎩⎭n n a n 中不存在成等差数列的三项. 例3.(2022·福建省福州华侨中学高三阶段练习)已知在正项等比数列{}n a 中13213,,22a a a 成等差数列,则2022202120202019a a a a +=+__________.【答案】9【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13213,,22a a a 成等差数列,所以31212322a a a ⨯=+,即211132a q a a q =+,又10a >,2230q q ∴−−=所以3q =或1q =−(不符合题意,舍去).所以20212020322202220211120192018202020191191a a a q a q q q q a a a q a q q ++===+=+++, 故答案为:9.例4.(2022·湖北·高三期中)已知{}n a 是等差数列,{}n b 是等比数列,n S 是数列{}n a 的前n 项和,1111S =,573b b =,则6326log a b =______. 【答案】−1【解析】因为{}n a 是等差数列,且n S 是数列{}n a 的前n 项和,所以()1111161111112a a S a +===,解得61a =,因为{}n b 是等比数列,所以25763b b b ==,则633261log log 13a b ==−. 故答案为:1−.例5.(2022·河南省淮阳中学模拟预测(理))已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______. 【答案】[)2,+∞【解析】因为9S ,5a ,1成等比数列,所以()192595992a a a S a +===,所以59a =,即149a d +=,即194a d =−.由20400S ≥,得()1201902094190400a d d d +=⨯−+≥,解得2d ≥,即{}n a 的公差d 的取值范围为[)2,+∞. 故答案为:[)2,+∞.例6.(2022·上海·华东师范大学第一附属中学高三阶段练习)已知等差数列{}n a 的公差d 不为零,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 的值可以是______. 【答案】12【解析】由题意知:{}n a 是首项为d ,公差为d ,且0d ≠的等差数列,{}n b 是首项为2d ,公比为q ,且01q <<的等比数列,∴()()()2222222123222222212323141411d d d a a a d b b b d d q d q q q d q q ++++===++++++++, 要使222123123a a ab b b ++++为正整数,即2141q q ++为正整数,∵01q <<,201q <<,∴2113q q <++<,设2141q q n ++=,()0n >,即1413n <<,即14143n <<, 又∵21414141n q q n==++,∴n 为正整数,则满足范围的n 的值有:5,6,7,8,9,10,11,12,13, 又221314124q q q n ⎛⎫++=++= ⎪⎝⎭,即111222q =−=−=−又由题意知:01q <<,且为有理数,∴12q =−8n =时,满足题意,此时:111112222q =−−−+=.故答案为:12.例7.(2022·贵州·顶效开发区顶兴学校高三期中(理))对于集合A ,B ,定义集合{|}A B x x A x B −=∈∉且. 己知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+.设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B −的所有元素按从小到大依次排列构成一个新数列{}n c ,则数列{}n c 的前30项和30S =_________. 【答案】1632【解析】{}n b 为正项等比数列,则2221222n n n n n n b b b b q b q b q q ++=+⇒=+⇒=+,解得2q =或1q =−(舍),∴1122n nn b b −==;{}n a 为等差数列,则331222a a d =+=+,∴3d =,∴()41331n a n n =+−⋅=+.由231,*nn m b a m n m =⇒=+∈N 、,可得当2468n =、、、时,152185m =、、、, 故数列{}n c 的前30项包含数列{}n a 前33项除去数列{}n b 第2、4、6项,()3043331334166416322S +⨯+⨯=−−−=.故答案为:1632例8.(2022·全国·模拟预测(文))设数列{}n a ,{}n b 满足2n n a =,38n b n =−,则它们的公共项由小到大排列后组成新数列{}n c .在k c 和()1N*k c k +∈中插入k 个数构成一个新数列{}n e :1c ,1,2c ,3,5,3c ,7,9,11,4c ,…,插入的所有数构成首项为1,公差为2的等差数列,则数列{}n e 的前20项和20T =______. 【答案】1589【解析】2nn a =,∴数列{}n a 是以2首项,公比为2的等比数列,12a ∴=,24a =,38a =,416a =,因为38n b n =−,所以15b =−,22b =−,31b =,44b = 知1a 显然不是数列{}n b 中的项.424a b ==,2a ∴是数列{}n b 中的第4项,设2kk a =是数列{}n b 中的第m 项,则238(k m k =−、*N )m ∈.112222(38)616k k k a m m ++==⨯=−=−, 1k a +∴不是数列{}n b 中的项.222424(38)3(48)8k k k a m m ++==⨯=−=−−,2k a +∴是数列{}n b 中的项.21c a ∴=,42c a =,63c a =,⋯,2n n c a =,∴数列{}n c 的通项公式是224n n n c ==.因为12345520+++++=,所以{}n e 的前20项包括n c 的前5项,以及21n −的前15项,所以 1234520444441329T =++++++++()()5414129151589142−+⨯=+=−故答案为:1589.。
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导(小编推荐)第一篇:等差数列与等比数列专题辅导(小编推荐)等差数列与等比数列专题辅导(1)在等差数列{an}中, a7=9, a13=-2, 则a25=()A-22B-24C60D64(2)在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=()A864B1176C1440D1536(3)已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=()A–4B–6C–8D–10(4)设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n 项和,则()AS4>S3BS4=S2CS6(5)已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则a1·a4·a7·…·a28=5101520A 2B2C2D2(6)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是:()A.4005B.4006C.4007D.4008(7)在等比数列{an}中, a1<0, 若对正整数n都有anAq>1B0a1(3n-1)(8)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1=__________.2(9)等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为_________.(10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列, 且a1=2, 公和为5,那么a18的值为_______,这个数列的前21项和S21的值为.(11)已知等差数列{an}共2n+1项, 其中奇数项之和为290, 偶数项之和为261,求第n+1项及项数2n+1的值.(12)设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.(Ⅰ)证明a1=d;(Ⅱ)求公差d的值和数列{an}的通项公式.(13)已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(14)ΔOBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n, Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), an=(Ⅰ)求a1,a2,a3及an;(Ⅱ)证明yn+4=1-(Ⅲ)若记bn=y4n+41yn+yn+1+yn+2.2yn,n∈N*;4-y4n,n∈N*,证明{bn}是等比数列.答案:1-7 BDBDA BB8.29.21010.3, 5211.29, 1912.(2)d=2 an=2n13.n=414.(1)an=2(2)(3)证明略第二篇:等差数列与等比数列等差数列与等比数列⎧>0,递增数列⎪一、等差数列的定义:an+1-an=d(d:公差)(常数)⎨=0,常数列,⎪<0,递减数列⎩1.证明数列{an}为等差数列:(1)定义:an+1-an=d(常数)(2)等差中项:2an+1=an+an+2注:(1)不可用a2-a1=a3-a2=a4-a3=Λ=“常数”证(2)a1=⎨例1.(1)已知数列{an}为等差数列,求证:数列{an+an+1}为等差数列;变式:①已知数列{an}为等差数列,求证:数列{an+t}(t为常数)为等差数列;②已知数列{an}为等差数列,求证:数列{tan}(t为常数)为等差数列;③已知数列{an}、{bn}均为等差数列,求证:数列{an+bn}为等差数列(2)已知数列{an}的前n项和为Sn,且Sn=n2,求证:数列{an}为等差数列;变式:①已知数列{an}的前n项和为Sn,且Sn=n2+1,求:an②已知数列{an}的前n项和为Sn,且Sn=an2+bn,求:an ③已知数列{an}的前n项和为Sn,且Sn=an2+bn+c,求:an(3)已知数列{an}满足:a1=1,an+1=数列;(4)已知数列{an},a1=1,an+1=为等差数列(5)设数列{an}的前n项和为Sn,求证:数列{an}为等差数列的充要条件是{an}为等差数列⎧S1,n=1⎩Sn-Sn-1,n≥2an1,且bn=,求证:数列{bn}为等差an+1ann1an+,且bn=nan,求证:数列{bn}n+1n+1Sn=n(a1+an)22.证明数列{an}为单调数列:an+1-an=f(n)⎨⎧>0,递增数列递减数列⎩<0,注:(1)求数列{an}中an的极值也可采用此方法(2)已知数列{an}为等差数列ⅰ.若a1<0,d>0,则Sn有最小值;解法:①令an≤0{bn}②Snⅱ.若a1>0,d<0,则Sn有最大值;解法:①令an≥0②Sn例2.已知an=(11-2n)2n,求数列{an}的最大项例3.(1)已知等差数列{an}的前n项和为Sn,且an=10-2n,求Sn的最大值;(2)已知等差数列{an}的前n项和为Sn,且an=2n-13,求Sn的最小值;3.叠加法:已知a1=a,an+1-an=f(n),求an例4.(1)已知数列{an}为等差数列,首项为a1,公差为d,求an;(2)已知数列{an},a1=1,an+1=4.通项公式:an=a1+(n-1)d(1)an=am+(n-m)d(2)an是关于n的一次函数,且n的系数为公差d.例5.已知数列{an}为等差数列,a5=-3,a9=13,求an5.等差中项:若a、b、c成等差数列,则b=(1)若数列{an}为等差数列,则2an+1n+11an+,求an nna+c称为a、c的等差中项2=an+an+2;(2)若已知三个数成等差数列,且其和为定值,则可设这三个数为a-d、a、a+d;(3)若数列{an}为等差数列,且公差d≠0,则am+an=ap+aq⇔m+n=p+q(4)在有穷等差数列{an}中,与首尾两项距离相等的两项的和等于首尾两项的和.即:a1+an=a2+an-1=a3+an-2=Λ=ak+an-k+1例6.(1)已知:等差数列中连续三项的和为21,平方和为179,求这三项(2)在3与19之间插入3个数后成等差数列,求这三个数(3)已知:a、b、c成等差数列求证:①b+c、a+c、a+b成等差数列;②a(b+c)、b(a+c)、c(a+b)成等差数列;③a-bc、b-ac、c-ab 成等差数列(4)已知:a、b、c成等差数列,求证:2222111成等差数列 b+ca+ca+blg(a-c)、lg(a+c-2b)成等差(5)已知:成等差数列,求证:lg(a+c)、数列(6)若方程a(b-c)xb(c-a)x+c(a-b)=0有相等实根,求证:成等差111abc111abc数列例7.在等差数列{an}中,(1)若a5+a10=12,求S14;(2)若a8=m,求S15;(3)若a4+a6+a15+a17=50,求S20;(4)若a2+a4=18,a3+a5=32,求S6;(5)若a2+a5+a12+a15=36,求S16;(6)若a3+a4+a5+a6+a7=450,求a2+a8(7)若等差数列{an}的各项都是负数,且a32+a82+2a3⋅a8=9,则其前10项和S10= ____________(8)在等差数列{an}中,若a3+a15=a5+an,则n=_______6.数列{an}的前n项和Sn=注:(1)倒序法求和;(2)等差数列{an}的前n项和Sn是关于自然数n的二次函数,且n的系数为n(a1+an)n(n-1)n(n-1)=na1+d=nan-d 222d,2常数项为零,即:Sn=An2+Bn(当A=0时数列{an}为常数列);(3)①S2n-1=(2n-1)an(可以将项与和之间进行相互转化)。
数学中的等差数列与等比数列公式整理与推导
数学中的等差数列与等比数列公式整理与推导在数学中,等差数列和等比数列是两种常见的数列形式。
它们在数学、科学和日常生活中都有重要的应用。
本文将对这两种数列的公式进行整理和推导。
一、等差数列等差数列是一种数列,其中相邻两项之差保持恒定。
设首项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式可以表示为:aₙ = a₁ + (n-1)d(1)其中,a₁为首项,n为项数,d为公差。
为了更好地理解等差数列的公式,我们可以通过一个例子进行推导。
假设我们有一个等差数列:2, 5, 8, 11, 14, ...,其中首项a₁=2,公差d=3。
我们可以按照公式(1)计算第5项的值:a₅ = a₁ + (5-1)d= 2 + 4 × 3= 2 + 12= 14因此,这个等差数列的第5项为14。
二、等比数列等比数列是一种数列,其中相邻两项之比保持恒定。
设首项为a₁,公比为r,第n项为aₙ,则等比数列的通项公式可以表示为:aₙ = a₁ × r^(n-1)(2)其中,a₁为首项,n为项数,r为公比。
同样,我们通过一个例子来推导等比数列的公式。
假设我们有一个等比数列:2, 4, 8, 16, 32, ...,其中首项a₁=2,公比r=2。
按照公式(2),我们可以计算第5项的值:a₅ = a₁ × r^(5-1)= 2 × 2^4= 2 × 16= 32因此,这个等比数列的第5项为32。
三、等差数列的公式整理与推导在前面的讨论中,我们已经给出了等差数列的通项公式,即公式(1)。
现在,我们来推导这个公式的正确性。
设等差数列的首项为a₁,公差为d。
我们知道第n项aₙ与前一项aₙ₋₁之间的关系是:aₙ = aₙ₋₁ + d(3)我们使用数学归纳法来证明等差数列的通项公式。
(1)初始条件:当n=1时,等式(3)成立,即a₁=a₁+0,初始条件满足。
(2)归纳假设:假设当n=k时等式(3)成立,即aₙ=aₙ₋₁+d。
高三数学 等差数列、等比数列 (2)
这样就可以运用解法1和解法2的方法了(下解略).
解法3:由 an+1=4an+3
an+2=4an+1+3
②
①得
②-①得:an+2-an+1=4(an+1-an).则数列{an+1-an}是 首项为a2 -a1 =(4 a1+3)-a1= 3 a1+3=9,公比 为4的等比数列.
所以, an-an-1=9×4n-2 所以,an=(an-an-1)+ (an-1-an-2)+ …+(a2-a1)+a1 =9×4n-2+ 9×4n-3 +…+ 9×40+2
例4.已知数列an, a1
1 2
, an
3an1
3n1, 求an.
解:两边同除以3n得:
an 3n
an1 3n1
1 3
,即
:
an 3n
an1 3n1
1. 3
an 3n
是以
a1 3
1 为首项,
6
公差为
1 的等差数列 . 3
an 1 (n 1)( 1) 1 1 n.即
3n 6
3 23
an
1 3n 2
n 3n1.
例5.已知数列an, a1 3, an 4an1 5 3n , 求an.
解法1:两边同除以3n得:
an 3n
4 3
an1 3n1
5.
令 an 3n
An ,则得An
4 3
An1 5.(以下用例3的方法解)
又令An
k
4 3
( An1
k ),则An
4 3
An1
an
4an1
等比等差数列的所有公式
等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
高考数学大题必备答题技巧
高考数学大题必备答题技巧(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高考数学大题必备答题技巧【#高三# #高考数学大题必备答题技巧#】高考数学大题怎么才能拿高分?回答当然是运用一些答题技巧了。
等差数列与等比数列的证明方法
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。
一、 定义法01.证明数列是等差数列的充要条件的方法:{}1()n n n a a d a +-=⇔常数是等差数列{}2222()n n n a a d a +-=⇔常数是等差数列 {}3333()n n n a a d a +-=⇔常数是等差数列02.证明数列是等差数列的充分条件的方法:{}1(2)n n n a a a d n --=≥⇒是等差数列 {}11(2)n n n n n a n a a a a +--=-≥⇒是等差数列03.证明数列是等比数列的充要条件的方法:{}1(00)n n na q q a a +=≠≠⇔1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法:1nn a q a -=(n>2,q 为常数且≠0){}n a ⇒为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有1nn a qa -==(常数0≠);②n *∈N 时,有1n na q a +==(常数0≠).例1. 设数列12,,,,n a a a 中的每一项都不为0。
证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=。
证明:先证必要性设{}n a 为等差数列,公差为d ,则当d=0时,显然命题成立当d≠0时,∵111111n n n na a d a a++⎛⎫=-⎪⎝⎭∴再证充分性:∵122334111a a a a a a++⋅⋅⋅1111n n nna a a a++++=⋅⋅………①∴122334111a a a a a a++⋅⋅⋅11212111n n n n nna a a a a a++++++++=⋅⋅⋅………②②﹣①得:12121111n n n nn na a a a a a+++++=-⋅⋅⋅两边同以11n na a a+得:112(1)n na n a na++=+-………③同理:11(1)n na na n a+=--………④③—④得:122()n n nna n a a++=+即:211n n n na a a a+++-=-{}n a为等差数列例2.设数列}{na的前n项和为n S,试证}{na为等差数列的充要条件是)(,2)(*1NnaanS nn∈+=。
专题二 第2讲 第1课时 等差数列、等比数列
[A 组 小题提速练]1.(等差数列求和及性质)在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于( ) A .3 B .6 C .9D .36解析:∵a 1+a 2+…+a 10=30, 得a 5+a 6=305=6,又a n >0, ∴a 5·a 6≤⎝⎛⎭⎪⎫a 5+a 622=⎝ ⎛⎭⎪⎫622=9. 答案:C2.(等差数列求和及不等式)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0的最大的自然数n 是( ) A .9 B .10 C .11D .12解析:∵{a n }的公差d =3-74-2=-2,∴{a n }的通项为a n =7-2(n -2)=-2n +11,∴{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=9a 5>0,S 10=a 5+a 62·10=0,S 11=11a 6<0,故选A. 答案:A3.(等差数列求和)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( ) A .S 4<S 3 B .S 4=S 3 C .S 4>S 1D .S 4=S 1解析:设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎨⎧a 1+d =-6,a 1+5d =6,解得⎩⎨⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B. 答案:B4.(等差数列求和及最值)在等差数列{a n }中,a 6+a 11=0,且公差d >0,则数列{a n }的前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:由题意知a 6<0,a 11>0,且a 1+5d +a 1+10d =0,所以a 1=-152d .又数列{a n }的前n 项和S n =na 1+n n -12d =d2[(n -8)2-64],所以当n =8时,数列{a n }的前n 项和取得最小值.故选C. 答案:C5.(数学文化与等比数列求和)中国古代数学著作《算法统宗》中有这样一个问题:三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还.其大意为:有一人走378里路,第一天健步行走,从第二天起因为脚痛每天走的路程都为前一天的一半,走了6天后到达目的地,问此人每天走多少里路.则此人第五天走的路程为( ) A .48里 B .24里 C .12里D .6里解析:依题意知,此人每天走的路程数构成以12为公比的等比数列a 1,a 2,…,a 6,由S6=a1⎝⎛⎭⎪⎫1-1261-12=378,解得a1=192,所以此人第五天走的路程为a5=192×124=12(里).故选C.答案:C6.(等比数列性质及基本不等式)已知首项与公比相等的等比数列{a n}满足a m a2n=a2 4(m,n∈N*),则2m+1n的最小值为( )A.1 B.3 2C.2 D.9 2解析:设该数列的首项及公比为a,则由题可得a m×a2n=a4×2,即a m×a2n=a m+2n=a4×2,得m+2n=8,所以2m+1n=18(m+2n)·⎝⎛⎭⎪⎫2m+1n=182+2+4nm+mn≥182+2+24nm×mn=1,当且仅当4nm=mn,即m=4,n=2时等号成立,故选A.答案:A7.(等比数列前n项和)在等比数列{a n}中,a1+a n=34,a2·a n-1=64,且前n 项和S n=62,则项数n等于( )A.4 B.5C.6 D.7解析:设等比数列{a n}的公比为q,由a2a n-1=a1a n=64,又a1+a n=34,解得a1=2,a n=32或a1=32,a n=2.当a1=2,a n=32时,S n=a11-q n1-q=a1-a n q1-q=2-32q1-q=62,解得q=2.又a n=a1q n-1,所以2×2n-1=2n=32,解得n=5.同理,当a1=32,a n=2时,由S n=62,解得q=12.由a n=a1q n-1=32×⎝⎛⎭⎪⎫12n-1=2,得⎝⎛⎭⎪⎫12n-1=116=⎝⎛⎭⎪⎫124,即n-1=4,n=5.综上,项数n等于5,故选B.答案:B8.(等差数列前n 项和性质)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 016的值等于( ) A .-2 015 B .2 015 C .2 016D .0解析:设数列{a n }的公差为d ,S 12=12a 1+12×112d ,S 10=10a 1+10×92d , 所以S 1212=12a 1+12×112d 12=a 1+112d .S 1010=a 1+92d ,所以S 1212-S 1010=d =2, 所以S 2 016=2 016×a 1+2 015×2 0162d =0.答案:D9.(等比数列前n 项和性质)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n解析:设等比数列{a n }的公比为q ,∵S 3=7,S 6=63,∴q ≠1,∴⎩⎪⎨⎪⎧a 11-q 31-q =7,a 11-q 61-q =63,解得⎩⎨⎧a 1=1,q =2,∴a n =2n -1,∴na n =n ·2n -1,设数列{na n }的前n 项和为T n ,∴T n =1+2×2+3×22+4×23+…+(n -1)·2n -2+n ·2n -1,2T n =2+2×22+3×23+4×24+…+(n -1)·2n -1+n ·2n ,∴-T n =1+2+22+23+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1,∴T n =1+(n -1)×2n ,故选D. 答案:D10.(递推关系、通项及性质)已知数列{a n }满足a 1=2,2a n a n +1=a 2n +1,设b n =a n -1a n +1,则数列{b n }是( ) A .常数列 B .摆动数列 C .递增数列D .递减数列解析:由2a n a n +1=a 2n +1可得a n +1=a 2n +12a n ,b n +1=a n +1-1a n +1+1=a 2n +12a n -1a 2n +12a n+1=a 2n -2a n +1a 2n +2a n +1=a n -12a n +12=b 2n ,由b n >0且b n ≠1,对b n +1=b 2n 两边取以10为底的对数,可得lgb n +1=2lg b n ,所以数列{lg b n }是以lg b 1=lg 2-12+1=lg 13为首项,2为公比的等比数列,所以lg b n =2n -1lg 13,b n =(13)2n -1,故数列{b n }是递减数列,故选D. 答案:D11.(等比数列、等差数列混合及性质)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .1B .22C .-22D .- 3解析:{a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3, ∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3.答案:D12.(等差数列性质,等比数列通项)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1. 答案:3n -113.(S n 与a n 关系及等差数列通项)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n ,n ∈N *,则a n =________. 解析:当n =1时,a 2=3S 1=3a 1=3. 当n ≥2时,∵a n +1=3S n ,∴a n =3S n -1,两式相减得a n +1-a n =3(S n -S n -1)=3a n ,即a n +1=4a n ,当n ≥2时,{a n }是以3为首项,4为公比的等比数列,得a n =3×4n -2.综上,a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2.答案:⎩⎨⎧1,n =1,3×4n -2,n ≥2.14.(等差数列通项)已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f-2-a n(n ∈N *),则a 2 016的值为________.解析:根据题意,不妨设f (x )=(12)x,则a 1=f (0)=1,∵f (a n +1)=1f-2-a n,∴a n +1=a n +2,∴数列{a n }是以1为首项、2为公差的等差数列,∴a n =2n -1,∴a 2 016=4 031. 答案:4 03115.(等差数列及性质、不等式)已知数列{a n }满足a 2=2a 1=2,na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,若{a n }为单调递增数列,则实数λ的取值范围为________.解析:因为na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,所以2na n +2=(2n +4)a n +λ(2n 2+4n ),即na n +2-(n +2)a n =λ(n 2+2n ),所以a n +2n +2-a nn =λ.设b n =a nn,则b n +2-b n =λ,因为a 1=1,a 2=2,所以b 1=b 2=1. 所以当n 为奇数时,b n =1+n -12λ;当n 为偶数时,b n =1+n -22λ.所以a n=⎩⎪⎨⎪⎧n +n n -1λ2,n 为奇数,n +n n -2λ2,n 为偶数.由数列{a n }为单调递增数列,得a n <a n +1. ①当n 为奇数且n >1时,n +n n -1λ2<n +1+n +1n +1-2λ2,所以λ>21-n, 又-1≤21-n<0,所以λ≥0; ②当n 为偶数时,2n +nn -2λ2<2n +1+n +1n +1-1λ2,所以λ>-23n ,又-13≤-23n<0,所以λ≥0. 综上,实数λ的取值范围为[0,+∞). 答案:[0,+∞)[B 组 大题规范练]1.(S n 与a n 的关系,等比数列的证明)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求a n . 解析:(1)因为数列{a n }的前n 项和为S n , 且S n =2a n -3n (n ∈N *).所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)证明:因为S n =2a n -3×n ,所以S n +1=2a n +1-3×(n +1), 两式相减,得a n +1=2a n +3,*把b n =a n +3及b n +1=a n +1+3,代入*式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1, 所以a n =b n -3=6×2n -1-3=3(2n-1).2.(等差数列定义、等比数列通项及求和)已知数列{a n }满足a 1=1,a n +1-a n =3,数列{b n }满足b n =3a n . (1)求数列{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n . 解析:(1)因为a 1=1,a n +1-a n =3,所以数列{a n }是首项为1,公差为3的等差数列, 所以a n =1+3(n -1)=3n -2, 故b n =3a n =33n -2.(2)由(1)知b n +1b n =33n +133n -2=27,所以数列{b n }是以3为首项,27为公比的等比数列,则数列{a n +b n }的前n 项和S n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =[1+4+…+(3n -2)]+(3+34+…+33n -2) =32n 2-12n +326·27n -326. 3.(a n 与S n 关系、等比数列证明及不等式最值)已知数列{a n }的前n 项和为S n ,满足a n +S n =2n .(1)证明:数列{a n -2}为等比数列,并求出a n ; (2)设b n =(2-n )(a n -2),求{b n }的最大项. 解析:(1)证明:由a 1+S 1=2a 1=2,得a 1=1.由a n +S n =2n 可得a n +1+S n +1=2(n +1),两式相减得,2a n +1-a n =2, ∴a n +1-2=12(a n -2),∴{a n -2}是首项为a 1-2=-1,公比为12的等比数列,a n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1,故a n =2-⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知b n =(2-n )×(-1)×⎝ ⎛⎭⎪⎫12n -1=(n -2)×⎝ ⎛⎭⎪⎫12n -1,由b n +1-b n =n -12n-n -22n -1=n -1-2n +42n=3-n 2n≥0,得n ≤3,由b n +1-b n <0得n >3,∴b 1<b 2<b 3=b 4>b 5>…>b n >…,故{b n }的最大项为b 3=b 4=14.4.(等差、等比数列通项及和的最值)设S n ,T n 分别是数列{a n },{b n }的前n 项和,已知对于任意n ∈N *,都有3a n =2S n +3,数列{b n }是等差数列,且T 5=25,b 10=19.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a nb nn n +1,求数列{c n }的前n 项和R n ,并求R n 的最小值.解析:(1)由3a n =2S n +3,得 当n =1时,有a 1=3; 当n ≥2时,3a n -1=2S n -1+3, 从而3a n -3a n -1=2a n ,即a n =3a n -1, 所以a n ≠0,a na n -1=3, 所以数列{a n }是首项为3,公比为3的等比数列,因此a n =3n . 设数列{b n }的公差为d ,由T 5=25,b 10=19, 得⎩⎨⎧5b 1+10d =25,b 1+9d =19,解得b 1=1,d =2, 因此b n =2n -1.(2)由(1)可得c n =2n -13nn n +1=[3n -n +1]3n n n +1=3n +1n +1-3nn,R n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫-31+322+⎝ ⎛⎭⎪⎫-322+333+…+⎝ ⎛⎭⎪⎫-3nn +3n +1n +1=3n +1n +1-3,因为c n =2n -13nn n +1>0,所以数列{R n }单调递增.所以n =1时,R n 取最小值,故最小值为32.。
高考数学:证明等差等比数列的解法
高考数学:证明等差等比数列的解法
我们在数列部分常碰到这样的问题:证明某个复杂数列为等差或者等比数列。
比如下面这道题:
从求证出发,我们回顾等比数列的定义:从第2项开始,数列的后一项除以前一项等于同一个不为零的常数,则这个数列为等比数列。
这就是我们证明等比数列的主要办法,也称定义法.即只需证明后项/前项为常数即可。
使用定义法的技巧,就是在化简过程中,保持前项不变,然后后项用题中给定的关系式代入。
道理也是显然的,要使得计算结果为常数,必须要出现消项、约分,所以把后项朝前项去靠近,才能最终通过消项、约分得到常数。
根据条件中给定的关系式,代入上式。
结果还真是一个常数,神奇吗?
其实一点也不神奇,只要方法正确,常数是命题者设计好了的,你不用担心。
下面,增加一点难度,看这一道分段形式给出的数列递推式。
请自觉做题3分钟.不要往下看。
分析:首先来理解数列递推式传递的信息.我们用具体的例子来理解它。
通过这种方式,我们对数列有了一些感性的认识。
不管怎样,还是采用定义法来证明。
还是采用前面介绍的技巧:保持前项不变,把后项用题中给定的关系式代入。
注意看,分子项和分母项的脚标相差2,我们根据题目所给递推式,可以分两步来。
咦!结果又是一个常数。
废话,要不是常数,那就是题目出错了。
总结:定义法来真好用,证明等比显奇功。
等差数列、等比数列的性质运用 高考复习
,∴S3m=A·(3m)2+B·3m=210
解法四:S3m=S2m+a2m+1+a2m+2+…+a3m=S2m+(a1+2md)+…+(am+2md)=S2m+(a1+… +am)+m·2md=S2m+Sm+2m2d. 由解法一知 d= 40 ,代入得 S3m=210. 2
1 2 n
(1)求数列{bn}的通项公式; (2)记 Tn=C 1 b1+C 2 b2+C 3 b3+…+C n bn,求 lim n n n n
Tn n n →∞ 4 + b
n . Biblioteka 7.(★★★★)设{an}为等差数列, n}为等比数列, 1=b1=1,a2+a4=b3,b2· 4=a3,分别求出{an} {b a b 及{bn}的前 n 项和 S10 及 T10. 8.(★★★★★){an}为等差数列,公差 d≠0,an≠0,(n∈N*),且 akx2+2ak+1x+ak+2=0(k∈N*) (1)求证:当 k 取不同自然数时,此方程有公共根; (2)若方程不同的根依次为 x1,x2,…,xn,…,求证:数列 参考答案 难点磁场 解法一:将 Sm=30,S2m=100 代入 Sn=na1+ n(n ? 1) d,得:
2
},从而求得 an,即
“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想. 解:(1)设 y=
等差数列、等比数列的应用
6.4 等差数列、等比数列的应用考点梳理--重双基考点一 等差数列、等比数列的通项公式 1.等差数列的通项公式:()d n a a n 11-+=;2.等比数列的通项公式:11-=n n q a a .考点二 等差数列、等比数列的前n 项和公式 3.等差数列的前n 项和公式 求和公式1:()21n n a a n S +=(已知1n n a a 、、求n S );求和公式2:()d n n na S n 211-+=(已知1n a d 、、求n S ). 4.等比数列的前n 项和公式 (1)当1q ≠时,求和公式1:()qq a S n n --=111 (已知n q a ,,1求n S );求和公式2:qqa a S n n --=11(已知n a q a ,,1求n S ).(2)当1q =时,1na S n =.自我检测1.如图所示,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…,则这个数列的第9项是( )A.53B.54C.55D.561.C 【解析】数列第一项为3,第二项比第一项多3,以后每项比前项多项数加1,所以第9项为3+3+4+5+6+…+10=1+2+3+4+5+6+…+10=55.2.某工厂去年12月份产值为a ,若月平均增长率为p ,则今年12月份产量为( ) A.ap B.()p a +1 C.()111p a + D.()121p a +2.D3.某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有 个座位.3.1020【解析】第一排座位数:702(201)32-⨯-=(个),一共有座位:(3270)2021020+⨯÷=(个).4.某省今年高考高校招生人数为a 万人,计划以后每年扩招%10,五年后该省的高校招生人数为 万人.(结果用指数幂表示) 4.51.1a5.点点读一本故事书,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完.那么,这本书一共有多少页?5.【解析】每天看的页数组成等差数列{}n a ,公差4=d ,首项301=a ,末项70=n a , 则由()d n a a n 11-+=,得()704130=⨯-+n ,解得11=n .所以这本书的总页数()550270301111=+⨯=S (页).6.小王和小高同时在某个单位实习,小王第一个月得到1500元工资,以后每月多得60元;小高第一个月得到1200元工资,以后每月多得45元.两人工作一年后,所得的工资总数相差多少元?6.【解析】设小王12~1月工资构成数列{}n a ,由题意可知60,15001==d a ,设小高12~1月工资构成数列{}n b ,由题意可知45',12001==d b .利用等差数列求和公式可得,工作一年后,小王的工资总数为21960606615001221112121=⨯+⨯=⨯⨯+d a ;小高的工资总数为173704566120012'21112121=⨯+⨯=⨯⨯+d b .所以一年后两人所得工资总数相差45901737021960=-元.考法拓展--重能力考法一 等差数列的应用◇◆难点释疑1.等差数列的通项公式:()d n a a n 11-+=;2.等差数列的前n 项和公式:d n n na a a n S n n 2)1(2)(11-+=+=; 3.一般先判断和证明数列是等差数列,再确定等差数列的相关元素,最后利用等差数列的性质解答.◇◆典型例题【例题1】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?总共有多少根?【考查目标】 考查学生将实际问题转化为数学问题的能力,并能用等差数列相关性质解题. 【解题指南】将每层圆木根数写出来,依次是:5,6,7,8,9,10,…可以看出,这是一个等差数列,它的首项51=a ,公差1=d ,项数是28=n .由题意得,最下面一层即()321275128128=⨯+=⨯-+=d a a (根),圆木总数为d a S ⨯⨯+=2272828128 51812714528=⨯⨯+⨯=(根). 答:最下面一层有32根,总共有518根. ◇◆反思提炼解决此类问题,首先要能根据题目所给条件将实际问题转化为等差数列模型,然后分清首项与公差,最后利用等差数列的通项公式与求和公式解之.◇◆变式训练1一个大剧院,座位排列成的形状是一个梯形,第一排有10个座位,第二排有12个座位,第三排有14个座位,……,最后一排有210个座位,那么剧院中间一排有多少个座位?这个剧院一共有多少个座位?◇◆变式训练1如果我们把每排的座位数依次记下来,10,12,14,16,… 容易知道构成的是一个首项为10,公差为2的等差数列.则()2110210⨯-+=n ,解得101=n ,即这个大剧院共有101排座位.中间一排就是第()5121101=÷+排,那么中间一排有:105112110+-⨯=()(个)座位.根据等差数列的求和公式,这个剧场座位一共有:()11110221010101101=+⨯=S (个).【例题2】某地为了防止水土流失,植树造林,绿化荒沙地,每年比上一年多植相同亩数的林木,但由于自然环境和人为因素的影响,每年都有相同亩数的土地沙化,具体情况如下表所示:而一旦植完,则不会被沙化.问:(1)每年沙化的亩数为多少? (2)到哪一年可绿化完全部荒沙地?【考查目标】 建立正确的数列模型,分清题目涉及的已知数、未知数,根据模型依次列出数列的一些项,找出规律,求出通项公式或前n 项和公式,进而求解.【解题指南】(1)由表知,每年比上一年多造林400亩.因为2017年新植1400亩,故当年沙地应降为23800140025200=-亩,但当年实际沙地面积为24000亩,所以2017年沙化土地为200亩.同理2018年沙化土地为200亩,所以每年沙化的土地面积为200亩. (2)设2018年及其以后各年的造林亩数分别为Λ,,,321a a a ,则()140040040011800+=⨯-+=n n a n . n 年造林面积总和为()400211400⨯-+=n n n S n .由(1)知,每年林木的“有效面积”应比实造面积少200亩.由题意:24000200≥-n S n ,化简得012072≥-+n n ,解得8≥n .故到2025年可绿化完全部沙地.◇◆反思提炼首先要判断和证明数列是等差数列,其次一定要弄清数列的首项和公差等基本量,要分清是数列的通项问题还是数列的求和问题.◇◆变式训练2用分期付款的方式购置一中型商场一套,价格为1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为%1.若付150万元后的第一个月开始算分期付款,在分期付款的第10个月应交付多少钱?全部贷款付清后,买这套商场实际花了多少钱?◇◆变式训练2首付150万元,则欠款1000万元,依题意需分20次分清,则每次的还款数额顺次构成一数列,记作{}n a .15010000.0160a =+⨯=(万元) 250(100050)0.0159.5a =+-⨯=(万元) 350(1000502)0.0159a =+-⨯⨯=(万元)……50(100050(1))0.0160(1)0.5n a n n =+-⨯-⨯=--⨯(万元),所以{}n a 是以及60为首项,-0.5为公差的等差数列.106090.555.5a =-⨯=(万元).20次分期付款总和2020[60(60190.5)]11052S +-⨯==(万元), 所以,实际付款共为11051501255+=(万元).答:第10个月付款55.5万元,买这套商场实际花了1255万元.考法二 等比数列的应用◇◆难点释疑1.等比数列的通项公式:11-=n n q a a ;2.等比数列的前n 项和公式:⎪⎩⎪⎨⎧=≠--=--=)1()1(11)1(111q na q qq a a q q a S n n n . 3.一般先判断和证明数列是等比数列,再确定等比数列的相关元素,最后利用等比数列的性质解答.◇◆典型例题【例题3】某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍.求: (1)第5天植树多少棵?(2)连续植树6天,能否完成计划?【考查目标】 本题着重考查等比数列的建模能力,并要求熟练使用等比数列的通项公式和求和公式解题.【解题指南】设每天植树的棵数构成的数列为{}n a ,由题意可知它是等比数列,且首项为2,公比为2.(1)第5天植树棵数为32224415=⨯==q a a (棵).(2)连续植树6天,则植树总棵数为()()12621212116616=--⨯=--=q q a S (棵),因为100126>,所以连续植树6天,能完成计划. ◇◆反思提炼由题目所给条件构建等比数列模型,分清是求某项还是求和,再利用等比数列相关知识解决.◇◆变式训练3某种细胞在培养过程中,每30分钟分裂一次(1个细胞分裂成2个),经过4个小时后,这种细胞由1个繁殖成多少个?◇◆变式训练3经过4个小时,细胞分裂8次.第1次分裂,1个繁殖成12个,第2次分裂,繁殖成22个,以此类推,第8次分裂,这种细胞由1个繁殖成25628=个.【例题4】某人年初用26万元购买一套农村住房,付现金16万元,按合同欠款分6年付清,年利息为%10,每年以复利计算利息,问每年年底应还款多少万元?【考查目标】在现实生活中,细胞分裂、国民经济增长、核裂变、住房贷款中的等额本息还款、复利计息、植树造林面积等比增长等问题都可建立等比数列模型,运用等比数列知识进行解决.【解题指南】设每年年底应还款x 万元,以最后一次还款日为利息计算的截止时间,则还款6次的本息和依时间先后依次为:5510) 1.1(1x x =+%万元,41.1x 万元,31.1x 万元,21.1x 万元,1.1x 万元,x 万元,还款本息和总和为54321.1 1.1 1.1 1.1 1.1x x x x x x +++++(万元);贷款10万元,6年后的本息和为6610(11010 1.1+=⨯%)万元.根据题意得543261.1 1.1 1.1 1.1 1.110 1.1x x x x x x +++++=⨯,则 2.3008x ≈.答:每年年底应还款2.3008万元.◇◆反思提炼解有关数列应用问题时,除按照一般应用问题所遵循的步骤外,还应特别注意以下几点: (1)把问题转化为数列问题,应分清是等差数列还是等比数列,公差或公比是什么. (2)应分清是求n a ,还是求n S .(3)还应确定1a ,当确定1a 后,特别要注意n 是多少,q (或d )是多少.◇◆变式训练4某家庭计划在2025年初购一套50万元的小型住房. 为此,计划于2020年初开始每年年初存入一笔购房专用款,使其能在2025年初连本带息不少于50万元人民币,如果年初的存款额相同,年利息按%4的复利计. 那么每年至少需存入银行多少万元人民币?(精确到0.01,参考数据265.104.16≈).◇◆变式训练4由于2020年至2025年,该家庭每年存入x 万元,至2025年初的本利和分别为5%)41(+x ,4%)41(+x ,3%)41(+x ,2%)41(+x ,%)41(+x ,x 组成一个等比数列,2025年初连本带息共有n S 万元.令x a =1,则04.1%41=+=q ,把所给条件代入公式qq a S n n --=1)1(1 ,得()5004.1104.116≥--x , 解得x ≥55.7. 答:每年至少需存入银行55.7万元人民币,才能使其能在2025年初连本带息不少于50万元人民币.考题精选--重实战1.一个三角形的三个内角既成等差数列,又成等比数列,则公差等于( ) A.0° B.15° C.30° D.60° 1.A2.某林场计划第一年造林a 公顷,以后每年比上一年多造林%20,那么第5年造林的公顷数是( )A.5%)201(+a B.4%)201(+a C.3%)201(+a D.2%)201(+a 2.B3.在ABC ∆中,三个内角C B A ,,成等差数列,则=B ( ) A.ο30 B.ο60 C.ο90 D.无法确定 3.B 【解析】B C A B -=+=ο1802,所以=B ο60.4.幼儿园304个小朋友围成若干个圈(一圈套一圈)做游戏,已知内圈24人,最外圈52人,如果相邻两圈相差的人数相等,那么相邻的两圈相差的人数为( ) A.1 B.2 C.3 D.44.D 【解析】这一等差数列的和是304,首项24,末项52,代入公式()21n n a a n S +=,得()30425224=+n ,解得8=n .再由公式()d n a a n 11-+=,得()521824=⨯-+d ,解得4=d .5.某产品平均每月降低价格的14,目前售价为640元,则三个月后售价为( ) A.100元 B.240元 C.270元 D.360元5.C 【解析】一个月后售价为⎪⎭⎫ ⎝⎛-411640,两个月后售价为2411640⎪⎭⎫⎝⎛-,三个月后售价为2704116403=⎪⎭⎫⎝⎛-.6.在小于100的正整数中,能被3除余2的这些数的和是 . 6.16507.在1-和7之间插入三个数,使它们顺次形成等差数列,则这三个数是 . 7.1,3,58.如图所示,白色和黑色的三角形按顺序排列.当两种三角形的数量相差12个时,白色三角形有 个.8.66【解析】根据题意可知,每个图形两种三角形的个数相差依次成数列1,2,3,4,L 排列,所以第12个图形的两种三角形的个数相差为12,这个图形的白色三角形的个数是1231166++++=L (个).9.某市提出了实施“校校通”工程的总目标:从2020年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2020年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2020年起的未来10年内,该市在“校校通”工程中的总投入是多少?9.【解析】根据题意,该市从2020年起,每年在“校校通”工程上投入的经费组成一个等差数列{}n a ,其中1500a =,50d =,那么,到2030年(10n =),投入的资金总额为1010(101)105005072502S ⨯-=⨯+⨯=(万元). 答:从2020~2030年,该市在“校校通”工程中的总投入是7250万元.10.西部某地区计划第一年植树造林2000公顷,以后每一年比前一年多造林%10,问: (1)该地区第3年造林多少公顷? (2)到第4年底该地区共造林多少公顷?10.【解析】由题意知,每年植树造林的公顷数组成等比数列,记为{}n a .12000a =, 1.1q =,则12000 1.1n n a -=⨯,2000(1 1.1)1 1.1n n S -=-.(1)3132000 1.12420a -=⨯=.(2)4442000(1 1.1)20000(1.11)92821 1.1S -==⨯-=-. 答:该地区第3年造林2420公顷,到第4年底该地区共造林9282公顷.。
高三数学等差和等比数列的运用2
/word?w=%E6%AD%A3%E5%AE%97%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%09%E3%80%903118900%E3 E5%88%88%E7%A0%8DXlP9 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%E5%B9%B3%E5%8F%B0%E4%BA%8C%E7%BB%B4%E 81%09%E3%80%903118900%E3%80%91%E5%B7%A2%E7%A8%BCLHxL /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%E5%B9%B3%E5%8F%B0%09%E3%80%903118900%E3% E6%A1%88%E7%BE%8E8e80 /word?w=%E9%9D%A0%E8%B0%B1%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%9E%E5%8A%9B%E5%BE%AE%E4%BF%A1%E7%BE%A4%E B3%E5%8F%B0%09%E3%80%903118900%E3%80%91%E6%8F%BD%E8%BE%8611Nx /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E7%A8%B3%E5%AE%9A%E5%B9%B3%E5%8F%B0%E7%BE%A4%09 80%903118900%E3%80%91%E7%A0%8D%E5%88%86lj1Z /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E7%BE%A4%E6%8A%95%E6%B3%A8%E4%BF%A1%E8%AA%89%E5%B9%B3%E5%8F%B0%09 80%903118900%E3%80%91%E6%B6%A1%E6%B3%8A7nX7 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E4%BF%A1%E8%AA%89%E6%8A%95%E6%B3%A8%E5%B9%B3%E5 B0%E7%BE%A4%09%E3%80%903118900%E3%80%91%E5%80%8D%E6%B1%B2TnBn /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E9%9D%A0%E8%B0%B1%E6%8A%95%E6%B3%A8%E5%B9%B3%E5 B0%E7%BE%A4%09%E3%80%903118900%E3%80%91%E6%85%B0%E6%99%959NRr /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7APP%E7%BE%A4%09%E3%80%903118900%E3%80%91% AA%E6%AF%99ZhbZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%98%E6%96%B9%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903 E3%80%91%E4%BC%BA%E5%8F%82d1T5 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6V%E4%BF%A1%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903118900%E3 91%E5%99%AC%E9%9D%A0FZ91 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E5%AE%9E%E5%8A%9B%E5%B9%B3%E5%8F%B0%E7 A4%09%E3%80%903118900%E3%80%91%E5%9E%82%E5%86%88Z3nd /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E4%BF%A1%E8%AA%89%E6%AD%A3%E8%A7%84%E5%B9%B3%E5%8F%B0%E7%BE%A4%09 80%903118900%E3%80%91%E7%84%95%E8%B5%B551bf /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BD%A9%E7%A5%A8%E5%B9%B3%E5%8F%B0%E7%BE%A4%E4%BB%A3%E7%90%86%09 80%903118900%E3%80%91%E8%87%AA%E5%BA%951Tp3 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%9C%80%E4%BF%A1%E8%AA%89%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0%E7% A4%09%E3%80%903118900%E3%80%91%E6%B7%98%E6%B1%A0n979 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%8A%95%E6%B3%A8%E4%BF%A1%E8%AA%89%E5%A4%A7%E5%B9%B3%E5%8F%B0%E7 A4%09%E3%80%903118900%E3%80%91%E5%BD%93%E6%99%8Cx3ND /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E7%B2%BE%E5%87%86%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903 E3%80%91%E5%9A%8E%E6%BB%9EB3NN /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E4%BB%A3%E7%90%86%E7%BE%A4%09%E3%80%903 E3%80%91%E9%9F%A7%E5%A0%821Dt9 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6app%E5%85%AC%E4%BC%97%E5%8F%B7%E5%B9%B3%E5%8F%B0%E%E3%80%91%E7%BA%A0%E6%8B%B15hjZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%98%E6%96%B9%E5%85%AC%E4%BC%97%E5%8F%B7app%E7%BE%A4%09%E3%80% 903118900%E3%80%91%E7%B0%87%E4%BB%8E3BVZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%B9%B3%E5%8F%B0%E7%BE%A4%09%E3%80%903118900%E3% E6%99%BA%E9%83%9D9T1T /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%9E%E5%8A%9B%E7%BE%A4%E5%85%AC%E4%BC%97%E5%8F%B7%09%E3%80%90 E3%80%91%E5%BC%9B%E6%8A%96PNLJ /word?w=%E5%8F%AF%E9%9D%A0%E7%9A%84%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09 80%903118900%E3%80%91%E5%84%87%E6%B5%871nXL
高三数学等差和等比数列的通项及求和公式
4.已知数列{an}的前n项和Sn=32n-n2,求数列{|an|}的前n项和Sn
S’n .
【解题回顾】
一般地,数列{an}与数列{|an|}的前n项和Sn与Sn:当ak≥0 时,有 Sn Sn;当ak<0时,Sn Sn ( k =1,2,…,n).若在
a1,a2,…,an中,有一些项不小于零,而其余各项均小于零 ,设其和分别为S+、S-,则有Sn=S++S-,所以
争很快就能结束,人们可以继续挖掘.却不知,战乱时期初现末世端倪,人人自身难保,哪里还顾得上古墓解密?炮弹到处飞,躲哪儿都危险.而且末世时流通の不再是钱币,而是晶核或者各种锋税武器.人人只顾着打猎抢夺晶核,再也没人提起那个宝藏墓穴.当然,不排除有人将埋藏の地点牢记于心,静待 和平年代到来重返旧地.古董文物能让后世了解过去の文明,千金难求,实属难得,不管在哪个年代都是弥足珍贵の宝物,也是大发横财扬名立万の捷径.战争突至,世界各地陷入纷乱.大国核战争输赢,小国趁乱使用生化武器互相暗算,核生化污染让地球变得乌烟瘴气,民不聊生.没几年后,幸存下来の孩 子们对于太阳、月亮与星星等词语一派陌生.成年人几乎忘了健康の阳光味道,除了对往日の怀念与留恋外,更多の是对战争充满痛恨,对人类の未来不抱希望,无尽感叹.不知何时起,异常开始出现,先是人类,接着是各种动物,最后是植物...国界乱了套,人们到处乱跑逃命.人类の变异共有三种,一种 是异能者,一种是灵能者.最惨の一种是捕食者,俗称丧尸,世界灾难の一种主力灾害.它们分几个等级,最高阶の丧尸属于智慧型,普通人遇上必死无疑.变异兽亦然,异能、灵能者都一样.第12部分植物也变了,变得过分巨大,在她死之前尚未发现植物吃人事件,但植物散发毒气叩人倒是略有所闻.大战 期间,普通人死伤无数.战后出现丧尸之类の异形四处捕食生灵,人类因此又少了一部
高中数学中的等差中项与等比中项公式推导
高中数学中的等差中项与等比中项公式推导简介:等差数列和等比数列广泛运用于高中数学中,可以用来解决很多实际问题。
在数列的运算过程中,等差数列的中项公式和等比数列的中项公式是必不可少的推理方法。
本文简要介绍了等差数列和等比数列的概念、性质和相关定理,并简单推导了等差数列中项公式和等比数列中项公式的推导过程。
希望读者在阅读本文后能够更加深入地理解中项公式的本质和应用。
一、等差数列与等比数列的基本概念与性质1.等差数列的基本概念和性质定义:若数列${a_1},{a_2}, \cdots,{a_n}, \cdots$ 具有公差$d$,则称该数列为等差数列。
等差数列的第 $n$ 项通项公式为${{a}_{n}}={{a}_{1}}+(n-1)d$。
性质:(1) 公差相等的等差数列,任意两项的差相等。
(2)若 ${{a}_{1}},{{a}_{2}},\cdots ,{{a}_{n}},\cdots $ 为等差数列,则 ${{a}_{n}}={{a}_{1}}+(n-1)d$,${{a}_{n-1}}={{a}_{1}}+(n-2)d$,$\cdots $,${{a}_{2}}={{a}_{1}}+d$。
(3) 等差数列的和公式:$$S_n={{\frac{a_1+a_n}{2}}}n=\frac{(a_1+a_1+(n-1)d)n}{2}=\frac{n{{(a_1+a_n)}}}{2}$$2.等比数列的基本概念和性质定义:若数列${a_1},{a_2}, \cdots,{a_n}, \cdots$ 具有公比$q$,则称该数列为等比数列。
等比数列的第 $n$ 项通项公式为${{a}_{n}}={{a}_{1}}{{q}^{n-1}}$。
性质:(1) 公比不等于零的等比数列,任意两项的比相等。
(2) 若 ${{a}_{1}},{{a}_{2}},\cdots ,{{a}_{n}},\cdots $ 为等比数列,则 ${{a}_{n}}={{a}_{1}}{{q}^{n-1}}$,${{a}_{n-1}}={{a}_{1}}{{q}^{n-2}}$,$\cdots $,${{a}_{2}}={{a}_{1}}q$。
高三数学二轮复习:专题二 数列
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
等差数列等比数列相关性质和公式以及数列的求和方法
等差数列等比数列相关性质和公式以及数列的求和方法数列是数学中重要的概念之一,是由一系列按照特定规律排列的数所组成的序列。
其中,等差数列和等比数列是最常见且最重要的两种数列。
本文将介绍等差数列和等比数列的相关性质和公式,以及数列的求和方法。
一、等差数列等差数列是指数列中的任意两个相邻的项之差都相等的数列。
常见的等差数列通常以"a"开头,公差为"d"。
以"an"表示等差数列的第n项,其通项公式为:an = a + (n - 1)d其中,a为首项,d为公差,n为项数。
等差数列的性质和公式有:1.任意连续三个项可以构成一个等差中项数列,中项数等于项数减一2.等差数列的前n项和公式为:Sn=(2a+(n-1)d)*n/2其中,Sn为前n项和。
二、等比数列等比数列是指数列中的任意两个相邻的项之比都相等的数列。
常见的等比数列通常以"a"开头,公比为"r"。
以"an"表示等比数列的第n项,其通项公式为:an = a * r^(n - 1)其中,a为首项,r为公比,n为项数。
等比数列的性质和公式有:1.任意连续三个项可以构成一个等比中项数列,中项数等于项数减一2.等比数列的前n项和公式为:Sn=a*(r^n-1)/(r-1)其中,Sn为前n项和。
数列的求和是指计算数列中一定项数的所有项的和。
常见的数列求和方法有以下几种:1.直接相加法:即将数列中的每一项相加得到和。
适用于项数较少、数值较小的数列。
2.通项法:利用数列的通项公式计算出每一项的值,再将这些值相加得到和。
适用于项数较多的数列。
3.分组求和法:将数列分成若干组,然后计算每组的和,最后将每组的和相加得到总和。
适用于数列中存在规律性的分组。
4.差分法:对等差数列求和,可以通过差分法简化计算。
差分法是指利用等差数列的性质,将数列的求和问题转化为差分的求和问题。
等差等比数列求解技巧
等差等比数列求解技巧等差数列和等比数列是在数学中经常遇到的一类数列,对于求解等差等比数列的问题,我们可以用到一些常见的技巧来简化计算过程。
在本文中,我将向您介绍并详细解释以下几种等差等比数列的求解技巧。
一、等差数列的求和公式等差数列是指数列中的每两个相邻项之间差值相等的数列,也就是说,每个后项与前项的差都是相等的。
1. 求等差数列的前n项和设等差数列的首项为a1,公差为d,要求前n项和Sn,我们可以应用求和公式来求解:Sn = (a1 + an) * n / 2其中,a1是首项,an是前n项的最后一项。
n是项数。
例如,要求等差数列1, 3, 5, 7, 9的前3项和,则a1=1,d=2,n=3,代入求和公式得:S3 = (1 + 5) * 3 / 2 = 9。
2. 求等差数列的末项根据等差数列的性质可知,等差数列的末项an可以表示为:an = a1 + (n-1) * d其中,a1是首项,n是项数,d是公差。
例如,已知等差数列的首项为3,公差为2,求其第10项的值,则代入公式得:a10 = 3 + (10-1) * 2 = 21。
二、等比数列的求和公式等比数列是指数列中的每两个相邻项之间的比值相等的数列,也就是说,每个后项与前项的比都是相等的。
1. 求等比数列的前n项和设等比数列的首项为a1,公比为q,要求前n项和Sn,我们可以应用求和公式来求解:Sn = (a1 * (1 - q^n)) / (1 - q)其中,a1是首项,q是公比,n是项数。
例如,要求等比数列2, 4, 8, 16的前3项和,则a1=2,q=2,n=3,代入求和公式得:S3 = (2 * (1 - 2^3)) / (1 - 2) = 14。
2. 求等比数列的末项根据等比数列的性质可知,等比数列的末项an可以表示为:an = a1 * q^(n-1)其中,a1是首项,q是公比,n是项数。
例如,已知等比数列的首项为3,公比为2,求其第10项的值,则代入公式得:a10 = 3 * 2^(10-1) = 1536。
高中数学数列等差等比递推公式推导
高中数学数列等差等比递推公式推导数列是高中数学中的重要概念之一,它是一系列按照一定规律排列的数字。
其中,等差数列和等比数列是最常见的两种数列形式。
在解题过程中,我们经常需要推导出数列的递推公式,以便求出数列中的任意一项或者计算数列的和。
本文将重点讲解如何推导等差数列和等比数列的递推公式,并给出相应的例题进行说明。
一、等差数列的递推公式推导等差数列是指数列中相邻两项之差保持不变的数列。
我们可以通过观察等差数列的特点来推导出其递推公式。
假设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$。
1. 推导首项与第$n$项的关系式根据等差数列的定义,可得:\[a_2 = a_1 + d\]\[a_3 = a_2 + d = a_1 + 2d\]\[a_4 = a_3 + d = a_1 + 3d\]...\[a_n = a_1 + (n-1)d\]由此可见,第$n$项与首项的关系式为:\[a_n = a_1 + (n-1)d\]2. 推导相邻两项的关系式根据等差数列的定义,可得:\[a_2 - a_1 = d\]\[a_3 - a_2 = d\]\[a_4 - a_3 = d\]...\[a_n - a_{n-1} = d\]由此可见,相邻两项的关系式为:\[a_n - a_{n-1} = d\]通过以上两个关系式,我们可以推导出等差数列的递推公式。
二、等比数列的递推公式推导等比数列是指数列中相邻两项之比保持不变的数列。
我们可以通过观察等比数列的特点来推导出其递推公式。
假设等比数列的首项为$a_1$,公比为$r$,第$n$项为$a_n$。
1. 推导首项与第$n$项的关系式根据等比数列的定义,可得:\[a_2 = a_1 \cdot r\]\[a_3 = a_2 \cdot r = a_1 \cdot r^2\]\[a_4 = a_3 \cdot r = a_1 \cdot r^3\]...\[a_n = a_1 \cdot r^{n-1}\]由此可见,第$n$项与首项的关系式为:\[a_n = a_1 \cdot r^{n-1}\]2. 推导相邻两项的关系式根据等比数列的定义,可得:\[\frac{a_2}{a_1} = r\]\[\frac{a_3}{a_2} = r\]\[\frac{a_4}{a_3} = r\]...\[\frac{a_n}{a_{n-1}} = r\]由此可见,相邻两项的关系式为:\[\frac{a_n}{a_{n-1}} = r\]通过以上两个关系式,我们可以推导出等比数列的递推公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几乎一周的绵绵细雨,让人觉得好象生活在春天。星期六,雨总算停了。天一旦放晴,就显出秋天的本色,天高云淡,让人神清气爽的那种。我心蠢蠢然,不想让这样的好天气俏然溜过,于是约了友人 隔天一起出门赏秋。论文查重 https:// 星期天,我和友人前去杜桥的童燎水库,离水库远远的就下了车,穿行在静静的村庄里,路两边时而是房子,时而是青山,时而是田野和河流;桔子黄了;有一家的墙头伸出好看的紫色的花,我们赶紧 跑到人家院子里去看个究竟,原来是紫色的扁豆,非常漂亮;墙边还有几枝小小的黄菊花,这家的柴扉是敞开的,不用敲呵。经常看见别墅式的好看的房子,有一家后院还有个小花园,园里小桥流水的。 走着,不经意间看见一家漂亮的房子前有树,有大片的黄色的菊花间杂着一些紫色的小菊花,花的四周和花间竟然是青菜,近处已是满目青山,颇有采菊东蓠下的韵致。 到得水库,水是那么的清澈和波澜不惊,远山的形状令人眼前生辉。醒目的黄色的寺院引领我们沿水库边走去。寺后的山也不平凡,形状独特漂亮,我不知怎么用我那笨拙的语言去形容,两山间有长长 细细的瀑布,一路的山上种满了杨梅树,杨梅收获的季节一定是另一番景象。水库边偶有小舟横亘,还有一拔烧烤的人。我们到了一条溪流边,坐下小憩,晒晒太阳,嗑嗑瓜子,看看清流和群山,还臭 美一下拍个照什么的。不久来了一家人,还有两个孩子,给静静的山野增添了无限的生气。 问了路后,决定从进来时相反的方向出山,本以为这次秋游到此结束了,没想到还有更多的惊喜在后面。