浙大光学课件-第八章 光的吸收和色散

合集下载

光的吸收、色散和散射

光的吸收、色散和散射

棱镜P1和P2的棱边相互垂直,从S发出的白光经透镜L1变为平行光束,通过P1后 沿水平方向偏折,如果在光路中不放置棱镜P2,光束由P1经透镜L2后将在幕上 形成水平的彩色光带ab,插入棱镜P2时,各色光束还要向下偏折,但偏折程度 随波长而异,于是幕上显现倾斜的光带 a ′b′ ,如果制做棱镜P1和P2材料的色散规 律(即n与 λ 的依赖关系)不同,倾斜光带 a ′b′ 将是弯曲的,它的形状直观地反 映了两种材料色散性能的差异。 色散曲线——折射率n与波长 λ 的之间依赖关系曲线,称色散曲线。 凡在可见光范围内无色透明的物质,它们的色散曲线形式上很相似, 其间有许多的特点,如n随 λ 的增加而单调下降,且下降率在短波一端更大等 等。这种色散称为正常色散。 正常色散 1836年科希(A、L、Cauchy)给出一个正常色散的经验公式: n=A+B/ λ2 +C/ λ4 式中A、B、C是与物质无关的常数,其数值由实验数据确定。当 λ 变化范围不大
/software/net/wangke/jiaoan/chapter8.htm
5/10/2011
w
页码,2/14(W)
− dI =I dx
式中 α 是个与光强无关的比例系数,称为该物质的吸收系数。 为了求出光束穿过厚度为l的媒质后光强度的改变,将上式改写为
dI = −α dx I dI ∫ I =∫ I0 0 — α dx
∴ I= I 0
I l
两边取积分
e
−αl
式中 I 0 和I分别为X=0和X=L处的光强,L是媒质的厚度, α 的量纲是长度的倒 数。
α −1 的物理意义是光强因吸收而减到原来的 e − 1 ≈36%时所穿过媒质的厚度。
式I= I 0 e −αL 称为布格尔定律(P、Bouguer,1729年)此定律后来经朗伯作了详细 说明,故也称朗伯定律。 布格尔定律是光吸收的线性规律 适用范围:线性光学领域,光强I不能太强。 如果光强太强,如用激光,则光与物质的非线性相互作用过程显示出来了,在 非线性光学领域内,吸收系数 α 将和其它许多系数(如折射率)一样,依赖于 电、磁场或光的强度,布格尔定律不再成立。 实验证明: 当光被透明溶剂中溶解的物质所吸收时,吸收系数 α 与溶液的浓度C成正比

物理光学课件:1_4光的吸收色散和散射

物理光学课件:1_4光的吸收色散和散射
正常色散:dn/d<0,出现于介质的一般吸收光谱区域 反常色散:dn/d>0,出现于介质的选择吸收光谱区域
(2) 准确测定法
利用最小偏向角原理,分别测量出棱镜物质对不同波长单色光的折射
率,从而精确地得到n 曲线。
实验色散曲线
n
重火石玻璃
1.70
1.60
1.50 1.40
0
可见光
轻火石玻璃
水晶 冕玻璃
固有频率0附近的折射率与吸收(经典电子理论)
M
N
在反常色散区MN内出现 折射率c 2
2
n2
反常色散曲线
特点:折射率随波长的增大而增大,即色散率
dn 0
d
一种物质的全部色散曲线:各波段的正常色散曲线与反常色散 曲线之总和
特点:
图11-29 一种介质的全波段色散曲线
特点: 在选择吸收区,折射率随波长出现突变。在选择吸收区两侧, 折射率随波长迅速变化,并且在长波一侧的折射率远大于短波一侧。 远离吸收区处,折射率随波长的变化表现为正常色散特征。
结论:反常色散并不反常。它反映了介质在选择吸收区及其附近的 色散特征。如果介质在某一光谱区出现反常色散,则一定表 明介质在该波段具有强烈的选择吸收特性。而在正常色散的 光谱区,介质则表现为均匀吸收特性。
(一) 物质对光吸收的一般规律 1 朗伯定律:
设光通过厚度为dx的介质层时, 光强由I减少为(I-dI),则有:
dI = Idx
成立,
积分可得通过厚度为L的介质后的光强 I ,
I0
I dI
l
dx
I I0
0
I I0el
—— 吸收系数, 单位长度上的光强吸收率
这就是布格尔定律或朗伯定律。

光的吸收色散和散射ppt课件

光的吸收色散和散射ppt课件

ILeabharlann 2EzEz E* z
I 0 e 2 k z
14
8.1.2 介质的复折射率
复折射率描述了介质对光波传播特性(振幅和相位) 的作用。
复折射率的实部 n 是表征介质影响光传播的相位特 性的量,即通常所说的折射率,由于 n 随频率(或 波长)而变,从而造成了色散。
复折射率的虚部 表征了光在介质中传播时振幅 (或光强)衰减的快慢,通常称为消光系数(或消 光因子)。
2
n

r

1


1
Ne2
0m
1
02 2
i
n2 2 1 Ne2 0m
02 2 02 2 2 2 2
2n Ne2 0m
02 2 2 2 2
上两式表明 n 与 是相互关联(K-K关系)的, 且都是光频率的函数。
15
8.1.2 介质的复折射率
当束缚电子的偶极振荡受到阻尼 时,必将导致极
化强度 P t 与电场强度 E t 之间存在相位差,因
而介质体内必有极化热耗散,这便使光波能流衰减 而转化为原子体系的热能。
Ne2
P
m
E
02 2 i
16
8.1.2 介质的复折射率
Ne2
P Ner
m
E
02 2 i
由电磁场理论,极化强度与电场的关系为
对比两式得到
P 0E
电极化率: Ne2
1
0m 02 2 i
11
8.1.2 介质的复折射率
电极化率为复数,可表示为 ' i"

光的吸收、色散和散射_图文

光的吸收、色散和散射_图文
一连续光谱的光通过有选择性吸收的介质,然后通过分光仪得到的光谱 就是吸收光谱 与 K(ω)-ω 线一致
§6.2 光的色散
光的色散(分光)现象
由折射定律可知:折射率n是随波长分布的:n(λ) 色散率:单位波长差所产生折射率差,是介质色散程度的度量
(6-21)

(6-22)
一、正常色散 折射率随波长增加而减小的色散 ---正常色散
电子离开平衡位置的距离 若单位体积内有N个原子,则单位体积内的平均电偶极矩
(6-2)
2、第二牛顿定律F=ma:受迫振动的电子的运动方程为
受迫力
阻尼力 准弹性力
光波电场强度
将电子振动的运动方程改写为
(6-5)
解方程得
---光与介质相互作用经典理论的基本方程
代入(6-2)式得
由 电极化率 是复数,可写为 并将(6-6)与(6-7)式对照可得
吸收带内为反常色散区 吸收带之间均为正常色散区
钠蒸气由底部向顶部扩散 管内蒸气密度由顶部向底部逐渐增加 这相当于一蒸气棱镜其厚度由上向下增加
分两部分:1)S1,L1,L2,S2 准直聚焦, S1在S2上成像 2)S2,L3,P,L4 分光系统
当管子未加热时,气体均匀 S1的白光成像于S2后, 在分光仪焦面上得一窄的水平光谱带
1、按电磁理论:每个次波的振幅与它频率的平方成正比,光强与振幅成正比 所以散射光强度与频率的四次方成正比
∝∝
∴短波长的光比长波长的光散射更多
解释大气现象: ①为什么天空呈光亮
③中午太阳呈白色
②天空为什么呈蓝色 ④旭日和夕阳呈红色
2、散射光强分布

3、散射光是偏振光
二、米散射 理论尚不成熟,仅适用于导电粒子

光的吸收、散射和色散

光的吸收、散射和色散
光的吸收和散射
光的吸收 光波通过介质时,有一部分光能被吸收,转化为 其他形式的能量。 透明物质:能量损失小。 一般吸收:吸收很小,且在某一给定波段内几乎 是不变的。 选择吸收:吸收很多,且随波长而剧烈地变化。 例如石英对可见光吸收甚微,但是对3.5~5.0m 的红外光却强烈吸收。
ห้องสมุดไป่ตู้ 光的散射
1.光散射的原因 光波在透明介质中传播时,有部分光波偏离原来的传播 方向而向四面八方传播的现象叫光的散射。 2.衍射与散射的区别:
衍射是由于个别的不均匀区域(如孔、缝或障碍物等) 所形成的,这些不均匀区域范围的大小一般可与波长相比拟。
散射则是由于大量排列不规则的非均匀的小“区域”的 集合形成的,这些非均匀小区域的线度一般比波长小。
一、散射问题的描述 散射截面:散射到方向单位立体角中的电磁波能流
S s ds Ss R 2 d
0
s
8 2 4 r0 ( ) 3 0

s
2 2 r0 3 ( 0 ) 2 2 4
2
1 d ( ) r02 (1 cos 2 ) 2
2 2 s r0 0.665 10 28 m 2 3
光的散射分类
一类:散射光的波长不发生变化,如瑞利散射,米氏散射; 另一类:散射光波长发生了变化,如拉曼散射,布里渊散射, 康普顿散射。 ① 非纯净介质中的光散射 如空气中的尘埃、烟雾、小水滴,还有乳浊液、胶体等。 散射规律:a)不变; b)I4(是瑞利散射)

纯净介质中的分子散射
由于纯净介质中分子的无规则热运动,使得分子 密度出现涨落发生的散射叫分子散射。 正午
解释现象:
•晴朗的天空是蓝的; •白昼的天空是亮的;
傍晚

第八章 光的吸收、色散和散射讲解

第八章  光的吸收、色散和散射讲解
是随距离 x衰减的平面波的波动方程
:称为衰减指数,
I E~* E~ E0 2 exp(2nx / c)
与 I I 0 e l比较
得: 2n / c 4n / 0
电磁波的衰减因介质的吸收而产生
4.光的吸收与波长的关系
1)普遍吸收与选择吸收
(1)普遍吸收:吸收系数 与波长无关,
入射光从介质透射或反射后只改变 强度不改变颜色。空气、纯水, 无色玻璃等介质都在可见光范围内 产生普遍吸收。
(2)选择吸收:吸收系数 与波长有关,白
光从介质透射或反射后变为彩色光。绝 大部分物体呈现颜色,都是表面或体内 选择吸收的结果。
(3)对所有电磁波普遍吸收的介质是不存在的。 对可见光普遍吸收的物质,往往对红外 或紫外光选择吸收。
d0变n 化不 大2B时只取d0
30
4)牛顿正交棱镜色散实验装置
3.反常色散
1)反常色散定义:折射率随波长增大而增大
即色散率大于零 dn / d 0
2)反常色散实验
3)反常色散特点 (1)物质在某波长区域有反常色散时,
在该区也有强烈吸收。 (2)在吸收带范围内存在反常色散,
令: (2 1) / 2,0 (1 2 ) / 2 k (k1 k2 ) / 2, k0 (k1 k2 ) / 2
设: 0, k k0
有: E(x,t) E1(x,t) E2(x,t)
2E0 cos(kx t)cos(k0x 0t)
在吸收带以外存在正常色散。
第八章 光的吸收、色散和散射
§3 群速
1.群速问题的引出
1860~1862年间测定 CS2折射率时 折射率法(n sin i1 / sin i2 )测得:n' 1.64

光的吸收、色散和散射 (The absorption, dispersion and scattering of light )

光的吸收、色散和散射 (The absorption, dispersion and scattering of light )

p er
(1)
e 是电子电荷,r 是电子离开平衡位置的距离。
1.经典理论的基本方程
如果单位体积中有 N 个分子,则单位体积中的平均
电偶极矩为
P Np Ner
(2)
1.经典理论的基本方程
根据牛顿定律,作强迫振动的电子的运动方程为
d2r dr m 2 eE fr g dt dt
出本教材的要求, 不予讨论。
光的吸收、色散和散射 (The absorption, dispersion and scattering of light )
麦克斯韦电磁理论的最重要成就之一就是将电磁现
象与光现象联系起来,利用这个理论正确地说明了
光在介质中传播时的许多重要性质。
1 光与介质相互作用的经典理论 (Classical theory of
1.经典理论的基本方程 在入射光的作用下,介质发生极化、带电粒子依入 射光频率作强迫振动。
1.经典理论的基本方程
由于带正电荷的原子核质量比电子大许多倍,可视正 电荷中心不动,而负电荷相对于正电荷作振动。正, 负电荷电量的绝对值相同,构成了一个电偶极子。
1.经典理论的基本方程
电偶极矩为
P qr
2.介质的光学特性
是复数,可表示为 =+i,其实部和虚部分
别为
02 2 Ne2 0 m (02 2 )2 + 2 2
Ne 2 0 m (02 2 )2 + 2 2
(8)
(9)
02 2 Ne2 0 m (02 2 )2 + 2 2
因介质对光波的吸收, 会使光强度减弱;不同波长的 光在介质中传播速度不同, 并按不同的折射角散开, 会发生光的色散; 光在介质中传播时, 会产生散射。

光的吸收、色散和散射-PPT精品文档

光的吸收、色散和散射-PPT精品文档
光学教程专题 光的吸收、色散和散射
2019/3/10
0
光学教程专题 光的吸收、色散和散射
研究的主要问题: 光经过介质时吸收规律的描述; 光波色散及相速和群速问题; 光的瑞利散射和米氏散射。 要点: 1. 从经典电磁理论角度讨论光的色散和散射; 2. 对波的群速和相速及其色散参数间的联系; 3. 不同散射的特点;
2019/3/10 14
光学教程专题 光的吸收、色散和散射
反常色散: 石英在红外区域中的反常色散曲线
2019/3/10
15
光学教程专题 光的吸收、色散和散射
反常色散: 一种媒质的全部色散曲线
共同特性:在相邻两个吸收线(带)间n单调下降,每经过 一个吸收线 (带)n急剧加大,曲线随波长的增加而抬高, 即正常色散区域所满足的 Cauchy 公式常量 A 加大;对于 极短波,n略小于1。
2019/3/10
12
光学教程专题 光的吸收、色散和散射
正常色散: 在可见光范围内无 色透明的物质,色散曲线 很相似: 1. n 随 的增加 而单调下降;2. 下降率在 短波一端更大。这样的色 散称为正常色散。 1836年,Cauchy给出经验公式(柯西公式):
B B C )A 2 n f( ) A 2 4 n f (
吸收光谱: 同一物质的发射光谱和吸收光谱有相当严 格的对应关系;若其自身发射某些波长的光, 则其也强烈地吸收哪些波长的光。 氢发射光谱与吸收光谱
2019/3/10
9
光学教程专题 光的吸收、色散和散射
吸收光谱: 太阳光谱是典型的暗线吸收光谱;其暗线 称为Fraunhofer 谱线。这些光谱是处于温度较 低的太阳大气中的原子对更加炽热的内核发射 的连续光谱进行选择吸收的结果。 太阳光谱与Fraunhofer谱线

光的吸收、散射和色散

光的吸收、散射和色散

光通过物质,其传播情况发生变化,有两个方面:一、光强随光深入物质而减弱:光能或被物质吸收,或向各个方向散射所造成。

二、物质中光的传速度小于真空中的,且随频率变化,光的色散。

这都是光与物质相互作用引起的,实质上是光和原子中的电子相互作用引起的。

§1 电偶极辐射对反射、折射现象的解释一、电偶极子模型(理想模型)用一组简谐振子来代替实际物质的分子,每一振子可认为是一个电偶极子,由两个电量相等,符号相反的带电粒子组成,电偶极子之间有准弹性力作用,能作简谐振动。

两种振子:原子内部电荷的运动(电子振子):核假定不参加运动,准弹力的中心 分子或原子电荷的振动和整个分子的转动(分子振子): 质量较大的一个粒子可认为不参加运动 经典解释模型:P电偶极子,向外辐射电磁波t A Z eZ P cos :Z 离开原点的距离电动力学证明,电偶极子辐射电磁波矢 )(cos sin 4220c R t R e eA EcEH 0R :观察点与偶极子的距离201E cEH H E S 22242202sin 321CR A e E c I S o由上面式子,光在半径为R 的球面上各点的位相相等(球面波)落后原点CR 。

但振幅则随 角度,即波的强度I (能流密度)在同一波面上。

分布不均匀,见图I ,2最大(赤道面上)在两极即偶极子轴线方向上0 ,0 I Q 。

二、电偶极辐射对反射和折射现象的初步解释原子、分子:cm 810 光波长:cm 510在固或液物中,可认为在一个光波长范围,分子的排列非常有规律,非常密集,或可以认为是连续的。

总说明:光通过物质,各分子将依次按入射光到达该分子时的位相作受迫振动,在一分了的不同部分,入射光的位相差忽略不计。

各分子受迫振动,依次发出电磁波,所有这些次波保持一定位相关系(同惠一原理中次波)说明1:各向同性均匀物质中的直线传播所有分子振子在各方向有相同的图有频率,分子受迫振动发出次级电磁波将与入射光波迭加,从而改变合成波位相,改变了它的传播速度(位相速度)说明2:反射与折射电射与折射是由于两种介质界面上分子性质的不连续性所引起,用同样模型可解释。

光的吸收、色散和散射-50页PPT资料

光的吸收、色散和散射-50页PPT资料
光学教程专题 光的吸收、色散和散射
22.09.2019
0
光学教程专题 光的吸收、色散和散射
研究的主要问题: 光经过介质时吸收规律的描述; 光波色散及相速和群速问题; 光的瑞利散射和米氏散射。
要点: 1. 从经典电磁理论角度讨论光的色散和散射; 2. 对波的群速和相速及其色散参数间的联系; 3. 不同散射的特点;
法显示色散曲线。
22.09.2019
12
光学教程专题 光的吸收、色散和散射
正常色散:
在可见光范围内无 色透明的物质,色散曲线
很相似:1. n随的增加
而单调下降;2. 下降率在 短波一端更大。这样的色 散称为正常色散。
1836年,Cauchy给出经验公式(柯西公式):
nf()AB2C4 nf()AB2
引入阻尼常数和电子固有频率,有:
rqmE02rr
g m
0
k m
由力学的阻尼振动解可得:
rqmE(2
1
02)i
22.09.2019
18
光学教程专题 光的吸收、色散和散射
光的发射、吸收和色散的经典电磁理论:
设介质单位体积内有N个原子,每个原子
有z个电子,则介质的极化强度等有:
平面波函数可表为:
nx (tnx)
EE0ec e c
将指数写到一起,有:
i(t n (1 i)x)
i(t n ~ x)
E E 0 e c E 0 e c
复数n称为介质的复折射率,其实部表示介质的
折射率,虚部n表示波产生的衰减。
22.09.2019
21
光学教程专题 光的吸收、色散和散射
细说明。故常称为布格定律或朗伯定律。
22.09.2019

光的吸收、色散和散射

光的吸收、色散和散射

(若无大气,白昼天空是光辉夺目的太阳悬挂在 漆黑的背景中 宇航员是司空见惯了的)
光栅色散(光栅光谱) 匀排
光的吸收、色散和散射
波动及近代光 学
• 光的色散
棱镜色散:角色散率
D d d
A
2sin( ) 2
dn
1 n2 s i n2 ( A ) d
2
同一物质在不同波长区的 不同,D 各种物质的色散
没有简单的关系。研究此问题关键是找出各波长区
之值,或
d n函数。
d
n f ()
• 光的散射
1908和1909年,米(Mie)和德拜(Debye)以球形
质2点(a半径0.3)为时a 模,型瑞作利了定计律算才,成只立有,当
2 a 较大时,
散射强度几乎与波长无关(米氏散射)。
光的吸收、色散和散射
波动及近代光 学
• 光的散射
四 大气散射自然现象的解释
1.白昼天空是亮的 大气散射阳光的结果。
历史上靠这种方法发现了铯,铷,铊,铟,镓 等 新元素。
光的吸收、色散和散射
波动及近代光 学
• 光的吸收
He元素的发现:1868(法)严森在太阳光谱中发现一 些不知来源的暗线(吸收线),英国天文学家洛克厄把 这一现象解释为存在一种未知元素,取名为氦(源于希 腊文太阳之意)。此元素直到1894年才被英国化学家莱 姆赛从钇铀矿物蜕变出的气体中发现,说明地球上也存 在He。
dn

d
➢ 不同物质的色散曲线没有简单的相似关系。
1.正常色散:波长越短,折射率越大。 反常色散:反之。
例1:鲁氏在1862年用充满碘蒸气的三棱柱形容器观察 光通过它的折射,发现青色光比红光折射小。
例2:光通过品红溶液,紫光偏转比红光小。

吸收和色散的关系

吸收和色散的关系

吸收和色散的关系
《吸收和色散的关系》
在光学中,吸收和色散是两个非常重要且密切相关的概念。

吸收指的是材料对入射光能量的吸收,而色散则指的是材料对不同波长的光波的折射率不同。

这两个现象之间存在着紧密的关联。

首先,吸收和色散都与材料的原子结构和分子结构有着密切的关系。

当光波入射到物质表面时,其能量会被转化成原子或分子的内部能量,从而造成吸收现象。

而在材料中的原子和分子在吸收光波能量后,会引起电子或分子的激发,从而产生对不同波长光的色散现象。

其次,吸收和色散也会相互影响。

当光波经过材料的时候,其中一部分能量会被材料吸收,而另一部分则会引起色散。

这会导致入射光波的波长和频率发生变化,从而使得材料对不同波长光的折射率不同,产生色散现象。

除此之外,吸收和色散还会对光学器件的性能产生影响。

在光学器件中,吸收会导致能量的损失,而色散会导致光波在传播过程中的色散偏移。

因此,在设计和制造光学器件时,需要综合考虑吸收和色散的影响,寻求合适的折中方案。

总之,吸收和色散是光学中两个密切相关的现象,它们之间存在着密不可分的关系。

对于光学材料和光学器件的研究和应用来说,深入理解吸收和色散的关系,对于提高光学器件的性能和应用效果具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dn
d
c
dk
d
ck
2
定义群速折射率 ng c / vg
利用dn / d dn / d
dn c c d vg vp
ng
n
dn
d
大多数方法测量到的是光的信号速度,就是 能量传播速度,可以认为就是群速。
矛盾解释:傅科和迈克耳孙的实验测量的是 空气和介质中光的群速之比,而折射率是 相速之比。
相速可以超光速,但是群速不能超光速。
it
x
பைடு நூலகம்
/
v
~ E0
exp
it
nx
/
c
n~ n1 i
E~
~ E0
exp
it
n~x
/
c
E~0enx
/
c
exp
it
nx
/
c
I E~*E~ E0 e2nx/c
称为衰减指数
衰减指数与吸收系数的关系
2n / c 4n /
介质的吸收归并到复数折射率中去, 其虚部反映了电磁波衰减。
光的吸收与波长关系 普遍吸收:物质对各种波长的光的吸收程
光的吸收和色散
吸收:光的强度随穿进介质 的深度而减少的现象
dI Idx
dI dx
I
ln(I / I0 ) l
I I0el
布格定律或郎伯定律。
透明溶剂中,吸收系数与C 成正比
在激光光强很大时,非线性 效应明显,布格定律不成立。
AC
I I0e ACl
比尔定律
复数折射率
E~
~ E0
exp
支持波动说。 迈克耳孙实验:测定空气与CS2 光速之比为
1.758,折射法测定为1.64。 矛盾! 瑞利:群速概念。
相速:波面传播的速度 v p
群速:一列有限长的波相当于许多单色波列
的叠加,称为波包。波包中心为代表的
前进速度叫做群速
vg
d
dk
群速与相速的关系:
n c ck
vp
c c dn vg vp d
度几乎相等。 空气、纯水等。 选择吸收:对某些波长的光吸收特别强烈。
物体颜色产生的原因。 吸收光谱:物质自身发射那些波长的光,它
就强烈吸收哪些波长的光。
正常色散
n
A
B
2
C
4
当波长变化不大时,可取前面两项。 反常色散:水平光谱带被严重扭曲和割断。
全部色散曲线:
相速与群速
光的微粒说: sin i1 / sin i2 v2 / v1 光的波动说: sin i1 / sin i2 v1 / v2 傅科实验:测定空气和水中光速比近于4: 3
相关文档
最新文档