6-酸性树脂催化下液相反应动力学Kinetic of liquid-phase reactions catalyzed by acidic resins
强酸性离子交换树脂催化合成乙酸正丁酯动力学
摘
要 :为了获得 D0 2型强 酸性 离子交换树脂催化剂合成 乙酸正丁酯反应动力学方程,在间歇釜式反应器中 ,消除 7
内外扩 散后,测定不同反应条件下 乙酸浓度随时间的变化,反应体系按拟均 相处理,用初始速率法回归估算动力学模 型参数。在催化 剂平 均粒度 小于 004m . m,搅拌速度 大于 l0 . i 7 5 m n r 时,可基本消除内外扩 散的影响。在常压 ,催化 荆用量为 O 1 6  ̄0 8 3 g~ . 6 5 . 3 3虽 . ,温度为 3 6 一 5 . K 的条件 范围,获得 的动力学模型 参数 为: =8 6 O 0 0 A 2 .一 8 23 2 . ×l 8 L o-mi L a ,E= 0 2 . m l ,平衡常数受温度 的影响不大 。在实验条件范 围对获得的动力学方程进行 了验 ・ l. n g. o t 1 - . ~ , 78 6 .o 6 8J ~
第2 6卷 第 2期 2 1 年 4 月 02
高 校
化
学
工
程
学 报
No. 、 . 2 26
J u a fCh mia gn eigo n s ieste o r lo e c l n En ie rn fChieeUnv riis
Ap . 2 2 r 01
文章编号 :10 ・0 52 1)20 5 .5 0 39 1(0 20 .2 40
t uig te l ud p ae s nh sso / u la eae wa x e i nal eem ie n a si ete i fFb t ctt me q - y se pr me tl d tr n d i t rd b th y r
( . a g i yL bo er c e c l s uc rc siga dP o esItn ic t nT c n lg , c o l f 1Gu n x a f t h mia Reo reP o e s n rc s e s ai e h oo y S h o Ke P o n n i f o o
新型高效Br?nsted酸性离子液体催化剂体系催化烯烃齐聚反应
Article
Olefin oligomerization via new and efficient Brönsted acidic ionic liquid catalyst systems
Guoqin Wang a,b, Heyuan Song a,b, Ruiyun Li a,b, Zhen Li a, Jing Chen a,*
© 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction
It is well known that the oligomerization of light olefins to higher oligomers is one of the most important areas in chemical industry and academia. Olefins, especially ethylene, propylene, and butene are the basic materials of the petrochemical indus‐ try [1]. The main products of these light olefins, heavier olefins, are valuable building blocks for a range of useful products such as additives, lubricants, comonomers, surfactants, and many other useful chemical products [2–4].
酸性树脂催化剂上丙烯醛水合动力学研究
为了明确 AC 水合过程是否在反应条件下存 在可逆反应 ,结合反应的工艺条件 , 从热力学角度 来分析可逆反应的可行性 。 ΔG = - R Tln K K =
CHPA CAC CW
( 1) ( 2)
收稿日期 :2005203216 ; 修改稿收到日期 :2005206208 。 作者简介 : 俞峰松 (1971 - ) ,工程师 , 工学硕士 , 从事化工工艺 的研究工作 。
15 ℃、 少量水合催化剂存在下 ,观察反应液中 H PA
d CAC2Cat = k1 CAC CCat + k - 2 CHPA2Cat dt
k2 CAC2Cat CW - k4 CHPA CAC2Cat
d CHPA2Cat = k2 CAC2Cat CW - k - 2 CHPA2Cat dt
( kmol ・ g・ s) , EHPA = 7. 143 × 10 J/ mol 。
表1 不同反应温度下的反应速率常数
温度/ K
314. 21 318. 56 322. 61 326. 19 330. 13
kAC × 10 3
F=
j =1
∑C2j exp M j =1
j =1
∑( Cj exp - Cj cal ) 2
图 1 H PA 的稳定性试验
□- HPA ; ●- AC
k1 CAC CCat k2 CW
( 12)
再将式 ( 12) 代入式 ( 10) 后有 :
CHPA2Cat = k2 CAC2Cat CW k2 k1 CAC CCat CW = k3 + k - 2 k2 CW ( k3 + k - 2 ) k1 CAC CCat k3 + k - 2
水凝胶负载BiOI活化过一硫酸盐降解尼泊金甲酯
关键词:水凝胶;碘氧化铋;过一硫酸盐;尼泊金甲酯号:1000-6923(2019)08-3249-06
Activation of peroxymonosulfate by hydrogel supported BiOI for methylparaben degradation. HU You-you, LI Zheng-kui* (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China). China Environmental Science, 2019,39(8):3249~3254 Abstract:P(HEA-APTMACl)-BiOI was prepared by chemical precipitation method and the hydrogel synthesized by radiation polymerization was used as catalyst carriers. The catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). These results showed that BiOI was successfully loaded on the hydrogel. The p(HEA-APTMACl)-BiOI/peroxymonosulfate (PMS) presented high methylparaben (MP) degradation efficiency under visible light, and the effects of several operating parameters (PMS dosage, BiOI loadings and initial MP concentration) on the MP degradation efficiency were also explored. The results demonstrated that there was a synergistic effect between p(HEA-APTMACl), BiOI and PMS. In addition, the MP (0.328mmol/L) degradation efficiency reached 99% within 2h when PMS concentration was 1.5mmol/L and the catalyst dosage was 0.1g. The addition of Cl- accelerated the degradation rate of MP, while the SO42- lead to hysteresis in MP degradation. Moreover, the MP degradation efficiency was reduced by the presence of HCO3-, but it was little influenced by NO3- and H2PO4-. Key words:hydrogel;BiOI;peroxymonosulfate;methylparaben
强酸性离子交换树脂催化合成乙酸酯及动力学研究的开题报告
强酸性离子交换树脂催化合成乙酸酯及动力学研究的开题报告一、研究背景及意义乙酸酯是一类重要的有机化学品,在化工、医药、食品等多个领域中都有广泛的应用。
目前,合成乙酸酯的方法主要包括直接酯化法、烷基化法和醇解酯化法等,但这些方法的步骤繁琐、反应条件苛刻、产物纯度低、环保性能差等问题制约了其在实际应用中的推广和应用。
近年来,强酸性离子交换树脂催化合成乙酸酯的方法逐渐受到研究者的关注。
该方法具有反应条件温和、反应速率快、催化剂易回收等优点,是一种有潜力的乙酸酯合成方法。
因此,开展强酸性离子交换树脂催化合成乙酸酯及其动力学研究,对于改善乙酸酯的合成方法具有重要的理论和实践意义。
二、研究内容和方法1. 研究内容本论文拟以强酸性离子交换树脂为催化剂,以醇酸为反应物,开展乙酸酯合成的实验研究。
具体包括以下几个方面:(1)确定最佳反应条件:通过对不同反应温度、醇酸摩尔比、催化剂用量等因素的影响进行研究,找到乙酸酯最佳的反应条件。
(2)催化剂的表征:使用催化剂在正己烷中进行表征,利用共振光电子能谱(XPS)技术、热重分析(TGA)技术等手段对其表征。
(3)乙酸酯的纯化与分离:选取最佳的分离纯化方法,将产物分离和纯化,考察影响分离纯化的因素。
(4)动力学研究:通过对反应速率、反应动力学参数进行测定和分析,建立乙酸酯合成反应的动力学模型,并对反应机理进行探究。
2. 研究方法(1)催化剂的制备:采用溶胶-凝胶法制备强酸性离子交换树脂。
(2)反应条件的确定:使用正交实验设计优化反应条件,选取最佳的反应条件进行反应。
(3)分离纯化方法的选择:研究不同分离纯化方法的优缺点,确定最佳的分离纯化方法,并考察影响其效果的因素。
(4)动力学研究的方法:使用差分扫描量热法(DSC)、紫外分光光度法等技术对反应过程的动力学参数进行测定和分析。
三、研究成果预期本论文将开展强酸性离子交换树脂催化合成乙酸酯及其动力学研究,预期可以得到以下成果:(1)确定乙酸酯最佳的反应条件,为其工业化生产提供依据。
催化基础知识普及、探讨帖之五:催化期刊及投稿
催化基础知识普及、探讨帖之五:催化期刊及投稿催化基础知识普及、探讨帖之五:催化期刊及投稿催化知识普及、探讨系列帖第 5 帖——催化期刊及投稿此帖主题相信大家平时了解的比较多,恐怕也是大家最为关心的问题之一。
小木虫论文投稿专版关于此方面的介绍比较多也比较详细,且我们催化专版也有几个帖子专门进行了探讨和讨论,而我对这方面了解比较少(主要是没发过什么文章,哈哈),此帖内容主要是对网络上的一些投稿知识进行汇总(加入了少的可怜的自己对催化期刊的认识及投稿经验)。
目的还是办此系列帖的主旨:介绍催化相关基础知识、抛砖引玉、相互学习、分享经验及教训。
催化是一门跨学科、跨专业的科学,按理论上讲化学类,甚至物理等类的期刊都可以收录催化相关的文章,因此本贴并不打算介绍诸如《科学》《自然》《德国应用化学》、、、JACS 等等这些高等次的通用型期刊,此帖只局限于催化专业期刊。
简而言之:只介绍含有“催化”两字的相关期刊。
具体介绍各个催化期刊之前,有必要对现今几大出版社或数据库简要介绍一下(一般催化期刊都是这四个出版社或数据库名下的):(1)Elsevier Science 出版社Elsevier 出版的期刊是世界公认的高品位学术期刊,且大多数为核心期刊,被世界上许多著名的二次文献数据库所收录。
SDOS 目前收录1700 多种数字化期刊,该数据库涵盖了食品、数学、物理、化学、生命科学、商业及经济管理、计算机科学、工程技术、能源科学、环境科学、材料科学和社会科学等众多学科。
该数据库不仅涵盖了以上各个学科的研究成果,还提供了简便易用的智能检索程序。
通过Science Direct Onsite(SDOS)中国集团的数据库支持,用户可以使用Elsevier Science 为其特别定制的科学、技术方面的学术期刊并共享资源。
目前 (截止到 2005 年 11 月 16 日)该数据库已有期刊种数1,734,期刊期数145,078 ,文章篇数2,576,316,最早年份为1995 年。
离子液体催化氧化脱硫技术进展
第 37 卷 第 2 期 2019 年 3 月
石化技术与应用 Petrochemical Technology & Application
Vol. 37 No. 2 Mar. 2019
摘要: 综述了 Lewis 酸性离子液体、Brnsted 酸性离子液体和金属氧酸盐离子液体在催化氧化脱硫 中的应用技术,对上述 3 种酸性离子液体的脱硫作用机理、催化效率、应用条件及成本等进行了介绍,并 指出克服腐蚀是酸性离子液体未来的主要研究方向,与酸性离子液体相比,金属氧酸盐离子液体在催化 氧化脱硫领域具有更广泛的应用前景。
关键词: 催化氧化; 脱硫; 酸性离子液体; 金属氧酸盐离子液体; 催化剂; 萃取剂 中图分类号: TQ 113. 26 + 4. 1 文献标志码: A 文章编号: 1009 - 0045( 2019) 02 - 0144 - 05
随着汽车行业迅速发展,汽车尾气排放造成 的污染也越来越受到关注。燃油中的硫氧化物 会导致酸 雨、雾 霾 等 严 重 污 染[1],硫 化 物 会 腐 蚀 设备,硫可 毒 化 贵 金 属 催 化 剂。 因 此,降 低 汽 油 中的硫含量是减少汽车尾气污染物排放的有效 手段之一[2],其主要方法有加氢脱硫和非加氢脱 硫,后者中 催 化 氧 化 的 脱 硫 操 作 条 件 温 和,除 硫 效率高[3],是很有前景的一项脱硫技术[4]。
从废旧锂电池处理废渣中硫酸浸出锂的动力学研究
摘 要: 采用硫酸浸出含锂废渣中的锂,考察了温度、液固比、硫酸浓度和搅拌速率对浸出过程的影响。 结果表明,在液固比 5 ∶ 1、硫
酸浓度 10%、搅拌速率 400 r / min、反应温度 70 ℃ 、反应 120 min 时,锂浸出率达到 94.63%。 通过正交实验和动力学推导,确认含锂
废渣中硫酸浸出锂的动力学模型为收缩核模型,浸出表观活化能为 10.39 kJ / mol,浸出过程中速度控制步骤是固膜扩散。
Abstract: Lithium was leached from lithium containing waste residue with sulfuric acid to investigate effects of temperature, liquid⁃solid ratio, sulfuric acid concentration and stirring rate on the leaching process. Results showed that the leaching rate of lithium reached 94.63% after the reaction at 70 ℃ for 120 min, with liquid⁃solid ratio at 5 ∶1 and sulfuric acid concentration of 10%. Based on orthogonal experiment and dynamic deduction, it is found that the kinetic model of lithium leaching from waste residue was a shrinking core model. The apparent activation energy of leaching was 10.39 kJ / mol and the rate controlling step was solid⁃film diffusion. Key words: spent battery; sulfuric acid leaching; lithium; comprehensive recovery; lithium⁃containing waste residue; leaching kinetics; shrinking core model; activation energy
Amberlyst36磺酸树脂催化环己酮肟液相重排制己内酰胺
Amberlyst 36磺 酸 树 脂 催 化 环 己酮 肟 液 相 重 排 制 己 内酰胺
周 云 ,Satmon John,陈亨权 ,朱 明乔
(浙江大学 化学工程与生物工程学院 ,浙江 杭 州 310027)
12
合 成 纤 维 工 业
2016年第 39卷
1.2 液 相 贝克曼 重 排反应
团 ,影 响 了磺 酸树 脂 的酸性 中心 ;乙醇和 乙腈 因为
将 CHO、溶剂和催化剂按一定 的比例加入到 沸 点较 低 ,在 相 应 的反 应 温 度 下 还没 有 达 到 Am.
收稿 日期 :2015—11-11;修改稿收到 日期 :2016—03—15。 作者简介 :周 云(1989一 ),女 ,硕 士研究 生 ,主要从 事催化 剂 工 程 研 究 。 E-mail:21328088@ziu.edu.cn.。 基金项 目:浙江省 自然科学基金(Y4080247)。 ¥ 通 讯 联 系 人 。 E—mail:zhumingqiao@ zju.edu.CN。
酸性离子液体催化合成乙酸芳樟酯
使 用 6次后 , 乙酸 芳樟 酯的 产率仍 可达 8 .% 。 62
关键 词 :酸 性 离子液体 ; 乙酸 芳樟 酯 ; 化 ; 酯 芳樟醇 中图分类 号 : Q 6 6 文献标 识码 : 文章 编号 :6 1—7 4 (0 0 0 T 5 A 17 17 2 1 )6—0 9 6 0—0 5
醇和 乙酸酐酯化反应 中的催化 活性。 结果表 明, 离子液体 [ M M] H O ]的催化性 能最高, H I [ S 当 [ MI [ S H M] H O ]的用量 为反 应物 总质 量的 1 % , ( 0 i 芳樟 醇 ) n 乙酸 酐 )=l 2 反应 温度 9 r t :( :, 0o C, 反 应 时 间2h乙酸 芳樟 酯的产 率 可达 9 . % , 14 选择 性 为 10 。 0 % 反应 结束 后 , 减压脱 去过 量 的酸 酐和
i d zl uft [ miaoesl e( HMI [ S 4 )w r snh s e n h rcei d h aayi a t ie f a M] Ht s z z c vi o
t c d c i n c lqu d o he s n he i flna y c t t r l o i v si a e he a i i o i i i sf rt y t sso i lla ea e we e a s n e tg t d.Th e u t h we e r s lss o d
,
a d t e e a i n fa e i a i we e r m o e sil to u e e u d pr s u e t e o i n he g n r to o c tc c d r e v d by ditla in nd r r d ce e s r h i n c
新兴湿法退役锂电池正极材料回收技术研究进展
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 4 期新兴湿法退役锂电池正极材料回收技术研究进展马文君,张旭,刘孟顺,梁志远(西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049)摘要:退役锂电池中的钴、镍、锂等稀有金属的绿色高效回收利用逐渐成为国内外研究的重点。
传统酸浸法具有能源成本低、金属回收纯度高和效率高的优点,但使用腐蚀性强酸和昂贵萃取物,反应时间长且产生废酸、污泥和高盐溶液等二次废物。
本文总结了传统酸浸法中绿色浸取剂和还原剂以及低共熔溶剂(DES )和超临界流体(SCF )两种新兴的湿法冶金技术对高效绿色回收锂电池正极材料的应用。
阐明了微波超声辅助手段和选择性浸取回收工艺分别对改善浸取工况和简化分离回收程序的重要作用。
并重点介绍了超临界水(SCW )和超临界二氧化碳(SC-CO 2)两种超临界流体降解有机污染物、回收稀有金属并改善合成正极材料的应用,为高效、绿色、低成本回收退役锂电池中稀有金属提供了重要参考价值。
关键词:浸取;超临界流体;选择性;回收;湿法冶金;锂电池;低共熔溶剂中图分类号:TD982;X773 文献标志码:A 文章编号:1000-6613(2024)04-2077-14Research progress of novel hydrometallurgy in recycling cathodematerials from spent lithium -ion batteriesMA Wenjun ,ZHANG Xu ,LIU Mengshun ,LIANG Zhiyuan(Key Laboratory of Thermal Fluid Science and Engineering of MOE, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China)Abstract: The green and efficient recycling of cobalt, nickel, lithium and other rare metals in spent lithium batteries has gradually become the focus of research at home and abroad. Traditional acid leaching owns the advantages of low energy cost, high purity of metal recovery and high efficiency. However, traditional acid leaching uses caustic acids and expensive extracts, takes a long time and produces secondary waste such as waste acids, sludge and highly saline solutions. Therefore, this paper focused on the application of green leaching agent and reducing agent in traditional acid-leaching and two novel green solvents of deep eutectic solvent (DES) and supercritical fluid (SCF) in the green and efficient recovery of cathode materials of lithium batteries. The important effects of selective leaching technology on simplifying recovery procedures and assisted means like microwave or ultrasonic on improving leaching conditions were reviewed. The application of supercritical water (SCW) and supercritical carbon dioxide (SC-CO 2) to degrade organic pollutants, recover rare metals, and improve the synthesis of cathode materials was emphasized, which provided important reference value for efficient, green and low-cost recovery of valuable metals from spent lithium batteries.Keywords: leaching; supercritical fluid; selectivity; recovery; hydrometallurgy; lithium-ion batteries; deep eutectic solvent综述与专论DOI :10.16085/j.issn.1000-6613.2023-0547收稿日期:2023-04-07;修改稿日期:2023-05-04。
树脂固化反应动力学方程
树脂固化反应动力学方程
dα/dt = k(T) f(α)。
其中,α是反应的进度,t是时间,k(T)是温度T下的速率常数,f(α)是进度函数,描述了反应速率随着反应进度的变化而变化的关系。
进度函数通常是根据实验数据或者理论模型来确定的。
树脂固化反应动力学方程的具体形式取决于具体的反应类型和反应机理。
例如,对于简单的一级反应,动力学方程可以是经典的一级反应动力学方程:
dα/dt = k(T) (1-α)。
其中,k(T)是温度T下的速率常数,(1-α)表示未反应物的浓度随时间的减少。
对于复杂的多级反应或者其他非均相反应,动力学方程可能会更加复杂,需要考虑更多的因素,如扩散、温度变化等。
此外,树脂固化反应动力学方程的推导和确定通常需要通过实
验方法,如差示扫描量热法(DSC)、动态力学热分析(DMA)等来获取实验数据,并通过拟合或者理论模型来确定动力学方程的具体形式和参数。
总之,树脂固化反应动力学方程是描述树脂固化过程中化学反应速率随时间变化的数学表达式,其具体形式取决于具体的反应类型和反应机理,通常需要通过实验方法来确定。
合成PHA工艺计量学和动力学参数
合成PHA工艺计量学和动力学参数聚乙烯、聚丙烯、聚氯乙烯等这类传统塑料的大规模运用,对环境造成了严重的污染。
这一亟需解决的环境问题,可以通过寻找一种物化性能相似的可生物降解新材料来解决。
聚β羟基烷酸脂(PHA)是一类绿色的可代替传统塑料的新材料,利用富含挥发性脂肪酸的废水(液)为基质富集混合微生物和生产PHA成为前沿研究焦点。
本论文考察了“贮存-生长”与沉淀筛选相结合的策略对富集PHA贮存微生物的影响,开展了在单一反应器运用按需进料方式实现PHA合成的研究,同时通过数学模型模拟了PHA的贮存过程,最后以造纸废水发酵液为原料进行了PHA合成的实验研究,具有重要学术意义和实用价值。
得出的主要结论如下:1.提出了一种采用“贮存-生长”策略与沉淀筛选相结合的策略在序批式反应器(SBR1)中富集PHA贮存细菌的方法,与采用“贮存-生长”策略的序批式反应器(SBR2)进行比较,结果表明SBR1中贮存细菌富集时间仅需21d,比SBR2快了12d。
富集稳定后两个反应器的PHA贮存性能相似,最大PHA含量均约为70%。
高通量测序表征富集过程2个反应器贮存细菌的相对丰度,发现贮存细菌的相对丰度从接种污泥的9.9%增加到SBR1的69%,SBR2的70%。
结果表明,基于“贮存-生长”策略,沉淀筛选加速了贮存细菌的富集过程但不影响稳定后的PHA贮存性能;2.富集所得PHA贮存细菌的实验结果表明,在饱食期,PHA贮存产率系数(Y_(PHA/S))为0.60Cmol PHA/Cmol S,PHA最大贮存含量为70%,饱食期平均贮存速率为13.45 Cmol PHA/L/h。
饱食期活性生物质(X)浓度基本不变,保持在23Cmmol/L左右。
饱食末期经过3/4体积的排泥,收获富含PHA的活性污泥。
在饥饿期初期,向反应器中投加营养物质启动生物质生长过程,X从约5.8Cmmol/L增加到约23Cmmol/L。
PHA累积实验结果表明,PHA在活性生物质中的最大含量为86%。
聚离子液体固体酸催化剂的制备及催化甘油乙酰化性能
2017年第36卷第7期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·2497·化 工 进展聚离子液体固体酸催化剂的制备及催化甘油乙酰化性能张吕鸿,王瑞瑾,姜斌,孙永利,杨华伟(天津大学化工学院,天津 300072)摘要:通过自由基共聚,质子化及离子交换两步法合成聚咪唑基离子液体固体酸催化剂(PILs )。
采用傅里叶红外光谱(FTIR )、扫描电镜(SEM )、透射电镜(TEM )、X 射线光电子能谱分析(XPS )、热重分析(TGA )、元素分析和电位滴定的方法对该催化剂的结构和性能进行了表征。
结果表明该催化剂具有层状结构、良好的热稳定性和较高的质子酸浓度,并在不加入带水剂的条件下,考察了该聚离子液体固体酸催化剂对甘油乙酰化反应的催化作用。
结果表明该PILs 固体酸催化剂具有良好的选择催化活性,在酸醇摩尔比为6∶1、催化剂用量4%(质量分数)、120℃、4h 的最优条件下,甘油转化率达98.2%,单乙酸甘油酯的选择性为11.6%,二乙酸甘油酯和三乙酸甘油酯的总选择性高达88.4%,优于Amberlyst-15的催化效果。
该催化剂易回收,具有良好的水热稳定性,且重复使用4次经再生后仍能保持良好的选择催化活性。
关键词:催化剂;聚合;离子液体;选择性;甘油;乙酰化中图分类号:TQ032.4 文献标志码:A 文章编号:1000–6613(2017)07–2497–07 DOI :10.16085/j.issn.1000-6613.2017-0104Synthesis of poly(ionic liquid)s solid acid catalyst and its catalyticperformance in glycerol acetylationZHANG LÜhong ,WANG Ruijin ,JIANG Bin ,SUN Yongli ,YANG Huawei(School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China )Abstract : A functional poly(ionic liquid)s (PILs )solid acid catalyst was prepared through free radical copolymerization of ionic liquids precursor and the subsequent protonation and ion-exchange with concentrated sulfuric acid. The as-prepared acidic catalyst was characterized by FTIR ,SEM ,TEM ,XPS ,TGA ,elemental analysis and potentiometric titration. It was found that the acid PILs had a multi-layer microstructure with favorable thermal stability and high Brønsted acid site density. Its performance was evaluated in the acetylation of glycerol without any water-carrying agent. It exhibited high catalytic activity and selectivity. Glycerol conversion of 98.2%,monoacetin selectivity of 11.6% and total diacetin and triacetin selectivity of 88.4% were obtained under the optimum reaction conditions of n (acetic acid)∶n (glycerol) =6,catalyst dosage=4% of glycerol ,120℃,4h. The catalytic performance was better than that using Amberlyst-15. The PILs solid acid catalyst was easily recovered and had good hydrothermal stability. A further exchanging of used PILs with H 2SO 4 could make the catalyst restore its catalytic performance and it could be reused for 4 times.Key words :catalyst ;polymerization ;ionic liquids ;selectivity ;glycerol ;acetylation生物柴油作为一种绿色可再生替代能源得到了国内外的广泛关注[1-2],其合成过程伴随着副产物甘油的积累[3]。
BrΦnsted酸性离子液体催化合成尼泊金酯
BrΦnsted酸性离子液体催化合成尼泊金酯未本美;张智勇;戴志群;关金涛【摘要】以Bronsted酸性离子液体[Hmim]Cl为催化剂催化合成尼泊金酯,考察了反应时间、醇酸摩尔比、离子液体用量等条件对反应的影响,确定了反应的最佳条件:对羟基苯甲酸的用量为0.04mol,反应时间2.5h,醇酸摩尔比为2:1,离子液体用量为3mL,产率超过82%.离子液体可循环使用5次,催化活性基本不变.【期刊名称】《中国酿造》【年(卷),期】2010(000)005【总页数】2页(P122-123)【关键词】尼泊金酯;离子液体;合成;催化【作者】未本美;张智勇;戴志群;关金涛【作者单位】武汉工业学院化学与环境工程学院,湖北,武汉,430023;武汉工业学院化学与环境工程学院,湖北,武汉,430023;武汉工业学院化学与环境工程学院,湖北,武汉,430023;武汉工业学院化学与环境工程学院,湖北,武汉,430023【正文语种】中文【中图分类】TS202.3尼泊金酯是一类低毒高效防腐剂其防腐效果不易受pH值影响,已广泛应用于食品、饮料、化妆品、调味品等领域[1-3]。
尼泊金酯的合成大多采用浓硫酸作催化剂,该方法存在设备腐蚀严重、污染环境、副产物多、产物分离繁琐等问题。
近年来,随着环保意识的加强,开发了固体杂多酸[4]、磺酸树脂[5]、纳米固体超强酸[6]、离子液体[7]等一些催化剂,取得了较好的效果。
离子液体由于具有稳定性好、酸碱性可调、产品容易分离和可循环使用等优点,能有效避免传统方法所带来的环境污染、设备腐蚀等问题,在有机合成领域已得到广泛的应用[8-9]。
本实验用Brφfnsted酸性离子液体[Hmim]Cl催化合成了3种尼泊金酯,并研究了各种因素对反应的影响,确定了反应的最佳条件。
试剂:对羟基苯甲酸、N-甲基咪唑、浓盐酸、乙醇、正丙醇、正丁醇等均为分析纯。
仪器:Nicolet 330傅立叶红外光谱仪,X-4型数显熔点测定仪,DF-101S集热式恒温加热磁力搅拌器等。
酸性吸附树脂对间苯二胺的吸附动力学及吸附热力学研究
酸性吸附树脂对间苯二胺的吸附动力学及吸附热力学研究李剑楠【期刊名称】《化学工程与技术》【年(卷),期】2018(008)005【摘要】本文选取单宁酸、赖氨酸、氨基磺酸以及没食子酸四种官能团对树脂进行修饰,并通过静态吸附实验和吸附动力学实验,分别探讨这四种树脂对水中间苯二胺的吸附原理。
实验结果表明:四种吸附树脂对间苯二胺均具有较好的吸附效果,经318K平衡吸附后降到288K (288K*)时树脂对间苯二胺的吸附量最大,该过程包含物理吸附和化学吸附。
四种吸附树脂对间苯二胺的吸附等温线符合Langmuir方程(R2均大于0.98)。
热力学研究结果表明间苯二胺在LAS上的ΔH是负值且其绝对值小于42 KJ/mol,说明此吸附过程是放热的过程,以物理吸附为主。
另外三种树脂的ΔH均为正值,说明吸附过程是一个吸热过程。
准一级动力学方程的R21 均大于0.99,表明间苯二胺在AJHS树脂上的吸附动力学过程更符合准一级动力学方程。
【总页数】8页(P276-283)【作者】李剑楠【作者单位】[1]南京工业大学环境科学与工程学院,江苏南京【正文语种】中文【中图分类】O64【相关文献】1.对甲基苯甲酸在大孔吸附树脂上的吸附热力学及动力学研究 [J], 代喃喃;刘玉林;董庆华;唐树和2.复合功能超高交联吸附树脂对氨基萘酚磺酸的静态吸附热力学及动力学特征 [J], 刘福强;陈金龙;费正皓;葛俊杰;李爱民;张全兴3.邻-氨基酚修饰吸附树脂对2-氨基吡啶的静态吸附热力学及动力学特征 [J], 唐树和;费正皓;陈建;刘总堂4.超高交联吸附树脂对水中对甲苯胺的吸附热力学与动力学研究 [J], 王海玲;陈金龙;翟志才;陈一良;张全兴5.大孔吸附树脂对杜仲叶总黄酮的吸附热力学和动力学研究 [J], 熊利芝;王溶;田伟;何则强因版权原因,仅展示原文概要,查看原文内容请购买。
强酸性树脂催化合成氯乙酸酯
强酸性树脂催化合成氯乙酸酯
黄家董;汪犬理
【期刊名称】《辽宁化工》
【年(卷),期】1990(000)002
【摘要】本文介绍用强酸性离子交换树脂催化台成氯乙酸甲酯、氯乙酸乙酯、氯乙酸正丙酯、氯乙酸正辛酯、氯乙酸十六酯、氯乙酸十八酯、氯乙酸(十二~十六)混合酯等,工艺过程简便,酯化率高。
【总页数】4页(P43-46)
【作者】黄家董;汪犬理
【作者单位】不详;不详
【正文语种】中文
【中图分类】O623.64
【相关文献】
1.强酸性阳离子交换树脂催化合成棕榈酸甲酯 [J], 孔维宝;张娟;景洋;来宝鹏;张继
2.强酸性阳离子交换树脂催化涤纶合成对苯二甲酸二辛酯的研究 [J], 张佳
3.强酸性阳离子交换树脂催化合成氯乙酸异辛酯的研究 [J], 彭辉;揭嵘
4.强酸性阳离子交换树脂催化酯化丙烯酸和甲醇合成丙烯酸甲酯的反应动力学 [J], 潘佳佳;张贝克;卢秉南
5.SnCl_4/强酸性离子交换树脂催化合成乙酸甲酯研究 [J], 仝海娟;左卫元;史兵方;段艳;陈盛余
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Applied Catalysis A:General197(2000)165–173Kinetic of liquid-phase reactions catalyzed by acidic resins:the formation of peracetic acid for vegetable oil epoxidationR.L.Musante1,R.J.Grau2,M.A.Ba1tanás∗Instituto de Desarrollo Tecnológico para la Industria Qu´ımica(INTEC)Güemes3450,3000Santa Fe,ArgentinaAbstractA heterogeneous kinetic model which takes into account the complete physicochemical interaction of reactive species in a polar liquid phase with an ion-exchange resin acting both as selective sorbent and heterogeneous catalyst has been employed to analyze the peracetic acid synthesis from acetic acid and hydrogen peroxide in an aqueous solution.Model parameters were estimated using uncoupled data from phase equilibria,polymer sorption,chemical equilibrium and reaction kinetics.Activities rather than molar concentrations in the polymer phase and specific(dry weight of catalyst basis)rather than volume-based expressions were found to give the best constitutive equations for the heterogeneous reaction rate.©2000Elsevier Science B.V.All rights reserved.Keywords:Vegetable oil epoxidation;Heterogeneous models;Acidic resins1.IntroductionThe epoxidation of unsaturated triglycerides with percarboxylic acids is a common practice for obtain-ing low cost plasticisers of good performance from natural and renewable sources such as vegetable oils. Cost constrictions dictate the use of inexpensive per-acetic acid(PAA)as the active reagent,while safety concerns demand an in situ preparation of the reagent, to avoid the handling of a pre-formed concentrated peracid.The in situ process involves a heterogeneous system,as epoxidation reaction occurs in the organic phase whereas the formation of PAA takes place ∗Corresponding author.Tel.:+54-342-4559175;fax:+54-342-4550944.E-mail address:tderliq@.ar(M.A.Ba1tan´a s)1Research Assistant of U.N.L.2Professor at U.N.L.and member of CONICET research staff.in an aqueous medium.The latter step is slow and controls the overall reaction rate;then,high conver-sions are generally achieved after several hours of reaction.Traditionally,homogeneous acidic catalysts(e.g. sulfuric acid)have been used to facilitate the forma-tion of peracetic acid by reacting acetic acid(AA) and hydrogen peroxide(HP):CH3COOH(AA)+H2O2(HP)H+←−−→CH3COOOH(PAA)+H2O(W) Hydrogen peroxide(an oxygen source)reacts with acetic acid(an oxygen carrier)in the aqueous phase in the presence of the acidic catalyst(solvated pro-tons)to give peracetic acid(PAA).The latter,in turn, transfers to the organic phase and quickly attacks the double bonds of the unsaturated vegetable oil(VO)to form the oxirane ring in the homogeneous epoxidation0926-860X/00/$–see front matter©2000Elsevier Science B.V.All rights reserved. PII:S0926-860X(99)00547-5166R.L.Musante et al./Applied Catalysis A:General197(2000)165–173 reaction:R1CH=CHR2 (VO)+CH3COOOH (PAA)→R1CHOCHR2(EVO)+CH3COOH (AA)The co-produced AA returns to the aqueous phase to close the sequence and re-start the production cycle. Mass and heat transfer limitations may impose severe process constraints(epoxidations are highly exothermic)or may lead to undesirable side reac-tions.So,numerous workers have studied the epoxi-dation reaction pathway and a qualitative picture of it was agreed upon in the past decades[1–3].The rate-limiting step of the in situ process is the forma-tion of PAA in the aqueous phase.However,quan-titative determination of the kinetic parameters was lacking,and only for two-phase epoxidations using homogeneous mineral acids more rigorous kinetic models had begun to emerge in the recent past[4,5]. As mentioned,secondary(acid-catalyzed)side re-actions do appear.Invariably,they involve an opening of the oxirane ring and,consequently,lower yields of epoxidized vegetable oil[5]:R1CHOCHR2+CH3COOHH+→R1CH(OH)CH(OOCH3)R2R1CHOCHR2+CH3COOOHH+→R1CH(OH)CH(OOOCCH3)R2R1CHOCHR2H +→R1COCH2R2R1CHOCHR2+H2O H+→R1CH(OH)CH(OH)R2R1CHOCHR2+H2O2H+→R1CH(OH)CH(OOH)R2 Heterogeneous catalysts such as functionalized micro-reticular ion-exchange resins(IER)can be advanta-geously used instead,since only the small carboxylic acid molecules can enter into their gel-like structure, while the bulky epoxidized triglyceride molecules cannot.The oxirane ring can thence be protected from the attack of the protons which are confined inside the gel matrix and,as a result,further ring decomposition is prevented.Also,catalyst recovery and/or regeneration is much easier then.Several such strongly acidic sulfonic IER(e.g.Dowex50;Am-berlite IR120,Chempro C20)have been reported to contribute to minimizing oxirane ring opening[6–9]. Three phases are present in the in situ processes cat-alyzed by IER:(1)a polymer phase,whose behavior (notably its swelling properties)is highly dependent on the physicochemical properties of the system,to-gether with(2)an aqueous phase,immiscible with(3) the organic phase.A heterogeneous kinetic model of this three-phase system using IER has not been pre-sented so far.We are presently developing a complete study of the epoxidation process,uncoupling the reac-tion and transport system into sub-systems of increas-ing complexity to allow a better quantification of the relevant process parameters.This piece of work presents the modeling of one of these sub-systems whose understanding is crucial: the kinetics of formation of PAA in the heteroge-neous aqueous phase-polymer(acidic catalyst)phase system.For this,the partition of each component between the two phases,as well as the swelling ra-tio(relative increase of the volume of the resin)are first quantified.Selective sorption/swelling leads to values of the relative compositions in the reaction locus(i.e.the polymer resin)and of the reactants’polymer-phase concentration which are different from those in the liquid phase.Both aspects are taken into account in the modeling.Then,the chemical equilibrium constant and kinetic parameters are esti-mated from the equilibrium and kinetics experimental data,respectively,using operating conditions typical of the industrial stly,the activation en-ergy of the acid-catalyzed reaction is estimated from non-isothermal experimental data.The appropriate-ness of managing the kinetic equations in terms of activities,rather than concentrations,and mass of dry resin,rather than its volume,are discussed.2.Experimental2.1.Activation and conditioning of the ion-exchange resinRohm&Haas Amberlite IR-120microreticular gel-type resin,DVB-styrene matrix,8%cross-linking, d p(dry)=215–775m(54.5%<530m;75.3%<R.L.Musante et al./Applied Catalysis A:General197(2000)165–173167600m;94.8%<670m),functionalized withsulfonic groups,was used throughout this work.AsIER is commercially available in sodium form,hy-drochloric acid(10%w/w)was used to fully activateit in successive ion-exchange steps(7in total),withfurther washing(1:10w/w)using distilled demineral-ized water until complete elimination of the residualstly,glacial acetic acid(purity:>99.7%w/w)was used to replace water inside the ion ex-change resin.The exchange capacity of the resin,as determinedby titration using conventional volumetric tech-niques,was:[H+]o=4.507meq/g(dry basis).The dry polymer density,as measured by pycnometry usingn-heptane[10],was1.437kg/m3.A portion of the dryresin was crushed and sieved;successive washing anddecantation in distilled demineralized water allowedthe removal of undesiredfines adhered to the crushedparticles.Two fractions,<53and>595m,wereused to evaluate the possible impact of mass-transferresistances on the process rate.2.2.Determination of phase equilibrium partitioningof reactants between the aqueous and polymericphasesDifferent dilutions of either acetic acid or hydro-gen peroxide in water(40g)were added to the dryresin(15g).The system was kept at333K with occa-sional stirring until physicochemical equilibrium wasachieved in about4h.The equilibrium compositionof the liquid phase was measured by volumetric tech-niques(see below).A portion of the swollen resin wascentrifuged at2000g for5min to eliminate any resid-ual interstitial liquid[10].The amount of sorbed liq-uid retained by the resin was found by weighting thecentrifuged resin before and after drying in a stove at378K for12h[11].2.3.Reactor and experimental proceduresThe rate of formation of PAA was studied in exper-imental runs conducted in a1000cm3closed cylin-drical Pyrex reactor,furnished with a variable speed(0–1000rpm)mechanical stirrer.The device had fourteflon baffles to eliminate vorticity,an overhead re-flux condenser and a fast-sampling device for collect-ing representative liquid-resin samples of the reacting system.An internal cooling coil(OD:1/4 ;316SS), combined with an external cylindrical heating mantle (400W)linked to a PID temperature controller,en-sured operating within±0.1K.In a typical experiment,glacial AA and pre-activated IER were added to the empty reactor and slowly heated to the reaction temperature under stirring.Si-multaneously,the desired volume of a solution of HP (30%w/w)was also heated to that temperature,under reflux,and then added,at once,to the reactor(zero time of the reaction).Samples were periodically taken and immediatelyfiltered to separate the resin and stop the reaction.Next,aliquots of thefiltrates(1cm3) were diluted in ethanol(100cm3)and refrigerated for further analysis by GLC.2.4.Analytical techniquesThe concentration of AA and HP were measured by volumetric titration,using NaOH(0.l N)and KMnO4 (0.1N),respectively.The contents of PAA acid in the reaction samples was determined by GLC after a previous derivatization with methyl p-tolyl sulphide; n-octadecane was used as internal standard[12].A glass column(500×2mm)packed with3%FFAP on Chromosorb W AW DMCS(80–100mesh)was em-ployed.3.Results and discussion3.1.Intra-and extra-particle mass-transfer resistancesThe absence of intra-particle mass-transfer resis-tances to any significant extent was experimentally corroborated using two widely differing particle sizes of the resin:>595and<53m,under typical reaction conditions of the well-stirred mixture(375rpm).Both runs gave identical results as is shown in Fig.1.Also, the ratio of initial rates was close to unity even though particle diameters differed by more than10-fold. Hence,extra-particle mass-transfer resistances are of no concern either and,thus,the commercial un-crushed lER beads were used to perform the kinetic study.168R.L.Musante et al./Applied Catalysis A:General 197(2000)165–173Fig.1.Influence of particle size of the ion-exchange resin (Amberlite IR-120)on the reaction rate and final concentration of PAA at 333K (reactants molar ratio:H 2O 2/HOAc =1.1/0.5).The full line corresponds to model predictions.3.2.Kinetic modelAs we have pointed out in Section 1,the selec-tive sorption and swelling of the resin can have a strong influence on the observable reaction rate of this two-phase system,even though no change in the se-quence of involved reaction steps (as compared to the homogeneous reaction)is to be expected for a strongly acidic material being the active catalyst.Then,a pseu-dohomogeneous kinetic model such as the following:dd t C PAA =k 1C IER C HP C AA −1K C PAA C W(1)which considers IER merely as a source of protons in the multicomponent liquid mixture would be certainly insufficient.In fact,for the set of experimental runs summarized in Table 2,every attempt we made to get satisfactory data fittings by means of a non-linear re-gression algorithm was unacceptable.So,a new model was developed to include explicitly the presence of the polymer phase.Two approaches can be followed to solve this hur-dle.The first one focuses exclusively on the catalytic reaction pathway at the reaction locus,where two ex-treme situations are recognizable according to whether slightly dissociated sulphonic groups or free solvated protons are the catalytic agents [13–15].The first case applies whenever the resin is imbedded into a slightly polar medium;the classic LHHW formalism can then be applied to model the reaction kinetics [16,17].Here,the inclusion of adsorption parameters is both justifi-able and flexible enough so as to fit up any observ-able changes in catalytic activity due to the presenceof polar components in minor amounts.If the resin operates into a strongly polar solvent such as water,the sulphonic groups are fully dissociated and the free solvated protons catalyze the reaction through ionic mechanisms of protonation.In many such situations,specially if just small amounts of resin are used,a pseudohomogenous model describing the reaction rate in terms of power-law kinetics suffices,as it does in homogeneous catalysis.However,none of these models takes into account the selective sorption and swelling of the resin,which leads to values of the reactants’polymer-phase con-centration and of the relative composition of both reactants and products in the polymer phase (i.e.the reaction locus)that are different from those in the liquid phase.A second approach is then needed,to ex-plicitly differentiate the compositions of the aqueous and polymer phases whenever a significant amount of resin is used as a catalyst.For such purposes,the overall system can be considered as a two-phase sys-tem composed of a highly viscous multicomponent fluid phase containing N +l species (with the swollen polymer as (N +1)th species,)in physicochemical equilibrium with the N -component liquid phase,since the characteristic time for reaching phase-equilibrium conditions between them is usually of the order of a few minutes [18].3.3.Activities of the species in the liquid phase A predictive model is needed to compute the ac-tivity of the four species in the aqueous phase,rather than a correlative one,due to the scant informationR.L.Musante et al./Applied Catalysis A:General197(2000)165–173169 available in the open literature about this reactingsystem.For these components,just a pair of binarydata is available:water–hydrogen peroxide[19]andwater–acetic acid[20].Then,the UNIFAC group con-tribution method[21]is a suitable tool,as it does notinvolve any adjustable parameter.The central con-cept of the method rests on considering any mixtureas a solution of functional groups interacting amongthemselves.Most of the extensions and refinementof the original concept have rested onfinding newprocedures for calculating the molecular interactionparameters between components,which initially camefrom vapor–liquid equilibrium data(UNIFAC VLE).Later,a new set of interaction parameters has beenderived from the liquid–liquid equilibrium data(UNI-FAC LLE)for making predictions related to thesesystems[22].More recently,the dependence of theinteraction parameters with temperature has also beenincluded,in the Modified UNIFAC method[23].We used each of these methods to predict the activ-ities in the aqueous phase.The UNIFAC LLE methodwas found to give the closestfit when a comparison ofmodel predictions with experimental data taken fromthe available vapor–liquid equilibria was made.It wasthen adopted for further use in our calculations.3.4.Activities of the species in the polymer phaseThe activity a P i of the i th species of a multicompo-nent polymeric solution can be evaluated in the frame-work of the extended Flory–Huggins model[25]:ln a P i=1+ln v i−N+1j=1m ij v j+N+1j=1χij v j−N+1j=1j−1k=1m ik v j v kχkj+ηV i53v1/3P−76v P(2)where N is the number of components excluding thepolymer,which is the(N+l)th species;νandνP are thevolume fractions of the i th species and of the polymerin the polymer phase,respectively;m ij is the ratio ofmolar volumes of the i th and j th species(m iP=0); V i is the molar volume of i th species;ηrepresentsthe number of moles of active elastic chains per unitvolume andχij represents the molecular interaction between components i and j.The latter parameters are known to be temperature-dependent[24]. According to Eq.(2),11adjustable parameters would have to be determined for calculating the set of a P i of the four species in the polymer phase:η,and 10molecular interaction parameters,four of them corresponding to interactions between the polymer and the other species(χiP)and six binary interaction parameters among the liquid phase components(χij), sinceχij=χji andχii=0(see Ref.[18]for a full discussion on the subject).The elasticity parameter andfive of the binary interaction parameters were found independently (i.e.uncoupled),from the sorption equilibria of the water–acetic acid and water–hydrogen peroxide bi-nary mixtures in contact with the resin.For this purpose,the activities of each pair of components in the aqueous phase were calculated using the UNIFAC LLE routine,which does not involve any adjustable parameter.Next,as in thermodynamic equilibriuma L i=a P i(3) Eq.(2)was used for each binary mixture,using the Levemberg–Marquardt algorithm,to estimate the cor-responding interaction parameters.Fig.2shows representative sets of tie lines,in adsorbent-free mass coordinates(N=g dry resin/g ad-sorbate),obtained experimentally at333K.These data clearly indicate that water is more strongly sorbed than either acetic acid or hydrogen peroxide,and that the resin swelling is much higher in water than in acetic acid.It is also apparent that the polymer beads can expand even more(albeit slightly)with higher concentration of hydrogen peroxide.Fig.3re-plots the experimental data(tie lines) shown in Fig.2,as molar fractions in the polymer and liquid phases,for the water–acetic acid and water–hydrogen peroxide binary pairs,together with model predictions using the calculated parameters (the latter are included in Table1).The agreement is satisfactory.The experimental determination of the partition of PAA was not made owing to the obvious experi-mental difficulties and hazards involved in handling a highly concentrated peracid.Instead,the heuristic assumption was made that in the polymer phase the analogs—carboxylic acids(acetic and peracetic)—can be assumed to behave as identical molecules,as170R.L.Musante et al./Applied Catalysis A:General 197(2000)165–173Fig.2.Binary sorption and phase partition equilibria on Amberlite IR-120of (a)water–acetic acid and (b)water–hydrogen peroxide binary mixtures,obtained experimentally at 333K,in adsorbent-free mass coordinates (N =g dry resin/gadsorbate).parison of experimental data and model predictions for the water–acetic acid (a)and water–hydrogen (b)binary pairs shown in Fig.2(333K).far as their molecular interactions are concerned,and so χAA −PAA =0.Likewise,an uncoupled estimation of the interaction parameters of the reactive binary pairs,PAA–water and acetic acid–hydrogen peroxide cannot be made,for obvious reasons.Nevertheless,under the previous hypothesis χW −PAA is identical to χW −AA .Lastly,the remaining interaction parameter can be estimated from chemical equilibrium data us-Table 1Estimated values of the interaction parameters of the extended Flory–Huggins model [Eq.(2)],at 333K.χij j i AA HP Water PAA Resin AA 0−0.00880.339000.1592HP −0.00360−1.9670−0.00360.8809Water 0.1039−1.488600.1039−0.6673PAA−0.00880.33900.1592ing asymptotic compositions (i.e.after long enough contact times)of the experimental runs.The proce-dure is described below,in Section 3.5.As is shown in Table 1,the complete set of χij inter-action parameters indicates relatively low interaction between acetic acid,PAA and hydrogen peroxide,and moderate interactions of these with water and of the four liquid components with resin.The value obtained for the elasticity parameter was:η=0.022mol/cm 3,which is about one order of magnitude higher than the theoretical one.However,by imposing progres-sively lower values to this parameter there is worse agreement between model predictions and experimen-tal data results,owing to the tight correlation among the parameters in Eq.(2).This problem has been dis-cussed in a recent work on the kinetics of liquid-phase esterification of acetic acid with ethanol using Am-berlyst 15,where about two orders of magnitude dif-ferences were encountered [18].Despite these shortcomings of presently available phase partition equilibrium models,they allow one to reproduce rather satisfactorily the experimental data and seem sufficient to help in describing the kinetic behavior of these systems under reaction conditions.3.5.Chemical equilibriumBy solving the set of multicomponent sorption equi-librium equations,Eq.(3),together with the mass bal-ances of each of the i th species:n L i +n P i =n 0i +νi ξ(4)R.L.Musante et al./Applied Catalysis A:General 197(2000)165–173171Table 2Initial loading and operating conditions of the batch experimental runs Run Temp (K)AA (moles)HP (moles)Water (moles)Resin mass (g)13331.329 2.73411.4707.44723331.345 3.48015.2058.66733332.783 2.73411.945.22643335.497 2.73411.9474.820533310.945 2.73411.9475.61663330.768 2.73411.94711.99373330.574 2.73411.94721.37583231.329 2.73411.9477.44793431.3292.73411.9477.447and the condition of chemical equilibrium:K =(a P PAAa P W /a P AA a PHP )eq (5)it is possible to jointly estimate the interaction param-eters for the reactive couple acetic acid–hydrogen per-oxide and the equilibrium constant,K .Indeed,owing to a lack of reliable data,it was impossible to estimate K from G 0data,as the standard free energy of the formation of PAA is known within broad uncertainty limits.The calculated value of χHP −AA is given in Table 1.At 333K the equilibrium constant was found to be K =2.18.Values ranging from 0.7to 5,which were found to be dependent both on the initial molar ratio of reac-tants and on the catalyst concentration,calculated from the equilibrium concentrations,have been reported by Rangarajan et al.[5].With our approach,for the broad set of experimental conditions given in Table 2,a good fit of the data could be achieved using a single value of K ,as is shown in Fig.4.The values of K at 323and 343K,obtained exper-imentally,were 1.911and 2.778,respectively.Fig.4.Experimental and calculated concentrations of PAA in liquid phase at equilibrium conditions (333K).3.6.Kinetic equationFrom Eq.(4)it is straightforward to recognize thatin the well-mixed isothermal batch reactor the time rate of change of the observable degree of advance-ment of the reaction (ξ)is sufficient to fully describe the reaction process whenever equilibrium conditions between the bulk liquid and the polymer phase hold.Also,because the catalyzed reaction proceeds only in-side the polymer phase:dd tξ=W P R P (6)where W P indicates mass of dry resin placed in the system (an invariable property)and R P is the specific reaction rate (dry weight basis).Another choice,which is to write Eq.(6)in terms of a volumetric reaction rate,leads to awkward rate ‘constants’,as the volume of the polymer phase continuously changes during the reaction owing to the swelling properties of the resin.In addition,as the system is highly non-ideal,the kinetic equation describing the reaction rate has to be written in terms of activities [26],accounting for the172R.L.Musante et al./Applied Catalysis A:General 197(2000)165–173Fig.5.Concentration of PAA in the liquid phase as a function of time for various values of the initial composition of the reacting mixture:(a)Run 7;(b)Run 6;(c)Run 3.Full lines represent model predictions.chemical equilibrium as well (Eq.(5)).The simplest expression which satisfies these requirements is the following:R P =ka P AA a P HP [1−K −1a P PAA a P W /a P AA a PHP ](7)where k [mol s −1(g dry resin)−1]=k 0[H +]0.Its value was estimated by means of the Marquardt–Levemberg algorithm,solving for Eqs.(2),(3),(5)-(7)and using the experimental data from the runs indicated in Table 2,all of them obtained in the absence of mass-transfer limitations.The previous calculation of the interaction parameters and of the chemical equilibrium constants at each temperature allowed the uncoupled estimation of k .The values of the interaction parameters at 323and 343K were obtained from those at 333K using the well-tested derivation of Flory [24]:χ(T )T =χ(T )T .The estimated values of the pre-exponential factor and activation energy of k are (8.48±l.l6)×10mol s −1(g dry resin)−1and 48.4±0.47kJ mol −1,respectively,for a 95%confidence level.Given that the absence of mass transfer constraints was corroborated,this some-what low E act value,as compared with the onereportedFig.6.Concentration of PAA in the liquid phase as a function of time for various values of the reaction temperature:(a)Run 8;(b)Run 1;(c)Run 9.Full lines represent model predictions.in homogeneous systems,might be due to the steric constraints imposed on the acid-catalyzed bimolecu-lar rds of the reaction [3,4]by the microreticular resin rather than an incomplete degree of solvation [27].Figs.5and 6compare experimental results and model predictions which are fair.Additional fittings were made using empirical kinetic expressions for:(a)the specific reaction rate (dry weight basis)in terms of molar concentrations instead of activities of the re-actants,and (b)the volumetric reaction rate in terms of activities of the components,factorized by the resin volume.In both such cases the new predictions were poorer than the one using the more sound Eq.(7),as the residual sum of squares were 58and 238%higher,respectively.4.ConclusionsA two-phase model has been proposed to describe the catalyzed reaction of the formation of PAA from acetic acid and hydrogen peroxide under a broadR.L.Musante et al./Applied Catalysis A:General197(2000)165–173173range of conditions,using a sulphonated ion-exchange resin acting as both a sorbent and a heterogeneous catalyst.The developed model incorporates relevant aspects with regard to the different affinities of the reactive species toward the liquid and resin phases. The selective partitioning of each component be-tween the two phases and the relative increase of the volume of the resin(i.e.its swelling ratio)with vary-ing composition were corroborated,quantified and taken into account in kinetic modelling.These fea-tures,which have adequate literature support,had not been previously considered for this particular reactive system.A progressive,uncoupled estimation of the model parameters was made using:(a)phase equilib-rium/sorption data of unreactive pairs of components, to obtain the binary interaction parameters;(b)chem-ical equilibrium data,to estimate the thermodynamic equilibrium constant and binary interaction parame-ters of the reactive pairs,and(c)reaction rate data in absence of mass-transfer resistances to estimate the specific kinetic rate constant.Activities rather than molar concentrations and specific(dry weight of cat-alyst based)rather than volume-based reaction rates were used throughout the work.For processing purposes the preferential partition of water inside the catalytic polymer phase(the reaction locus)is inconvenient because,being both a diluent and a reaction product,water lowers the rate of for-mation of PAA from the reversible reaction which is involved.Yet,the use of microreticular ion-exchange resins as heterogeneous catalysts for epoxidizing un-saturated triglycerides is desirable.Protons are then confined inside the polymer phase,which prevents their further attack on the oxirane ring and,so,higher oxirane indexes than those achievable in homogeneous catalytic processes can be realised. AcknowledgementsThanks are given to Leonardo Machaca González and Adolfo Larese for their dedicated experimen-tal work and to Dante L.Chiavassa for his selfless help in handling the computer programs.Thefi-nancial help of Universidad Nacional del Litoral,CONICET,ANPCyT(PD No.019)and JICA is grate-fully acknowledged.References[1]F.Greenspan,R.Gall,JAOCS33(1956)391.[2]H.Wohlers,M.Sack,H.LeVan,Ind.Eng.Chem.50(11)(1958)1685.[3]M.Abraham,R.Benenati,AIChE J.18(4)(1972)807.[4]T.Chou T,J.Chang,mun.41(1986)253.[5]B.Rangarajan,A.Havey,E.Grulke,P.D.Culnan,JAOCS72(10)(1995)1161.[6]R.Gall,F.Greenspan,JAOCS34(1957)161.[7]V.Nagiah,H.Dakshinamurthy,J.Aggarwal,Indian J.Technol.4(1966)280.[8]J.Wisniak,E.Navarrete,Ind.Eng.Chem.Prod.Res.Dev.9(1970)33.[9]B.M.Badran,F.M.El-Mehelmy,N.A.Ghanem,J.Oil ColourChem.Assoc.59(8)(1976)291.[10]B.M.P.Cornel,F.M.H.Sontheimer,Chem.Eng.Sci.41(7)(1986)1791.[11]M.Iborra,C.Fité,J.Tejero,F.Cunill,J.Izquierdo,ReactivePolymers21(1993)65.[12]F.Di Furia,M.Prato,U.Quintily,S.Salvagno,G.Scorrano,Analyst109(1984)985.[13]B.Gates,W.Rodr´ıguez,J.Catal.31(1973)27.[14]J.Tejero,F.Cunill,M.Iborra,J.Mol.Catal.42(1987)257.[15]J.Aragón,J.Vegas,L.Jodra,Ind.Eng.Chem.Res.32(1993)2555.[16]A.AI-Jarallah,A.Siddiqui,K.Lee,Can.J.Chem.Eng.66(1988)802.[17]A.Rehfinger,U.Hoffmann,Chem.Eng.Sci.456(1990)1605.[18]M.Mazzotti,B.Neri,D.Gelosa,A.Kruglov,M.Morbidelli,Ind.Eng.Chem.Res.36(1997)3.[19]G.Scatchard,G.Kavanagh,L.Ticknor,J.Am.Chem.Soc.74(15)(1952)3715.[20]J.Gmehling,U.Onken,Vapor–Liquid Equilibria DataCollection V ol I,Part I,DECHEMA,Frankfurt,1977. [21]A.Fredenslund,R.Jones,J.Prausnitz,AIChE J.21(6)(1975)1086.[22]T.Magnussen,P.Rasmussen, A.Fredenslund,Ind.Eng.Chem.Proc.Des.Dev.20(1981)331.[23]rsen,A.Fredenslund,Ind.Eng.Chem.Res.26(1987)2274.[24]P.J.Flory,Principles of Polymer Science,Cornell UniversityPress,Ithaca,NY,1953.[25]M.Mazzotti,V.Kruglov,B.Neri,D.Gelosa,M.Morbidelli,Chem.Eng.Sci.51(10)(1996)1827.[26]G.Froment,K.B.Bischoff,Chemical Reactor Analysis andDesign,2nd Edition,Wiley,New York,1990,p.39. [27]F.Ancillotti,M.Massi Mauri,E.Pescarollo,L.Romagnoni,J.Mol.Catal.4(1978)37.。